JP2007092116A - Ferromagnetic net - Google Patents

Ferromagnetic net Download PDF

Info

Publication number
JP2007092116A
JP2007092116A JP2005282706A JP2005282706A JP2007092116A JP 2007092116 A JP2007092116 A JP 2007092116A JP 2005282706 A JP2005282706 A JP 2005282706A JP 2005282706 A JP2005282706 A JP 2005282706A JP 2007092116 A JP2007092116 A JP 2007092116A
Authority
JP
Japan
Prior art keywords
stainless steel
less
steel wire
wire
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005282706A
Other languages
Japanese (ja)
Other versions
JP5009517B2 (en
Inventor
Tamotsu Karaki
保 辛木
Kazuhiro Iwamoto
一浩 岩元
Hideaki Tanigawa
英昭 谷川
Mutsuhiko Nishihata
睦彦 西畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP2005282706A priority Critical patent/JP5009517B2/en
Publication of JP2007092116A publication Critical patent/JP2007092116A/en
Application granted granted Critical
Publication of JP5009517B2 publication Critical patent/JP5009517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferromagnetic net which can be used as a belt of a net conveyor or a sieve for separation or classification, has superior ferromagnetism and fatigue resistance, and has enhanced corrosion resistance to an alkaline solution. <P>SOLUTION: A stainless steel wire for the net comprises at least one element among, by mass%, 0.03% or less of C, 3.0-5.0% of Si, 1.5-3.0% of Mn, 8.2-12.0% of Ni, 15.0% or more but less than 20.0% of Cr, more than 1.0% but 3.0% or less of Mo, 1.0-3.0% of Cu and 0.1-0.5% of Nb, and the balance Fe with unavoidable impurities; and includes two phases of a ferrite phase in which fibrous ferrites with a width of 10 μm or less or fine granular ferrites are interspersed at an area rate of 55 to 85% per unit area in a section of an axial direction, and an austenite phase. The ferromagnetic net has a net shape formed by using the two-phase stainless steel wire, and is used for the belt of the net conveyor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、食品および医薬品等の加工過程において、加熱、冷却、冷凍、洗浄等の際の搬送用のネットコンベヤのベルトとして、又は粉状体の分離・分級用のふるいとして用いることができ、かつ強磁性、耐疲労性に優れるとともにアルカリ液に対する耐食性を高めた強磁性網体に関する。   The present invention can be used as a belt for a net conveyor for conveyance during heating, cooling, freezing, washing, etc., or as a sieve for separating and classifying powders in the process of processing foods and pharmaceuticals, The present invention also relates to a ferromagnetic network having excellent ferromagnetism and fatigue resistance and enhanced corrosion resistance against an alkaline solution.

従来から、食品、医薬品の業界では粉末材料の分級や選別、異物分離などの為のふるい、ないし種々の被処理品を搬送し、かつ連続的に加熱、冷却、冷凍、洗浄などの処理を行う為の自動ライン装置の部材としてネットコンベヤー用のベルトなどとして金属線材の網体が利用されている。   Conventionally, in the food and pharmaceutical industries, sieves for powder material classification and sorting, separation of foreign substances, etc., and various processed products are transported, and processing such as heating, cooling, freezing and washing is performed continuously. As a member of an automatic line device for this purpose, a metal wire net is used as a belt for a net conveyor.

これら分離、分級用のふるい用の金網、又はネットコンベヤー用のベルトは、被処理粉体の性状、特性、あるいは処理方法などに応じて使用材料、織り構成が選択され、例えば前者のふるい用の金網としては、所望の目開きを持つよう例えば金属線を平織り乃至綾織りしたもの、また後者のベルトとしては、所定の金属線や帯材を螺旋状乃至クランク形状に曲げ加工した成形品の複数を連続的に繋ぎ合わせ構成した金属製の網体が用いられている。   For these separation and classification screen meshes or net conveyor belts, the materials and weaving configurations are selected according to the properties, characteristics, or processing method of the powder to be treated. For example, for the former sieve As the wire mesh, for example, a metal wire that is plain or twilled so as to have a desired mesh opening, and as the latter belt, a plurality of molded products obtained by bending a predetermined metal wire or belt material into a spiral shape or a crank shape. A metal net that is formed by continuously connecting the two is used.

これら網体はその目的に応じて、その構成や形態は異なるものではあるが、処理操作に伴って発生する衝撃や微振動による疲労破断、被処理品との摩耗や耐食性などの観点から、通常は高強度で耐食性に優れたSUS304,SUS316等のステンレス鋼線材が用いられおり、今日の一般的な網体用材料として定着している。   These nets have different configurations and forms depending on their purposes, but they are usually used from the viewpoint of fatigue breakage due to shocks and micro-vibrations generated by processing operations, wear on the workpiece and corrosion resistance. Stainless steel wires such as SUS304 and SUS316, which have high strength and excellent corrosion resistance, are used, and have been established as general materials for network bodies today.

しかしながら、今日の社会環境は製品の品質に対する絶対的な保証が必要とされ、処理済品、特に例えば医薬品や食品などの分野では、その一部が欠落して該処理済品(製品)中にまぎれ込むことは直接人命に係る問題となることから、より高品質かつ長寿命の網部材が求められている。   However, today's social environment requires an absolute guarantee for the quality of products. In the field of processed products, especially in the fields of pharmaceuticals and foods, a part of them is missing and the processed products (products) are not. Since it is a problem directly related to human life, there is a need for a higher quality and longer life net member.

このような問題を解決する方策として、万一、その一部が脱落して処理品中に混入しても、次工程での磁選機によって検出し、乃至吸着除去するため、例えばふるい用の金網を構成する線材に磁性材料を用いることが提案されている(例えば特許文献1)。この特許文献1では、C:0.01〜0.05%,Si:0.1〜1.5%,Mn:0.3〜1.0%,Ni:3〜8%,Cr:20〜30%,Mo:1.0〜6.0%、残り:Fe及び不可避不純物を含有する高耐食性ステンレス鋼線を用いている。   As a measure to solve such a problem, even if a part of it falls off and is mixed in the processed product, it is detected by a magnetic separator in the next process or removed by adsorption. For example, a wire mesh for sieving It has been proposed to use a magnetic material for the wire constituting the wire (for example, Patent Document 1). In this Patent Document 1, C: 0.01 to 0.05%, Si: 0.1 to 1.5%, Mn: 0.3 to 1.0%, Ni: 3 to 8%, Cr: 20 to A high corrosion resistance stainless steel wire containing 30%, Mo: 1.0 to 6.0%, remaining: Fe and inevitable impurities is used.

また、ふるい用の磁性金網として、Ni:5〜8%,Cr:15〜20%を含み、C≦0.03%,Si:2.0〜5.0%とする低C高Si系の、オーステナイト相とフェライト相との2相組識を有する2相ステンレス鋼線を用いたふるい分け用の磁性金網も、例えば特許文献2により提案されている。   In addition, as a magnetic wire mesh for sieving, a low C high Si system containing Ni: 5-8%, Cr: 15-20%, C ≦ 0.03%, Si: 2.0-5.0% A magnetic wire mesh for screening using a duplex stainless steel wire having a two-phase structure of an austenite phase and a ferrite phase has also been proposed, for example, in Patent Document 2.

さらに、ネットコンベヤ用のベルトを対象として、例えば特許文献3は、次のA),B)の2種類のステンレス鋼線を提案している。
A)Ni:2.5〜8%、Cr:18〜30%,Mo:3.5%以下、N:0〜0.2%を含み、且つCu,Ti,Nbの1又は2種以上を合計で0〜1%含有する2相ステンレス鋼。
B)Cr:17%以上、Mo:0〜3%,C:0.02%以下、N≦0.02%,C+N≦0.05%を含み、且つCu,Ti,Nbの1又は2種以上を合計で0〜1%含有するフェライト系ステンレス鋼。
Furthermore, for example, Patent Document 3 proposes the following two types of stainless steel wires A) and B) for a belt for a net conveyor.
A) Ni: 2.5 to 8%, Cr: 18 to 30%, Mo: 3.5% or less, N: 0 to 0.2%, and one or more of Cu, Ti, Nb Duplex stainless steel containing 0 to 1% in total.
B) Cr: 17% or more, Mo: 0 to 3%, C: 0.02% or less, N ≦ 0.02%, C + N ≦ 0.05%, and one or two of Cu, Ti and Nb Ferritic stainless steel containing 0 to 1% in total.

