JP2007093359A - Wavelength dispersion measuring device, optical communication system, and wavelength dispersion measuring method - Google Patents

Wavelength dispersion measuring device, optical communication system, and wavelength dispersion measuring method Download PDF

Info

Publication number
JP2007093359A
JP2007093359A JP2005282296A JP2005282296A JP2007093359A JP 2007093359 A JP2007093359 A JP 2007093359A JP 2005282296 A JP2005282296 A JP 2005282296A JP 2005282296 A JP2005282296 A JP 2005282296A JP 2007093359 A JP2007093359 A JP 2007093359A
Authority
JP
Japan
Prior art keywords
chromatic dispersion
modulation signals
wavelength
optical
optical modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005282296A
Other languages
Japanese (ja)
Inventor
Takashi Sugihara
隆嗣 杉原
Katsuhiro Shimizu
克宏 清水
Takashi Mizuochi
隆司 水落
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005282296A priority Critical patent/JP2007093359A/en
Publication of JP2007093359A publication Critical patent/JP2007093359A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength dispersion measuring device capable of accuracy improvement and speed heightening of dispersion measurement. <P>SOLUTION: This wavelength dispersion measuring device is equipped with a wavelength dispersion measuring means 10 wherein a wavelength dispersion slope is provided on the transmission end side of a known optical fiber transmission path 17, and a wavelength conversion means 11 provided on the reception end side. The wavelength conversion means 11 receives the first and second light modulation signals for wavelength dispersion measurement, generates the third and fourth light modulation signals having each wavelength different from those of both modulation signals and not sandwiching a zero dispersion wavelength of the optical fiber transmission path 17, and transmits them toward the wavelength dispersion measuring means 10. The wavelength dispersion measuring means 10 generates the first and second light modulation signals and transmits them toward the wavelength conversion means 11, receives the third and fourth light modulation signals transmitted from the wavelength conversion means 11, detects the mean value of wavelength dispersion of the optical fiber transmission path 17 from each wavelength of both light modulation signals and correlation between both light modulation signals, and measures the wavelength dispersion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、光ファイバ伝送路の波長分散を測定する分散値測定装置及びその方法に関する。また、この発明は、光ファイバ伝送路の波長分散特性を測定することができる光通信システムに関するものである。   The present invention relates to a dispersion value measuring apparatus and method for measuring chromatic dispersion in an optical fiber transmission line. The present invention also relates to an optical communication system capable of measuring chromatic dispersion characteristics of an optical fiber transmission line.

光通信システムもしくは光通信システム網において、既設の光ファイバ伝送路の波長分散を測定する方法として、従来、光ファイバ伝送路の送信端側から波長分散測定用の信号を送出し、受信端側にて波長分散を計測する方法が提案されている。この方法の場合、送信端側にて波長分散情報を取得するには、受信端側にて測定した光ファイバ伝送路の波長分散もしくは波長分散を求めるための基礎情報を別線にて送信端に返信することで実現している(例えば、特許文献1から3参照)。また、他の方法として、送信端側に波長分散測定手段を設けておき、送信端側から波長分散測定用の信号を送出して、この測定用信号を光ファイバ伝送路の他端にてそのまま折り返し、送信端側の波長分散測定手段にて波長分散を測定する方法(例えば、特許文献4または5参照)や、光ファイバ伝送路の他端にて波長変換して折り返した後、送信端側の波長分散測定手段にて波長分散を測定する方法(例えば、特許文献6参照)も提案されていていた。   As a method for measuring the chromatic dispersion of an existing optical fiber transmission line in an optical communication system or an optical communication system network, conventionally, a signal for measuring chromatic dispersion is transmitted from the transmission end side of the optical fiber transmission line, and is transmitted to the reception end side. A method for measuring chromatic dispersion has been proposed. In this method, in order to obtain chromatic dispersion information on the transmitting end side, the basic information for obtaining the chromatic dispersion or chromatic dispersion of the optical fiber transmission line measured on the receiving end side is sent to the transmitting end on a separate line. This is realized by replying (see, for example, Patent Documents 1 to 3). As another method, a chromatic dispersion measuring means is provided on the transmission end side, a chromatic dispersion measurement signal is sent from the transmission end side, and this measurement signal is directly sent to the other end of the optical fiber transmission line. The method of measuring the chromatic dispersion with the chromatic dispersion measuring means on the transmission end side (for example, refer to Patent Document 4 or 5), the wavelength conversion at the other end of the optical fiber transmission line, and the return end side A method (for example, see Patent Document 6) of measuring chromatic dispersion with the above chromatic dispersion measuring means has also been proposed.

特開平11−046181号公報Japanese Patent Laid-Open No. 11-046881 特開2000−019068号公報JP 2000-019068 A 特開2002−357509号公報JP 2002-357509 A 特開平08−334436号公報JP 08-334436 A 特開2000−329653号公報JP 2000-329653 A 特開2000−329652号公報JP 2000-329652 A

しかしながら、光通信システムで扱う光信号の伝送レートが高くなり、且つ伝送距離が長くなった場合、光ファイバ伝送路の有する総波長分散量が大きくなり、且つ許容される残留分散が小さくなるため、各光通信ノードでの分散補償量の精度を向上させる必要がある。加えて、高伝送レート化によって、可変分散補償デバイスの導入が不可欠となり、伝送路のパラメータ変動に伴う適応等化の為の高速な分散測定技術が必要となる。また、光ファイバ伝送路の非線形光学効果の影響を極力低減するために送信側での高精度な前置分散補償もしくは分散予等化処理が重要となってくる。これらの動向に伴い、現在、送信端側における波長分散測定技術として、測定ダイナミックレンジ、測定精度及び測定速度のすべてを良好なのとする方法が望まれている。しかしながら、現状全てを満足する方式は存在しない。   However, when the transmission rate of the optical signal handled in the optical communication system is high and the transmission distance is long, the total chromatic dispersion amount of the optical fiber transmission line is large, and the allowable residual dispersion is small. It is necessary to improve the accuracy of the dispersion compensation amount in each optical communication node. In addition, the introduction of a tunable dispersion compensation device is indispensable due to an increase in transmission rate, and a high-speed dispersion measurement technique for adaptive equalization accompanying transmission path parameter fluctuation is required. In addition, in order to reduce the influence of the nonlinear optical effect of the optical fiber transmission line as much as possible, highly accurate pre-dispersion compensation or dispersion pre-equalization processing on the transmission side is important. Along with these trends, as a chromatic dispersion measurement technique on the transmission end side, a method for improving all of the measurement dynamic range, measurement accuracy, and measurement speed is desired. However, there is no method that satisfies all the current conditions.

この発明は、上記の課題を解決するためになされたものであり、光ファイバ伝送路の両端に波長分散測定用の手段をそれぞれ配置して、送信側から送信された二つの異なる波長からなる波長分散測定用光変調信号を受信端でそれぞれ波長変換して折り返すことで、分散測定の精度の向上と高速化を図り、加えてダイナミックレンジを向上することができる波長分散測定装置、光通信システム及び波長分散測定方法を提供するものである。   The present invention has been made in order to solve the above-mentioned problem, and is provided with means for measuring chromatic dispersion at both ends of an optical fiber transmission line, and is composed of two different wavelengths transmitted from the transmission side. A wavelength dispersion measuring apparatus, an optical communication system, and an optical communication system capable of improving the accuracy and speed of dispersion measurement by converting the wavelength of the optical modulation signal for dispersion measurement at the receiving end and turning it back, and improving the dynamic range in addition A chromatic dispersion measuring method is provided.

