JP2007093311A - Ultrasonic flaw detection method - Google Patents

Ultrasonic flaw detection method Download PDF

Info

Publication number
JP2007093311A
JP2007093311A JP2005281004A JP2005281004A JP2007093311A JP 2007093311 A JP2007093311 A JP 2007093311A JP 2005281004 A JP2005281004 A JP 2005281004A JP 2005281004 A JP2005281004 A JP 2005281004A JP 2007093311 A JP2007093311 A JP 2007093311A
Authority
JP
Japan
Prior art keywords
type probe
array
flaw detection
ultrasonic
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005281004A
Other languages
Japanese (ja)
Other versions
JP4735163B2 (en
Inventor
Yukimichi Iizuka
幸理 飯塚
Yasuo Kushida
靖夫 櫛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005281004A priority Critical patent/JP4735163B2/en
Publication of JP2007093311A publication Critical patent/JP2007093311A/en
Application granted granted Critical
Publication of JP4735163B2 publication Critical patent/JP4735163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect flaws in materials to be inspected and having a complicated shape such as a rail head part without being affected by interfering echo due to sidelobes different from defects. <P>SOLUTION: An array type probe 3 is opposed to materials 1 and 2 to be inspected to detect flaws inside the materials 1 and 2 to be inspected by electronic scanning in this ultrasonic flaw detection method. The center axis of the array type probe 3 is tilted, and the location of the array type probe 3 is determined and arranged in such a way that interfering echo from a section 6, which is present inside the materials 1 and 2 to be inspected and causes interfering echo, may not return to the array type probe 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、レールのような複雑な形状をした被検材の内部欠陥を、アレイ型探触子を用いて超音波探傷する方法に関するものである。   The present invention relates to a method for ultrasonic flaw detection using an array type probe for internal defects of a specimen having a complicated shape such as a rail.

レール等の形鋼は加熱した鋼片を、カリバーと呼ばれる上下の圧延ロール間の穴型を通すことによって圧延製造される。圧延されたレールは所定の長さに切断され、されに冷却後、ローラー矯正機によって曲がりが修正される。このようにして製造されたレールは、搬送途中で超音波探傷により内部欠陥の検査が行われる。   Shaped steel such as rails are produced by rolling a heated steel piece through a hole mold between upper and lower rolling rolls called a caliber. The rolled rail is cut into a predetermined length, and after cooling, the bend is corrected by a roller straightener. The rail manufactured in this way is inspected for internal defects by ultrasonic flaw detection during conveyance.

製造時のレールの超音波探傷方法については、例えば非特許文献1に記載がある。図6にその例を示す。単一型の超音波探触子を用い、レールのヘッド部については左右からそれぞれ2個、上から3個、ウェブ部については左から7個、ベース部については下から3個の計17個によって、内部欠陥を垂直探傷するようになっている。しかしながら、このような単一型の超音波探触子による探傷方法は次のような問題があった。すなわち、探傷の抜けを減らすために、超音波ビームのカバー範囲を増やそうとすると、数多くの超音波探触子が必要となり、設備コストの増大を招く。図6の例では計17個であるが、20個以上という例もある。また、これらの各探触子の入射角を調整するためには、超音波探触子の保持機構部が非常に複雑になって設備コストが増大する上、故障もし易く、調整作業も手間を要するといった問題もある。   For example, Non-Patent Document 1 describes an ultrasonic inspection method for rails during manufacturing. An example is shown in FIG. Using a single-type ultrasonic probe, a total of 17 rail heads, 2 from the left and right, 3 from the top, 7 from the left from the web, and 3 from the bottom from the base By doing so, internal defects are vertically detected. However, the flaw detection method using such a single type ultrasonic probe has the following problems. That is, in order to increase the coverage of the ultrasonic beam in order to reduce flaw detection, a large number of ultrasonic probes are required, resulting in an increase in equipment cost. In the example of FIG. 6, there are 17 in total, but there are also examples of 20 or more. In addition, in order to adjust the incident angle of each of these probes, the holding mechanism of the ultrasonic probe becomes very complicated, the equipment cost increases, and it is easy to break down, and adjustment work is troublesome. There is also a problem that it takes.

これに対し、アレイ型探触子を用い、電子的に超音波ビームの走査を行って探傷することで、超音波探触子の数を減らし、機構部を簡略化して、上記の問題を回避する例が知られている。   On the other hand, by using an array-type probe and electronically scanning the ultrasonic beam for flaw detection, the number of ultrasonic probes is reduced, the mechanism is simplified, and the above problems are avoided. An example is known.

