JP2007091597A - Pyrazolopyridin-4-ylpyrazolon derivative, addition salt thereof, and phosphodiesterase inhibitor comprising the same as effective ingredient - Google Patents
Pyrazolopyridin-4-ylpyrazolon derivative, addition salt thereof, and phosphodiesterase inhibitor comprising the same as effective ingredient Download PDFInfo
- Publication number
- JP2007091597A JP2007091597A JP2005279376A JP2005279376A JP2007091597A JP 2007091597 A JP2007091597 A JP 2007091597A JP 2005279376 A JP2005279376 A JP 2005279376A JP 2005279376 A JP2005279376 A JP 2005279376A JP 2007091597 A JP2007091597 A JP 2007091597A
- Authority
- JP
- Japan
- Prior art keywords
- general formula
- group
- carbon atoms
- nmr
- mhz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 *C(c1ccc(*)[n]2nc(*)cc12)=O Chemical compound *C(c1ccc(*)[n]2nc(*)cc12)=O 0.000 description 6
- DVZDYIJQOBPLNR-UHFFFAOYSA-N CC(c(c1cc(C(F)(F)F)n[n]11)ccc1OC)=O Chemical compound CC(c(c1cc(C(F)(F)F)n[n]11)ccc1OC)=O DVZDYIJQOBPLNR-UHFFFAOYSA-N 0.000 description 1
- BTPJDIBMXGQROO-UHFFFAOYSA-N CCC1(c2ccc(C=O)[n]3nc(CC)cc23)OCCO1 Chemical compound CCC1(c2ccc(C=O)[n]3nc(CC)cc23)OCCO1 BTPJDIBMXGQROO-UHFFFAOYSA-N 0.000 description 1
- JYXPPOHXQICYID-UHFFFAOYSA-N CCC1OC1c(c1cc(COC)n[n]11)ccc1OC Chemical compound CCC1OC1c(c1cc(COC)n[n]11)ccc1OC JYXPPOHXQICYID-UHFFFAOYSA-N 0.000 description 1
- VPPDPYYKOCHAQP-UHFFFAOYSA-N CCc1n[n]2c(CO)ccc(C3(C)OCCO3)c2c1 Chemical compound CCc1n[n]2c(CO)ccc(C3(C)OCCO3)c2c1 VPPDPYYKOCHAQP-UHFFFAOYSA-N 0.000 description 1
- BJQJDHWFJFYKHQ-UHFFFAOYSA-N CCc1n[n]2c(NC)ccc(C(C3(C)C)=NNC3=O)c2c1 Chemical compound CCc1n[n]2c(NC)ccc(C(C3(C)C)=NNC3=O)c2c1 BJQJDHWFJFYKHQ-UHFFFAOYSA-N 0.000 description 1
- UZSWDJHIIMCONW-UHFFFAOYSA-N CCc1n[n]2c(SC)ccc(C(C(C)(C)C(OC)=O)=O)c2c1 Chemical compound CCc1n[n]2c(SC)ccc(C(C(C)(C)C(OC)=O)=O)c2c1 UZSWDJHIIMCONW-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
本発明は、ホスホジエステラーゼ(以下PDEと略記する)阻害剤として有用なピラゾロピリジン−4−イルピラゾロン誘導体とその付加塩並びに水和物に関する。 The present invention relates to pyrazolopyridin-4-ylpyrazolone derivatives useful as phosphodiesterase (hereinafter abbreviated as PDE) inhibitors, addition salts and hydrates thereof.
PDEは生体内のセカンドメッセンジャーであるcyclic AMP(cAMP)、およびcyclic GMP(cGMP)を分解する酵素である。現在までに、PDEは1〜11までのタイプが見つかっており、タイプ毎にcAMPを特異的に分解するか、cGMPを特異的に分解するかあるいは両方を分解するかが決まっている。各タイプのPDE組織分布には差がみられ、臓器の種類により、様々なタイプのPDEにより細胞反応がコントロールされていると考えられている。 PDE is an enzyme that degrades cyclic AMP (cAMP) and cyclic GMP (cGMP), which are second messengers in vivo. To date, PDE types 1 to 11 have been found, and it is determined for each type whether cAMP is specifically decomposed, cGMP is specifically decomposed, or both are decomposed. There is a difference in the distribution of each type of PDE, and it is considered that the cell reaction is controlled by various types of PDEs depending on the type of organ.
PDE阻害剤の開発はこれまでに数多く行われており、例えばPDE3阻害剤は狭心症、心不全、高血圧症などの治療薬や血小板凝集抑制薬あるいは抗喘息薬として、またPDE4阻害剤は気管支喘息、慢性閉塞性肺疾患(COPD)、間質性肺炎、アレルギー性鼻炎、アトピー性皮膚炎、関節リウマチ、多発性硬化症、アルツハイマー、認知症、パーキンソン病などの治療薬として期待されている。PDE5阻害剤は男性性機能障害治療薬としてすでに臨床において利用されている。さらに最近ではPDE10A modulatorとして、minocyclineをハンチントン病患者に試用して有効であったという報告があり(特許文献1)、PDE10阻害剤がハンチントン、アルツハイマー、認知症、パーキンソン病、精神分裂症などの各種精神障害治療薬として有効であることを示した公開特許公報も開示されてきている(特許文献2)。 Many PDE inhibitors have been developed so far. For example, PDE3 inhibitors are therapeutic agents for angina pectoris, heart failure, hypertension, etc., platelet aggregation inhibitors or anti-asthma agents, and PDE4 inhibitors are bronchial asthma It is expected as a therapeutic agent for chronic obstructive pulmonary disease (COPD), interstitial pneumonia, allergic rhinitis, atopic dermatitis, rheumatoid arthritis, multiple sclerosis, Alzheimer, dementia, Parkinson's disease and the like. PDE5 inhibitors are already used clinically as therapeutic agents for male sexual dysfunction. Furthermore, recently, there has been a report that minocycline was effective as a PDE10A modulator in patients with Huntington's disease (Patent Document 1), and PDE10 inhibitors are various types such as Huntington, Alzheimer, dementia, Parkinson's disease, and schizophrenia. An open patent publication showing effectiveness as a therapeutic agent for mental disorders has also been disclosed (Patent Document 2).
一方、PDE阻害作用を有するピラゾロピリジン誘導体が(特許文献3、4)に開示されているが、本出願化合物の特徴でもあるピラゾロピリジン環とピラゾロン環が結合した化合物は含まれておらず、またこのような化合物がPDE阻害作用を有することも今まで知られていなかった。さらにPDE3阻害作用を有するピラゾロン誘導体が(非特許文献1、2)に報告されているが本出願化合物とはまったく構造を異にするものである。 On the other hand, pyrazolopyridine derivatives having a PDE inhibitory action are disclosed in (Patent Documents 3 and 4), but do not include compounds in which a pyrazolopyridine ring and a pyrazolone ring are combined, which is a feature of the compound of the present application. Moreover, it has not been known until now that such a compound has a PDE inhibitory action. Further, pyrazolone derivatives having a PDE3 inhibitory action have been reported in (Non-patent Documents 1 and 2), but the structure is completely different from that of the compound of the present application.
本発明は、優れたPDE阻害作用を有し、かつ副作用の少ないピラゾロピリジン−4−イルピラゾロン誘導体を提供することにある。 An object of the present invention is to provide a pyrazolopyridin-4-ylpyrazolone derivative having an excellent PDE inhibitory action and less side effects.
本発明者らは、PDE阻害活性を有し、かつ安全性の高い化合物を創製すべく鋭意研究を重ねた結果、これまでに知られているPDE阻害剤とは構造を異にした新規なピラゾロピリジン−4−イルピリダジノン誘導体が強力なPDE阻害作用を有することを見出し、本発明を完成した。 As a result of intensive studies to create a compound having PDE inhibitory activity and high safety, the present inventors have discovered a novel pyra having a structure different from that of PDE inhibitors known so far. The present invention was completed by finding that zolopyridin-4-ylpyridazinone derivatives have a strong PDE inhibitory action.