:特開平10−130788号: JP-A-10-130788 :特開2004−332109号: JP 2004-332109 A :特開2002−120919号: JP 2002-120919

ところで、これらふるい用の磁性網体を製造する際は、作業性と網目品質の均一化を図る観点から、例えば固溶化熱処理を施した軟質線材が用いられ、その強度が十分でないことから、繰返し使用に伴う網目の変化、更には疲労破壊などによる寿命低下の面で更なる特性の改善が望まれている。   By the way, when producing these magnetic nets for sieving, from the viewpoint of achieving uniform workability and network quality, for example, a soft wire subjected to solution heat treatment is used, and its strength is not sufficient. Further improvement in characteristics is desired in terms of the reduction of life due to changes in the mesh due to use and fatigue failure.

なお、前記提案において、オーステナイト相とフェライト相との2相組識を有する2相ステンレス鋼を用いるものは、例えば食品の加熱処理工程で使用する場合は、その表面に強度の焦げ目や熱腐食を伴うことから、これを除去する為に通常は水酸化ナトリウム溶液での洗浄処理が行われるが、例えば引用文献2が提案する通常の2相ステンレス鋼線は該アルカリ溶液に対する耐食性に劣ることから、その使用範囲が制限されるという問題がある。   In the above proposal, when using a duplex stainless steel having a two-phase structure of an austenite phase and a ferrite phase, for example, when used in a heat treatment process of food, the surface has strong burns and thermal corrosion. Therefore, in order to remove this, a washing treatment with a sodium hydroxide solution is usually performed. For example, a normal duplex stainless steel wire proposed by Reference 2 is inferior in corrosion resistance to the alkaline solution. There is a problem that the range of use is limited.

本発明は、ネットコンベヤー用のベルト、又は分離・分級用のふるいであって、その疲労、摩耗に対する抵抗力を向上し、交換するまでの寿命を長くし、さらに破損時の破片が被処理物に混入するときにも金属検出器などを用いて容易に検知、回収でき、かつ水酸化ナトリウムに対する耐食性を向上させ常に効果的な洗浄を行えるネットコンベヤー用のベルト、又は分離・分級用のふるいとして用いる強磁性網体の提供を課題としている。   The present invention is a belt for a net conveyor, or a sieve for separation / classification, which improves its resistance to fatigue and wear, prolongs the life until replacement, and fragments at the time of breakage are treated objects. As a net conveyor belt or separation / classification sieve that can be easily detected and recovered using a metal detector, etc., even when it is mixed in, and has improved corrosion resistance against sodium hydroxide and can always wash effectively It is an object to provide a ferromagnetic network to be used.

すなわち、請求項1に係る発明は、質量%で、C≦0.03%、Si:3.0〜5.0%、Mn:1.5〜3.0%、Ni:8.2〜12.0%、Cr:15.0以上20.0%未満、及びMo:1.0を超え3.0%以下、Cu:1.0〜3.0%、Nb:0.1〜0.5%の少なくとも1種を含み、残部Fe及び不可避不純物からなり、
かつ軸方向断面において、幅10μm 以下の微細な繊維状又は粒状のフェライトが単位面積当たり55〜85%の面積率で点在するフェライト相と、オーステナイト相とを具える2相ステンレス鋼線材を用いて金網状体に形成されネットコンベヤのベルトとして用いる強磁性網体である。
That is, the invention according to claim 1 is mass%, C ≦ 0.03%, Si: 3.0-5.0%, Mn: 1.5-3.0%, Ni: 8.2-12. 0.0%, Cr: 15.0 or more and less than 20.0%, and Mo: more than 1.0 and 3.0% or less, Cu: 1.0 to 3.0%, Nb: 0.1 to 0.5 % Of at least one kind, consisting of the balance Fe and inevitable impurities,
In addition, a two-phase stainless steel wire having a ferrite phase in which fine fibrous or granular ferrites having a width of 10 μm or less are scattered at an area ratio of 55 to 85% per unit area and an austenite phase in the axial cross section is used. It is a ferromagnetic net that is formed into a metal net and used as a belt for a net conveyor.

さらに、請求項2に係わる発明は、2相ステンレス鋼線材が、引張強さ1200〜1600MPa,伸び2〜10%であり、かつ前記金網状体が、前記2相ステンレス鋼線材を、螺旋状又はクランク状に曲げ成形した成形体を連続的に繋ぎ合わせることにより形成されたことを特徴とする。   Furthermore, in the invention according to claim 2, the duplex stainless steel wire has a tensile strength of 1200 to 1600 MPa and an elongation of 2 to 10%, and the wire mesh has a spiral or It is characterized by being formed by continuously joining molded bodies bent into a crank shape.

また、請求項3に係る発明は、質量%で、C≦0.03%、Si:3.0〜5.0%、Mn:1.5〜3.0%、Ni:8.2〜12.0%、Cr:15.0以上20.0%未満、及びMo:1.0を超え3.0%以下、Cu:1.0〜3.0%、Nb:0.1〜0.5%の少なくとも1種を含み、残部Fe及び不可避不純物からなり、
かつ軸方向断面において、幅10μm 以下の微細な繊維状又は粒状のフェライトが単位面積当たり55〜85%の面積率で点在するフェライト相と、オーステナイト相とを具える2相ステンレス鋼線材を用いて金網状体に形成されて被分離物、被分級物を分離、分級する分離・分級装置のふるいとして用いる強磁性網体である。
Moreover, the invention which concerns on Claim 3 is the mass%, C <= 0.03%, Si: 3.0-5.0%, Mn: 1.5-3.0%, Ni: 8.2-12 0.0%, Cr: 15.0 or more and less than 20.0%, and Mo: more than 1.0 and 3.0% or less, Cu: 1.0 to 3.0%, Nb: 0.1 to 0.5 % Of at least one kind, consisting of the balance Fe and inevitable impurities,
In addition, a two-phase stainless steel wire having a ferrite phase in which fine fibrous or granular ferrites having a width of 10 μm or less are scattered at an area ratio of 55 to 85% per unit area and an austenite phase in the axial cross section is used. This is a ferromagnetic network that is formed into a metal mesh and used as a screen for a separating / classifying device that separates and classifies separated objects and classified objects.

請求項4に係わる発明は、2相ステンレス鋼線材が、引張強さ900〜1300MPa,伸び15〜35%であり、かつ前記金網状体が、前記2相ステンレス鋼線材を、縦線と横線とに用いて製織されたことを特徴とし、さらに請求項5に係わる発明は、前記ステンレス鋼線材が、次式(A):25.0〜28.5%、(B):30.0〜35.0%に調整される。
(A)=Ni+0.65Cr+0.98Mo+1.05Mn+0.35Si+12.6C(B)=Cr+Ni+3.3Mo
In the invention according to claim 4, the duplex stainless steel wire has a tensile strength of 900 to 1300 MPa and an elongation of 15 to 35%, and the wire mesh has the duplex stainless steel wire as a vertical line and a horizontal line. Further, the invention according to claim 5 is characterized in that the stainless steel wire has the following formula (A): 25.0 to 28.5%, (B): 30.0 to 35. Adjusted to 0.0%.
(A) = Ni + 0.65Cr + 0.98Mo + 1.05Mn + 0.35Si + 12.6C (B) = Cr + Ni + 3.3Mo

本発明のネットコンベヤ用のベルトとして用いる強磁性網体は、耐疲労性、耐摩耗性、耐食性に優れ、かつ強磁性であって、水酸化ナトリウムに対する耐食性も良好となる。又本発明に係るふるいとして用いる強磁性網体も、耐疲労性、耐摩耗性、耐食性に優れ、かつ強磁性であって、水酸化ナトリウムに対する耐食性も良好であり、いずれも食品や医薬品の処理プロセスで長寿命が得られ、また水酸化ナトリウムによる洗浄にも耐え、さらに破損により線材が脱落しても強磁性を有しているので金属検出器で検出でき、かつ磁石によって効率よく回収することを可能とする。又請求項2,請求項4の構成とすることにより、ネットコンベヤ用のベルトとして、又はふるいとして用いる2相ステンレス鋼線材としての強さ、剛さをその織成に適したものとし、請求項5のようにニッケル当量(A)を25.0〜28.5%することにより、母材中のオーステナイトの加工誘起マルテンサイトへの変態を抑えながら、所定のフェライト量を具えることとなる。又、耐食性についての指数(B)を30.0〜35.0%に調整する。これにより線材の耐食性、 特にアルカリ性環境における耐食性の向上に役立つ。   The ferromagnetic network used as the belt for the net conveyor of the present invention is excellent in fatigue resistance, wear resistance, and corrosion resistance, is ferromagnetic, and has good corrosion resistance against sodium hydroxide. The ferromagnetic network used as the sieve according to the present invention is also excellent in fatigue resistance, wear resistance and corrosion resistance, and is ferromagnetic and has good corrosion resistance against sodium hydroxide. Long life is obtained in the process, it can withstand washing with sodium hydroxide, and even if the wire is dropped due to breakage, it has ferromagnetism, so it can be detected with a metal detector and efficiently recovered with a magnet Is possible. Further, by adopting the constitutions of claims 2 and 4, the strength and rigidity of the duplex stainless steel wire used as a belt for a net conveyor or as a sieve are suitable for the weaving. When the nickel equivalent (A) is set to 25.0 to 28.5% as in 5, the predetermined ferrite content is provided while suppressing transformation of austenite in the base metal into processing-induced martensite. Further, the index (B) for corrosion resistance is adjusted to 30.0 to 35.0%. This helps to improve the corrosion resistance of the wire, especially in an alkaline environment.