この発明は上述のような課題を解決するためになされたものであり、この発明にかかる波長分散測定装置は、波長分散スロープが既知の光ファイバ伝送路の送信端側に設けられた波長分散測定手段と、前記光ファイバ伝送路の受信端側に設けられた波長変換手段とを備え、前記光ファイバ伝送路の波長分散を測定する波長分散測定装置であって、前記波長変換手段は、前記波長分散測定手段から送信された波長分散測定用の第1、第2の光変調信号を受信して、当該第1、第2の光変調信号の波長に基づいて波長変換することにより、両変調信号と異なる波長で且つ前記光ファイバ伝送路のゼロ分散波長を間にはさまない各々異なる波長の第3、第4の光変調信号を生成して、これを前記波長分散測定手段に向けて送信して、前記波長分散測定手段は、前記光ファイバ伝送路のゼロ分散波長を間にはさまない互いに波長の異なる波長分散測定用の前記第1、第2の光変調信号を生成して、これを前記波長変換手段に向けて送信するとともに、前記波長変換手段から送信された前記第3、第4の光変調信号を受信して、両光変調信号の波長及び両光変調信号間の相関関係から前記光ファイバ伝送路の波長分散の平均値を検出して、当該平均値と前記分散スロープとから前記光ファイバ伝送路の波長分散を測定する。   The present invention has been made to solve the above-described problems, and a chromatic dispersion measuring apparatus according to the present invention is a chromatic dispersion measurement provided on the transmitting end side of an optical fiber transmission line having a known chromatic dispersion slope. And a chromatic dispersion measuring device for measuring chromatic dispersion of the optical fiber transmission line, the wavelength conversion means comprising: a wavelength converting unit provided on a receiving end side of the optical fiber transmission line; Both modulated signals are received by receiving the first and second optical modulation signals for chromatic dispersion measurement transmitted from the dispersion measuring means, and performing wavelength conversion based on the wavelengths of the first and second optical modulation signals. The third and fourth optical modulation signals having different wavelengths that are different from each other and sandwiching the zero dispersion wavelength of the optical fiber transmission line in between are generated and transmitted to the chromatic dispersion measuring means. The chromatic dispersion measurement The means generates the first and second optical modulation signals for measuring the chromatic dispersion having different wavelengths that are sandwiched between the zero dispersion wavelengths of the optical fiber transmission line, and directs them to the wavelength converting means. And transmitting the third and fourth optical modulation signals transmitted from the wavelength conversion means, and from the wavelength of both optical modulation signals and the correlation between both optical modulation signals, An average value of chromatic dispersion is detected, and chromatic dispersion of the optical fiber transmission line is measured from the average value and the dispersion slope.

また、この発明にかかる光通信システムは、波長分散測定手段が設けられた送信端ノードと、波長変換手段が設けられた受信端ノードと、前記送信端ノードと前記受信端ノードとを接続する波長分散スロープが既知の一本もしくは一対の光ファイバ伝送路とを備えた光通信システムであって、前記波長変換手段は、前記波長分散測定手段から送信された波長分散測定用の第1、第2の光変調信号を受信して、当該第1、第2の光変調信号の波長に基づいて波長変換することにより、両変調信号と異なる波長で且つ前記光ファイバ伝送路のゼロ分散波長を間にはさまない各々異なる波長の第3、第4の光変調信号を生成して、これを前記波長分散測定手段に向けて送信して、前記波長分散測定手段は、前記光ファイバ伝送路のゼロ分散波長を間にはさまない互いに波長の異なる波長分散測定用の前記第1、第2の光変調信号を生成して、これを前記波長変換手段に向けて送信するとともに、前記波長変換手段から送信された前記第3、第4の光変調信号を受信して、両光変調信号の波長及び両光変調信号間の相関関係から前記光ファイバ伝送路の波長分散の平均値を検出して、当該平均値と前記分散スロープとから前記光ファイバ伝送路の波長分散を測定する。   The optical communication system according to the present invention includes a transmitting end node provided with chromatic dispersion measuring means, a receiving end node provided with wavelength converting means, and a wavelength connecting the transmitting end node and the receiving end node. An optical communication system including one or a pair of optical fiber transmission lines with known dispersion slopes, wherein the wavelength conversion means includes first and second wavelength dispersion measuring units transmitted from the wavelength dispersion measuring means. Are received and modulated based on the wavelengths of the first and second optical modulation signals, so that the zero dispersion wavelength of the optical fiber transmission line is different between the two modulation signals. Third and fourth optical modulation signals having different wavelengths that are not sandwiched are generated and transmitted to the chromatic dispersion measuring means, and the chromatic dispersion measuring means transmits the zero dispersion of the optical fiber transmission line. Wavelength between The first and second optical modulation signals for measuring chromatic dispersion having different wavelengths that are not sandwiched are generated and transmitted to the wavelength converting means, and the first optical signal transmitted from the wavelength converting means is transmitted. 3. Receiving the fourth optical modulation signal, detecting the average value of the chromatic dispersion of the optical fiber transmission line from the wavelength of the two optical modulation signals and the correlation between the two optical modulation signals, The chromatic dispersion of the optical fiber transmission line is measured from the dispersion slope.

また、この発明にかかる波長分散測定方法は、送信端と受信端とを有し波長分散スロープが既知の光ファイバ伝送路の波長分散を測定する波長分散測定方法であって、受信端側において、送信端側から送信された波長分散測定用の第1、第2の光変調信号を受信して、当該第1、第2の光変調信号の波長に基づいて波長変換することにより、両変調信号と異なる波長で且つ前記光ファイバ伝送路のゼロ分散波長を間にはさまない各々異なる波長の第3、第4の光変調信号を生成して、これを前記送信端に向けて送信して、送信端側において、前記光ファイバ伝送路のゼロ分散波長を間にはさまない互いに波長の異なる波長分散測定用の前記第1、第2の光変調信号を生成して、これを前記受信端側に向けて送信するとともに、前記送信端側から送信された前記第3、第4の光変調信号を受信して、両光変調信号の波長及び両光変調信号間の相関関係から前記光ファイバ伝送路の波長分散の平均値を検出して、当該平均値と前記分散スロープとから、前記光ファイバ伝送路の波長分散を測定する。   The chromatic dispersion measuring method according to the present invention is a chromatic dispersion measuring method for measuring chromatic dispersion of an optical fiber transmission line having a transmitting end and a receiving end and a known chromatic dispersion slope, and at the receiving end side, Both modulated signals are received by receiving the first and second optical modulation signals for chromatic dispersion measurement transmitted from the transmitting end side and converting the wavelengths based on the wavelengths of the first and second optical modulation signals. And generating third and fourth optical modulation signals having different wavelengths that are not sandwiched between the zero dispersion wavelengths of the optical fiber transmission line and transmitting them to the transmission end, On the transmitting end side, the first and second optical modulation signals for measuring chromatic dispersion having different wavelengths sandwiching the zero dispersion wavelength of the optical fiber transmission line are generated, and this is generated on the receiving end side To the transmission end side Receiving the transmitted third and fourth optical modulation signals, detecting the average value of the chromatic dispersion of the optical fiber transmission line from the correlation between the wavelengths of the optical modulation signals and the optical modulation signals; The chromatic dispersion of the optical fiber transmission line is measured from the average value and the dispersion slope.

この発明によれば、波長分散スロープが既知の光ファイバ伝送路の両端において、例えば、送信端側に波長分散測定手段を設け、受信端側に波長変換手段を設け、波長分散測定手段から送信された二つの異なる波長からなる波長分散測定用光変調信号を、波長変換手段でそれぞれ波長変換して折り返し、波長分散測定手段にて、両光変調信号の波長と両光変調信号間の相関関係とから光ファイバ伝送路の波長分散の平均値を検出して、この平均値と分散スロープとから、光ファイバ伝送路の波長分散を測定することで、分散測定の精度の向上と高速化を図ることができ、加えてダイナミックレンジとする。   According to this invention, at both ends of an optical fiber transmission line with a known chromatic dispersion slope, for example, a chromatic dispersion measuring means is provided on the transmitting end side, a wavelength converting means is provided on the receiving end side, and transmitted from the chromatic dispersion measuring means. The wavelength modulation measuring optical modulation signal composed of two different wavelengths is converted by the wavelength converting means and turned back, and the wavelength dispersion measuring means returns the correlation between the wavelengths of the two optical modulation signals and the two optical modulation signals. The average value of the chromatic dispersion of the optical fiber transmission line is detected from this, and the chromatic dispersion of the optical fiber transmission line is measured from the average value and the dispersion slope, thereby improving the accuracy and speed of dispersion measurement. In addition to the dynamic range.