特許文献1では角鋼片の例であるが、角鋼片軸方向に垂直な面内でその材表面から所定の角度で、かつ又材表面に対して所定の角度でアレイ型探触子をセットし、セクタスキャンすることにより、垂直探傷と斜角探傷を同時に行って、内部欠陥と表層欠陥を少ない探触子数で探傷できるようにしている。   In Patent Document 1, an example of a square steel slab is shown, but an array type probe is set at a predetermined angle with respect to the surface of the material in a plane perpendicular to the axial direction of the square steel slab and at a predetermined angle with respect to the material surface. By performing sector scanning, vertical flaw detection and oblique flaw flaw detection are performed at the same time so that internal defects and surface layer defects can be detected with a small number of probes.

特許文献2では、アレイ型探触子の各素子を設定すべきビーム方向に応じて選択し、それらの各素子からの超音波を干渉させてサイドローブを所定方向に送信し、探傷領域を広くするようにしている。   In Patent Document 2, each element of the array-type probe is selected according to the beam direction to be set, and ultrasonic waves from these elements are interfered to transmit side lobes in a predetermined direction, thereby widening the flaw detection area. Like to do.

特許文献3では、図7に示されるように、アレイ型探触子によりレール、特にヘッド部に対してセクタスキャンを行い、被検材の形状に合わせて超音波の照射1回毎に欠陥ゲートの設定を行うようにしている。
特開昭59−116543号公報 特開昭62−032356号公報 特開2005−037407号公報 V.Deutsch et al., "New developments concerning ultrasonic testing of rails in production line", 14th World Conference on Non Destructive Testing (14th WCNDT), 1996, p.207-213
In Patent Document 3, as shown in FIG. 7, a sector scan is performed on the rail, particularly the head portion, using an array-type probe, and a defect gate is detected every time an ultrasonic wave is irradiated in accordance with the shape of the test object. The setting is made.
JP 59-116543 A Japanese Patent Laid-Open No. 62-032356 Japanese Patent Laying-Open No. 2005-037407 V.Deutsch et al., "New developments concerning ultrasonic testing of rails in production line", 14th World Conference on Non Destructive Testing (14th WCNDT), 1996, p.207-213

しかしながら、これらのアレイ型探触子を用いた超音波探傷方法でも、以下に述べるような問題が残されていた。アレイ型探触子による超音波ビームは、小さい複数の素子からの合成として形成される。この時、合成ビームの音場は、素子が細かくかつ多いほど単一型の超音波探触子と同等のビームが得られるが、実際には素子の大きさは限られ、コスト面から数もあまり多くできない。この場合、超音波のビームには、主方向のメインローブに加え、別の角度にサイドローブと呼ばれる副ビームが発生する。サイドローブの発生する角度θは、超音波の波長をλ、素子間のピッチをdとすると、メインローブに対し次式にて示される。   However, the ultrasonic flaw detection method using these array-type probes still has the following problems. The ultrasonic beam by the array type probe is formed as a composite from a plurality of small elements. At this time, as the sound field of the synthesized beam becomes finer and more elements, a beam equivalent to a single-type ultrasonic probe can be obtained. I can't do much. In this case, in the ultrasonic beam, in addition to the main lobe in the main direction, a sub beam called a side lobe is generated at another angle. The angle θ generated by the side lobe is expressed by the following equation with respect to the main lobe, where λ is the wavelength of the ultrasonic wave and d is the pitch between the elements.

Figure 2007093311
Figure 2007093311

ここでレールのヘッド部側面にアレイ型探触子を配置しての探傷を考えると、図2に示されるように、サイドローブがヘッド部付近のウェブ部に当たって反射する場合がある。ウェブは、アレイ探触子を配置したヘッド部側面とは反対側に位置するヘッド部対向面よりは手前であるから、探傷ゲート内にこのヘッド部付近のウェブ部からのエコーが入り、固定エコーとしてノイズとなってしまうことになる。従って、アレイ型探触子による超音波探傷方法も適用できる部位が限られていた。   Here, considering flaw detection with an array type probe disposed on the side surface of the head portion of the rail, as shown in FIG. 2, the side lobe may hit the web portion near the head portion and be reflected. Since the web is in front of the head portion facing surface located on the opposite side of the head portion side surface on which the array probe is arranged, echoes from the web portion in the vicinity of the head portion enter the flaw detection gate and are fixed echoes. Will end up as noise. Therefore, there are limited parts to which the ultrasonic flaw detection method using an array type probe can be applied.