即ち、本発明は
1) 一般式(1)
That is, the present invention is 1) General formula (1)
[式中、R1は水素原子、ハロゲン原子、置換基を有しても良い炭素数1〜4の低級アルキル基、置換基を有しても良い炭素数1〜4の低級アルコキシ基、炭素数1〜4の低級アルキルチオ基、炭素数1〜4の低級アルキルスルフィニル基、炭素数1〜4の低級アルキルスルホニル基、炭素数1〜4の低級アルキルアミノ基または炭素数1〜4の低級アルカノイル基を、
R2は水素原子、置換基を有しても良い炭素数1〜4の低級アルキル基または炭素数3〜8のシクロアルキル基を、
R3及びR4は同一または異なって炭素数1〜4の低級アルキル基を、
R5は水素原子、置換基を有しても良いベンジル基またはピリジルメチル基を示す]
で表されることを特徴とするピラゾロピリジン−4−イルピラゾロン誘導体、その光学異性体及び薬理学的に許容しうる塩並びにその水和物、
[Wherein, R 1 represents a hydrogen atom, a halogen atom, an optionally substituted lower alkyl group having 1 to 4 carbon atoms, an optionally substituted lower alkoxy group having 1 to 4 carbon atoms, carbon A lower alkylthio group having 1 to 4 carbon atoms, a lower alkylsulfinyl group having 1 to 4 carbon atoms, a lower alkylsulfonyl group having 1 to 4 carbon atoms, a lower alkylamino group having 1 to 4 carbon atoms, or a lower alkanoyl group having 1 to 4 carbon atoms Group
R 2 represents a hydrogen atom, an optionally substituted lower alkyl group having 1 to 4 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms,
R 3 and R 4 are the same or different and represent a lower alkyl group having 1 to 4 carbon atoms,
R 5 represents a hydrogen atom, an optionally substituted benzyl group or a pyridylmethyl group]
A pyrazolopyridin-4-ylpyrazolone derivative, an optical isomer and a pharmacologically acceptable salt thereof, and a hydrate thereof,
2) 前記一般式(1)で表される化合物が、一般式(1a) 2) The compound represented by the general formula (1) is represented by the general formula (1a)
[式中、R1、R2、R3及びR4は前記定義に同じ]
で表されることを特徴とする1)に記載のピラゾロピリジン−4−イルピラゾロン誘導体、その光学異性体及び薬理学的に許容しうる塩並びにその水和物、
[Wherein R 1 , R 2 , R 3 and R 4 are the same as defined above]
1) The pyrazolopyridin-4-ylpyrazolone derivative according to 1), optical isomers and pharmacologically acceptable salts thereof, and hydrates thereof,
3) 前記一般式(1a)においてR1がメトキシ基であることを特徴とする2)に記載のピラゾロピリジン−4−イルピラゾロン誘導体、その光学異性体及び薬理学的に許容しうる塩並びにその水和物、 3) The pyrazolopyridin-4-ylpyrazolone derivative according to 2) above, wherein R 1 is a methoxy group in the general formula (1a), optical isomers and pharmaceutically acceptable salts thereof, and Its hydrate,
4) 前記一般式(1a)においてR1がメチルチオ基であることを特徴とする2)に記載のピラゾロピリジン−4−イルピラゾロン誘導体、その光学異性体及び薬理学的に許容しうる塩並びにその水和物、 4) The pyrazolopyridin-4-ylpyrazolone derivative according to 2) above, wherein R 1 is a methylthio group in the general formula (1a), optical isomers and pharmacologically acceptable salts thereof, and Its hydrate,
5) 前記一般式(1a)においてR1がメチルアミノ基であることを特徴とする2)に記載のピラゾロピリジン−4−イルピラゾロン誘導体、その光学異性体及び薬理学的に許容しうる塩並びにその水和物、 5) The pyrazolopyridin-4-ylpyrazolone derivative according to 2), wherein R 1 is a methylamino group in the general formula (1a), optical isomers and pharmacologically acceptable salts thereof As well as its hydrates,
6) 前記一般式(1)で示される化合物が、
6−(2−エチル−7−メトキシ−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−3−ピラゾロン、
6−(2−エチル−7−メチルチオ−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−3−ピラゾロン、
6−(2−エチル−7−メチルアミノ−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−3−ピラゾロン、
6−(2−エチル−7−ヒドロキシメチル−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−3−ピラゾロン、
6−(7−アセチル−2−エチル−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−3−ピラゾロン、
6−(2−シクロプロピル−7−メトキシ−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−3−ピラゾロン、
6−(7−メトキシ−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−3−ピラゾロンまたは
6−(7−メトキシメチル−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−3−ピラゾロンである1)に記載のピラゾロピリジン−4−イルピラゾロン誘導体、及び薬理学的に許容しうる塩並びにその水和物、
6) The compound represented by the general formula (1) is
6- (2-ethyl-7-methoxy-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-3-pyrazolone,
6- (2-ethyl-7-methylthio-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-3-pyrazolone,
6- (2-ethyl-7-methylamino-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-3-pyrazolone,
6- (2-ethyl-7-hydroxymethyl-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-3-pyrazolone,
6- (7-acetyl-2-ethyl-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-3-pyrazolone,
6- (2-cyclopropyl-7-methoxy-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-3-pyrazolone,
6- (7-Methoxy-2-trifluoromethyl-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-3-pyrazolone or 6- (7-methoxy Pyrazolopyridine-4 according to 1), which is methyl-2-trifluoromethyl-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-3-pyrazolone -Ylpyrazolone derivatives, and pharmacologically acceptable salts and hydrates thereof,
7) 一般式(1) 7) General formula (1)
[式中、R1は水素原子、ハロゲン原子、置換基を有しても良い炭素数1〜4の低級アルキル基、置換基を有しても良い炭素数1〜4の低級アルコキシ基、炭素数1〜4の低級アルキルチオ基、炭素数1〜4の低級アルキルスルフィニル基、炭素数1〜4の低級アルキルスルホニル基、炭素数1〜4の低級アルキルアミノ基または炭素数1〜4の低級アルカノイル基を、
R2は水素原子、置換基を有しても良い炭素数1〜4の低級アルキル基または炭素数3〜8のシクロアルキル基を、
R3及びR4は同一または異なって炭素数1〜4の低級アルキル基を、
R5は水素原子、置換基を有しても良いベンジル基またはピリジルメチル基を示す]
で表されることを特徴とするピラゾロピリジン−4−イルピラゾロン誘導体、その光学異性体及び薬理学的に許容しうる塩並びにその水和物の少なくとも一種類以上を有効成分とするPDE阻害剤、
[Wherein, R 1 represents a hydrogen atom, a halogen atom, an optionally substituted lower alkyl group having 1 to 4 carbon atoms, an optionally substituted lower alkoxy group having 1 to 4 carbon atoms, carbon A lower alkylthio group having 1 to 4 carbon atoms, a lower alkylsulfinyl group having 1 to 4 carbon atoms, a lower alkylsulfonyl group having 1 to 4 carbon atoms, a lower alkylamino group having 1 to 4 carbon atoms, or a lower alkanoyl group having 1 to 4 carbon atoms Group
R 2 represents a hydrogen atom, an optionally substituted lower alkyl group having 1 to 4 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms,
R 3 and R 4 are the same or different and represent a lower alkyl group having 1 to 4 carbon atoms,
R 5 represents a hydrogen atom, an optionally substituted benzyl group or a pyridylmethyl group]
A PDE inhibitor comprising at least one or more of pyrazolopyridin-4-ylpyrazolone derivatives, optical isomers and pharmacologically acceptable salts thereof, and hydrates thereof, characterized in that ,
8) 前記一般式(1)で表される化合物が、一般式(1a) 8) The compound represented by the general formula (1) is represented by the general formula (1a)
[式中、R1、R2、R3及びR4は前記定義に同じ]
で表されることを特徴とする7)に記載のピラゾロピリジン−4−イルピラゾロン誘導体、その光学異性体及び薬理学的に許容しうる塩並びにその水和物の少なくとも一種類以上を有効成分とすることを特徴とする7)に記載のPDE阻害剤、
[Wherein R 1 , R 2 , R 3 and R 4 are the same as defined above]
7) The pyrazolopyridin-4-ylpyrazolone derivative, its optical isomers, pharmacologically acceptable salts and hydrates thereof as described in 7) above, 7) The PDE inhibitor according to 7),
9) 上記1〜8のいずれか1項に記載されたピラゾロピリジン−4−イルピラゾロン誘導体、その光学異性体及び薬理学的に許容しうる塩並びにその水和物の少なくとも一種類以上を有効成分として含有する医薬、
に関するものである。
9) Effective at least one or more of the pyrazolopyridin-4-ylpyrazolone derivatives described in any one of 1 to 8 above, optical isomers and pharmacologically acceptable salts thereof, and hydrates thereof. A medicine containing as an ingredient,
It is about.
本発明は、新規なピラゾロピリジン−4−イルピラゾロン誘導体とその付加塩が優れたPDE阻害作用を有することを見出したものである。このようなPDE阻害剤作用を有する化合物は、狭心症、心不全、高血圧症などの治療薬や血小板凝集抑制薬あるいは気管支喘息、慢性閉塞性肺疾患(COPD)、間質性肺炎、アレルギー性鼻炎、アトピー性皮膚炎、関節リウマチ、多発性硬化症、ハンチントン、アルツハイマー、認知症、パーキンソン病、精神分裂症などの各種精神障害等の予防または治療薬ならびに男性性機能障害治療薬として有用である。 The present invention has been found that a novel pyrazolopyridin-4-ylpyrazolone derivative and an addition salt thereof have an excellent PDE inhibitory action. Such compounds having a PDE inhibitor action include therapeutic agents for angina pectoris, heart failure, hypertension, platelet aggregation inhibitors, bronchial asthma, chronic obstructive pulmonary disease (COPD), interstitial pneumonia, allergic rhinitis It is useful as a prophylactic or therapeutic agent for various psychiatric disorders such as atopic dermatitis, rheumatoid arthritis, multiple sclerosis, Huntington, Alzheimer, dementia, Parkinson's disease, schizophrenia, etc., and a male sexual dysfunction therapeutic agent.
本発明における上記一般式(1)及び一般式(1a)は新規化合物である。 The above general formula (1) and general formula (1a) in the present invention are novel compounds.
本発明における一般式(1)で表される化合物の薬理学的に許容される塩には、塩酸塩、臭化水素酸塩、酢酸塩、トリフルオロ酢酸塩、メタンスルホン酸塩、クエン酸塩または酒石酸塩のような酸付加塩が挙げられる。 Examples of the pharmacologically acceptable salt of the compound represented by the general formula (1) in the present invention include hydrochloride, hydrobromide, acetate, trifluoroacetate, methanesulfonate, and citrate. Or an acid addition salt like tartrate is mentioned.