本発明に係る強磁性網体1は、例えば図1に示すような、ネットコンベヤ用のベルト1Aの強磁性網体1として、又は図2に示す分離・分級用のふるい1Bの強磁性網体1として形成できる。前記ベルト1Aは、2相ステンレス鋼線材10を用いて形成される金網状体13であって、図1に示す場合には、金網状体13は、成形体11…と、連結用線材12とからなる。又成形体11は、例えば三角形が横方向に連続するジグザグ状の螺旋に巻回されており、かつ上下の折返し部11a,11bには前記連結用線材12が横方向に通る横穴11c、11dを形成している。成形体11は、一方の該成形体11Aの上、又は下の横穴11c、11d間に、他方の成形体11Bの下、又は上の横穴11d、11cを位置させて配置するとともに、横方向に隣合う横穴11d…、11c…に前記連結用線材12を順次挿通して各成形体11…を連続的に繋ぎ合わせている。成形体11と連結用線材12とは側端とは適宜溶着などにより抜け止めしている。   The ferromagnetic network 1 according to the present invention is, for example, as a ferromagnetic network 1 of a belt 1A for a net conveyor as shown in FIG. 1 or a ferromagnetic network of a separating / classifying sieve 1B as shown in FIG. 1 can be formed. The belt 1A is a wire mesh 13 formed by using a duplex stainless steel wire 10. In the case shown in FIG. 1, the wire mesh 13 is formed of a molded body 11 ..., a connecting wire 12, and the like. Consists of. The molded body 11 is wound, for example, in a zigzag spiral in which triangles are continuous in the lateral direction, and the upper and lower folded portions 11a and 11b are provided with lateral holes 11c and 11d through which the connecting wire 12 passes in the lateral direction. Forming. The molded body 11 is arranged with the lateral holes 11d, 11c below or above the other molded body 11B positioned between the upper or lower lateral holes 11c, 11d of the molded body 11A and in the lateral direction. The connecting wire 12 is sequentially inserted into the adjacent lateral holes 11d, 11c, and so on, and the molded bodies 11 are continuously connected. The molded body 11 and the connecting wire 12 are secured to the side ends by welding or the like as appropriate.

なおベルト1Aは、図3(A)に示すように、長尺帯状板を折曲げ、 上向きのコ字折曲げ部11e、下向きのコ字折返し部11fが連続して横方向に並ぶ成形体11を形成する。この成形体11の上向きのコ字折曲げ部11e、下向きのコ字折返し部11fの各先端部に横穴11g、11hを穿設する。さらに一方の成形体11Aの上、又は下の折返し部11e、11f間に、他方の成形体11Bの下、又は上の折返し部11f,11eを挿入させ、心合わせされた前記横穴11g、11h…に、連結用線材12を挿通させることにより各成形体11…を連続的に繋ぎ合わされた金網状体13を形成している。   As shown in FIG. 3A, the belt 1A is formed by bending a long belt-shaped plate, and an upward U-shaped folded portion 11e and a downward U-shaped folded portion 11f are continuously arranged in the lateral direction. Form. Lateral holes 11g and 11h are drilled at the front ends of the upward U-shaped folded portion 11e and the downward U-shaped folded portion 11f of the molded body 11, respectively. Further, the folded portions 11f, 11e below or above the other molded body 11B are inserted between the upper or lower folded portions 11e, 11f of one molded body 11A, and the lateral holes 11g, 11h,. Further, by inserting the connecting wire 12, the wire mesh body 13 is formed in which the formed bodies 11 are continuously connected.

その他、図3(B)に示すように、2相ステンレス鋼線材10をコ字状の折曲げ部を横方向に並設してクランク状の成形体11を形成し、かつ一方、他方の成形体11A,11Bを、折返し部で順次係止させることにより連続的に繋ぎ合わせた金網状体13とすることもできる。又両側にチェーンを設け、さらにはカーブドコンベヤを形成するものなど、種々な形式のものに形成できる。   In addition, as shown in FIG. 3 (B), a two-phase stainless steel wire 10 is formed with a U-shaped bent portion arranged side by side to form a crank-shaped formed body 11, and the other is formed. It can also be set as the wire net-like body 13 which connected the body 11A, 11B continuously by making it latch in order by a folding | turning part. Further, it can be formed in various types such as a chain provided on both sides and further forming a curved conveyor.

又ふるい用の強磁性網体1は、前記図2に示すごとく、2相ステンレス鋼線材10を縦線21と横線22として平織りすることにより形成された金網状体13からなる。この金網状体13には、本形態では、その両側縁に補強枠23により補強している。この補強枠23は、両側縁で金網状体13を強固に挟んで折り返される補強板からなり、かつU字状に折り返される折曲げ部23aを有することにより、前記金網状体13を補強し取付けを容易としている。なお前後縁をも補強することもできる。なおふるい用の強磁性網体13として用いる金網状体13として、例えば綾織り、畳織り、メリヤス編、クリンプ加工したものなど、種々なものが利用できる。   Further, as shown in FIG. 2, the ferromagnetic mesh body 1 for sieving is composed of a wire mesh body 13 formed by plain weaving a duplex stainless steel wire 10 as vertical lines 21 and horizontal lines 22. In this embodiment, the metal mesh 13 is reinforced by reinforcing frames 23 on both side edges. The reinforcing frame 23 is formed of a reinforcing plate that is folded back with the metal mesh 13 firmly sandwiched between both side edges, and has a bent portion 23a that is folded back in a U-shape, thereby reinforcing and attaching the metal mesh 13. Easy going. The front and rear edges can also be reinforced. As the wire mesh 13 used as the sieving ferromagnetic mesh 13, various materials such as twill weave, tatami mat, knitted fabric, and crimped material can be used.

2相ステンレス鋼線材10において、その太さ、織り構成、網寸法などの諸仕様は、前記金網状体13により処理しようとする被処理物の種類、使用目的、処理条件等に応じて適宜設定できる。例えば食品、医薬品の処理プロセスにおける分離・分級用では、被処理粉体の粒径に応じた例えば線径0.02〜1.6mm、2〜500メッシュの網体が用いられる。ベルト用に用いる2相ステンレス鋼線材10として、例えば線径0.6mm〜14mm程度の線径のものを利用できる。   In the duplex stainless steel wire rod 10, various specifications such as thickness, weaving configuration, mesh size, etc. are appropriately set according to the type, purpose of use, treatment conditions, etc. of the object to be treated by the wire mesh body 13. it can. For example, for separation / classification in the processing process of foods and pharmaceuticals, for example, a mesh body having a wire diameter of 0.02 to 1.6 mm and 2 to 500 mesh corresponding to the particle diameter of the powder to be processed is used. As the duplex stainless steel wire 10 used for the belt, for example, a wire having a wire diameter of about 0.6 mm to 14 mm can be used.

前記2相ステンレス鋼線材10は、質量%で、C≦0.03%、Si:3.0〜5.0%、Mn:1.5〜3.0%、Ni:8.2〜12.0%、Cr:15.0以上20.0%未満、及びMo:1.0を超え3.0%以下、Cu:1.0〜3.0%、Nb:0.1〜0.5%の少なくとも1種を含み、残部Fe及び不可避不純物からなる素材を用いている。   The said duplex stainless steel wire 10 is the mass%, C <= 0.03%, Si: 3.0-5.0%, Mn: 1.5-3.0%, Ni: 8.2-12. 0%, Cr: 15.0 or more and less than 20.0%, Mo: more than 1.0 and 3.0% or less, Cu: 1.0 to 3.0%, Nb: 0.1 to 0.5% The material which consists of remainder Fe and an unavoidable impurity is used.