本発明は上記の問題点を解決するためになされたものであり、その目的とするところは、レールのヘッド部のような複雑な形状の被検材に対し、欠陥とは異なるサイドローブによる妨害エコーの影響なく探傷することが可能な、アレイ型探触子による超音波探傷方法を提供することである。   The present invention has been made to solve the above-mentioned problems, and its object is to obstruct a specimen having a complicated shape such as a head part of a rail by side lobes different from defects. It is an object of the present invention to provide an ultrasonic flaw detection method using an array type probe capable of flaw detection without the influence of echo.

(1)本発明に係る超音波探傷方法は、アレイ型探触子を被検材表面に対向配置し、電子走査により被検材内部を探傷する超音波探傷方法であって、前記被検材内部に存在する妨害エコーを生ずる部位からの妨害エコーが前記アレイ型探触子に戻らないように、前記アレイ型探触子の中心軸を傾斜させるとともに、前記アレイ型探触子の位置を決定して配置することを主要な特徴とする。
(2)本発明に係る超音波探傷方法は、アレイ型探触子をレールのヘッド部の表面に対向配置し、電子走査によりレールのヘッド部の内部を探傷する超音波探傷方法であって、前記レールの内部におけるヘッド部とウェブ部の境界部位からの妨害エコーが前記アレイ型探触子に戻らないように、前記アレイ型探触子の中心軸を傾斜させるとともに、前記アレイ型探触子を前記ヘッド部の前記ウェブ部寄りの位置に配置することを主要な特徴とする。
(1) An ultrasonic flaw detection method according to the present invention is an ultrasonic flaw detection method in which an array-type probe is arranged opposite to a surface of a test material, and the inside of the test material is detected by electronic scanning. The central axis of the array probe is tilted and the position of the array probe is determined so that the disturbing echo from the part where the disturbing echo is present does not return to the array probe. The main feature is that they are arranged.
(2) An ultrasonic flaw detection method according to the present invention is an ultrasonic flaw detection method in which an array-type probe is disposed opposite to the surface of a rail head portion, and the inside of the rail head portion is flawed by electronic scanning. The array-type probe is inclined while the central axis of the array-type probe is inclined so that the interference echo from the boundary portion between the head portion and the web portion inside the rail does not return to the array-type probe. Is arranged at a position near the web portion of the head portion.

レールのヘッド部のような複雑な形状をした被検材の内部探傷を、少ない素子数のアレイ型探触子で妨害エコーの問題なく探傷できるようになるため、少ない設備コストで広い探傷カバー範囲を得ることができ、製品の内部品質を高めることができる。   The internal inspection of a specimen with a complicated shape such as the head of a rail can be performed without an interference echo problem using an array type probe with a small number of elements. Can improve the internal quality of the product.

ここでは被検材がレールで測定部位が当該レールのヘッド部の場合について説明を行う。図1は、本発明の一実施例を示すもので、1と2は被検材であるレールで、1はヘッド部、2はウェブ部である。3はアレイ型探触子で、4は超音波ビームである。なお、図1に示す超音波ビーム4は、セクタスキャンで順次走査する全角度範囲を示したものであり、同時に図1に示される角度範囲の超音波ビームを送信するものでは無い。ここで、アレイ型探触子3は、外部より探傷できるようにレールのヘッド部1の外周面の近傍に対面配置され、かつヘッド部1の側面の内、側面中央よりウェブ部2に近い側に位置している。さらに、アレイ型探触子3の中心軸は、測定したいヘッド部1全体が超音波の電子走査範囲に入るように、水平より上側に傾けられている。アレイ型探触子3と被検材1、2との間は、音響接触媒質として5の水で結合されている。   Here, the case where the test material is a rail and the measurement site is the head portion of the rail will be described. FIG. 1 shows an embodiment of the present invention, in which 1 and 2 are rails as test materials, 1 is a head portion, and 2 is a web portion. 3 is an array type probe, and 4 is an ultrasonic beam. Note that the ultrasonic beam 4 shown in FIG. 1 shows the entire angular range that is sequentially scanned by sector scanning, and does not transmit the ultrasonic beam in the angular range shown in FIG. 1 at the same time. Here, the array-type probe 3 is arranged in the vicinity of the outer peripheral surface of the head portion 1 of the rail so that flaws can be detected from the outside, and the side of the head portion 1 that is closer to the web portion 2 than the center of the side surface. Is located. Further, the central axis of the array-type probe 3 is tilted upward from the horizontal so that the entire head unit 1 to be measured falls within the ultrasonic electronic scanning range. The array-type probe 3 and the test materials 1 and 2 are connected by water 5 as an acoustic contact medium.