本発明の一般式(1)において、「ハロゲン原子」とはフッ素原子、塩素原子、臭素原子又はヨウ素原子を表す。また「炭素数1〜4の低級アルキル基」、「炭素数1〜4の低級アルコキシ基」、「炭素数1〜4の低級アルキルチオ基」、「炭素数1〜4の低級アルキルスルフィニル基」、「炭素数1〜4の低級アルキルスルホニル基」、「炭素数1〜4の低級アルキルアミノ基」などの「低級アルキル基」とは、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル又はt−ブチルなどの直鎖もしくは分岐した炭素数1〜4の炭化水素が挙げられる。 In the general formula (1) of the present invention, the “halogen atom” represents a fluorine atom, a chlorine atom, a bromine atom or an iodine atom. Further, “a lower alkyl group having 1 to 4 carbon atoms”, “a lower alkoxy group having 1 to 4 carbon atoms”, “a lower alkylthio group having 1 to 4 carbon atoms”, “a lower alkylsulfinyl group having 1 to 4 carbon atoms”, Examples of the “lower alkyl group” such as “lower alkylsulfonyl group having 1 to 4 carbon atoms” and “lower alkylamino group having 1 to 4 carbon atoms” include, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl or t- Examples thereof include linear or branched hydrocarbons having 1 to 4 carbon atoms such as butyl.
「置換基を有しても良い炭素数1〜4の低級アルキル基」とは、分岐あるいは直鎖上の炭素鎖上にハロゲン原子、ヒドロキシ基又は炭素数1〜4の低級アルコキシ基を有するものが挙げられる。 The “lower alkyl group having 1 to 4 carbon atoms which may have a substituent” means having a halogen atom, a hydroxy group or a lower alkoxy group having 1 to 4 carbon atoms on a branched or straight chain carbon chain. Is mentioned.
「炭素数3〜8のシクロアルキル基」とは、例えばシクロプロピル、シクロブチル、シクロペンチルまたはシクロヘキシルなどの炭素数3〜8の環状炭化水素が挙げられる。 Examples of the “cycloalkyl group having 3 to 8 carbon atoms” include cyclic hydrocarbons having 3 to 8 carbon atoms such as cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
「炭素数1〜4の低級アルカノイル基」とは、ホルミル基、アセチル基、プロピオニル基、ブチリル基またはイソブチリル基などの直鎖もしくは分岐した炭素数1〜4の低級アルカノイル基が挙げられる。「置換基を有しても良いベンジル基」とはベンゼン環上にハロゲン原子、炭素数1〜4の低級アルキル基、炭素数1〜4の低級アルコキシ基、ニトロ基を有するベンジル基が挙げられる。 Examples of the “lower alkanoyl group having 1 to 4 carbon atoms” include linear or branched lower alkanoyl groups having 1 to 4 carbon atoms such as formyl group, acetyl group, propionyl group, butyryl group or isobutyryl group. Examples of the “benzyl group which may have a substituent” include a benzyl group having a halogen atom, a lower alkyl group having 1 to 4 carbon atoms, a lower alkoxy group having 1 to 4 carbon atoms and a nitro group on the benzene ring. .
本発明によれば、上記一般式(1)で表される化合物のうち、R5が水素原子である化合物、即ち一般式(1b) According to the present invention, among the compounds represented by the general formula (1), a compound in which R 5 is a hydrogen atom, that is, the general formula (1b)
[式中、R1、R2、R3及びR4は前述の通り]
で表される化合物は、例えば以下に示す合成経路により製造することができる。
[Wherein R 1 , R 2 , R 3 and R 4 are as described above]
Can be produced by, for example, the synthetic route shown below.
<合成経路A> <Synthesis route A>
合成経路Aで一般式(3a) In the synthesis route A, the general formula (3a)
[式中、R1は前述の通り]
で表される化合物は、一般式(2a)
[Wherein R 1 is as described above]
The compound represented by general formula (2a)
[式中、R1は前述の通り]
で表される化合物をO-メシチレンスルホニルヒドロキシアミン(MSH)と作用させることによって製造することができる(工程A-1)。
[Wherein R 1 is as described above]
Can be produced by reacting the compound represented by the formula with O-mesitylenesulfonylhydroxyamine (MSH) (step A-1).
反応は一般式(2a)で表される化合物を塩化メチレンに溶解し、0℃〜常温下にてMSHの塩化メチレン溶液を作用させることが好ましい。 In the reaction, the compound represented by the general formula (2a) is preferably dissolved in methylene chloride and a methylene chloride solution of MSH is allowed to act at 0 ° C. to room temperature.
合成経路Aで一般式(4a) In the synthesis route A, the general formula (4a)
[式中、Rは炭素数1〜4の低級アルコキシ基、ベンジルオキシ基または炭素数1〜4の低級アルキル基を示し、R1及びR2は前述の通り]
で表される化合物は、前記一般式(3a)で表される化合物と一般式(10)
[Wherein, R represents a lower alkoxy group having 1 to 4 carbon atoms, a benzyloxy group or a lower alkyl group having 1 to 4 carbon atoms, and R 1 and R 2 are as described above]
The compound represented by the general formula (3a) and the compound represented by the general formula (10)
[式中、R2及びRは前述の通り]
で表される化合物を塩基存在下に作用させることによって製造することができる(工程A-2)。
[Wherein R 2 and R are as described above]
Can be produced by acting in the presence of a base (step A-2).
反応は、メタノール、エタノール、1,4−ジオキサン、ジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)、トルエン、ベンゼン、シクロヘキサン、シクロペンタン、塩化メチレン、クロロホルム、アセトニトリルなどを反応溶媒として用い、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸カリウムなどの無機塩基存在下、あるいはトリエチルアミンなどの有機塩基の存在下、反応温度としては0℃、好適には常温下にて行うことができる。 Reaction is methanol, ethanol, 1,4-dioxane, dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), tetrahydrofuran (THF), toluene, benzene, cyclohexane, cyclopentane, methylene chloride, chloroform, acetonitrile, etc. In the presence of an inorganic base such as sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, or in the presence of an organic base such as triethylamine, the reaction temperature is 0 ° C., preferably at room temperature. It can be carried out.
合成経路Aで一般式(5) In the synthesis route A, the general formula (5)
[式中、R1及びR2は前述の通り]
で表される化合物は、前記一般式(4a)で表される化合物を脱メチル化、加水分解ならびに脱炭酸させるかまたは脱カルボニル化させることによって製造することができる(工程A−3)。
[Wherein R 1 and R 2 are as described above]
Can be produced by demethylating, hydrolyzing and decarboxylating or decarbonylating the compound represented by the general formula (4a) (step A-3).
反応は一挙にすべてを行う手法として臭化水素酸または臭化水素含有酢酸を用い加熱還流下に作用させる方法が好ましい。また、塩化アルミニウム、三塩化ホウ素などのルイス酸、好ましくは三臭化ホウ素を用いクロロホルム、好ましくは塩化メチレンを溶媒として、0℃〜常温下で脱メチル化した後、メタノール、エタノール、THF、DMSO、DMF、1,4−ジオキサン溶媒中で水酸化カリウム水溶液、水酸化リチウム水溶液,、好ましくは水酸化ナトリウム水溶液を常温〜加熱還流下に作用させカルボン酸へと加水分解し、ついで脱炭酸させることもできる。 As a method for performing all the reactions at once, a method of using hydrobromic acid or acetic acid containing hydrogen bromide under heating and refluxing is preferable. Further, after demethylation at 0 ° C. to room temperature using chloroform, preferably methylene chloride as a solvent, Lewis acid such as aluminum chloride and boron trichloride, preferably boron tribromide, methanol, ethanol, THF, DMSO In a DMF, 1,4-dioxane solvent, a potassium hydroxide aqueous solution, a lithium hydroxide aqueous solution, preferably a sodium hydroxide aqueous solution is allowed to act at room temperature to reflux under heating to hydrolyze to a carboxylic acid, followed by decarboxylation. You can also.
脱炭酸には、ベンゼン、クロロベンゼン、ジクロロベンゼン、ブロモベンゼン、トルエン、キシレンなどの有機溶媒を用い、100〜160℃に加熱して反応させるか、エタノールまたは1,4−ジオキサン中、2〜10%硫酸水溶液を加えて100℃で加熱するかあるいは50%硫酸中で100℃に加熱撹拌することもできる。また脱カルボニル化は臭化水素酸、臭化水素含有酢酸または50%硫酸中で加熱還流下に行うことがのぞましい。 For decarboxylation, an organic solvent such as benzene, chlorobenzene, dichlorobenzene, bromobenzene, toluene, xylene is used, and the reaction is performed by heating to 100 to 160 ° C., or in ethanol or 1,4-dioxane, 2 to 10%. An aqueous sulfuric acid solution can be added and heated at 100 ° C., or stirred at 100 ° C. in 50% sulfuric acid. Decarbonylation is preferably carried out in hydrobromic acid, acetic acid containing hydrogen bromide or 50% sulfuric acid under heating and reflux.
合成経路Aで一般式(6) In the synthesis route A, the general formula (6)
[式中、R1、R2及びR3は前述の通り]
で表される化合物は上記一般式(5)で表される化合物をトリフルオロメタンスルホニル化後、一般式(11)
[Wherein R 1 , R 2 and R 3 are as described above]
The compound represented by the general formula (5) is obtained by trifluoromethanesulfonylation of the compound represented by the general formula (5), and then the general formula (11).
[式中、R’は炭素数1〜4の低級アルキル基またはベンジル基を示し、R3は前述の通り]
で表される化合物とHeck反応に付すことによって製造することができる(工程A−4)。
[Wherein R ′ represents a lower alkyl group having 1 to 4 carbon atoms or a benzyl group, and R 3 is as described above]
It can manufacture by attaching | subjecting to the compound represented by Heck reaction (process A-4).