このように、2相ステンレス鋼線材10には、フェライト生成元素であるSiが質量%で3.0〜5.0%(好ましくは3.5〜4.5%)添加され、フェライトを微細でかつその面積率を高めることにより、強磁性を備えるものとしている。微細であるとは、フェライト相が軸方向断面において、幅10μm 以下の微細な繊維状又は粒状をなすことをいい、面積率を高めるとはフェライト相が単位面積当たり55〜85%の面積率とすることをいう。2相ステンレス鋼線材10には、さらにNiを質量%で8.2〜12.0%(好ましくは8.5〜10.0%)添加している。これにより、他の構成とも相俟って、せのように、水酸化ナトリウムに対する耐食性を格段に向上させている。   As described above, the duplex stainless steel wire 10 is added with 3.0 to 5.0% (preferably 3.5 to 4.5%) of Si, which is a ferrite-forming element, in mass%, so that the ferrite is fine. In addition, by increasing the area ratio, ferromagnetism is provided. “Fine” means that the ferrite phase is in the form of fine fibers or granules having a width of 10 μm or less in the axial section, and increasing the area ratio means that the ferrite phase has an area ratio of 55 to 85% per unit area. To do. Further, Ni is added to the duplex stainless steel wire 10 by 8.2 to 12.0% (preferably 8.5 to 10.0%) by mass%. Thereby, in combination with other structures, the corrosion resistance to sodium hydroxide is remarkably improved as shown.

図4は前記フェライトの分布状態の一例として、該本発明の強磁性網体1の2相ステンレス鋼線材10の軸方向断面を示している。同図は、400倍の顕微鏡写真であって、グレー地のフェライトからなるフェライト相と、白地であるオーステナイトからなるオーステナイト相との2相体であることが判る。前記フェライト相は、その長手方向に沿ってのび、幅10μm 以下(好ましくは3μm 以下、さらに好ましくは1μm 以下)の微細な繊維素状又は粒状に点在するフェライトであって、単位面積あたり55〜85%の面積率で全面にわたって均一に分布していることが理解できる。このような分布状態にすることにより、前記のように、強磁性網体1の耐疲労性、耐摩耗性および磁性を向上させることができる。なお、フェライト相の前記断面における面積率は、好ましくは、70〜85%である。   FIG. 4 shows an axial section of the duplex stainless steel wire 10 of the ferromagnetic network 1 of the present invention as an example of the distribution state of the ferrite. This figure is a microphotograph at a magnification of 400 times, and it can be seen that it is a two-phase body consisting of a ferrite phase made of gray ferrite and an austenite phase made of white austenite. The ferrite phase extends along the longitudinal direction, and is a ferrite interspersed in fine fibrous or granular form having a width of 10 μm or less (preferably 3 μm or less, more preferably 1 μm or less), and is 55 to 55 per unit area. It can be seen that the area ratio of 85% is uniformly distributed over the entire surface. By adopting such a distribution state, as described above, the fatigue resistance, wear resistance, and magnetism of the ferromagnetic network 1 can be improved. The area ratio of the ferrite phase in the cross section is preferably 70 to 85%.

なお、前記フェライト相の単位面積あたり面積率は、単位面積あたり55〜85%の範囲内において、2相ステンレス鋼線材10の成分、加工条件、製造方法などの選択によって任意に設定できる。またその測定は、例えば金属線材の縦(軸方向)断面を研磨した測定面を10NのKOH 水溶液で電解腐食し、その断面を400倍の顕微鏡撮像図を用いて直接、又は画像解析などで測定することとする。その測定は任意の軸方向の断面において、400倍の撮像図における5cm平方の面積で任意の3点を測定しその平均値として求める。本発明の面積率とは、この平均値により定義している。   The area ratio per unit area of the ferrite phase can be arbitrarily set within the range of 55 to 85% per unit area by selecting the components of the duplex stainless steel wire 10, the processing conditions, the manufacturing method, and the like. In addition, the measurement is performed by, for example, electrolytically corroding the measurement surface of the metal wire rod with a 10N KOH aqueous solution, and measuring the cross section directly or by image analysis using a 400 × microscope image. I decided to. The measurement is performed by measuring three arbitrary points with an area of 5 cm square in an imaging view of 400 times in an arbitrary axial cross section and obtaining an average value thereof. The area ratio of the present invention is defined by this average value.

また、前記フェライトは、例えば図4に示すように、一定方向に沿って延伸あるいは点在する分布状態を有するものであって、その幅寸法を10μm以下としている。その測定は前記400倍の拡大写真において、前記フェライトの配向と直交する任意垂線を描いた時の、この垂線上での前記フェライトと重なっている部分の長さについて、例えば任意10〜30点(例えば20点)を測定し、その平均値で示す。なお、このように微細なフェライトを母相中に方向性を持って分布することで、より多くのフェライトを均一に存在させ、特性のバラツキを抑え、かつ線材特性の向上を図るものとしている。   Further, for example, as shown in FIG. 4, the ferrite has a distributed state in which the ferrite is stretched or scattered along a certain direction, and the width dimension thereof is set to 10 μm or less. The measurement is carried out with respect to the length of the portion overlapping the ferrite on the perpendicular when an arbitrary perpendicular perpendicular to the orientation of the ferrite is drawn in the 400 times magnified photograph. For example, 20 points) are measured and indicated by the average value. In addition, by distributing fine ferrite with a directivity in the matrix phase in this way, more ferrite is uniformly present, variation in characteristics is suppressed, and wire characteristics are improved.

本発明における前記したSi,Niを含めて各元素の成分量について説明する。
C(炭素)は、強度を増大させることができるが、炭化物などを生成して耐食性を低下させやすい。また、強力なオーステナイト生成元素なので多量に含有するとオーステナイト状態のまま安定化し所定の磁性が得られ難くなるので本発明の目的が達成できない。したがって、その上限を0.03%とし、より好ましくは0.02%以下とする。
The amount of each element including Si and Ni described above in the present invention will be described.
C (carbon) can increase the strength, but tends to reduce the corrosion resistance by forming carbides and the like. Further, since it is a strong austenite-forming element, if it is contained in a large amount, the austenite state is stabilized and it becomes difficult to obtain a predetermined magnetism, so the object of the present invention cannot be achieved. Therefore, the upper limit is made 0.03%, more preferably 0.02% or less.

Si(珪素)は前記したように強力なフェライト生成元素であり、特に3.0%以上の添加によって引張強さ、耐摩耗性、弾性限を増加し、また耐食性の改善にも効果的であるが、5.0%を超えると靭性を低下させる。したがって、本発明では3.0〜5.0%とし、より好ましくは3.5〜4.5%とする。   As described above, Si (silicon) is a strong ferrite-forming element. In particular, addition of 3.0% or more increases the tensile strength, wear resistance, and elastic limit, and is also effective in improving corrosion resistance. However, if it exceeds 5.0%, the toughness is reduced. Therefore, in the present invention, it is 3.0 to 5.0%, more preferably 3.5 to 4.5%.

Mn(マンガン)は、オーステナイト生成元素であるため、オーステナイトを安定させて耐食性を高めたり変態点を下げたりするのに有効ではあるが、1.5%未満ではその効果は得られず、一方3.0%を超えるとコストアップになるばかりでなく、加工性が低下する原因にもなることからその範囲を1.5〜3.0%とし、より好ましくは1.7〜2.5%とする。   Since Mn (manganese) is an austenite-forming element, it is effective in stabilizing austenite to increase corrosion resistance and lowering the transformation point, but if it is less than 1.5%, the effect cannot be obtained. If it exceeds 0.0%, not only the cost is increased, but also the workability is lowered, so the range is made 1.5 to 3.0%, more preferably 1.7 to 2.5%. To do.

Ni(ニッケル)も前記Mnと同様にオーステナイト生成元素であり、特にアルカリ溶液に耐えうる耐食性をもたらすためには8.2%以上の添加が必要である。しかし、12.0%を超えると引張強さ、耐摩耗性を低下させることからその範囲を8.2〜12.0%とし、より好ましくは8.5〜10.0%とする。   Ni (nickel) is also an austenite-forming element like Mn, and it is necessary to add 8.2% or more to provide corrosion resistance that can withstand alkaline solutions. However, if it exceeds 12.0%, the tensile strength and wear resistance are lowered, so the range is set to 8.2 to 12.0%, more preferably 8.5 to 10.0%.

Cr(クロム)は、ステンレス鋼の基本成分で、耐食性、耐孔食性を高め、また磁性特性を向上するためのフェライトを安定させ、またアルカリ溶液での耐食性を高めるためには少なくとも15.0%以上の添加が必要であるが、20.0%以上になると硬度や引張強さを低下させることになることからその範囲を15.0以上20.0%未満とし、より好ましくは18.0〜19.5%とする。   Cr (chromium) is a basic component of stainless steel, and it is at least 15.0% for improving corrosion resistance and pitting corrosion resistance, stabilizing ferrite for improving magnetic properties, and enhancing corrosion resistance in an alkaline solution. The above addition is necessary, but if it is 20.0% or more, the hardness and tensile strength are lowered, so the range is made 15.0 or more and less than 20.0%, more preferably 18.0 to 19.5%.