ヘッド部1の側面にアレイ型探触子3を配置する際、被検材中の妨害エコーを発する部位、すなわちウェブ部とヘッド部の境界部位6、に近づく高さ位置にアレイ型探触子3を配置し、かつアレイ型探触子3の中心軸を水平より上側に傾けて配置しているので、サイドローブがウェブ部2(前述のウェブ部とヘッド部の境界部位6を含む)に当たらないようになる。あるいはウェブ部2に当たったとしても、斜めの角度で入射するため、その妨害エコーはアレイ型探触子3には戻らない。よって、妨害エコーの問題無く超音波探傷ができるようになる。   When the array-type probe 3 is disposed on the side surface of the head unit 1, the array-type probe is positioned at a height approaching a part that emits an interference echo in the test material, that is, the boundary part 6 between the web part and the head part. 3 and the central axis of the array-type probe 3 is tilted upward from the horizontal, so that the side lobe is in the web portion 2 (including the boundary portion 6 between the web portion and the head portion). You will not win. Alternatively, even if it hits the web portion 2, it enters at an oblique angle, so that the disturbing echo does not return to the array type probe 3. Therefore, ultrasonic flaw detection can be performed without the problem of interference echo.

ここで、アレイ型探触子3を配置する位置については、ヘッド部1側面の中央より下が良く、ウェブ部とヘッド部の境界部位6からの垂線Nがヘッド部側面と交わる位置Aよりもウェブ部2側がより好ましい。これは、ウェブ部とヘッド部の境界部位6からの垂線Nがヘッド部1側面と交わる位置Aよりもウェブ部2側であれば、ウェブ部2方向に向かった超音波は必ずウェブ部2(前述のウェブ部とヘッド部の境界部位を含む)に対して斜めに入射するため、妨害エコーとならないためである。   Here, the position at which the array-type probe 3 is arranged is preferably lower than the center of the side surface of the head unit 1 and more than the position A where the perpendicular N from the boundary portion 6 between the web unit and the head unit intersects the side surface of the head unit. The web part 2 side is more preferable. If the perpendicular line N from the boundary part 6 between the web part and the head part is on the web part 2 side from the position A where the head part 1 crosses the side surface, the ultrasonic wave directed toward the web part 2 is always transmitted to the web part 2 ( This is because it does not become a disturbing echo because it is incident obliquely with respect to (including the boundary portion between the web portion and the head portion).

アレイ型探触子3の中心軸を水平より傾ける角度については、ヘッド部1の中心方向を向くようにするのが良く、アレイ型探触子3の1素子の指向角より大きい角度となることが望ましい。サイドローブの強度は1素子の指向性に比例するので、上記のように傾ければ、妨害エコーを発する方向にはサイドローブは強度を持たないためである。   The angle at which the central axis of the array-type probe 3 is inclined from the horizontal should be oriented toward the center of the head unit 1 and should be larger than the directivity angle of one element of the array-type probe 3. Is desirable. This is because the side lobe intensity is proportional to the directivity of one element, and therefore, if tilted as described above, the side lobe has no intensity in the direction in which the disturbing echo is emitted.

図4と図5に、アレイ型探触子3の位置と中心軸の角度による、妨害エコーの低減効果の一例を示す。図4はアレイ型探触子3の位置とサイドローブによる妨害エコーとの関係を調べた結果で、アレイ型探触子3の位置以外の条件は、後述する図2の比較例に準じた。この図4に示した結果からも、ウェブからの垂線がヘッド側面に当たる位置より下側にアレイ型探触子を配置させることで、妨害エコーが小さくなることが明らかである。一方、図5はアレイ型探触子3の中心軸の角度とサイドローブによる妨害エコーとの関係を調べた結果で、アレイ型探触子3の中心軸の角度以外の条件は、後述する図2の比較例に準じた。この図5に示した結果からも、1素子の指向角より大きい角度とすることで、妨害エコーが小さくなることが明らかである。   FIG. 4 and FIG. 5 show an example of the interference echo reduction effect depending on the position of the array-type probe 3 and the angle of the central axis. FIG. 4 shows the result of examining the relationship between the position of the array-type probe 3 and the interference echo due to the side lobe. Conditions other than the position of the array-type probe 3 were in accordance with a comparative example of FIG. From the results shown in FIG. 4, it is clear that the interference echo is reduced by arranging the array-type probe below the position where the perpendicular from the web hits the side surface of the head. On the other hand, FIG. 5 shows the result of examining the relationship between the angle of the central axis of the array-type probe 3 and the interference echo due to the side lobe. Conditions other than the angle of the central axis of the array-type probe 3 are described later. According to 2 comparative examples. From the result shown in FIG. 5, it is clear that the interference echo is reduced by setting the angle larger than the directivity angle of one element.