反応は、THF、クロロホルム、四塩化炭素好ましくは塩化メチレン溶媒中、ジイソプロピルエチルアミンまたはトリエチルアミンなどの有機塩基の存在下、無水トリフルオロメタンスルホン酸を0℃〜常温下に作用させトリフルオロメタンスルホネート体を得た後、Heck反応に付し、酸加水分解することで得られる。Heck反応については特に溶媒は限定されないが、一般的にはDMFを用い、酢酸パラジウムと1,3-ビス(ジフェニルホスフィノ)プロパンを触媒として加え、トリエチルアミンの存在下、各種ビニルエーテルと常温、好ましくは80℃にて反応させた後、得られた化合物を1,4−ジオキサン、DMF好ましくはTHFに溶解し、希塩酸を加え常温にて加水分解することができる。 In the reaction, trifluoromethanesulfonate was obtained by reacting trifluoromethanesulfonic anhydride at 0 ° C. to room temperature in the presence of an organic base such as diisopropylethylamine or triethylamine in THF, chloroform, carbon tetrachloride, preferably methylene chloride solvent. Thereafter, it is obtained by subjecting to Heck reaction and acid hydrolysis. Although the solvent is not particularly limited for the Heck reaction, in general, DMF is used, palladium acetate and 1,3-bis (diphenylphosphino) propane are added as catalysts, various vinyl ethers in the presence of triethylamine, and room temperature, preferably After reacting at 80 ° C., the obtained compound can be dissolved in 1,4-dioxane, DMF, preferably THF, and hydrolyzed at room temperature by adding dilute hydrochloric acid.
合成経路Aで一般式(7) In the synthesis route A, the general formula (7)
[式中、R1、R2、R3、及びR’は前述の通り]
で表される化合物は上記一般式(6)で表される化合物と一般式(12)
[Wherein R 1 , R 2 , R 3 , and R ′ are as described above]
The compound represented by general formula (6) and the general formula (12)
[式中、R’は前述の通り]
で表される化合物を塩基の存在下に作用させることによって製造することができる(工程A−5)。
[Wherein R ′ is as described above]
Can be produced by acting in the presence of a base (step A-5).
反応は、ナトリウムアルコキシド、カリウムアルコキシド、水素化カリウムなどの無機塩基、好ましくは水素化ナトリウムの存在下、一般式(12)の化合物を溶媒量用い、加熱還流下に行うことが好ましい。 The reaction is preferably carried out under heating and reflux using a compound of the general formula (12) in the presence of an inorganic base such as sodium alkoxide, potassium alkoxide or potassium hydride, preferably sodium hydride, in a solvent amount.
合成経路Aで一般式(8) In the synthesis route A, the general formula (8)
[式中、R1、R2、R3、R4及びR’は前述の通り]
で表される化合物は一般式(13)
[Wherein R 1 , R 2 , R 3 , R 4 and R ′ are as described above]
The compound represented by general formula (13)
[式中Xはハロゲン原子を示し、R4は前述の通り]
で表される化合物を塩基の存在下に作用させることによって製造することができる(工程A−6)。
[Wherein X represents a halogen atom and R 4 is as described above]
Can be produced by acting in the presence of a base (step A-6).
反応は前記一般式(7)で表される化合物を水素化ナトリウム、水素化カリウム、ナトリウムアルコキシド、カリウムアルコキシド、リチウムジイソプロピルアミド(LDA)、リチウム−2,2,6,6−テトラメチルピペリジド、リチウムビストリメチルシリルアミド、ナトリウムビストリメチルシリルアミド、カリウムビストリメチルシリルアミドを塩基として用い処理した後に一般式(13)で表される化合物と反応させる。また反応溶媒としてはTHF、1,4−ジオキサン、1,2−ジメトキシエタンなどを用い、−78℃〜常温下に行うことができる。 In the reaction, the compound represented by the general formula (7) is converted into sodium hydride, potassium hydride, sodium alkoxide, potassium alkoxide, lithium diisopropylamide (LDA), lithium-2,2,6,6-tetramethylpiperidide. , Lithium bistrimethylsilylamide, sodium bistrimethylsilylamide, and potassium bistrimethylsilylamide as a base, and then reacted with a compound represented by the general formula (13). Further, THF, 1,4-dioxane, 1,2-dimethoxyethane or the like can be used as a reaction solvent, and the reaction can be performed at −78 ° C. to room temperature.
また合成経路Aで上記一般式(8)で表される化合物は前記一般式(6)で表される化合物から一般式(9) Further, in the synthesis route A, the compound represented by the general formula (8) is changed from the compound represented by the general formula (6) to the general formula (9).
[式中、R1、R2、R3及びR4は前述の通り]
で表される化合物を経由しても製造できる。
[Wherein R 1 , R 2 , R 3 and R 4 are as described above]
It can manufacture also through the compound represented by these.
一般式(9)で表される化合物の合成は前記一般式(6)で表される化合物を塩基の存在下、一般式(13)で表される化合物と反応させることによって製造できる(工程A−7)。 The compound represented by the general formula (9) can be synthesized by reacting the compound represented by the general formula (6) with the compound represented by the general formula (13) in the presence of a base (step A). -7).
反応は一般式(6)で表される化合物を水素化ナトリウム、水素化カリウム、ナトリウムアルコキシド、カリウムアルコキシド、LDA、リチウム−2,2,6,6−テトラメチルピペリジド、リチウムビストリメチルシリルアミド、ナトリウムビストリメチルシリルアミド、カリウムビストリメチルシリルアミドを塩基として処理した後、一般式(13)で表される化合物と反応させる。また反応溶媒としてはTHF、1,4−ジオキサン、1,2−ジメトキシエタンなどを用い、−78℃〜常温下に行うことができる。 In the reaction, a compound represented by the general formula (6) is converted into sodium hydride, potassium hydride, sodium alkoxide, potassium alkoxide, LDA, lithium-2,2,6,6-tetramethylpiperidide, lithium bistrimethylsilylamide, Sodium bistrimethylsilylamide and potassium bistrimethylsilylamide are treated as bases and then reacted with the compound represented by the general formula (13). Further, THF, 1,4-dioxane, 1,2-dimethoxyethane or the like can be used as a reaction solvent, and the reaction can be performed at −78 ° C. to room temperature.
一般式(9)で表される化合物から一般式(8)で表される化合物への変換は、塩基の存在下に一般式(12)で表される化合物を作用させることによって製造できる(工程A−8)。 Conversion from the compound represented by the general formula (9) to the compound represented by the general formula (8) can be produced by reacting the compound represented by the general formula (12) in the presence of a base (step). A-8).
反応は、ナトリウムアルコキシド、カリウムアルコキシド、水素化カリウムなどの無機塩基、好ましくは水素化ナトリウムの存在下、一般式(12)の化合物を溶媒量用い、加熱還流下に行うことが好ましい。 The reaction is preferably carried out under heating and reflux using a compound of the general formula (12) in the presence of an inorganic base such as sodium alkoxide, potassium alkoxide or potassium hydride, preferably sodium hydride, in a solvent amount.
合成経路Aで前述一般式(1b)で表される化合物は、上記一般式(8)で表される化合物をヒドラジン誘導体と作用させることによって製造することができる(工程A−9)。 The compound represented by General Formula (1b) in Synthesis Route A can be produced by reacting the compound represented by General Formula (8) with a hydrazine derivative (Step A-9).
ヒドラジン誘導体としては、ヒドラジンやヒドラジン酢酸塩、ヒドラジン塩酸塩などのヒドラジンの塩、またはカルバジン酸t−ブチル、カルバジン酸メチル、カルバジン酸ベンジルなどのカルバジン酸エステルを用いることができる。 As the hydrazine derivative, hydrazine salts such as hydrazine, hydrazine acetate, and hydrazine hydrochloride, or carbazates such as t-butyl carbazate, methyl carbazate, and benzyl carbazate can be used.
反応は、ヒドラジン、及びその塩を用いる場合では、ベンゼン、トルエン、酢酸、エタノールを反応溶媒として用い、常温もしくは好ましくは加熱還流下に反応させることができる。 In the case of using hydrazine and its salt, the reaction can be carried out using benzene, toluene, acetic acid or ethanol as a reaction solvent at room temperature or preferably under heating and refluxing.
カルバジン酸エステルを用いる場合では、ベンゼン、トルエン、キシレンなどを反応溶媒として用い、パラトルエンスルホン酸やピリジニウムパラトルエンスルホネートなどを酸触媒として用い、好ましくはDean-Starkトラップを用いた脱水条件下にて、加熱還流下に反応させることができ、必要であれば反応後得られた化合物をトリフルオロ酢酸、塩化水素を含有するメタノールやエタノール、酢酸エチル、ジエチルエーテルなどにて脱保護を行うことができる。 In the case of using a carbazate, benzene, toluene, xylene, etc. are used as a reaction solvent, paratoluenesulfonic acid, pyridinium paratoluenesulfonate, etc. are used as an acid catalyst, preferably under dehydrating conditions using a Dean-Stark trap. The compound obtained after the reaction can be deprotected with trifluoroacetic acid, methanol containing hydrogen chloride, ethanol, ethyl acetate, diethyl ether or the like if necessary. .
合成経路Aで一般式(6)で表される中間化合物は下記合成経路Bによっても製造することができる。 The intermediate compound represented by the general formula (6) in the synthesis route A can also be produced by the following synthesis route B.