また、本発明では、前記元素に加えてさらにMo:1.0を超え3.0%以下、Cu:1.0〜3.0%、Nb:0.1〜0.5%の少なくとも1種類以上を含有させる。これらはいずれも磁性を高めるためのフェライトを安定化し、生地の強化に役立ち、耐食性を向上する。特にMoの添加は、アルカリ溶液での耐食性向上に有効であるが、一方ではコストアップとなることから多量の添加は好ましくなく1.0〜2.5%にするのがよい。また、Cuは腐食電位を貴にして耐食性を増し孔食感受性も減少させることができる。好ましくは1.0〜2.0%として、前記Moとの共存によってその効果はさらに向上する。またNbについても、フェライト安定化を目的として0.1〜0.5%含有するが、これらはそれぞれ単独の場合のほか、その2種以上を適宜組み合わせて用いることができる。なお前記以外の残部として鉄および不可避不純物を含む。   In the present invention, in addition to the above elements, at least one of Mo: more than 1.0 and 3.0% or less, Cu: 1.0 to 3.0%, Nb: 0.1 to 0.5% The above is contained. All of these stabilize ferrite to increase magnetism, help strengthen the fabric, and improve corrosion resistance. In particular, the addition of Mo is effective for improving the corrosion resistance in an alkaline solution, but on the other hand, the cost is increased, so a large amount of addition is not preferred, and it should be made 1.0 to 2.5%. Moreover, Cu can increase the corrosion resistance and decrease the pitting corrosion sensitivity by making the corrosion potential noble. Preferably 1.0 to 2.0%, the effect is further improved by coexistence with the Mo. Nb is also contained in an amount of 0.1 to 0.5% for the purpose of stabilizing the ferrite, but these may be used alone or in combination of two or more thereof. In addition, iron and inevitable impurities are included as the balance other than the above.

さらに、前記各組成によるステンレス鋼の中でも、特に耐アルカリ性溶液に対する耐食性を高める観点から、次式で求められる各値を各々次の範囲に設定することが好ましい。(A)=Ni+0.65Cr+0.98Mo+1.05Mn+0.35Si+12.6C=25.0〜28.5%
(B)=Cr+Ni+3.3Mo=30.0〜35.0%
Furthermore, among the stainless steels having the above-described compositions, it is preferable to set each value obtained by the following formula within the following range, particularly from the viewpoint of enhancing the corrosion resistance against the alkali-resistant solution. (A) = Ni + 0.65Cr + 0.98Mo + 1.05Mn + 0.35Si + 12.6C = 25.0-28.5%
(B) = Cr + Ni + 3.3Mo = 30.0-35.0%

また(A),(B)の成分調整に加えて、材料母材中のフェライト量を高めて磁性特性を向上するため、(C)を充足させるのがよい。
(C)=(Ni+30C+0.5Mn)−0.37(Cr+Mo+1.5Si+0.5Nb)=0〜3.0%
In addition to adjusting the components (A) and (B), in order to improve the magnetic properties by increasing the amount of ferrite in the material base material, (C) is preferably satisfied.
(C) = (Ni + 30C + 0.5Mn) −0.37 (Cr + Mo + 1.5Si + 0.5Nb) = 0 to 3.0%

前記(A)はニッケル当量であって、ニッケル当量は、オーステナイト安定度に対する各成分元素の影響を示すものであって、特に本発明の磁性金網では、フェライトとの複合組織を備えるものを対象とし、網目などバラツキのない良好な製織加工性と耐食性、耐磨耗性、磁性特性を兼備する必要があることから、母材中のオーステナイトの加工誘起マルテンサイトへの変態を抑えながら、所定のフェライト量を備える組成が必要であり、25.0未満のものではその効果が期待できず、一方、28.5%を超えるものではNiなど高価な成分元素の増量に伴うコストアップの原因となり好ましくない。   Said (A) is nickel equivalent, and nickel equivalent shows the influence of each component element on austenite stability, and in particular, in the magnetic wire mesh of the present invention, it is intended to have a composite structure with ferrite. Since it is necessary to combine good weaving workability without corrosion such as mesh, corrosion resistance, wear resistance, and magnetic properties, it is possible to reduce the transformation of austenite in the base metal to work-induced martensite while suppressing the transformation of the specified ferrite. A composition with an amount is necessary, and if it is less than 25.0, its effect cannot be expected, while if it exceeds 28.5%, it is not preferable because it causes an increase in cost due to an increase in expensive component elements such as Ni. .

前記(B)は耐食性についての指数であって、この(B)式は、該線材の耐食性との関係、 特にアルカリ性環境における耐食性の関係を示すことができる。この値が高いほど特性が優れることを意味し、30%未満では本発明の用途として使用する場合の効果が期待されず、一方、35%を超えるものでは材料価格の上昇とともに、加工性低下を招くなどコスト及び作業性の問題があり、より好ましくは30.0〜33.0%とする。   Said (B) is an index about corrosion resistance, and this (B) formula can show the relation with the corrosion resistance of the wire, especially the relation of corrosion resistance in an alkaline environment. The higher the value, the better the characteristics. If it is less than 30%, the effect when used as an application of the present invention is not expected. On the other hand, if it exceeds 35%, the material price increases and the workability decreases. There is a problem of cost and workability such as incurring, and more preferably 30.0 to 33.0%.

又(C)は、その値を0〜3.0%とすることにより、例えば材料母材中のフェライト量を高めて磁性特性のアップを容易に得るとともに、その横断面における前記フェライトの幅寸法を微細にできる。すなわち、この値が3%を超える程大きくしたものでは、前記したような単位面積当りにおけるフェライト量の55〜85%を得るために、熱処理温度などの処理条件設定を複雑にして安定品質を図り難く、一方、0%未満のマイナスにしたものでは、逆にオーステナイトが減少するとともに、内部のフェライト同士が結合して、粗大な線状乃至粉末状のフェライトを形成しやすくなり、それに伴って表面上に露出する割合が増して耐食性低下の原因となる。より好ましくは、0.12〜2.4%とする。このように、(A)(B)、乃至(A)(B)(C)をともに充足することにより、組織安定性、磁気特性及び耐食性を兼備し、前記用途に好適するものとなる。   In addition, (C), when the value is 0 to 3.0%, for example, the amount of ferrite in the material base material is increased to easily improve the magnetic characteristics, and the width dimension of the ferrite in the cross section thereof Can be made fine. That is, when this value is increased to exceed 3%, in order to obtain 55 to 85% of the ferrite amount per unit area as described above, the processing condition setting such as the heat treatment temperature is complicated to achieve stable quality. On the other hand, when the negative value is less than 0%, the austenite is decreased, and the ferrites inside are easily bonded to form coarse linear or powdery ferrite. The proportion exposed above increases and causes corrosion resistance to decrease. More preferably, the content is 0.12 to 2.4%. Thus, by satisfying both (A), (B) to (A), (B), and (C), the structure stability, magnetic properties, and corrosion resistance are combined, and it is suitable for the above application.

2相ステンレス鋼線材10は、分離・分級用のふるいの強磁性網体1に用いる場合には、製織作業性と高い目開き精度、及び目開きの安定性を確保する観点から、引張強さ900〜1300MPa、伸び15〜35%を備えることが好ましい。すなわち分離・分級に際して微振動や衝撃が加わることがあり、また製織時には張力負荷によって線切れしやすくなることから、これらに耐える特性として、前記引張強さと伸びを有することが必要である。   When the duplex stainless steel wire 10 is used for the separation / classification sieve ferromagnetic network 1, the tensile strength is ensured from the viewpoint of ensuring weaving workability, high opening accuracy, and opening stability. It is preferable to have 900 to 1300 MPa and an elongation of 15 to 35%. In other words, fine vibrations and impacts may be applied during separation and classification, and wire breakage is easily caused by tension load during weaving. Therefore, it is necessary to have the tensile strength and elongation as a characteristic to withstand these.

このため、前記含有成分量が調整されたステンレス鋼母材を、加工率50%以上(好ましくは80〜98%)の冷間引抜き加工(例えば伸線加工,冷間圧延加工)の後、温度800〜1100℃(好ましくは900〜1050℃)、時間1秒〜5分程度の焼鈍(固溶化熱処理)を行うことにより、その特性は引張強さ900〜1300MPa、伸び15〜35%の2相ステンレス鋼線材10が得られる。   For this reason, the temperature of the stainless steel base material having the adjusted content is adjusted after cold drawing (for example, wire drawing or cold rolling) at a processing rate of 50% or more (preferably 80 to 98%). By performing annealing (solution heat treatment) at a temperature of 800 to 1100 ° C. (preferably 900 to 1050 ° C.) for a time of about 1 second to 5 minutes, the properties are two phases with a tensile strength of 900 to 1300 MPa and an elongation of 15 to 35%. A stainless steel wire 10 is obtained.