以下、本発明にかかる波長分散測定装置、光通信システム及び波長分散測定方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, a chromatic dispersion measuring apparatus, an optical communication system, and a chromatic dispersion measuring method according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態.
図1はこの発明の本実施の形態の光通信システムの構成図である。図1において、光通信システムは、光ファイバ伝送路17とこの伝送路17の両端に設けられた送信端ノード100及び受信端ノード110とを有している。送信端ノード100と受信端ノード110とは、それぞれ光合分波手段14a,14bを介して光ファイバ伝送路17に接続されている。送信端ノード100には、波長分散測定手段10が設けられており、受信端ノード110は、波長変換手段11が設けられている。ここで、波長分散測定手段10と波長変換手段11は、光ファイバ伝送路17の波長分散を測定する波長分散測定装置を構成している。
Embodiment.
FIG. 1 is a configuration diagram of an optical communication system according to this embodiment of the present invention. In FIG. 1, the optical communication system includes an optical fiber transmission line 17 and a transmission end node 100 and a reception end node 110 provided at both ends of the transmission line 17. The transmitting end node 100 and the receiving end node 110 are connected to the optical fiber transmission line 17 via optical multiplexing / demultiplexing means 14a and 14b, respectively. The transmitting end node 100 is provided with chromatic dispersion measuring means 10, and the receiving end node 110 is provided with wavelength converting means 11. Here, the chromatic dispersion measuring means 10 and the wavelength converting means 11 constitute a chromatic dispersion measuring device that measures the chromatic dispersion of the optical fiber transmission line 17.

送信端側の波長分散測定手段10は、光信号を送信する第1,第2の光送信部12a,12bと、送信のタイミングの制御をする送信制御手段15と、光信号を受信する第3,第4の光受信部13c,13dと、受信した光信号から光ファイバ伝送路17の波長分散を検出する波長分散検出手段16とを有している。   The chromatic dispersion measuring means 10 on the transmission end side includes first and second optical transmission units 12a and 12b that transmit optical signals, transmission control means 15 that controls transmission timing, and third optical signals that are received. , Fourth optical receivers 13c and 13d, and chromatic dispersion detecting means 16 for detecting the chromatic dispersion of the optical fiber transmission line 17 from the received optical signal.

一方、受信端側の波長変換手段11は、光信号を受信する第1,第2の光受信部13a,13bと、受信した光信号を波長変換して折り返す第3,第4の光送信部12c,12dとを有している。   On the other hand, the wavelength conversion means 11 on the receiving end side includes first and second optical receivers 13a and 13b that receive an optical signal, and third and fourth optical transmitters that convert the wavelength of the received optical signal and return it. 12c, 12d.

送信端ノード100の第1,第2の光送信部12a,12bからそれぞれ第1,第2の波長λ1,λ2でそれぞれパルス変調された第1,第2の光変調信号が出力される。パルスの送出タイミングは送信制御手段15によって制御される。出力された波長λ1,λ2の光変調信号は、送信端ノード100側の光合分波手段14aによって合波されて光ファイバ伝送路17に送出される。   First and second optical modulation signals pulse-modulated with first and second wavelengths λ1 and λ2, respectively, are output from the first and second optical transmission units 12a and 12b of the transmission end node 100, respectively. The pulse transmission timing is controlled by the transmission control means 15. The output optical modulation signals of wavelengths λ1 and λ2 are multiplexed by the optical multiplexing / demultiplexing means 14a on the transmission end node 100 side, and sent to the optical fiber transmission line 17.

光ファイバ伝送路17を通過した波長λ1,λ2の第1,第2の光変調信号は、受信端ノード110側の光合分波手段14bにより波長毎に分波され、第1,第2の光変調信号2の光信号は、それぞれ第1,第2の光受信部13a,13bに入力される。波長変換手段11内において、第1の光受信部13aは、波長λ1の光信号を光電気変換した後、その電気信号で第3の光送信部12cを駆動する。同じく、第2の光受信部13bは、波長λ2の光信号を光電気変換した後、その電気信号で第4の光送信部12dを駆動する。駆動された第3の光送信部12c及び第4の光送信部12dは、それぞれ送信端ノード100側に向けて光変調信号を出力する。この時、第3の光送信部12c及び第4の光送信部12dから出力される光変調信号は、それぞれ対応する第1,第2の光受信部13a,13bで受信した光変調信号に対してΔλだけ波長シフトした第3,第4の波長である波長λ1+Δλ、λ2+Δλの第3,第4の光変調信号を出力する。   The first and second optical modulation signals having wavelengths λ1 and λ2 that have passed through the optical fiber transmission line 17 are demultiplexed for each wavelength by the optical multiplexing / demultiplexing means 14b on the receiving end node 110 side, and the first and second optical signals are demultiplexed. The optical signal of the modulation signal 2 is input to the first and second optical receivers 13a and 13b, respectively. In the wavelength conversion unit 11, the first optical receiver 13a photoelectrically converts the optical signal having the wavelength λ1, and then drives the third optical transmitter 12c with the electric signal. Similarly, the second optical receiver 13b photoelectrically converts the optical signal having the wavelength λ2, and then drives the fourth optical transmitter 12d with the electric signal. The driven third optical transmitter 12c and fourth optical transmitter 12d each output an optical modulation signal toward the transmitting end node 100 side. At this time, the optical modulation signals output from the third optical transmission unit 12c and the fourth optical transmission unit 12d correspond to the optical modulation signals received by the corresponding first and second optical reception units 13a and 13b, respectively. The third and fourth light modulation signals having wavelengths λ1 + Δλ and λ2 + Δλ, which are third and fourth wavelengths shifted by Δλ, are output.

第3,第4の光送信部12c、12dからそれぞれ出力された波長λ1+Δλ、λ2+Δλの光変調信号は、受信端ノード110側の光合分波手段14bにより再び合波され光ファイバ伝送路17に送出される。このようにして、光ファイバ伝送路17の往路と復路で異なる波長を使用することで、無用なクロストークを抑圧することが可能である。光ファイバ伝送路17を折り返して伝播した波長変換後の光変調信号は、送信端ノード100側の光合分波手段14aにて波長分波され、波長λ1+Δλの光信号が第3の光受信部13bに入力されて、波長λ2+Δλの光信号が第4の光受信部13dそれぞれに入力され光電気変換される。波長分散測定手段10では、光電気変換された波長の異なる2つの信号間の時間相関計測結果から、光ファイバ伝送路17の波長分散を算出する。   The optical modulation signals of wavelengths λ1 + Δλ and λ2 + Δλ output from the third and fourth optical transmitters 12c and 12d, respectively, are multiplexed again by the optical multiplexing / demultiplexing means 14b on the receiving end node 110 side and transmitted to the optical fiber transmission line 17. Is done. In this way, it is possible to suppress unnecessary crosstalk by using different wavelengths for the forward path and the return path of the optical fiber transmission path 17. The wavelength-modulated optical modulation signal propagated through the optical fiber transmission line 17 is wavelength-demultiplexed by the optical multiplexing / demultiplexing means 14a on the transmitting end node 100 side, and the optical signal having the wavelength λ1 + Δλ is the third optical receiver 13b. And an optical signal having a wavelength of λ2 + Δλ is input to each of the fourth optical receivers 13d and subjected to photoelectric conversion. The chromatic dispersion measuring means 10 calculates the chromatic dispersion of the optical fiber transmission line 17 from the result of time correlation measurement between two signals having different wavelengths subjected to photoelectric conversion.

図2は図1の波長変換手段11の詳細を示す構成図である。波長変換手段11は、λ1の光信号をλ1+Δλの波長に変換し、λ2の光信号をλ2+Δλの波長に変換する。波長変換手段11は、上記のように第1,第2の光受信部13a,13bと第3,第4の光送信部12c,12dとを有している。   FIG. 2 is a block diagram showing details of the wavelength converting means 11 of FIG. The wavelength converter 11 converts the optical signal of λ1 into a wavelength of λ1 + Δλ, and converts the optical signal of λ2 into a wavelength of λ2 + Δλ. The wavelength converting means 11 has the first and second optical receivers 13a and 13b and the third and fourth optical transmitters 12c and 12d as described above.

そして、第1の光受信部13aは、光電気変換手段(第1の光電気変換手段)21aと、データ識別再生手段(第1のデータ識別再生手段)22aとを有している。第3の光送信部12cは、増幅手段(第3の増幅手段)23aと、光変調手段(第3の光変調手段)24aと、光源(第3の光源)25aとを有している。   The first optical receiver 13a includes photoelectric conversion means (first photoelectric conversion means) 21a and data identification / reproduction means (first data identification / reproduction means) 22a. The third optical transmitter 12c includes an amplifying unit (third amplifying unit) 23a, a light modulating unit (third light modulating unit) 24a, and a light source (third light source) 25a.