<合成経路B> <Synthetic route B>
合成経路Bで一般式(3b) In the synthesis route B, the general formula (3b)
[式中、R6は水素原子、炭素数1〜4の低級アルキル基、アセチル基、テトラヒドロピラニル基、t−ブチルジメチルシリル基、t−ブチルジフェニルシリル基またはトリイソプロピルシリル基を示し、R1及びR3は前述の通り]で表される化合物は、一般式(2b) [Wherein R 6 represents a hydrogen atom, a lower alkyl group having 1 to 4 carbon atoms, an acetyl group, a tetrahydropyranyl group, a t-butyldimethylsilyl group, a t-butyldiphenylsilyl group or a triisopropylsilyl group; 1 and R 3 are as described above], the compound represented by the general formula (2b)
[式中、R1、R3及びR6は前述の通り]
で表される化合物をMSHと作用させることによって製造することができる(工程B−1)。
[Wherein R 1 , R 3 and R 6 are as described above]
It can manufacture by making the compound represented by MSH act (process B-1).
反応は一般式(2b)で表される化合物を塩化メチレンに溶解し、0℃〜常温下にてMSHの塩化メチレン溶液を作用させることが好ましい。 In the reaction, it is preferable to dissolve the compound represented by the general formula (2b) in methylene chloride and to act a methylene chloride solution of MSH at 0 ° C. to room temperature.
合成経路Bで一般式(4b) In the synthesis route B, the general formula (4b)
[式中、R1、R2、R3、R6及びRは前述の通り]
で表される化合物は上記一般式(3b)で表される化合物と前記一般式(10)で表される化合物を塩基存在下に作用させることによって製造することができる(工程B−2)。
[Wherein R 1 , R 2 , R 3 , R 6 and R are as described above]
Can be produced by allowing the compound represented by the general formula (3b) and the compound represented by the general formula (10) to act in the presence of a base (step B-2).
反応は、メタノール、エタノール、1,4−ジオキサン、DMSO、DMF、THF、トルエン、ベンゼン、シクロヘキサン、シクロペンタン、塩化メチレン、クロロホルム,、アセトニトリルなどを反応溶媒として用い、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸カリウムなどの無機塩基存在下、あるいはトリエチルアミンなどの有機塩基の存在下、反応温度としては0℃、好適には常温下にて行うことができる。 For the reaction, methanol, ethanol, 1,4-dioxane, DMSO, DMF, THF, toluene, benzene, cyclohexane, cyclopentane, methylene chloride, chloroform, acetonitrile, etc. are used as reaction solvents, and sodium bicarbonate, sodium carbonate, carbonate The reaction can be carried out in the presence of an inorganic base such as potassium hydrogen or potassium carbonate, or in the presence of an organic base such as triethylamine at a reaction temperature of 0 ° C., preferably at room temperature.
合成経路Bで一般式(14) In the synthesis route B, the general formula (14)
[式中、R1、R2、及びR3は前述の通り]
で表される化合物は上記一般式(4b)で表される化合物を加水分解後、脱炭酸するかまたは脱カルボニル化することによって製造することができる(工程B−3)。
[Wherein R 1 , R 2 and R 3 are as described above]
The compound represented by general formula (4b) can be produced by hydrolyzing and decarboxylating or decarbonylating the compound represented by the above general formula (4b) (step B-3).
反応はR6が炭素数1〜4の低級アルキル基、テトラヒドロピラニル基である場合は臭化水素酸又は臭化水素含有酢酸を用い加熱還流下に作用させ脱保護と加水分解及び脱炭酸を同時に行うことができる。またR6がアセチル基の場合、メタノール、エタノール、THF、DMSO、DMF、ジオキサン溶媒中で水酸化カリウム水溶液、水酸化リチウム水溶液好ましくは水酸化ナトリウム水溶液を常温〜加熱還流下に作用させカルボン酸へと加水分解後、脱炭酸させることもできる。さらにR6がt−ブチルジメチルシリル基、t−ブチルジフェニルシリル基、トリイソプロピルシリル基の場合、テトラブチルアンモニウムフルオリドをTHF溶媒中作用させシリル基を除去した後、上述した酸またはアルカリ法にて加水分解後、脱炭酸させることができる。脱炭酸には、ベンゼン、クロロベンゼン、ジクロロベンゼン、ブロモベンゼン、トルエン、キシレンなどの有機溶媒を用い、100〜160℃に加熱して反応させるか、エタノールまたはジオキサン中、2〜10%硫酸水溶液を加えて100℃で加熱するかあるいは50%硫酸中で100℃に加熱撹拌することもできる。また脱カルボニル化は臭化水素酸、臭化水素含有酢酸または50%硫酸中で加熱還流下に行うことが望ましい。 In the reaction, when R 6 is a lower alkyl group having 1 to 4 carbon atoms or a tetrahydropyranyl group, deprotection, hydrolysis and decarboxylation are performed by heating under reflux using hydrobromic acid or acetic acid containing hydrogen bromide. Can be done simultaneously. When R 6 is an acetyl group, a potassium hydroxide aqueous solution, a lithium hydroxide aqueous solution, preferably a sodium hydroxide aqueous solution is allowed to act in a methanol, ethanol, THF, DMSO, DMF, or dioxane solvent at room temperature to under reflux with heating to a carboxylic acid. And can be decarboxylated after hydrolysis. Further, when R 6 is a t-butyldimethylsilyl group, a t-butyldiphenylsilyl group, or a triisopropylsilyl group, tetrabutylammonium fluoride is reacted in a THF solvent to remove the silyl group, and then the acid or alkali method described above is used. After hydrolysis, it can be decarboxylated. For decarboxylation, an organic solvent such as benzene, chlorobenzene, dichlorobenzene, bromobenzene, toluene, xylene is used, and the reaction is performed by heating to 100 to 160 ° C., or a 2 to 10% aqueous sulfuric acid solution is added in ethanol or dioxane. The mixture can be heated at 100 ° C. or stirred at 50 ° C. in 50% sulfuric acid. Decarbonylation is preferably carried out in hydrobromic acid, acetic acid containing hydrogen bromide or 50% sulfuric acid under heating and reflux.
合成経路Bで一般式(6)で表される化合物は上記一般式(14)で表される化合物を酸化することによって製造することができる(工程B−4)。 The compound represented by General Formula (6) in Synthesis Route B can be produced by oxidizing the compound represented by General Formula (14) (Step B-4).
反応は、一般に用いられるアルコールのアルデヒド、及びケトンへの酸化的手法を用いることができ、例えばクロロクロム酸ピリジニウム、二クロム酸ピリジニウムなどの酸化クロム−ピリジン錯体や酸化クロム、炭酸銀、二酸化マンガンなどの金属酸化剤や、塩化オキザリル、無水トリフルオロ酢酸、無水酢酸、ジシクロヘキシルカルボジイミド(DCC)、三酸化硫黄−ピリジン錯体などの各種DMSO活性化剤を用いたDMSO酸化、Dess−Martin酸化などが挙げられる。 The reaction can be carried out using a commonly used oxidative method of alcohols to aldehydes and ketones, such as chromium oxide-pyridine complexes such as pyridinium chlorochromate and pyridinium dichromate, chromium oxide, silver carbonate, manganese dioxide, etc. And DMSO oxidation using various DMSO activators such as oxalyl chloride, oxalyl chloride, trifluoroacetic anhydride, acetic anhydride, dicyclohexylcarbodiimide (DCC), sulfur trioxide-pyridine complex, and Dess-Martin oxidation. .
合成経路Bで一般式(15) In the synthesis route B, the general formula (15)
[式中、R1、R2、R3及びRは前述の通り]
で表される化合物は、前記一般式(4b)で表される化合物を必要であれば脱保護化した後、酸化することによって製造することができる(工程B−5)。
[Wherein R 1 , R 2 , R 3 and R are as described above]
The compound represented by general formula (4b) can be produced by deprotecting the compound represented by the general formula (4b), if necessary, followed by oxidation (step B-5).
脱保護にはR6が炭素数1〜4の低級アルキル基の場合、塩化メチレン中、三塩化ホウ素または三臭化ホウ素を0℃から常温下にて作用させることが好ましい。R6がテトラヒドロピラニル基の場合、様々な手法で脱保護が可能であるが、メタノール、エタノールなどのアルコール溶媒またはTHF中、常温にて塩酸を作用させる手法が簡便である。アセチル基の場合、メタノール、エタノール中で炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどの塩基を常温で作用させるなど一般的な脱アセチル化反応が利用できる。さらにシリル保護基の場合、テトラブチルアンモニウムフルオリドをTHF中作用させることが好ましい。酸化反応は、一般に用いられるアルコールのアルデヒド、及びケトンへの酸化的手法を用いることができ、例えばクロロクロム酸ピリジニウム、二クロム酸ピリジニウムなどの酸化クロム−ピリジン錯体や酸化クロム、炭酸銀、二酸化マンガンなどの金属酸化剤や、塩化オキザリル、無水トリフルオロ酢酸、無水酢酸、DCC、三酸化硫黄−ピリジン錯体などの各種DMSO活性化剤を用いたDMSO酸化、Dess−Martin酸化などが挙げられる。 For deprotection, when R 6 is a lower alkyl group having 1 to 4 carbon atoms, boron trichloride or boron tribromide is preferably allowed to act from 0 ° C. to room temperature in methylene chloride. When R 6 is a tetrahydropyranyl group, deprotection can be performed by various methods, but a method in which hydrochloric acid is allowed to act at room temperature in an alcohol solvent such as methanol or ethanol or THF is simple. In the case of an acetyl group, a general deacetylation reaction can be used, for example, a base such as sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, or lithium hydroxide is allowed to act at room temperature in methanol or ethanol. Furthermore, in the case of a silyl protecting group, it is preferable to work tetrabutylammonium fluoride in THF. The oxidation reaction can be carried out by using generally used oxidative methods of alcohols to aldehydes and ketones, such as chromium oxide-pyridine complexes such as pyridinium chlorochromate and pyridinium dichromate, chromium oxide, silver carbonate, manganese dioxide. And DMSO oxidation using various DMSO activators such as oxalyl chloride, trifluoroacetic anhydride, acetic anhydride, DCC, sulfur trioxide-pyridine complex, and Dess-Martin oxidation.