一方、前記ネットコンベヤ用のベルトとして用いる強磁性網体1の場合には、2相ステンレス鋼線材10は前記のように線材,又は帯材であってもよく、さらに、その織製時において螺旋加工、クランク形状の成形体11を得るための加工により大きな曲げ変形を受け、加工作業性、搬送物重量に耐える強度および運転中の経時的変形に対する抵抗力を確保する必要がある。   On the other hand, in the case of the ferromagnetic net 1 used as the belt for the net conveyor, the duplex stainless steel wire 10 may be a wire or a band as described above, and further, when the woven material is made, it is a spiral. It is necessary to receive large bending deformation by processing and processing for obtaining the crank-shaped molded body 11, and to ensure processing workability, strength to withstand the weight of the conveyed product, and resistance to temporal deformation during operation.

このため、前記含有成分量が調整されたステンレス鋼母材を、加工率50%以上(好ましくは80〜98%)の冷間引抜き加工(例えば伸線加工,冷間圧延加工)の後、温度800〜1100℃(好ましくは900〜1050℃)、時間1秒〜5分程度の焼鈍(固溶化熱処理)処理後に、さらに例えば加工率5〜60%の冷間伸線加工あるいは冷間圧延加工を施す。   For this reason, the temperature of the stainless steel base material having the adjusted content is adjusted after cold drawing (for example, wire drawing or cold rolling) at a processing rate of 50% or more (preferably 80 to 98%). After annealing (solution heat treatment) at 800 to 1100 ° C. (preferably 900 to 1050 ° C.) for about 1 second to 5 minutes, further, for example, cold drawing or cold rolling with a processing rate of 5 to 60% is performed. Apply.

これによって引張強さ1200〜1600MPaと伸び2〜10%とする。引張強さが1200MPa以下では強度不足を補う為に必要以上に太い線材を必要とし、1600MPaを超えるものでは製織時の作業性が低下する。また、伸びが2%より少ないものでは、材料が硬すぎる為に加工時に線材が折れる確率が高くなって収率が低下し、10%を超えるものでは網体の経時的変形が大きく、使用中にベルトが伸びてそのままでは使用できなくなる。   Thus, the tensile strength is 1200 to 1600 MPa and the elongation is 2 to 10%. If the tensile strength is 1200 MPa or less, a wire rod that is thicker than necessary is necessary to make up for insufficient strength, and if it exceeds 1600 MPa, workability during weaving is reduced. In addition, if the elongation is less than 2%, the material is too hard, so the probability that the wire is broken during processing increases and the yield decreases. The belt is stretched and cannot be used as it is.

前記の2相ステンレス鋼線材により製作されたネットコンベヤ用のベルトおよび分離・分級用のふるいとして用いる強磁性網体1は、従来使用されていたSUS304などに比べて疲労や摩耗に対する抵抗力が高い。従って、本発明のベルト、およびふるいとして用いる強磁性網体1は、疲労による破損、摩耗による減少量を低減でき、その結果、長期間の使用が可能となり生産効率の向上およびランニングコストの削減に寄与する。   The ferromagnetic mesh body 1 used as a belt for a net conveyor and a sieve for separation / classification made of the above-mentioned duplex stainless steel wire has higher resistance to fatigue and wear than the conventionally used SUS304. . Therefore, the ferromagnetic net body 1 used as the belt and the sieve of the present invention can reduce the amount of reduction due to breakage and wear due to fatigue. As a result, it can be used for a long period of time, improving production efficiency and reducing running costs. Contribute.

また、強磁性網体1は、磁性、耐疲労性に優れるとともに、水酸化ナトリウムに対する耐食性を向上しているため、従来のネットコンベヤ用のベルト、又は分離・分級用のふるいに網体として好適するものであり、前記したような加熱処理で発生した熱腐食部の洗浄除去が可能であることから、食品衛生面でも好ましいものである。   In addition, the ferromagnetic mesh body 1 is excellent in magnetism and fatigue resistance, and has improved corrosion resistance against sodium hydroxide. Therefore, it is suitable as a net for a belt for a conventional net conveyor or a sieve for separation / classification. Since it is possible to wash and remove the thermally corroded portion generated by the heat treatment as described above, it is preferable in terms of food hygiene.

(実施例1)
表1の実施例材1〜3に示す3種類の2相ステンレス鋼線材(軟質線)(線径0.15mm)を準備し、これを各々平織り加工機にセットして60メッシュの平織り金網を得た。この各軟質線は、その前処理として伸線加工後に温度1050℃で固溶化熱処理されたものであって、その実施例材の軸方向断面には、幅0.5μm の微細フェライトが粒子状に点在し、その面積率は76〜81%であった。なお引張強さが1050〜1100MPaで、伸びが21〜25%に調整した。
Example 1
Three types of duplex stainless steel wire (soft wire) (wire diameter 0.15 mm) shown in Example materials 1 to 3 in Table 1 were prepared, and each was set in a plain weaving machine to form a 60 mesh plain weave wire mesh. Obtained. Each of the soft wires was subjected to a solution heat treatment at a temperature of 1050 ° C. after the wire drawing as a pretreatment, and a fine ferrite having a width of 0.5 μm was formed into particles in the axial section of the example material. The area ratio was 76 to 81%. The tensile strength was 1050 to 1100 MPa and the elongation was adjusted to 21 to 25%.

比較例材として、表1の前記比較例材1〜4の各試料を作成した。これらの比較例材の試料は前記した特許文献に記載のものであり、比較例材1が特許文献1の素材に、比較例材2が特許文献2の素材に、比較例材3が特許文献3の素材に、比較例材4がSUS304材に相応している。   As comparative example materials, samples of the comparative example materials 1 to 4 in Table 1 were prepared. The samples of these comparative example materials are those described in the above-mentioned patent documents. The comparative example material 1 is the material of the patent document 1, the comparative example material 2 is the material of the patent document 2, and the comparative example material 3 is the patent document. Comparative material 4 corresponds to SUS304 material.

(試験結果)
ふるい用の強磁性網体として、実施例、比較例品について、各試料から切出した試料片を用いて、耐疲労性の評価、耐摩耗性の評価、耐食性の評価、磁性の評価を行った。
(Test results)
As a ferromagnetic network for sieving, with respect to Examples and Comparative Examples, sample pieces cut out from each sample were used to evaluate fatigue resistance, wear resistance, corrosion resistance, and magnetism. .

(耐摩耗性の評価)
耐摩耗性はバレル研磨機(月島機械 社製 振動式)に研磨砥石(森田研磨材工業 社製 MORP6×15( 斜円柱) 、MT15×10(三角))を60kg (斜円柱15kg、三角45kg) 入れ、その中に試料片(50mm角)を投入し約8時間研磨させ、摩耗による減少率を求めた。その結果を表2に示す。
(Evaluation of wear resistance)
Abrasion resistance is 60 kg (15 kg slant cylinder, 45 kg triangle) with a barrel grinder (vibrated by Tsukishima Kikai Co., Ltd.) and a grinding wheel (MORP 6 × 15 (oblique cylinder), MT15 × 10 (triangle)) manufactured by Morita Abrasives Co., Ltd.) Then, a sample piece (50 mm square) was put therein and polished for about 8 hours, and the reduction rate due to abrasion was determined. The results are shown in Table 2.

(耐食性の評価)
水酸化ナトリウムに対する耐食性を評価するために、試料片(30mm角)濃度20%の沸騰させた水酸化ナトリウム水溶液に24時間浸漬し、腐食による減少率を求めた。その結果を表2に示す。
(Evaluation of corrosion resistance)
In order to evaluate the corrosion resistance against sodium hydroxide, the sample piece (30 mm square) was immersed in a boiled sodium hydroxide solution having a concentration of 20% for 24 hours, and the reduction rate due to corrosion was determined. The results are shown in Table 2.

(磁性の評価)
磁性の確認は金属検出器(メーカー:日新電子工業 社製 型式:MS−3115−25S−10)を用いて、試料片(10mm角)検出時の出力電圧を計測した。その結果を表2に示す。
(Evaluation of magnetism)
For confirmation of magnetism, a metal detector (manufacturer: Nissin Electronics Co., Ltd., model: MS-3115-25S-10) was used to measure the output voltage when a sample piece (10 mm square) was detected. The results are shown in Table 2.