これらの結果からも、被検材に対するアレイ型探触子3の中心軸の角度と位置とを適切に選択し組み合わせることにより、妨害エコーの影響を極力小さくして、被品材内部を探傷することが可能であることが明らかである。   Also from these results, by appropriately selecting and combining the angle and position of the central axis of the array-type probe 3 with respect to the test material, the influence of the interference echo is minimized, and the inside of the product material is detected. It is clear that it is possible.

次に、従来技術と本発明との比較を図2と図3で説明する。測定対象としたヘッド部の大きさは、幅75mm、高さ40mmである。図1で説明した実施の形態と同一のものは同一の符号を付し、詳細な説明は省略する。   Next, a comparison between the prior art and the present invention will be described with reference to FIGS. The size of the head part to be measured is 75 mm wide and 40 mm high. The same components as those described in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図2は比較例の場合を示し、アレイ型探触子3がヘッド部1の側面中央に位置し、かつアレイ型探触子3の中心軸は水平に配置されている。超音波ビーム4の内の1本のメインローブを41とし、この超音波ビーム41に対するサイドロープを43と付して示している。ここで、上記ヘッド部1のほぼ全断面を超音波ビーム4の角度範囲で探傷するように、セクタスキャンを行うためには、電子走査角度の範囲は、ヘッド部1の幅および高さの関係から水平方向を基準(0°)として、約−14゜方向〜+14゜方向にする必要がある。したがって、スネルの法則より、アレイ型探触子の音響接触媒体である水5中での角度範囲は、水平方向を基準(0°)として−3.5゜方向〜+3.5゜方向である。水5中でのサイドローブ43のメインローブ41に対する角度θは、式(1)に基づいて算出されるが、例えば、周波数を3MHz、素子ピッチを3mmピッチの場合で、水5中における音速を1480m/sとして考えると、θは9.5゜となる。よって、図2中超音波ビーム41の水5中におけるサイドローブ43は、水平方向を基準(0°)として−6.0゜方向、従って被検体のヘッド部1中では−25゜方向となり、図2中に示されるようにウェブ部とヘッド部の境界部位6に対して垂直に入射する面が存在することとなる。ここで、超音波ビーム41の探傷ゲートの時間設定をヘッド部1の右端まで入力できるように広げていくと、ウェブ部とヘッド部の境界部位6で反射したサイドローブ43が探傷ゲートの時間設定範囲内に入り、欠陥との識別が困難な妨害エコーとなる。ここでは、一例について説明したが、周波数λや素子ピッチdによって、サイドローブ43のメインローブ41に対する角度θは変化するものの、図2のようにセクタスキャンを行う限り、超音波ビーム4の何れかのサイドローブが妨害エコーの原因となる。   FIG. 2 shows the case of the comparative example, in which the array type probe 3 is located at the center of the side surface of the head unit 1 and the central axis of the array type probe 3 is horizontally arranged. One main lobe of the ultrasonic beam 4 is denoted by 41, and a side rope for the ultrasonic beam 41 is denoted by 43. Here, in order to perform sector scanning so as to detect almost the entire cross section of the head portion 1 within the angle range of the ultrasonic beam 4, the range of the electronic scanning angle is the relationship between the width and height of the head portion 1. From the horizontal direction to the reference (0 °), it is necessary to make the direction about -14 ° to + 14 °. Therefore, according to Snell's law, the angle range in the water 5 that is the acoustic contact medium of the array type probe is in the −3.5 ° direction to the + 3.5 ° direction with respect to the horizontal direction (0 °). The angle θ of the side lobe 43 in the water 5 with respect to the main lobe 41 is calculated based on the formula (1). For example, when the frequency is 3 MHz and the element pitch is 3 mm, the speed of sound in the water 5 is Considering 1480m / s, θ is 9.5 °. Therefore, the side lobe 43 in the water 5 of the ultrasonic beam 41 in FIG. 2 is in the −6.0 ° direction with respect to the horizontal direction (0 °), and thus in the −25 ° direction in the head 1 of the subject. As shown in FIG. 4, there is a surface that is perpendicularly incident on the boundary portion 6 between the web portion and the head portion. Here, when the time setting of the flaw detection gate of the ultrasonic beam 41 is expanded so that it can be input to the right end of the head portion 1, the side lobe 43 reflected at the boundary portion 6 between the web portion and the head portion is set to the flaw detection gate time. This is a disturbing echo that falls within range and is difficult to distinguish from a defect. Although an example has been described here, the angle θ of the side lobe 43 with respect to the main lobe 41 varies depending on the frequency λ and the element pitch d. However, as long as the sector scan is performed as shown in FIG. Side lobes cause interference echoes.