合成経路Bで一般式(6)で表される化合物は上記一般式(15)で表される化合物を加水分解後、脱炭酸するか脱カルボニル化することによって製造することができる(工程B−6)。 The compound represented by the general formula (6) in the synthesis route B can be produced by hydrolyzing the compound represented by the general formula (15), followed by decarboxylation or decarbonylation (step B- 6).
反応は臭化水素酸または臭化水素含有酢酸を用い加熱還流下に作用させ加水分解と脱炭酸を同時に行うか、またはメタノール、エタノール、THF、DMSO、DMF、ジオキサン溶媒中で水酸化カリウム水溶液、水酸化リチウム水溶液好ましくは水酸化ナトリウム水溶液を常温〜加熱還流下に作用させカルボン酸へと加水分解後、脱炭酸させることもできる。脱炭酸には、ベンゼン、クロロベンゼン、ジクロロベンゼン、ブロモベンゼン、トルエン、キシレンなどの有機溶媒を用い、100〜160℃に加熱して反応させるか、エタノールまたはジオキサン中、2〜10%硫酸水溶液を加えて100℃で加熱するかあるいは50%硫酸中で100℃に加熱撹拌することもできる。また脱カルボニル化は臭化水素酸、臭化水素含有酢酸または50%硫酸中で加熱還流下に行うことがのぞましい。 The reaction is carried out using hydrobromic acid or acetic acid containing hydrogen bromide under heating and refluxing to simultaneously perform hydrolysis and decarboxylation, or an aqueous potassium hydroxide solution in methanol, ethanol, THF, DMSO, DMF, dioxane solvent, Lithium hydroxide aqueous solution, preferably sodium hydroxide aqueous solution is allowed to act at normal temperature to heating under reflux to hydrolyze to carboxylic acid, followed by decarboxylation. For decarboxylation, an organic solvent such as benzene, chlorobenzene, dichlorobenzene, bromobenzene, toluene, xylene is used, and the reaction is performed by heating to 100 to 160 ° C., or a 2 to 10% aqueous sulfuric acid solution is added in ethanol or dioxane. The mixture can be heated at 100 ° C. or stirred at 50 ° C. in 50% sulfuric acid. Decarbonylation is preferably carried out in hydrobromic acid, acetic acid containing hydrogen bromide or 50% sulfuric acid under heating and reflux.
合成経路Aで一般式(6)表される中間化合物は下記合成経路Cによっても製造することができる。 The intermediate compound represented by the general formula (6) in the synthesis route A can also be produced by the following synthesis route C.
<合成経路C> <Synthetic route C>
合成経路Cで一般式(3c) In the synthesis route C, the general formula (3c)
[式中、R1及びR3は前述の通り]
で表される化合物は一般式(2c)
[Wherein R 1 and R 3 are as described above]
The compound represented by general formula (2c)
[式中、R1及びR3は前述の通り]
で表される化合物をMSHと作用させることによって製造することができる(工程C−1)。
[Wherein R 1 and R 3 are as described above]
It can manufacture by making the compound represented by MSH act (process C-1).
反応は一般式(2c)で表される化合物を塩化メチレンに溶解し、0℃〜常温下にてMSHの塩化メチレン溶液を作用させることが好ましい。 In the reaction, it is preferable to dissolve the compound represented by the general formula (2c) in methylene chloride, and to act a methylene chloride solution of MSH at 0 ° C. to room temperature.
合成経路Eで一般式(4c) In the synthesis route E, the general formula (4c)
[式中、R1、R2、R3及びRは前述の通り]
で表される化合物は上記一般式(3c)で表される化合物と前記一般式(10)で表される化合物を塩基存在下に作用させることによって製造することができる(工程C−2)。
[Wherein R 1 , R 2 , R 3 and R are as described above]
Can be produced by reacting the compound represented by the general formula (3c) and the compound represented by the general formula (10) in the presence of a base (step C-2).
反応は、メタノール、エタノール、1,4−ジオキサン、DMSO、DMF、THF、トルエン、ベンゼン、シクロヘキサン、シクロペンタン、塩化メチレン、クロロホルム,、アセトニトリルなどを反応溶媒として用い、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸カリウムなどの無機塩基存在下、あるいはトリエチルアミンなどの有機塩基の存在下、反応温度としては0℃、好適には常温下にて行うことができる。 For the reaction, methanol, ethanol, 1,4-dioxane, DMSO, DMF, THF, toluene, benzene, cyclohexane, cyclopentane, methylene chloride, chloroform, acetonitrile, etc. are used as reaction solvents, and sodium bicarbonate, sodium carbonate, carbonate The reaction can be carried out in the presence of an inorganic base such as potassium hydrogen or potassium carbonate, or in the presence of an organic base such as triethylamine at a reaction temperature of 0 ° C., preferably at room temperature.
合成経路Cで一般式(6)で表される化合物は上記一般式(4c)で表される化合物を加水分解後、脱炭酸するか脱カルボニル化することによって製造することができる(工程C−3)。 In the synthesis route C, the compound represented by the general formula (6) can be produced by decarboxylating or decarbonylating the compound represented by the general formula (4c) (Step C- 3).
反応は臭化水素酸または臭化水素含有酢酸を用い加熱還流下に作用させ加水分解と脱炭酸を同時に行うか、またはメタノール、エタノール、THF、DMSO、DMF、ジオキサン溶媒中で水酸化カリウム水溶液、水酸化リチウム水溶液好ましくは水酸化ナトリウム水溶液を常温〜加熱還流下に作用させカルボン酸へと加水分解後、脱炭酸させることもできる。脱炭酸には、ベンゼン、クロロベンゼン、ジクロロベンゼン、ブロモベンゼン、トルエン、キシレンなどの有機溶媒を用い、100〜160℃に加熱して反応させるか、エタノールまたはジオキサン中、2〜10%硫酸水溶液を加えて100℃で加熱するかあるいは50%硫酸中で100℃に加熱撹拌することもできる。また脱カルボニル化は臭化水素酸、臭化水素含有酢酸または50%硫酸中で加熱還流下に行うことがのぞましい。
合成経路Bで一般式(14)で表される中間化合物は下記合成経路Dに示すように、一般式(2d)及び一般式(2e)で表される2つの化合物を原料としても合成することができる。
The reaction is carried out using hydrobromic acid or acetic acid containing hydrogen bromide under heating and refluxing to simultaneously perform hydrolysis and decarboxylation, or an aqueous potassium hydroxide solution in methanol, ethanol, THF, DMSO, DMF, dioxane solvent, Lithium hydroxide aqueous solution, preferably sodium hydroxide aqueous solution is allowed to act at normal temperature to heating under reflux to hydrolyze to carboxylic acid, followed by decarboxylation. For decarboxylation, an organic solvent such as benzene, chlorobenzene, dichlorobenzene, bromobenzene, toluene, xylene is used, and the reaction is performed by heating to 100 to 160 ° C., or a 2 to 10% aqueous sulfuric acid solution is added in ethanol or dioxane. The mixture can be heated at 100 ° C. or stirred at 50 ° C. in 50% sulfuric acid. Decarbonylation is preferably carried out in hydrobromic acid, acetic acid containing hydrogen bromide or 50% sulfuric acid under heating and reflux.
The intermediate compound represented by the general formula (14) in the synthesis route B is synthesized using the two compounds represented by the general formula (2d) and the general formula (2e) as raw materials as shown in the following synthesis route D. Can do.
<合成経路D> <Synthesis route D>
合成経路Dで一般式(3d) In the synthesis route D, the general formula (3d)
[式中、R1は前述の通り]
で表される化合物は一般式(2d)
[Wherein R 1 is as described above]
The compound represented by general formula (2d)
[式中、R1は前述の通り]
で表される化合物をMSHと作用させることによって製造することができる(工程D−1)。
反応は一般式(2d)で表される化合物を塩化メチレンに溶解し、0℃〜常温下にてMSHの塩化メチレン溶液を作用させることが好ましい。
[Wherein R 1 is as described above]
It can manufacture by making the compound represented by MSH act (process D-1).
In the reaction, it is preferable to dissolve the compound represented by the general formula (2d) in methylene chloride and to act a methylene chloride solution of MSH at 0 ° C. to room temperature.
合成経路Dで一般式(4d) In the synthesis route D, the general formula (4d)
[式中、R1、R2及びRは前述の通り]
で表される化合物は上記一般式(3d)で表される化合物と前記一般式(10)で表される化合物を塩基存在下に作用させることによって製造することができる(工程D−2)。
[Wherein R 1 , R 2 and R are as described above]
The compound represented by general formula (3d) and the compound represented by general formula (10) can be produced in the presence of a base (step D-2).
反応は、メタノール、エタノール、1,4−ジオキサン、DMSO、DMF、THF、トルエン、ベンゼン、シクロヘキサン、シクロペンタン、塩化メチレン、クロロホルム,、アセトニトリルなどを反応溶媒として用い、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸カリウムなどの無機塩基存在下、あるいはトリエチルアミンなどの有機塩基の存在下、反応温度としては0℃、好適には常温下にて行うことができる。 For the reaction, methanol, ethanol, 1,4-dioxane, DMSO, DMF, THF, toluene, benzene, cyclohexane, cyclopentane, methylene chloride, chloroform, acetonitrile, etc. are used as reaction solvents, and sodium bicarbonate, sodium carbonate, carbonate The reaction can be carried out in the presence of an inorganic base such as potassium hydrogen or potassium carbonate, or in the presence of an organic base such as triethylamine at a reaction temperature of 0 ° C., preferably at room temperature.