また、第2の光受信部13bは、光電気変換手段(第2の光電気変換手段)21bと、データ識別再生手段(第2のデータ識別再生手段)22bとを有している。第4の光送信部12dは、増幅手段(第4の増幅手段)23bと、光変調手段(第4の光変調手段)24bと、光源(第4の光源)25bとを有している。   Further, the second optical receiver 13b includes photoelectric conversion means (second photoelectric conversion means) 21b and data identification / reproduction means (second data identification / reproduction means) 22b. The fourth optical transmitter 12d includes an amplifying unit (fourth amplifying unit) 23b, a light modulating unit (fourth light modulating unit) 24b, and a light source (fourth light source) 25b.

波長変換手段11により受信された波長λ1の光変調信号は、まず光電気変換手段21aにて電気信号に変換され、その後、データ識別再生手段22aにて波形整形される。これに対応して、波長λ1+Δλの光変調信号が、データ識別再生手段22aにて再生され増幅手段23aによって増幅された電気信号に基づいて、光変調手段24aにより、λ1+Δλの波長で発光する光源25aからの光を変調することで生成される。   The optical modulation signal having the wavelength λ1 received by the wavelength conversion unit 11 is first converted into an electrical signal by the photoelectric conversion unit 21a, and then subjected to waveform shaping by the data identification / reproduction unit 22a. Correspondingly, a light source 25a that emits light with a wavelength of λ1 + Δλ by the light modulation means 24a based on the electrical signal that is reproduced by the data identification / reproduction means 22a and amplified by the amplification means 23a. It is generated by modulating the light from.

同じように、受信された波長λ2の光変調信号は、まず光電気変換手段21bにて電気信号に変換され、その後、データ識別再生手段22bにて波形整形される。そして、波長λ2+Δλの光変調信号は、データ識別再生手段22bにて再生され増幅手段23bによって増幅された電気信号に基づいて、光変調手段24bにより、λ2+Δλの波長で発光する光源25bからの光を変調することで生成される。   Similarly, the received optical modulation signal having the wavelength λ2 is first converted into an electrical signal by the photoelectric conversion means 21b, and then subjected to waveform shaping by the data identification / reproduction means 22b. Then, the light modulation signal having the wavelength λ2 + Δλ is generated by the light modulation unit 24b based on the electric signal reproduced by the data identification reproduction unit 22b and amplified by the amplification unit 23b. Generated by modulation.

尚、光電気変換手段21a,21bが出力する電気パルス列の歪が少なく、また振幅が充分大きい場合には、データ識別再生手段22a,22bや増幅手段23a,23bを省略してもよい。ここで、光電気変換手段21a,21bから光変調手段24a,24bまでの経路での遅延は、扱う光信号の波長に関わらず、一定の遅延量とすることができるため、後述するように波長変換による遅延の波長依存性は無視することができる。   If the electrical pulse train output from the photoelectric conversion means 21a and 21b has little distortion and the amplitude is sufficiently large, the data identification / reproduction means 22a and 22b and the amplification means 23a and 23b may be omitted. Here, the delay in the path from the photoelectric conversion means 21a, 21b to the light modulation means 24a, 24b can be a constant delay amount regardless of the wavelength of the optical signal to be handled. The wavelength dependence of the delay due to the conversion can be ignored.

図3は図1の波長分散測定手段10の詳細を示す構成図である。波長分散測定手段10は、上記のように第1,第2の光送信部12a、12bと、第3,第4の光受信部13cと、送信制御手段15と、波長分散検出手段16とを有している。第1の光送信部12aは、増幅手段(第1の増幅手段)33aと、光変調手段(第1の光変調手段)34aと、光源(第1の光源)35aとを有している。第2の光送信部12bは、増幅手段(第2の増幅手段)33bと、光変調手段(第2の光変調手段)34bと、光源(第2の光源)35bとを有している。   FIG. 3 is a block diagram showing details of the chromatic dispersion measuring means 10 of FIG. As described above, the chromatic dispersion measuring unit 10 includes the first and second optical transmission units 12a and 12b, the third and fourth optical reception units 13c, the transmission control unit 15, and the chromatic dispersion detection unit 16. Have. The first optical transmitter 12a includes an amplifying unit (first amplifying unit) 33a, a light modulating unit (first light modulating unit) 34a, and a light source (first light source) 35a. The second optical transmitter 12b includes an amplifying unit (second amplifying unit) 33b, a light modulating unit (second light modulating unit) 34b, and a light source (second light source) 35b.

また、第3の光受信部13cは、光電気変換手段(第3の光電気変換手段)31aと、データ識別再生手段(第3のデータ識別再生手段)32aとを有している。第4の光受信部13dは、光電気変換手段(第4の光電気変換手段)31bと、データ識別再生手段(第4のデータ識別再生手段)32bとを有している。送信制御手段15は、データ生成手段36と、タイミング制御手段37とを有している。波長分散検出手段16は、遅延差比較手段38と、波長分散演算手段39とを有している。   The third optical receiver 13c includes a photoelectric conversion means (third photoelectric conversion means) 31a and a data identification / reproduction means (third data identification / reproduction means) 32a. The fourth optical receiver 13d includes photoelectric conversion means (fourth photoelectric conversion means) 31b and data identification / reproduction means (fourth data identification / reproduction means) 32b. The transmission control unit 15 includes a data generation unit 36 and a timing control unit 37. The chromatic dispersion detection unit 16 includes a delay difference comparison unit 38 and a chromatic dispersion calculation unit 39.

送信端ノード100側における波長λ1及びλ2の光変調信号の送信のタイミングは、受信端ノード110側の光変調手段24a,24bの駆動方法と異なり、データ生成手段36からのパルス列に基づいて光変調手段34a,34bが概略同じタイミングで駆動される。そしてこのとき、データ生成手段36からの送出パルス列の開始タイミングは、タイミング制御手段37によって制御される。   The transmission timing of the optical modulation signals of wavelengths λ1 and λ2 on the transmitting end node 100 side is different from the driving method of the optical modulating means 24a and 24b on the receiving end node 110 side, and the optical modulation is performed based on the pulse train from the data generating means 36. The means 34a and 34b are driven at substantially the same timing. At this time, the start timing of the transmission pulse train from the data generation means 36 is controlled by the timing control means 37.

一方、受信動作においては、光電気変換手段31a,31bがλ1+Δλとλ2+Δλの二つの波長をそれぞれ光電気変換した後、必要に応じてデータ識別再生手段32a,32bがデータ再生を行い、それぞれの波長の信号間遅延差を遅延差比較手段38にて抽出する。   On the other hand, in the receiving operation, after the photoelectric conversion means 31a and 31b photoelectrically convert the two wavelengths λ1 + Δλ and λ2 + Δλ, the data identification / reproduction means 32a and 32b perform data reproduction as necessary. The delay difference between these signals is extracted by the delay difference comparison means 38.

本実施の形態において、遅延差比較手段38の行う信号間遅延差の抽出は、上記のように2つの波長の相対的な遅延差を抽出することにより行っている。しかしながら、遅延測定の基準としてタイミング制御手段37から得られるトリガ信号を使用して、2つの波長がこのトリガ信号に対してどれくらい遅れるかを測定することにより、遅延差を抽出してもよい。   In the present embodiment, the extraction of the inter-signal delay difference performed by the delay difference comparison means 38 is performed by extracting the relative delay difference between the two wavelengths as described above. However, the delay difference may be extracted by measuring how much the two wavelengths are delayed with respect to the trigger signal using the trigger signal obtained from the timing control means 37 as a reference for delay measurement.

光ファイバ伝送路17の波長分散は、遅延差比較手段38によって抽出された信号間遅延差に基づき、波長分散演算手段39において次の手順にて検出される。図4は、波長分散演算手段39の行う波長分散算出方法を説明するためのグラフであり、上段のグラフは群遅延の波長依存性を示し、下段のグラフは波長分散の波長依存性を示す。   The chromatic dispersion of the optical fiber transmission line 17 is detected by the chromatic dispersion calculating means 39 according to the following procedure based on the inter-signal delay difference extracted by the delay difference comparing means 38. FIG. 4 is a graph for explaining the chromatic dispersion calculation method performed by the chromatic dispersion calculating means 39, where the upper graph shows the wavelength dependence of the group delay, and the lower graph shows the wavelength dependence of the chromatic dispersion.