図3は本発明例の場合を示し、アレイ型探触子3をヘッド部1側面の最もウェブ部2寄りとなる下端に位置させ、アレイ型探触子3発振面から垂直に発せられた超音波ビーム4がヘッド部1中央を通るように、アレイ型探触子の中心軸を水平より3.5゜上向きに傾け、水5中での角度範囲を、水平方向を基準(0°)として0°から7°までの設定としている。このようにするとヘッド部1内では、水平方向を基準(0°)として0゜方向から+28゜方向までが電子走査範囲となる。比較例と同様に超音波ビーム4の内の1本である超音波ビーム41のサイドローブ43方向を計算すると、−11゜となり、図3中に示されるように、ウェブ部2(ウェブ部とヘッド部の境界部位6を含む)には入射しない。また、超音波ビーム41の隣の超音波ビーム42については、そのサイドローブ44はウェブ部2(ウェブ部とヘッド部の境界部位6を含む)に入射する方向だが、ウェブ部2に対して斜めに入射するためエコーは探触子に戻らない。このように、本発明例ではアレイ型探触子3をヘッド部1側面のウェブ部2寄りに位置させているため、周波数λや素子ピッチdが変わって超音波ビーム4の何れかのサイドローブの方向が上記とは変わったとしても、妨害エコーは発生しない。   FIG. 3 shows the case of the present invention. The array type probe 3 is positioned at the lower end closest to the web part 2 on the side surface of the head part 1 and is supervertically emitted vertically from the oscillation surface of the array type probe 3. The central axis of the array-type probe is tilted 3.5 ° upward from the horizontal so that the sound beam 4 passes through the center of the head unit 1, and the angle range in water 5 is 0 ° with respect to the horizontal direction (0 °). It is set to 7 °. In this way, in the head unit 1, the electronic scanning range is from 0 ° to + 28 ° with the horizontal direction as the reference (0 °). As in the comparative example, when the direction of the side lobe 43 of the ultrasonic beam 41, which is one of the ultrasonic beams 4, is calculated, it becomes -11 °, and as shown in FIG. It does not enter the boundary portion 6 of the head portion). Further, with respect to the ultrasonic beam 42 adjacent to the ultrasonic beam 41, the side lobe 44 is incident on the web part 2 (including the boundary part 6 between the web part and the head part), but oblique to the web part 2. Echo does not return to the probe. As described above, in the example of the present invention, since the array-type probe 3 is positioned near the web portion 2 on the side surface of the head portion 1, the frequency λ and the element pitch d are changed, and any side lobe of the ultrasonic beam 4 is changed. Even if the direction of is changed from the above, no disturbing echo is generated.

以上のように、本発明により、レールのような複雑な形状をもつ被検材に対してアレイ型探触子による電子走査型超音波探傷法を行っても、サイドローブの影響なく被検材を探傷でき、アレイ型探触子を用いることで少ない探触子数で広いカバー範囲を得ることができることが確認された。   As described above, according to the present invention, even when an electronic scanning ultrasonic flaw detection method using an array type probe is performed on a specimen having a complicated shape such as a rail, the specimen is not affected by side lobes. It was confirmed that a wide cover range can be obtained with a small number of probes by using an array type probe.

なお、本実施の形態では被検材がレールの場合について説明したが、本発明はこれに限るものでなく、形鋼や、溶接によって複雑な形状に組み合わされたものでも良い。また、電子走査の方法はセクタスキャンに限らず、リニアスキャンでも良い。   In the present embodiment, the case where the test material is a rail has been described. However, the present invention is not limited to this, and may be a combination of a shape steel or a complicated shape by welding. The electronic scanning method is not limited to sector scanning, and linear scanning may be used.