合成経路Dで一般式(16) In the synthesis route D, the general formula (16)
[式中、R1及びR2は前述の通り]
で表される化合物は上記一般式(4d)で表される化合物を加水分解後、脱炭酸するか脱カルボニル化することによって製造することができる(工程D−3)。
[Wherein R 1 and R 2 are as described above]
The compound represented by general formula (4d) can be produced by hydrolyzing and decarboxylating or decarbonylating the compound represented by the general formula (4d) (step D-3).
反応は臭化水素酸または臭化水素含有酢酸を用い加熱還流下に作用させ加水分解と脱炭酸を同時に行うか、またはメタノール、エタノール、THF、DMSO、DMF、ジオキサン溶媒中で水酸化カリウム水溶液、水酸化リチウム水溶液好ましくは水酸化ナトリウム水溶液を常温〜加熱還流下に作用させカルボン酸へと加水分解後、脱炭酸させることもできる。脱炭酸には、ベンゼン、クロロベンゼン、ジクロロベンゼン、ブロモベンゼン、トルエン、キシレンなどの有機溶媒を用い、100〜160℃に加熱して反応させるか、エタノールまたはジオキサン中、2〜10%硫酸水溶液を加えて100℃で加熱するかあるいは50%硫酸中で100℃に加熱撹拌することもできる。また脱カルボニル化は臭化水素酸、臭化水素含有酢酸または50%硫酸中で加熱還流下に行うことがのぞましい。 The reaction is carried out using hydrobromic acid or acetic acid containing hydrogen bromide under heating and refluxing to simultaneously perform hydrolysis and decarboxylation, or an aqueous potassium hydroxide solution in methanol, ethanol, THF, DMSO, DMF, dioxane solvent, Lithium hydroxide aqueous solution, preferably sodium hydroxide aqueous solution is allowed to act at normal temperature to heating under reflux to hydrolyze to carboxylic acid, followed by decarboxylation. For decarboxylation, an organic solvent such as benzene, chlorobenzene, dichlorobenzene, bromobenzene, toluene, xylene is used, and the reaction is performed by heating to 100 to 160 ° C., or a 2 to 10% aqueous sulfuric acid solution is added in ethanol or dioxane. The mixture can be heated at 100 ° C. or stirred at 50 ° C. in 50% sulfuric acid. Decarbonylation is preferably carried out in hydrobromic acid, acetic acid containing hydrogen bromide or 50% sulfuric acid under heating and reflux.
合成経路Dで一般式(17) In the synthesis route D, the general formula (17)
[式中、R1、R2及びRは前述の通り]
で表される化合物は前記一般式(4d)で表される化合物を酸化することによって製造することができる(工程D−4)。
[Wherein R 1 , R 2 and R are as described above]
Can be produced by oxidizing the compound represented by the general formula (4d) (step D-4).
反応は、一般に用いられるアルコールのアルデヒドへの酸化的手法を用いることができ、例えばクロロクロム酸ピリジニウム、二クロム酸ピリジニウムなどの酸化クロム−ピリジン錯体や酸化クロム、炭酸銀、二酸化マンガンなどの金属酸化剤や、塩化オキザリル、無水トリフルオロ酢酸、無水酢酸、DCC、三酸化硫黄−ピリジン錯体などの各種DMSO活性化剤を用いたDMSO酸化、Dess−Martin酸化などが挙げられる。 The reaction can be performed using a commonly used oxidative method of alcohol to aldehyde, such as chromium oxide-pyridine complexes such as pyridinium chlorochromate and pyridinium dichromate, and metal oxides such as chromium oxide, silver carbonate and manganese dioxide. And DMSO oxidation using various DMSO activators such as oxalyl chloride, trifluoroacetic anhydride, acetic anhydride, DCC, sulfur trioxide-pyridine complex, and Dess-Martin oxidation.
合成経路Dで一般式(3e) In the synthesis route D, the general formula (3e)
[式中、R1は前述の通り]
で表される化合物は一般式(2e)
[Wherein R 1 is as described above]
The compound represented by general formula (2e)
[式中、R1は前述の通り]
で表される化合物をMSHと作用させることによって製造することができる(工程D−5)。
反応は一般式(2e)で表される化合物を塩化メチレンに溶解し、0℃〜常温下にてMSHの塩化メチレン溶液を作用させることが好ましい。
[Wherein R 1 is as described above]
Can be produced by allowing MSH to react with MSH (step D-5).
In the reaction, it is preferred to dissolve the compound represented by the general formula (2e) in methylene chloride and to act a methylene chloride solution of MSH at 0 ° C. to room temperature.
合成経路Dで一般式(4e) In the synthesis route D, the general formula (4e)
[式中、R1、R2及びRは前述の通り]
で表される化合物は上記一般式(3e)で表される化合物と前記一般式(10)で表される化合物を塩基存在下に作用させることによって製造することができる(工程D−6)。
[Wherein R 1 , R 2 and R are as described above]
The compound represented by general formula (3e) and the compound represented by general formula (10) can be produced in the presence of a base (step D-6).
反応は、メタノール、エタノール、1,4−ジオキサン、DMSO、DMF、THF、トルエン、ベンゼン、シクロヘキサン、シクロペンタン、塩化メチレン、クロロホルム,、アセトニトリルなどを反応溶媒として用い、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸カリウムなどの無機塩基存在下、あるいはトリエチルアミンなどの有機塩基の存在下、反応温度としては0℃、好適には常温下にて行うことができる。 For the reaction, methanol, ethanol, 1,4-dioxane, DMSO, DMF, THF, toluene, benzene, cyclohexane, cyclopentane, methylene chloride, chloroform, acetonitrile, etc. are used as reaction solvents, and sodium bicarbonate, sodium carbonate, carbonate The reaction can be carried out in the presence of an inorganic base such as potassium hydrogen or potassium carbonate, or in the presence of an organic base such as triethylamine at a reaction temperature of 0 ° C., preferably at room temperature.
合成経路Dで一般式(18) In the synthesis route D, the general formula (18)
[式中、R1及びR2は前述の通り]
で表される化合物は前述一般式(16)、(17)及び(4e)で表される化合物から製造することができる。
[Wherein R 1 and R 2 are as described above]
Can be produced from the compounds represented by the general formulas (16), (17) and (4e).
一般式(16)で表される化合物から製造する場合、酸化反応に付すことによって製造することができる(工程D−7)。 When manufacturing from the compound represented by General formula (16), it can manufacture by attaching | subjecting to an oxidation reaction (process D-7).
反応は、一般に用いられるアルコールのアルデヒドへの酸化的手法を用いることができ、例えばクロロクロム酸ピリジニウム、二クロム酸ピリジニウムなどの酸化クロム−ピリジン錯体や酸化クロム、炭酸銀、二酸化マンガンなどの金属酸化剤や、塩化オキザリル、無水トリフルオロ酢酸、無水酢酸、DCC、三酸化硫黄−ピリジン錯体などの各種DMSO活性化剤を用いたDMSO酸化、Dess−Martin酸化などが挙げられる。 The reaction can be performed using a commonly used oxidative method of alcohol to aldehyde, such as chromium oxide-pyridine complexes such as pyridinium chlorochromate and pyridinium dichromate, and metal oxides such as chromium oxide, silver carbonate and manganese dioxide. And DMSO oxidation using various DMSO activators such as oxalyl chloride, trifluoroacetic anhydride, acetic anhydride, DCC, sulfur trioxide-pyridine complex, and Dess-Martin oxidation.
また、一般式(17)で表される化合物から製造する場合、加水分解反応と引き続く脱炭酸反応あるいは脱カルボニル化反応により製造することができる(工程D−8)。 Moreover, when manufacturing from the compound represented by General formula (17), it can manufacture by hydrolysis reaction and subsequent decarboxylation reaction or decarbonylation reaction (process D-8).
反応は臭化水素酸または臭化水素含有酢酸を用い加熱還流下に作用させ加水分解と脱炭酸を同時に行うか、またはメタノール、エタノール、THF、DMSO、DMF、ジオキサン溶媒中で水酸化カリウム水溶液、水酸化リチウム水溶液好ましくは水酸化ナトリウム水溶液を常温〜加熱還流下に作用させカルボン酸へと加水分解後、脱炭酸させることもできる。脱炭酸には、ベンゼン、クロロベンゼン、ジクロロベンゼン、ブロモベンゼン、トルエン、キシレンなどの有機溶媒を用い、140〜160℃に加熱して反応させるか、エタノールまたはジオキサン中、2〜10%硫酸水溶液を加えて100℃で加熱するかあるいは50%硫酸中で100℃に加熱撹拌することもできる。また脱カルボニル化は臭化水素酸、臭化水素含有酢酸または50%硫酸中で加熱還流下に行うことがのぞましい。 The reaction is carried out using hydrobromic acid or acetic acid containing hydrogen bromide under heating and refluxing to simultaneously perform hydrolysis and decarboxylation, or an aqueous potassium hydroxide solution in methanol, ethanol, THF, DMSO, DMF, dioxane solvent, Lithium hydroxide aqueous solution, preferably sodium hydroxide aqueous solution is allowed to act at normal temperature to heating under reflux to hydrolyze to carboxylic acid, followed by decarboxylation. For decarboxylation, an organic solvent such as benzene, chlorobenzene, dichlorobenzene, bromobenzene, toluene, xylene is used, and the reaction is carried out by heating to 140 to 160 ° C., or a 2 to 10% aqueous sulfuric acid solution is added in ethanol or dioxane. The mixture can be heated at 100 ° C. or stirred at 50 ° C. in 50% sulfuric acid. Decarbonylation is preferably carried out in hydrobromic acid, acetic acid containing hydrogen bromide or 50% sulfuric acid under heating and reflux.