通常の伝送波長帯域においては、群遅延は二次関数、波長分散は一次関数として近似することができる。そして、群遅延の波長微分が波長分散であり、波長分散の波長微分が波長分散スロープである。ここで、波長λ1,λ2の光信号が光ファイバ伝送路17を伝搬した結果生じる遅延差をΔDa、λ1+Δλ、λ2+Δλの光信号が光ファイバ伝送路17を伝搬した結果生じる遅延差をΔDbとすると、本実施の形態の構成にて、波長分散測定手段10で検出される遅延差ΔTは、   In a normal transmission wavelength band, the group delay can be approximated as a quadratic function, and the chromatic dispersion can be approximated as a linear function. The wavelength differential of the group delay is chromatic dispersion, and the wavelength differential of chromatic dispersion is the chromatic dispersion slope. Here, let ΔDa be the delay difference resulting from propagation of the optical signals of wavelengths λ1 and λ2 through the optical fiber transmission line 17, and ΔDb be the delay difference resulting from propagation of the optical signal of λ1 + Δλ and λ2 + Δλ through the optical fiber transmission line 17. In the configuration of the present embodiment, the delay difference ΔT detected by the chromatic dispersion measuring means 10 is

ΔDa=a(λ22−λ12)+b(λ2−λ1)
ΔDb=a[λ22(1+Δλ/λ2)−λ12(1+Δλ/λ1)]+b(λ2−λ1)
ΔT=ΔDa+ΔDb+Δτ
ΔDa = a (λ2 2 −λ1 2 ) + b (λ2−λ1)
ΔDb = a [λ2 2 (1 + Δλ / λ2) −λ1 2 (1 + Δλ / λ1)] + b (λ2-λ1)
ΔT = ΔDa + ΔDb + Δτ

と表される。ここで、係数a及びbは、群遅延の二次関数特性から決まる係数であり、Δτは波長変換手段11内で、各波長が波長の信号が受信されてから送信されるまでの時間差を表している。   It is expressed. Here, the coefficients a and b are coefficients determined from the quadratic function characteristics of the group delay, and Δτ represents a time difference from when a signal having a wavelength of each wavelength is received to when it is transmitted in the wavelength conversion unit 11. ing.

ここで、Δλ/λ2<<1、Δλ/λ1<<1、Δτ≒0と設定すると、
ΔDa≒ΔDb、ΔT=2ΔDa
となる。この結果、波長分散は、
平均分散値=ΔT/(λ2−λ1)
として求めることができる。
Here, if Δλ / λ2 << 1, Δλ / λ1 << 1, Δτ≈0,
ΔDa≈ΔDb, ΔT = 2ΔDa
It becomes. As a result, chromatic dispersion is
Average dispersion value = ΔT / (λ2−λ1)
Can be obtained as

ここで、上記で求まる平均分散値は、概略λ1とλ2の中心波長(λc)での分散値と考えて問題ないことは明らかである。本結果より、光通信システムで使用する特定の波長λの分散値は、
分散値(λ)=(λ−λc)×(分散スロープ)+平均分散値
として求めることができる。
Here, it is clear that the average dispersion value obtained above can be regarded as a dispersion value at the center wavelengths (λc) of approximately λ1 and λ2, and there is no problem. From this result, the dispersion value of the specific wavelength λ used in the optical communication system is
Dispersion value (λ) = (λ−λc) × (dispersion slope) + average dispersion value.

尚、上記では言及していないが、本実施の形態においては、平均分散値を2波長間の相対遅延差によって検出しているので、使用する2波長間にゼロ分散波長が含まれる場合は適用できないことに注意する必要がある。また、一律の分散スロープの値として典型値を用いずに個別波長の分散をより正確に求めたい場合は、使用する波長を複数用意したり、もしくは使用光源として波長可変光源を使用したりすることで対応することができる。   Although not mentioned above, in the present embodiment, since the average dispersion value is detected by the relative delay difference between the two wavelengths, it is applied when the zero dispersion wavelength is included between the two wavelengths to be used. Note that you can't. If you want to find the dispersion of individual wavelengths more accurately without using the typical value as the uniform dispersion slope value, prepare multiple wavelengths to use, or use a tunable light source as the light source to be used. Can respond.

また、本実施の形態においては、一本の光ファイバ伝送路17に2波長の光変調信号を往復させる手法を用いたが、復路として概略同等パラメータを有する光ファイバ伝送路17を用い、往路と復路で一対を成す光ファイバ伝送路に対して本実施の形態の手法を適用しても同様の効果を得ることができる。   Further, in this embodiment, a method of reciprocating a two-wavelength optical modulation signal in one optical fiber transmission line 17 is used. However, an optical fiber transmission line 17 having substantially equivalent parameters is used as a return path, and The same effect can be obtained even if the method of the present embodiment is applied to a pair of optical fiber transmission lines that form a pair on the return path.

尚、光ファイバ伝送路17へ出力する返信用光変調信号の結合に際し、本実施の形態は光合波手段(光合分波手段14a,14b)を使用しているが、一対の光ファイバ伝送路17に対して、例えば、光スイッチを設けて返信用の伝送路を切り替えたり、一本の光ファイバ伝送路17に対して光スイッチによって送受信の切り替えを行ったりしてもよい。   In the present embodiment, optical coupling means (optical multiplexing / demultiplexing means 14a and 14b) are used in coupling the return optical modulation signal output to the optical fiber transmission path 17, but a pair of optical fiber transmission paths 17 is used. On the other hand, for example, an optical switch may be provided to switch a reply transmission path, or a single optical fiber transmission path 17 may be switched between transmission and reception by an optical switch.

さらに、遅延差測定に使用するパルス列の繰り返し周期及びパルス幅を変化させることで、測定分解能やダイナミックレンジを調整することも可能であり、これら測定分解能やダイナミックレンジを調整する調整手段をさらに設けてもよい。   Furthermore, it is possible to adjust the measurement resolution and dynamic range by changing the repetition period and pulse width of the pulse train used for delay difference measurement, and an adjustment means for adjusting these measurement resolution and dynamic range is further provided. Also good.

さらに加えて、送信パルス列として擬似ランダム系列を使用し、パターン比較によってディジタル的に遅延差の算出を行うことで、パターン生成、パターン比較及び波長分散検出の全ての回路をディジタル回路によって簡易に構成することが可能となる。この場合においても、使用するパターンの系列長やパルス幅を変化させることで、測定する波長分散のダイナミックレンジや分解能を調整可能とすることができる。   In addition, all the circuits for pattern generation, pattern comparison, and chromatic dispersion detection can be easily configured by digital circuits by using a pseudo-random sequence as a transmission pulse train and calculating delay differences digitally by pattern comparison. It becomes possible. Even in this case, the dynamic range and resolution of chromatic dispersion to be measured can be adjusted by changing the sequence length and pulse width of the pattern to be used.

さらにまた、擬似ランダムパターンのパターン比較方法として、パターン中のビット毎に2波長間でXOR演算を行い、特定パターン長の中でのXOR出力の加算結果を相関結果として用いてもよい。このような方法を用いることで、より容易に2波長間の遅延差を求めることができ、事前に伝送路の波長分散の符号が分かっている場合には特に有効である。   Furthermore, as a pattern comparison method of the pseudo random pattern, an XOR operation may be performed between two wavelengths for each bit in the pattern, and the addition result of the XOR output within the specific pattern length may be used as the correlation result. By using such a method, the delay difference between the two wavelengths can be obtained more easily, which is particularly effective when the chromatic dispersion sign of the transmission path is known in advance.

尚、本実施の形態においては、分散測定を行う箇所を送信端に配置しているが、波長変換を行う前の2波長の電気信号から往路のみの波長分散測定を合わせて実施してもよい。これにより一対の光ファイバ伝送路を用いて折り返しの波長分散測定を行う際に精度を向上させることができる。   In the present embodiment, the location where dispersion measurement is performed is arranged at the transmission end. However, it is also possible to carry out chromatic dispersion measurement only in the forward path from the two-wavelength electrical signal before performing wavelength conversion. . As a result, accuracy can be improved when performing chromatic dispersion measurement using a pair of optical fiber transmission lines.

この測定方法を使用することで、異なる波長光信号の折り返しにより無用なクロストークを防ぐことができ、また一つの光ファイバ伝送路の往復時間から波長分散を求めることが可能であるため、往路もしくは復路の片道にもから光波長分散を求める場合に比べて、約2倍の精度を確保することができる。   By using this measurement method, unnecessary crosstalk can be prevented by folding optical signals of different wavelengths, and chromatic dispersion can be obtained from the round trip time of one optical fiber transmission line. Compared with the case where the optical wavelength dispersion is obtained from one way of the return path, it is possible to ensure about twice the accuracy.