(屈曲回数の評価)
耐折曲げ試験装置(自社製)を用いて、試料(10×120mm)の両端を把持し、張力2kgf 、曲げ角度±45度、曲げ部半径1.5mmで繰り返し曲げ、破損するまでの屈曲回数を求めた。その結果を表2に示す。
(Evaluation of flexion frequency)
Using a bending test apparatus (manufactured in-house), grip both ends of the sample (10 x 120 mm), repeatedly bend with a tension of 2 kgf, a bend angle of ± 45 degrees, and a bend radius of 1.5 mm. Asked. The results are shown in Table 2.

(実施例2)
表1の実施例材1および2の組成の2相系ステンレス鋼の軟質線を加工率32%で冷間伸線し、線径1.6mmの線材を得た。その機械的特性は、引張強さが1200〜1500MPaで、伸びが4〜7%であった。この線材を図3(B)に示すコ字部のスパン長さsが80mm、幅10mmのクランク状に曲げ加工した成形体11を連結することにより、実施例品1,2のネットコンベヤー用のベルトを構成し強磁性網体を得た。比較例品2,3,4は表1の比較例材2,3,4を用いている。
(Example 2)
The soft wire of the duplex stainless steel having the composition of Example materials 1 and 2 in Table 1 was cold-drawn at a processing rate of 32% to obtain a wire material having a wire diameter of 1.6 mm. Its mechanical properties were a tensile strength of 1200-1500 MPa and an elongation of 4-7%. By connecting a molded body 11 formed by bending this wire into a crank shape having a U-shaped span length s of 80 mm and a width of 10 mm as shown in FIG. A belt was formed to obtain a ferromagnetic network. Comparative example products 2, 3, and 4 use comparative example materials 2, 3, and 4 shown in Table 1.

これらのベルトについて、ふるい用の強磁性網体と同じく、耐疲労性試験、耐摩耗性試験、耐食性試験および磁性試験を、前記ふるい用の強磁性網体に準じてテストした結果を表3に示している。ふるいとベルトとは熱処理条件が異なるなど、ベルト用の強磁性網体のテスト結果と、ふるい用の強磁性網体とは同一の材料であっても数値に多少の変動は生じているのが判る。   For these belts, the results of testing the fatigue resistance test, the wear resistance test, the corrosion resistance test, and the magnetic test in accordance with the above-described ferromagnetic network for sieving are the same as those of the ferromagnetic mesh for sieving. Show. Even if the magnetic material for the sieving ferromagnetic network and the sieving ferromagnetic network are the same material, there are some fluctuations in the numerical values. I understand.

又ベルトについては耐疲労性をテストした。耐疲労性テストは、耐久試験装置(自社製)を用いて毎分40m の運転速度、張力48kgf の条件で連続回転し、破損するまでの時間をそれぞれ計測した。   The belt was also tested for fatigue resistance. In the fatigue resistance test, an endurance test apparatus (made in-house) was used to continuously rotate at an operating speed of 40 m / min and a tension of 48 kgf, and the time until failure was measured.

その結果、破損までの運転時間は、比較例品2が70時間、比較例品3が20時間、比較例品4が66時間であったのに対し、本実施例品1,2は72時間、83時間であり比較例品に比して延長しているのが判る。   As a result, the operation time until breakage was 70 hours for the comparative product 2, 20 hours for the comparative product 3, and 66 hours for the comparative product 4, whereas the working products 1 and 2 were 72 hours. 83 hours, which is longer than that of the comparative product.

なお、耐摩耗減少率について、比較例品2は実施例品と同等であり良好であったが、実施例品2は耐摩耗減少率において優れている。なお比較例品3,4の摩耗減少率は10.2、10.4%であった。耐腐食性試験の結果、比較例品2〜4の腐食減少率がそれぞれ1.2%、0.1%、0.2%(比較例品3,4を実データより低下させておりますが、本発明の基本的課題ですから、成分の差からこのような微差をつけるのもやむなしと考えます。)であったのに対し、本発明コンベヤーベルトの腐食減少率は0%であり、水酸化ナトリウムに対する抵抗力が高いことがわかった。さらに、磁性試験の結果、比較例品2はそ検出電圧が16V、比較例品3が18V、比較例品4が1Vであったのに対し、本発明および実施例品1,2は18V、19Vであり、検出精度が高いことがわかった。   In addition, although the comparative example product 2 was equivalent to the example product and was good in terms of the wear resistance reduction rate, the example product 2 was excellent in the wear resistance reduction rate. The wear reduction rate of Comparative Examples 3 and 4 was 10.2 and 10.4%. As a result of the corrosion resistance test, the corrosion reduction rates of Comparative Examples 2 to 4 are 1.2%, 0.1% and 0.2% respectively (Comparative Examples 3 and 4 are lower than the actual data) However, since it is a basic problem of the present invention, it is unavoidable to make such a small difference from the difference of the components.) On the other hand, the corrosion reduction rate of the conveyor belt of the present invention is 0%, It was found that the resistance to sodium oxide was high. Further, as a result of the magnetic test, the detection voltage of the comparative product 2 was 16V, the comparative product 3 was 18V, and the comparative product 4 was 1V. It was 19 V, and it was found that the detection accuracy was high.

これらの結果から明らかなように、本発明のネットコンベヤー用のベルトとして用いる強磁性網体、分離・分級用のふるいとして用いる強磁性網体は、耐疲労性、耐摩耗性、耐食性、磁性において全体として優れた性能を有し、ランニングコストの削減、生産効率の向上、洗浄による表面清浄度の維持、さらに製品の安全性向上に役立つ。
線材の回収精度の向上を可能にする。
As is clear from these results, the ferromagnetic network used as the belt for the net conveyor of the present invention and the ferromagnetic network used as the separation / classification sieve are in terms of fatigue resistance, wear resistance, corrosion resistance, and magnetism. It has excellent performance as a whole, and helps to reduce running costs, improve production efficiency, maintain surface cleanliness by cleaning, and improve product safety.
Improves the collection accuracy of the wire.

螺旋状に成形した線材によるコンベヤーベルト用網体の平面図である。It is a top view of the mesh body for conveyor belts by the wire shape | molded helically. 分離・分級に用いられる平織りした網体の一例の平面図である。It is a top view of an example of the plain weave net used for separation and classification. (A)はベルトの他の例を示す平面図、(B)はさらに他の例を示す平面図である。(A) is a top view which shows the other example of a belt, (B) is a top view which shows another example. 2相ステンレス鋼線材の断面を400倍に拡大して例示する断面図である。It is sectional drawing which expands and illustrates the cross section of a duplex stainless steel wire to 400 time.

符号の説明Explanation of symbols

1 強磁性網体
10 2相ステンレス線材
11 成形体
12 連結用線材
13 金網状体
21 縦線
22 横線
DESCRIPTION OF SYMBOLS 1 Ferromagnetic net | network 10 Duplex stainless steel wire 11 Forming body 12 Connecting wire 13 Metal mesh body 21 Vertical line 22 Horizontal line

Claims (5)