本発明にかかる超音波探傷方法の実施の形態の一例を模式的に示した図。The figure which showed typically an example of embodiment of the ultrasonic flaw detection method concerning this invention. 従来方法を模式的に示した図。The figure which showed the conventional method typically. 本実施の形態において妨害エコーの検出を低減できる仕組みを説明した図。The figure explaining the mechanism which can reduce the detection of the interference echo in this Embodiment. アレイ型探触子の位置とサイドローブによる妨害エコーとの関係を示した図。The figure which showed the relationship between the position of an array type probe, and the interference echo by a side lobe. アレイ型探触子の角度とサイドローブによる妨害エコーとの関係を示した図。The figure which showed the relationship between the angle of an array type probe, and the interference echo by a side lobe. 非特許文献1に示されているレールの超音波探傷方法の一例を示した図(従来方法)。The figure which showed an example of the ultrasonic flaw detection method of the rail shown by the nonpatent literature 1 (conventional method). アレイ型探触子によりレールに対してセクタスキャンを行った例を示した図(従来方法)。The figure which showed the example which performed the sector scan with respect to the rail by the array type probe (conventional method).

符号の説明Explanation of symbols

1 被検材のヘッド部
2 被検材のウェブ部
3 アレイ型探触子
4 超音波ビーム
41、42 超音波ビーム(メインローブ)
43、44 超音波ビーム41、42のサイドローブ
5 水(音響接触媒質)
6 ウェブ部とヘッド部の境界部位
A ウェブ部とヘッド部の境界部位の垂線とヘッド部側面が交わる位置
d アレイ型探触子の素子ピッチ
N ウェブ部とヘッド部の境界部位の垂線
λ 超音波の周波数
θ 超音波ビームのメインローブとサイドローブがなす角
DESCRIPTION OF SYMBOLS 1 Head part of test material 2 Web part of test material 3 Array type probe 4 Ultrasonic beam 41, 42 Ultrasonic beam (main lobe)
43, 44 Side lobes of ultrasonic beams 41, 42 5 Water (acoustic contact medium)
6 Boundary part of the web part and the head part A A position where the perpendicular of the boundary part of the web part and the head part intersects the side surface of the head part d Element pitch of the array type probe N N perpendicular of the boundary part of the web part and the head part λ Ultrasound Frequency θ Angle formed by main lobe and side lobe of ultrasonic beam

Claims (2)

アレイ型探触子を被検材表面に対向配置し、電子走査により被検材内部を探傷する超音波探傷方法であって、
前記被検材内部に存在する妨害エコーを生ずる部位からの妨害エコーが前記アレイ型探触子に戻らないように、前記アレイ型探触子の中心軸を傾斜させるとともに、前記アレイ型探触子の位置を決定して配置することを特徴とした超音波探傷方法。
An ultrasonic flaw detection method in which an array-type probe is disposed opposite to the surface of a test material, and the inside of the test material is detected by electronic scanning,
The array-type probe is inclined while the central axis of the array-type probe is inclined so that the disturbing echo from the part that generates the disturbing echo existing inside the test material does not return to the array-type probe. An ultrasonic flaw detection method characterized by determining and arranging the position.
アレイ型探触子をレールのヘッド部の表面に対向配置し、電子走査によりレールのヘッド部の内部を探傷する超音波探傷方法であって、
前記レールの内部におけるヘッド部とウェブ部の境界部位からの妨害エコーが前記アレイ型探触子に戻らないように、前記アレイ型探触子の中心軸を傾斜させるとともに、前記アレイ型探触子を前記ヘッド部の前記ウェブ部寄りの位置に配置することを特徴とした超音波探傷方法。
An ultrasonic flaw detection method in which an array type probe is arranged opposite to the surface of the rail head portion, and the inside of the rail head portion is flawed by electronic scanning,
The array-type probe is inclined while the central axis of the array-type probe is inclined so that the interference echo from the boundary portion between the head portion and the web portion inside the rail does not return to the array-type probe. Is disposed at a position near the web portion of the head portion.
JP2005281004A 2005-09-28 2005-09-28 Ultrasonic flaw detection method Active JP4735163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281004A JP4735163B2 (en) 2005-09-28 2005-09-28 Ultrasonic flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281004A JP4735163B2 (en) 2005-09-28 2005-09-28 Ultrasonic flaw detection method

Publications (2)

Publication Number Publication Date
JP2007093311A true JP2007093311A (en) 2007-04-12
JP4735163B2 JP4735163B2 (en) 2011-07-27

Family

ID=37979216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281004A Active JP4735163B2 (en) 2005-09-28 2005-09-28 Ultrasonic flaw detection method

Country Status (1)