さらに加えて、測定に使用する送信データ系列を可変にすることで、ダイナミックレンジ及び精度の両方を満たす波長分散測定が可能となる。さらに、送信端側で分散値測定を行うため、光ファイバ伝送路の分散値を直ちに送信側の分散補償の設定に活用することもできる。   In addition, by making the transmission data series used for measurement variable, it is possible to perform chromatic dispersion measurement that satisfies both the dynamic range and accuracy. Furthermore, since the dispersion value is measured on the transmission end side, the dispersion value of the optical fiber transmission line can be immediately used for setting dispersion compensation on the transmission side.

この発明は、すでに敷設されている光ファイバ伝送路の波長分散を測定する際に有用なものであり、特に長距離大容量光伝送システムの光ファイバ伝送路の波長分散を測定するものとして好適である。   The present invention is useful when measuring the chromatic dispersion of an already installed optical fiber transmission line, and is particularly suitable for measuring the chromatic dispersion of an optical fiber transmission line in a long-distance large-capacity optical transmission system. is there.

この発明の一実施の形態の光通信システムの構成図である。It is a block diagram of the optical communication system of one embodiment of this invention. 図1の波長変換手段の詳細を示す構成図である。It is a block diagram which shows the detail of the wavelength conversion means of FIG. 図1の波長分散測定手段の詳細を示す構成図である。It is a block diagram which shows the detail of the chromatic dispersion measuring means of FIG. 波長分散演算手段の行う波長分散算出方法を説明するためのグラフであり上段のグラフは群遅延の波長依存性を示し下段のグラフは波長分散の波長依存性を示す。It is a graph for demonstrating the chromatic dispersion calculation method which a chromatic dispersion calculating means performs, the upper graph shows the wavelength dependence of group delay, and the lower graph shows the wavelength dependence of chromatic dispersion.

符号の説明Explanation of symbols

10 波長分散測定手段
11 波長変換手段
12a 第1の光送信部
12b 第2の光送信部
12c 第3の光送信部
12d 第4の光送信部
13a 第1の光受信部
13b 第2の光受信部
13c 第3の光受信部
13d 第4の光受信部
14a、14b 光合分波手段
15 送信制御手段
16 波長分散検出手段
17 光ファイバ伝送路
21a 第1の光電気変換手段
21b 第2の光電気変換手段
31a 第3の光電気変換手段
31b 第4の光電気変換手段
22a 第1のデータ識別再生手段
22b 第2のデータ識別再生手段
32a 第3のデータ識別再生手段
32b 第4のデータ識別再生手段
23a 第3の増幅手段
23b 第4の増幅手段
33a 第1の増幅手段
33b 第2の増幅手段
24a 第3の光変調手段
24b 第4の光変調手段
34a 第1の光変調手段
34b 第2の光変調手段
25a 第3の光源
25b 第4の光源
35a 第1の光源
35b 第2の光源
36 データ生成手段
37 タイミング制御手段
38 遅延差比較手段
39 波長分散演算手段
λ1 第1の光変調信号の波長
λ2 第2の光変調信号の波長
λ1+Δλ 第3の光変調信号の波長
λ2+Δλ 第4の光変調信号の波長
DESCRIPTION OF SYMBOLS 10 Chromatic dispersion measuring means 11 Wavelength converting means 12a 1st optical transmission part 12b 2nd optical transmission part 12c 3rd optical transmission part 12d 4th optical transmission part 13a 1st optical reception part 13b 2nd optical reception Unit 13c third optical receiver unit 13d fourth optical receiver unit 14a, 14b optical multiplexing / demultiplexing unit 15 transmission control unit 16 chromatic dispersion detection unit 17 optical fiber transmission line 21a first photoelectric conversion unit 21b second photoelectric unit Conversion means 31a Third photoelectric conversion means 31b Fourth photoelectric conversion means 22a First data identification / reproduction means 22b Second data identification / reproduction means 32a Third data identification / reproduction means 32b Fourth data identification / reproduction means 23a Third amplification means 23b Fourth amplification means 33a First amplification means 33b Second amplification means 24a Third light modulation means 24b Fourth light modulation means 3 a first light modulation means 34b second light modulation means 25a third light source 25b fourth light source 35a first light source 35b second light source 36 data generation means 37 timing control means 38 delay difference comparison means 39 wavelength dispersion Arithmetic means λ1 Wavelength of first optical modulation signal λ2 Wavelength of second optical modulation signal λ1 + Δλ Wavelength of third optical modulation signal λ2 + Δλ Wavelength of fourth optical modulation signal

Claims (22)