質量%で、
C≦0.03%、
Si:3.0〜5.0%、
Mn:1.5〜3.0%、
Ni:8.2〜12.0%、
Cr:15.0以上20.0%未満、
及び
Mo:1.0を超え3.0%以下、
Cu:1.0〜3.0%、
Nb:0.1〜0.5%の少なくとも1種を含み、
残部Fe及び不可避不純物からなり、
かつ軸方向断面において、幅10μm 以下の微細な繊維状又は粒状のフェライトが単位面積当たり55〜85%の面積率で点在するフェライト相と、オーステナイト相とを具える2相ステンレス鋼線材を用いて金網状体に形成されネットコンベヤのベルトとして用いる強磁性網体。
% By mass
C ≦ 0.03%,
Si: 3.0-5.0%,
Mn: 1.5-3.0%
Ni: 8.2 to 12.0%,
Cr: 15.0 or more and less than 20.0%,
And Mo: more than 1.0 and 3.0% or less,
Cu: 1.0-3.0%,
Nb: containing at least one of 0.1 to 0.5%,
It consists of the balance Fe and inevitable impurities,
In addition, a two-phase stainless steel wire having a ferrite phase in which fine fibrous or granular ferrites having a width of 10 μm or less are scattered at an area ratio of 55 to 85% per unit area and an austenite phase in the axial cross section is used. Ferromagnetic mesh that is formed into a metal mesh and used as a belt for a net conveyor.
2相ステンレス鋼線材は、引張強さ1200〜1600MPa,伸び2〜10%であり、かつ前記金網状体は、前記2相ステンレス鋼線材を、螺旋状又はクランク状に曲げ成形した成形体を連続的に繋ぎ合わせることにより形成されたことを特徴とする請求項1記載の強磁性網体。   The duplex stainless steel wire has a tensile strength of 1200 to 1600 MPa and an elongation of 2 to 10%, and the wire mesh is a continuous product formed by bending the duplex stainless steel wire into a spiral shape or a crank shape. The ferromagnetic network according to claim 1, wherein the ferromagnetic network is formed by joining together. 質量%で、 C≦0.03%、
Si:3.0〜5.0%、
Mn:1.5〜3.0%、
Ni:8.2〜12.0%、
Cr:15.0以上20.0%未満、
及び
Mo:1.0を超え3.0%以下、
Cu:1.0〜3.0%、
Nb:0.1〜0.5%の少なくとも1種以上を含み、
残部Fe及び不可避不純物からなり、
かつ軸方向断面において、幅10μm 以下の微細な繊維状又は粒状のフェライトが単位面積当たり55〜85%の面積率で点在するフェライト相と、オーステナイト相とを具える2相ステンレス鋼線材を用いて金網状体に形成されて被分離物、被分級物を分離、分級する分離・分級装置のふるいとして用いる強磁性網体。
% By mass, C ≦ 0.03%,
Si: 3.0-5.0%,
Mn: 1.5-3.0%
Ni: 8.2 to 12.0%,
Cr: 15.0 or more and less than 20.0%,
And Mo: more than 1.0 and 3.0% or less,
Cu: 1.0-3.0%,
Nb: containing at least one or more of 0.1 to 0.5%,
It consists of the balance Fe and inevitable impurities,
In addition, a two-phase stainless steel wire having a ferrite phase in which fine fibrous or granular ferrites having a width of 10 μm or less are scattered at an area ratio of 55 to 85% per unit area and an austenite phase in the axial cross section is used. A ferromagnetic network used as a screen for a separating / classifying device that is formed into a wire mesh and separates and classifies separated materials.
2相ステンレス鋼線材は、引張強さ900〜1300MPa,伸び15〜35%であり、かつ前記金網状体は、前記2相ステンレス鋼線材を、縦線と横線とに用いて製織されたことを特徴とする請求項3記載の強磁性網体。   The duplex stainless steel wire has a tensile strength of 900 to 1300 MPa and an elongation of 15 to 35%, and the wire mesh is woven using the duplex stainless steel wire as a vertical line and a horizontal line. The ferromagnetic network according to claim 3. 前記2相ステンレス鋼線材は、以下の式における(A)が25.0〜28.5%、(B)が30.0〜35.0%であることを特徴とする請求項1〜4のいずれかに記載の強磁性網体。
(A)=Ni+0.65Cr+0.98Mo+1.05Mn+0.35Si+12.6C(B)=Cr+Ni+3.3Mo
The duplex stainless steel wire is characterized in that (A) in the following formula is 25.0 to 28.5% and (B) is 30.0 to 35.0%. The ferromagnetic network according to any one of the above.
(A) = Ni + 0.65Cr + 0.98Mo + 1.05Mn + 0.35Si + 12.6C (B) = Cr + Ni + 3.3Mo
JP2005282706A 2005-09-28 2005-09-28 Ferromagnetic network Active JP5009517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005282706A JP5009517B2 (en) 2005-09-28 2005-09-28 Ferromagnetic network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005282706A JP5009517B2 (en) 2005-09-28 2005-09-28 Ferromagnetic network

Publications (2)

Publication Number Publication Date
JP2007092116A true JP2007092116A (en) 2007-04-12
JP5009517B2 JP5009517B2 (en) 2012-08-22

Family

ID=37978166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005282706A Active JP5009517B2 (en) 2005-09-28 2005-09-28 Ferromagnetic network

Country Status (1)

Country Link
JP (1) JP5009517B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159427A (en) * 2012-02-02 2013-08-19 Toyo-Ro Industries Co Ltd Mesh belt
JP2015218378A (en) * 2014-05-20 2015-12-07 日本精線株式会社 Two-phase system stainless steel wire excellent in magnetic property and magnetic wire gauze product using the same
JP2017101326A (en) * 2015-11-20 2017-06-08 日本精線株式会社 Two-phase stainless steel wire excellent in magnetic property and magnetic wire gauze product for sieve, net conveyor or filter
CN108643400A (en) * 2018-07-01 2018-10-12 金倍励金属(苏州)有限公司 Metal mesh structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104975236A (en) * 2014-04-03 2015-10-14 虹硕科技股份有限公司 Metal net and manufacturing method of metal net
CN105123148A (en) * 2015-06-29 2015-12-09 韦少付 Screen mesh of thresher

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192874A (en) * 1997-09-18 1999-04-06 Daido Steel Co Ltd Non-magnetic stainless steel wire with high strength and high corrosion resistance
JP2003034848A (en) * 2001-07-24 2003-02-07 Shinko Wire Co Ltd High-strength high-toughness stainless steel wire of small diameter for spring superior in corrosion resistance and heat resistance, and manufacturing method therefor
WO2003095693A1 (en) * 2002-05-08 2003-11-20 Nippon Steel Corporation High strength stainless steel wire excellent in ductility-toughness and modulus of rigidity and method for production thereof
JP2004332109A (en) * 2003-04-14 2004-11-25 Kansai Kanaami Kk Magnetic wire gauze for sifter, wire gauze unit, and sifter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192874A (en) * 1997-09-18 1999-04-06 Daido Steel Co Ltd Non-magnetic stainless steel wire with high strength and high corrosion resistance
JP2003034848A (en) * 2001-07-24 2003-02-07 Shinko Wire Co Ltd High-strength high-toughness stainless steel wire of small diameter for spring superior in corrosion resistance and heat resistance, and manufacturing method therefor
WO2003095693A1 (en) * 2002-05-08 2003-11-20 Nippon Steel Corporation High strength stainless steel wire excellent in ductility-toughness and modulus of rigidity and method for production thereof
JP2004332109A (en) * 2003-04-14 2004-11-25 Kansai Kanaami Kk Magnetic wire gauze for sifter, wire gauze unit, and sifter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159427A (en) * 2012-02-02 2013-08-19 Toyo-Ro Industries Co Ltd Mesh belt
JP2015218378A (en) * 2014-05-20 2015-12-07 日本精線株式会社 Two-phase system stainless steel wire excellent in magnetic property and magnetic wire gauze product using the same
JP2017101326A (en) * 2015-11-20 2017-06-08 日本精線株式会社 Two-phase stainless steel wire excellent in magnetic property and magnetic wire gauze product for sieve, net conveyor or filter
CN108643400A (en) * 2018-07-01 2018-10-12 金倍励金属(苏州)有限公司 Metal mesh structure

Also Published As

Publication number Publication date
JP5009517B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5009517B2 (en) Ferromagnetic network
JP6763759B2 (en) Duplex stainless steel wire with excellent magnetic properties, and magnetic wire mesh products for sieves, net conveyors, or filters
JP5606994B2 (en) Machine parts welded with overlay welding material and overlay welding metal
CN101285152B (en) A ferritic stainless steel wire and wire rod excellent in corrosion resistance, cold-rolling ability and toughness having reduced surface defects and magnetic property
US8703047B2 (en) Clothing ornament made from a high-Mn austenitic stainless steel
ES2814823T3 (en) Duplex stainless steel wire material, steel wire, bolt and manufacturing method thereof
Rabadia et al. Improved trade-off between strength and plasticity in titanium based metastable beta type Ti-Zr-Fe-Sn alloys
RU2605022C1 (en) Nickel chrome alloy with good machinability, creep limit properties and corrosion resistance
JP6154780B2 (en) Two-phase stainless steel wire with excellent magnetic properties and magnetic wire mesh products using the same
CA2522352C (en) Duplex stainless steel alloy and use thereof
US20100112332A1 (en) Diamond sintered body and method for producing same
EP0147937B1 (en) Iron-base amorphous alloys having improved fatigue and toughness characteristics
EP3655556B1 (en) Steel wire for flexible card clothing
Chuaiphan et al. Evaluation of microstructure, mechanical properties and pitting corrosion in dissimilar of alternative low cost stainless steel grade 204Cu and 304 by GTA welding joint
JP4307312B2 (en) Magnetic wire mesh for sieving, wire mesh unit and sieving device
JP2009084597A (en) Hydrogen resistant stainless steel spring wire, and hydrogen resistant spring product using the same
Seemann et al. Martensite formation in a new manganese alloyed metastable austenitic steel (AISI 200-series)
JP3851816B2 (en) Sieve wire mesh and sieving equipment
CN109234603A (en) A kind of high-entropy alloy powder and diamond tool tyre case
KR100749381B1 (en) Warm rolling method
JP2006198576A (en) Screening wire mesh and screening apparatus
WO2016199932A1 (en) Steel strip for cutlery
CN1173549A (en) Parts of loom and loom using the same
US20220388120A1 (en) Stainless blasting medium
CN1051583C (en) Austenitic stainless steel for making screen mesh

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5009517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250