Country Link
JP (1) JP4735163B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176612A1 (en) 2011-06-22 2012-12-27 新日鐵住金株式会社 Vehicle wheel ultrasonic flaw detection method
CN103969333A (en) * 2014-05-22 2014-08-06 攀钢集团攀枝花钢钒有限公司 Method for detecting flaw of wing rail
JP2018194384A (en) * 2017-05-16 2018-12-06 Jfeスチール株式会社 Rail-purpose ultrasonic wave flaw detection tool, rail-purpose ultrasonic wave flaw method of rail toe, rail quality assurance method, and rail manufacturing method
CN109760714A (en) * 2018-11-30 2019-05-17 中国北方车辆研究所 A kind of method of servo-controlling of the contactless center support system of track

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046813A (en) * 1998-07-31 2000-02-18 Mitsubishi Electric Corp Automatic ultrasonic flaw detecting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046813A (en) * 1998-07-31 2000-02-18 Mitsubishi Electric Corp Automatic ultrasonic flaw detecting device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176612A1 (en) 2011-06-22 2012-12-27 新日鐵住金株式会社 Vehicle wheel ultrasonic flaw detection method
CN103765205A (en) * 2011-06-22 2014-04-30 新日铁住金株式会社 Vehicle wheel ultrasonic flaw detection method
EP2728346A1 (en) * 2011-06-22 2014-05-07 Nippon Steel & Sumitomo Metal Corporation Vehicle wheel ultrasonic flaw detection method
JP5601603B2 (en) * 2011-06-22 2014-10-08 新日鐵住金株式会社 Ultrasonic flaw detection method for wheels
AU2012274664B2 (en) * 2011-06-22 2015-03-05 Nippon Steel Corporation Ultrasonic testing method of wheel.
EP2728346A4 (en) * 2011-06-22 2015-03-18 Nippon Steel & Sumitomo Metal Corp Vehicle wheel ultrasonic flaw detection method
CN103765205B (en) * 2011-06-22 2016-04-20 新日铁住金株式会社 The defect detection on ultrasonic basis of wheel
US9341598B2 (en) 2011-06-22 2016-05-17 Nippon Steel & Sumitomo Metal Corporation Ultrasonic testing method of wheel
CN103969333A (en) * 2014-05-22 2014-08-06 攀钢集团攀枝花钢钒有限公司 Method for detecting flaw of wing rail
JP2018194384A (en) * 2017-05-16 2018-12-06 Jfeスチール株式会社 Rail-purpose ultrasonic wave flaw detection tool, rail-purpose ultrasonic wave flaw method of rail toe, rail quality assurance method, and rail manufacturing method
CN109760714A (en) * 2018-11-30 2019-05-17 中国北方车辆研究所 A kind of method of servo-controlling of the contactless center support system of track
CN109760714B (en) * 2018-11-30 2020-08-18 中国北方车辆研究所 Servo control method of track non-contact type centering system

Also Published As

Publication number Publication date
JP4735163B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
US8266964B2 (en) Calibration of an ultrasonic flaw detector and quality control and production methods for a tubular body
JP4816731B2 (en) Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus
US8578580B2 (en) Quality control method and manufacturing method for pipe
JP4544240B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP4166222B2 (en) Ultrasonic flaw detection method and apparatus
JP2005315892A5 (en)
CN105353035A (en) Method for detecting TKY tube node by using phased array
JP4735163B2 (en) Ultrasonic flaw detection method
KR20220004184A (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, steel manufacturing equipment heat, steel manufacturing method, and steel quality assurance method
JP2006234701A (en) Ultrasonic test device and ultrasonic test method
JP5558666B2 (en) Surface defect evaluation apparatus and method for round bar steel by water immersion ultrasonic flaw detection using an electronic scanning array probe
WO2020250379A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
JP4600335B2 (en) Ultrasonic inspection method and apparatus
JP5750989B2 (en) Ultrasonic flaw detection method for round bars
JP6871534B2 (en) Comparison test piece and ultrasonic phased array flaw detection test method
JP2014077708A (en) Inspection device and inspection method
JP6108685B2 (en) Immersion ultrasonic flaw detector with array probe and method thereof
JP6992678B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detector, steel manufacturing equipment line, steel manufacturing method, and steel quality assurance method
JP2005337890A (en) Inspection method and diagnosis device of porcelain insulator
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JP2003344370A (en) Ultrasonic inspection method
JP3868443B2 (en) Ultrasonic inspection method of metal material and manufacturing method of steel pipe
JP5662640B2 (en) Detection and evaluation method for inclusions in steel
JP2005221371A (en) Ultrasonic probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

R150 Certificate of patent or registration of utility model

Ref document number: 4735163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250