波長分散スロープが既知の光ファイバ伝送路の送信端側に設けられた波長分散測定手段と、前記光ファイバ伝送路の受信端側に設けられた波長変換手段とを備え、前記光ファイバ伝送路の波長分散を測定する波長分散測定装置であって、
前記波長変換手段は、前記波長分散測定手段から送信された波長分散測定用の第1、第2の光変調信号を受信して、当該第1、第2の光変調信号の波長に基づいて波長変換することにより、両変調信号と異なる波長で且つ前記光ファイバ伝送路のゼロ分散波長を間にはさまない各々異なる波長の第3、第4の光変調信号を生成して、これを前記波長分散測定手段に向けて送信して、
前記波長分散測定手段は、前記光ファイバ伝送路のゼロ分散波長を間にはさまない互いに波長の異なる波長分散測定用の前記第1、第2の光変調信号を生成して、これを前記波長変換手段に向けて送信するとともに、前記波長変換手段から送信された前記第3、第4の光変調信号を受信して、両光変調信号の波長及び両光変調信号間の相関関係から前記光ファイバ伝送路の波長分散の平均値を検出して、当該平均値と前記分散スロープとから前記光ファイバ伝送路の波長分散を測定する
ことを特徴とする波長分散測定装置。
A chromatic dispersion measuring means provided on the transmitting end side of the optical fiber transmission line having a known chromatic dispersion slope; and a wavelength converting means provided on the receiving end side of the optical fiber transmission line, A chromatic dispersion measuring device for measuring chromatic dispersion,
The wavelength converting means receives the first and second optical modulation signals for wavelength dispersion measurement transmitted from the wavelength dispersion measuring means, and wavelength based on the wavelengths of the first and second optical modulation signals. By converting, the third and fourth optical modulation signals having different wavelengths that are different from both modulation signals and sandwiching the zero-dispersion wavelength of the optical fiber transmission line are generated. Send it to the dispersion measurement means,
The chromatic dispersion measuring means generates the first and second optical modulation signals for measuring chromatic dispersion having different wavelengths that sandwich the zero dispersion wavelength of the optical fiber transmission line, and outputs the first and second optical modulation signals. Transmitting to the conversion means and receiving the third and fourth optical modulation signals transmitted from the wavelength conversion means, and determining the light from the wavelength of both optical modulation signals and the correlation between the optical modulation signals. A chromatic dispersion measuring apparatus, wherein an average value of chromatic dispersion of a fiber transmission line is detected, and chromatic dispersion of the optical fiber transmission line is measured from the average value and the dispersion slope.
前記波長変換手段は、前記第1、第2の光変調信号に基づいて、当該第1、第2の光変調信号と各々固定波長だけ波長シフトした前記第3、第4の光変調信号を生成する
ことを特徴とする請求項1に記載の波長分散測定装置。
The wavelength conversion unit generates the third and fourth optical modulation signals that are shifted in wavelength by a fixed wavelength from the first and second optical modulation signals, based on the first and second optical modulation signals. The chromatic dispersion measuring device according to claim 1, wherein:
前記波長変換手段は、前記第1、第2の光変調信号をそれぞれ電気信号に変換する第1、第2の光電気変換手段と、前記電気信号に基づいて動作して前記第1、第2の光変調信号に対して波長変換された前記第3、第4の光変調信号を生成する第3、第4の光変調手段とを有する
ことを特徴とする請求項1または2に記載の波長分散測定装置。
The wavelength conversion means operates on the basis of the first and second photoelectric conversion means for converting the first and second optical modulation signals into electric signals, respectively, and operates based on the electric signals. The wavelength according to claim 1, further comprising: third and fourth light modulation means for generating the third and fourth light modulation signals that are wavelength-converted with respect to the light modulation signal. Dispersion measuring device.
前記波長分散測定手段及び波長変換手段は、前記第1、第2の光変調信号及び前記第3、第4の光変調信号をそれぞれ送信する第1、第2の光送信手段及び第3、第4の光送信手段を有し、
前記第1、第2の光送信手段及び第3、第4の光送信手段が前記第1、第2の光変調信号及び前記第3、第4の光変調信号の波長を可変できる
ことを特徴とする請求項1から3のいずれか1項に記載の波長分散測定装置。
The chromatic dispersion measuring unit and the wavelength converting unit transmit the first and second optical modulation signals and the third and fourth optical modulation signals, respectively. 4 optical transmission means,
The first and second optical transmission means and the third and fourth optical transmission means can vary the wavelengths of the first and second optical modulation signals and the third and fourth optical modulation signals. The chromatic dispersion measuring device according to any one of claims 1 to 3.
前記第1から第4の光変調信号がパルス列であり、前記波長分散測定手段は、前記第3、第4の光変調信号のパルス列の遅延差から、前記光ファイバ伝送路の波長分散の平均値を求める
ことを特徴とする請求項1から4のいずれか1項に記載の波長分散測定装置。
The first to fourth optical modulation signals are pulse trains, and the chromatic dispersion measuring means calculates an average value of chromatic dispersion of the optical fiber transmission line from a delay difference between the pulse trains of the third and fourth optical modulation signals. The chromatic dispersion measuring device according to claim 1, wherein the chromatic dispersion measuring device is obtained.
前記波長分散測定手段は、前記光ファイバ伝送路の波長分散の大きさ及び波長分散の必要な分解能に応じて、前記パルス列の繰り返し周期及びパルス幅のいずれかを変化させる
ことを特徴とする請求項5に記載の波長分散測定装置。
The chromatic dispersion measuring means changes either the repetition period or the pulse width of the pulse train according to the magnitude of chromatic dispersion of the optical fiber transmission line and the necessary resolution of chromatic dispersion. 5. The chromatic dispersion measuring device according to 5.
前記パルス列が擬似ランダム系列をなし、前記波長分散測定手段は、変調信号間の相関関係を比較するときパルスパターン比較を用いる
ことを特徴とする請求項5または6に記載の波長分散測定装置。
The chromatic dispersion measuring apparatus according to claim 5 or 6, wherein the pulse train forms a pseudo-random sequence, and the chromatic dispersion measuring means uses pulse pattern comparison when comparing correlations between modulated signals.
前記波長分散測定手段は、前記光ファイバ伝送路の波長分散の大きさ及び波長分散の必要な分解能に応じて、前記擬似ランダム系列のパルス幅及びパターンの系列長のいずれかを変化させる
ことを特徴とする請求項7に記載の波長分散測定装置。
The chromatic dispersion measuring means changes either the pulse width of the pseudo-random sequence or the sequence length of the pattern in accordance with the magnitude of chromatic dispersion of the optical fiber transmission line and the necessary resolution of chromatic dispersion. The chromatic dispersion measuring device according to claim 7.
検出した波長分散をもとに、送信側の分散補償量を調整する調整手段をさらに有する
ことを特徴とする請求項1から8のいずれか1項に記載の波長分散測定装置。
The chromatic dispersion measuring apparatus according to any one of claims 1 to 8, further comprising an adjusting unit that adjusts a dispersion compensation amount on a transmission side based on the detected chromatic dispersion.
波長分散測定手段が設けられた送信端ノードと、波長変換手段が設けられた受信端ノードと、前記送信端ノードと前記受信端ノードとを接続する波長分散スロープが既知の一本もしくは一対の光ファイバ伝送路とを備えた光通信システムであって、
前記波長変換手段は、前記波長分散測定手段から送信された波長分散測定用の第1、第2の光変調信号を受信して、当該第1、第2の光変調信号の波長に基づいて波長変換することにより、両変調信号と異なる波長で且つ前記光ファイバ伝送路のゼロ分散波長を間にはさまない各々異なる波長の第3、第4の光変調信号を生成して、これを前記波長分散測定手段に向けて送信して、
前記波長分散測定手段は、前記光ファイバ伝送路のゼロ分散波長を間にはさまない互いに波長の異なる波長分散測定用の前記第1、第2の光変調信号を生成して、これを前記波長変換手段に向けて送信するとともに、前記波長変換手段から送信された前記第3、第4の光変調信号を受信して、両光変調信号の波長及び両光変調信号間の相関関係から前記光ファイバ伝送路の波長分散の平均値を検出して、当該平均値と前記分散スロープとから前記光ファイバ伝送路の波長分散を測定する
ことを特徴とする光通信システム。
A transmission end node provided with chromatic dispersion measurement means, a reception end node provided with wavelength conversion means, and a single or a pair of light having a known chromatic dispersion slope connecting the transmission end node and the reception end node An optical communication system comprising a fiber transmission line,
The wavelength converting means receives the first and second optical modulation signals for wavelength dispersion measurement transmitted from the wavelength dispersion measuring means, and wavelength based on the wavelengths of the first and second optical modulation signals. By converting, the third and fourth optical modulation signals having different wavelengths that are different from both modulation signals and sandwiching the zero-dispersion wavelength of the optical fiber transmission line are generated. Send it to the dispersion measurement means,
The chromatic dispersion measuring means generates the first and second optical modulation signals for measuring chromatic dispersion having different wavelengths that sandwich the zero dispersion wavelength of the optical fiber transmission line, and outputs the first and second optical modulation signals. Transmitting to the conversion means and receiving the third and fourth optical modulation signals transmitted from the wavelength conversion means, and determining the light from the wavelength of both optical modulation signals and the correlation between the optical modulation signals. An optical communication system, wherein an average value of chromatic dispersion of a fiber transmission line is detected, and chromatic dispersion of the optical fiber transmission line is measured from the average value and the dispersion slope.
前記波長変換手段は、前記第1、第2の光変調信号に基づいて、当該第1、第2の光変調信号と各々固定波長だけ波長シフトした前記第3、第4の光変調信号を生成する
ことを特徴とする請求項10に記載の光通信システム。
The wavelength conversion unit generates the third and fourth optical modulation signals that are shifted in wavelength by a fixed wavelength from the first and second optical modulation signals, based on the first and second optical modulation signals. The optical communication system according to claim 10.
前記波長変換手段は、前記第1、第2の光変調信号をそれぞれ電気信号に変換する第1、第2の光電気変換手段と、前記電気信号に基づいて動作して前記第1、第2の光変調信号に対して波長変換された前記第3、第4の光変調信号を生成する第3、第4の光変調手段とを有する
ことを特徴とする請求項10または11に記載の光通信システム。
The wavelength conversion means operates on the basis of the first and second photoelectric conversion means for converting the first and second optical modulation signals into electric signals, respectively, and operates based on the electric signals. 13. The light according to claim 10, further comprising: third and fourth light modulation means for generating the third and fourth light modulation signals that have been wavelength-converted with respect to the light modulation signal. Communications system.
前記波長分散測定手段及び前記波長変換手段を有する光通信ノードが複数接続されていることを特徴とする請求項10から12のいずれか1項に記載の光通信システム。   The optical communication system according to any one of claims 10 to 12, wherein a plurality of optical communication nodes each having the chromatic dispersion measuring unit and the wavelength converting unit are connected. 送信端と受信端とを有し波長分散スロープが既知の光ファイバ伝送路の波長分散を測定する波長分散測定方法であって、
受信端側において、送信端側から送信された波長分散測定用の第1、第2の光変調信号を受信して、当該第1、第2の光変調信号の波長に基づいて波長変換することにより、両変調信号と異なる波長で且つ前記光ファイバ伝送路のゼロ分散波長を間にはさまない各々異なる波長の第3、第4の光変調信号を生成して、これを前記送信端に向けて送信して、 送信端側において、前記光ファイバ伝送路のゼロ分散波長を間にはさまない互いに波長の異なる波長分散測定用の前記第1、第2の光変調信号を生成して、これを前記受信端側に向けて送信するとともに、前記送信端側から送信された前記第3、第4の光変調信号を受信して、両光変調信号の波長及び両光変調信号間の相関関係から前記光ファイバ伝送路の波長分散の平均値を検出して、当該平均値と前記分散スロープとから、前記光ファイバ伝送路の波長分散を測定する
ことを特徴とする波長分散測定方法。
A chromatic dispersion measuring method for measuring chromatic dispersion of an optical fiber transmission line having a transmitting end and a receiving end and having a known chromatic dispersion slope,
On the receiving end side, the first and second optical modulation signals for chromatic dispersion measurement transmitted from the transmitting end side are received, and wavelength conversion is performed based on the wavelengths of the first and second optical modulation signals. To generate third and fourth optical modulation signals of different wavelengths that are different from both modulation signals and that do not sandwich the zero-dispersion wavelength of the optical fiber transmission line, and direct the signals to the transmitting end. And transmitting the first and second optical modulation signals for measuring chromatic dispersion having different wavelengths that are sandwiched between the zero dispersion wavelengths of the optical fiber transmission line. Is transmitted toward the receiving end side, and the third and fourth optical modulation signals transmitted from the transmitting end side are received, and the correlation between the wavelengths of both optical modulation signals and both optical modulation signals is received. From the average value of chromatic dispersion of the optical fiber transmission line, A chromatic dispersion measuring method, wherein the chromatic dispersion of the optical fiber transmission line is measured from the average value and the dispersion slope.
前記受信端側において、前記第1、第2の光変調信号に基づいて、当該第1、第2の光変調信号と各々固定波長だけ波長シフトした前記第3、第4の光変調信号を生成する
ことを特徴とする請求項14に記載の波長分散測定方法。
On the receiving end side, based on the first and second optical modulation signals, the first and second optical modulation signals and the third and fourth optical modulation signals shifted in wavelength by a fixed wavelength are generated. The chromatic dispersion measuring method according to claim 14, wherein:
前記受信端側において、前記第1、第2の光変調信号をそれぞれ電気信号に変換して、当該電気信号に基づいて第3、第4の光変調手段を動作させることにより、前記第1、第2の光変調信号に対して波長変換された前記第3、第4の光変調信号を生成する
ことを特徴とする請求項14または15に記載の波長分散測定方法。
On the receiving end side, the first and second optical modulation signals are converted into electric signals, respectively, and the first and second optical modulation means are operated based on the electric signals, whereby the first, The chromatic dispersion measurement method according to claim 14 or 15, wherein the third and fourth optical modulation signals wavelength-converted with respect to the second optical modulation signal are generated.
前記送信端側及び前記受信端側において、前記第1、第2の光変調信号及び前記第3、第4の光変調信号を送信する際、当該光変調信号の波長を可変できるようにする
ことを特徴とする請求項14から16のいずれか1項に記載の波長分散測定方法。
When transmitting the first and second optical modulation signals and the third and fourth optical modulation signals on the transmission end side and the reception end side, the wavelength of the optical modulation signal can be varied. The chromatic dispersion measuring method according to claim 14, wherein:
前記第1から第4の光変調信号をパルス列としておき、前記送信端側において、前記第3、第4の光変調信号のパルス列の遅延差から、前記光ファイバ伝送路の波長分散の平均値を求める
ことを特徴とする請求項14から17のいずれか1項に記載の波長分散測定方法。
The first to fourth optical modulation signals are set as pulse trains, and an average value of chromatic dispersion in the optical fiber transmission line is calculated from the delay difference between the pulse trains of the third and fourth optical modulation signals on the transmission end side. The chromatic dispersion measuring method according to claim 14, wherein the chromatic dispersion measuring method is obtained.
前記送信端側において、前記光ファイバ伝送路の波長分散の大きさ及び波長分散の必要な分解能に応じて、前記パルス列の繰り返し周期及びパルス幅のいずれかを変化させることを特徴とする請求項18に記載の波長分散測定方法。   19. On the transmission end side, either the repetition period or the pulse width of the pulse train is changed according to the magnitude of chromatic dispersion of the optical fiber transmission line and the necessary resolution of chromatic dispersion. The chromatic dispersion measuring method described in 1. 前記パルス列が擬似ランダム系列をなし、前記送信端側において、変調信号間の相関関係を比較するときパルスパターン比較を用いる
ことを特徴とする請求項18または19に記載の波長分散測定方法。
The chromatic dispersion measurement method according to claim 18 or 19, wherein the pulse train forms a pseudo-random sequence, and pulse pattern comparison is used when the correlation between modulated signals is compared on the transmission end side.
前記送信端側において、前記光ファイバ伝送路の波長分散の大きさ及び波長分散の必要な分解能に応じて、前記擬似ランダム系列のパルス幅及びパターンの系列長のいずれかを変化させる
ことを特徴とする請求項20に記載の波長分散測定方法。
On the transmitting end side, either the pulse width of the pseudo-random sequence or the sequence length of the pattern is changed according to the magnitude of chromatic dispersion of the optical fiber transmission line and the necessary resolution of chromatic dispersion. The chromatic dispersion measuring method according to claim 20.
検出した波長分散をもとに、送信側の分散補償量を調整する
ことを特徴とする請求項14から21のいずれか1項に記載の波長分散測定方法。
The chromatic dispersion measurement method according to any one of claims 14 to 21, wherein the dispersion compensation amount on the transmission side is adjusted based on the detected chromatic dispersion.
JP2005282296A 2005-09-28 2005-09-28 Wavelength dispersion measuring device, optical communication system, and wavelength dispersion measuring method Pending JP2007093359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005282296A JP2007093359A (en) 2005-09-28 2005-09-28 Wavelength dispersion measuring device, optical communication system, and wavelength dispersion measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005282296A JP2007093359A (en) 2005-09-28 2005-09-28 Wavelength dispersion measuring device, optical communication system, and wavelength dispersion measuring method

Publications (1)

Publication Number Publication Date
JP2007093359A true JP2007093359A (en) 2007-04-12

Family

ID=37979261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005282296A Pending JP2007093359A (en) 2005-09-28 2005-09-28 Wavelength dispersion measuring device, optical communication system, and wavelength dispersion measuring method

Country Status (1)

Country Link
JP (1) JP2007093359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108225745A (en) * 2018-02-09 2018-06-29 长飞光纤光缆股份有限公司 A kind of Double Cladding Ytterbium Doped Fiber laser slope efficiency test system and test method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108225745A (en) * 2018-02-09 2018-06-29 长飞光纤光缆股份有限公司 A kind of Double Cladding Ytterbium Doped Fiber laser slope efficiency test system and test method

Similar Documents

Publication Publication Date Title
US9515763B2 (en) Digital coherent receiver and receiving method of optical signal
US20040028415A1 (en) Apparatus and method for measuring the dispersion of a fiber span
JP4827672B2 (en) WDM optical transmission system and WDM optical transmission method
US11251868B2 (en) Dispersion compensation system and dispersion compensation method
US20050238362A1 (en) Dispersion compensation quantity setting method, receiving terminal station, and wavelength-multiplexing optical transmission system
US20070047963A1 (en) Optical transceiver having parallel electronic dispersion compensation channels
US8879907B2 (en) Measurement apparatus, network design apparatus, transmission system, and network management apparatus
JP5438838B2 (en) Introducing channel side dispersion shift
US20050111499A1 (en) Wavelength conversion apparatus
KR100759785B1 (en) Optical Transmission Method
CN100356715C (en) Method and device for wavelength dispersion compensation
EP1347589A1 (en) A wavelength division multiplex transmission system or a polarisation division multiplex system which means for measuring dispersion characteristics, an optical transmitter, an optical receiver and a method therefore
JP2006100909A (en) Waveform division multiplex optical transmission system, optical transmitter, relay node and waveform division multiplex optical transmission method
JP2007093359A (en) Wavelength dispersion measuring device, optical communication system, and wavelength dispersion measuring method
JP2003134047A (en) Optical wavelength multiple transmission system with automatic distribution compensation circuit
JP4024017B2 (en) Optical transmitter
JP2009010527A (en) Inter-wdm channel crosstalk compensation receiver
JP6422799B2 (en) Optical transmission system, optical transmitter and control method thereof
US7881610B2 (en) Method of transmitting an optical signal in an optical transmission system and optical transmission system for implementing such a method
EP2645600B1 (en) Optical transmission apparatus
JPH08340320A (en) Phase synchronization system and component equipment for the phase synchronization system
CN212752267U (en) Transmission system based on optical fiber communication
JP2005252369A (en) Wdm transmission system
JP3788417B2 (en) Dispersion measurement method
JP4552610B2 (en) Wavelength converter