さらに一般式(4e)で表される化合物から製造する場合にも加水分解反応と脱炭酸反応あるいは脱カルボニル化反応によって上記と同様に製造することができる(工程D−9)。 Furthermore, also when manufacturing from the compound represented by General formula (4e), it can manufacture similarly to the above by a hydrolysis reaction, a decarboxylation reaction, or a decarbonylation reaction (process D-9).
合成経路Dで一般式(14)で表される化合物は上記一般式(18)で表される化合物と一般式(19) In the synthesis route D, the compound represented by the general formula (14) is the same as the compound represented by the general formula (18) and the general formula (19).
[式中、MはLi、ClMg、BrMg、IMgを示し、R3は前述の通り]
で表される化合物を反応させることによって製造することができる(工程D−10)。
[Wherein M represents Li, ClMg, BrMg, IMg, and R 3 is as described above]
It can manufacture by making the compound represented by (process D-10) react.
反応はTHF、エーテル、1,4−ジオキサンを反応溶媒として用い、反応温度としては−78℃〜常温下に行うことができる。 The reaction can be carried out at a reaction temperature of −78 ° C. to room temperature using THF, ether, 1,4-dioxane as a reaction solvent.
前述一般式(6)で表される化合物は一般式(6’) The compound represented by the general formula (6) is represented by the general formula (6 ').
[式中、R1及びR2は前述の通り]
で表される化合物を塩基の存在下、一般式(20)
[Wherein R 1 and R 2 are as described above]
In the presence of a base, the compound represented by the general formula (20)
[式中、R3及びXは前述の通り]
で表される化合物を作用させることによって製造することができる。
[Wherein R 3 and X are as described above]
It can manufacture by making the compound represented by act.
反応は一般式(6’)で表される化合物を水素化ナトリウム、水素化カリウム、ナトリウムアルコキシド、カリウムアルコキシド、LDA、リチウム−2,2,6,6−テトラメチルピペリジド、リチウムビストリメチルシリルアミド、ナトリウムビストリメチルシリルアミド、カリウムビストリメチルシリルアミドを塩基として処理した後、一般式(20)で表される化合物と反応させる。また反応溶媒としてはTHF、1,4−ジオキサン、1,2−ジメトキシエタンなどを用い、−78℃〜常温下に行うことができる。
上記一般式(6’)で表される化合物は合成経路Aで一般式(11)で表される化合物の代わりに一般式(11’)
In the reaction, the compound represented by the general formula (6 ′) is converted into sodium hydride, potassium hydride, sodium alkoxide, potassium alkoxide, LDA, lithium-2,2,6,6-tetramethylpiperidide, lithium bistrimethylsilylamide. Sodium bistrimethylsilylamide and potassium bistrimethylsilylamide are treated as bases and then reacted with the compound represented by the general formula (20). Further, THF, 1,4-dioxane, 1,2-dimethoxyethane or the like can be used as a reaction solvent, and the reaction can be performed at −78 ° C. to room temperature.
The compound represented by the general formula (6 ′) is represented by the general formula (11 ′) instead of the compound represented by the general formula (11) in the synthesis route A.
[式中、R’は前述の通り]
で表される化合物を用いて工程A−4と同様にして合成することができる。
[Wherein R ′ is as described above]
It can synthesize | combine like the process A-4 using the compound represented by these.
また、合成経路Bの一般式(2b)で表される化合物の代わりに一般式(2b’) Further, instead of the compound represented by the general formula (2b) in the synthesis route B, the general formula (2b ′)
[式中、R1及びR6は前述の通り]
で表される化合物を原料として、合成経路Bのっとり製造することもできる。
[Wherein R 1 and R 6 are as described above]
The synthetic route B can also be produced by using the compound represented by
さらに一般式(6’)で表される化合物は合成経路Cで一般式(2c)で表される化合物の代わりに一般式(2c’) Further, the compound represented by the general formula (6 ′) is represented by the general formula (2c ′) instead of the compound represented by the general formula (2c) in the synthesis route C.
[式中、R1は前述の通り]
で表される化合物を原料として用い、合成経路Cにのっとり製造することもできる。
一般式(6)、一般式(6’)及び一般式(18)で表される化合物の中、R1がピラゾロピリジン環の7位でしかもハロゲン原子である化合物、すなわち一般式(21)
[Wherein R 1 is as described above]
The compound represented by the above can be used as a raw material, and can be produced according to synthesis route C.
Of the compounds represented by the general formula (6), general formula (6 ′) and general formula (18), a compound in which R 1 is the 7-position of the pyrazolopyridine ring and is a halogen atom, that is, the general formula (21)
[式中、R7は水素原子又は炭素数1〜5の低級アルキル基を示し、R2及びXは前述の通り]
で表される化合物は、下記合成経路Eによって合成することもできる。
[Wherein R 7 represents a hydrogen atom or a lower alkyl group having 1 to 5 carbon atoms, and R 2 and X are as described above]
The compound represented by can also be synthesized by the following synthesis route E.
<合成経路E> <Synthesis route E>
合成経路Eで一般式(22) In the synthesis route E, the general formula (22)
[式中、Proはメトキシメチル基、t−ブチルジメチルシリル基、t−ブチルジフェニルシリル基、トリイソプロピルシリル基、テトラヒドロピラニル基またはアセチル基などのアルコール保護基を示し、R2及びR7は前述の通り]
で表される化合物は一般式(14)で表される化合物でR1が水素原子である化合物、すなわち一般式(14a)
[Wherein, Pro represents an alcohol protecting group such as a methoxymethyl group, a t-butyldimethylsilyl group, a t-butyldiphenylsilyl group, a triisopropylsilyl group, a tetrahydropyranyl group or an acetyl group, and R 2 and R 7 are As mentioned above]
The compound represented by general formula (14) is a compound represented by general formula (14), in which R 1 is a hydrogen atom, that is, general formula (14a)
[式中、R2及びR3は前述の通り]
で表される化合物、及び一般式(14b)
[Wherein R 2 and R 3 are as described above]
And a compound represented by the general formula (14b)
[式中、R2は前述の通り]
で表される化合物、または一般式(16)で表される化合物でR1が水素原子である化合物、すなわち一般式(16a)
[Wherein R 2 is as described above]
Or a compound represented by the general formula (16) wherein R 1 is a hydrogen atom, that is, the general formula (16a)
[式中、R2は前述の通り]
で表される化合物を各種アルコール保護基導入反応に付すことによって製造することができる(工程E−1)。
[Wherein R 2 is as described above]
It can manufacture by attaching | subjecting the compound represented by various alcohol protective group introduction | transduction reaction (process E-1).
メトキシメチル基を導入する場合、水素化ナトリウム、トリエチルアミン、ジイソプロピルエチルアミンなどの存在下、メトキシメチルクロリドまたはメトキシメチルブロミドをTHF、アセトニトリル好ましくは塩化メチレン中で0℃〜常温下に作用させることが望ましい。また、t−ブチルジメチルシリル基、t−ブチルジフェニルシリル基、トリイソプロピルシリル基を導入する場合、反応はトリエチルアミン、イミダゾールなどの存在下、対応するシリルクロリド、シリルブロミド、シリルトリフルオロメタンスルホナートをTHF、DMF、アセトニトリル、塩化メチレンなどの溶媒中、0℃〜常温で行うことができる。テトラヒドロピラニル基を導入するにはジヒドロピランの存在下、パラトルエンスルホン酸などの酸触媒を加え、塩化メチレン中作用させることが好ましい。さらにアセチル基を導入する場合には、アセチルクロリド、アセチルブロミド、または無水酢酸をトリエチルアミン、ジイソプロピルエチルアミン、ピリジンなどの有機塩基の存在下、THF、1,4−ジオキサン、塩化メチレンを溶媒として用いるいか、あるいはピリジンを溶媒兼用として用いて0℃〜常温下に行うことができる。 When a methoxymethyl group is introduced, it is desirable that methoxymethyl chloride or methoxymethyl bromide is allowed to act in THF, acetonitrile, preferably methylene chloride at 0 ° C. to room temperature in the presence of sodium hydride, triethylamine, diisopropylethylamine, and the like. In addition, when a t-butyldimethylsilyl group, a t-butyldiphenylsilyl group, or a triisopropylsilyl group is introduced, the reaction is carried out in the presence of triethylamine, imidazole, etc. in the presence of the corresponding silyl chloride, silyl bromide, silyl trifluoromethanesulfonate. , DMF, acetonitrile, methylene chloride, etc. In order to introduce a tetrahydropyranyl group, it is preferable to add an acid catalyst such as p-toluenesulfonic acid in the presence of dihydropyran and to act in methylene chloride. Further, when introducing an acetyl group, acetyl chloride, acetyl bromide, or acetic anhydride is used in the presence of an organic base such as triethylamine, diisopropylethylamine, pyridine, THF, 1,4-dioxane, methylene chloride as a solvent, Alternatively, the reaction can be performed at 0 ° C. to room temperature using pyridine as a solvent.
合成経路Eで一般式(23) In the synthesis route E, the general formula (23)
[式中、R2、R7、X及びProは前述の通り]
で表される化合物は上記一般式(22)で表される化合物をハロゲン化することによって製造することができる(工程E−2)。
[Wherein R 2 , R 7 , X and Pro are as described above]
Can be produced by halogenating the compound represented by the general formula (22) (step E-2).
反応は、ブチルリチウム、リチウムビストリメチルシリルアミド、好ましくはLDAを塩基として用い、THF溶媒中、−78〜0℃にて反応させた後、N−クロロコハク酸イミド(NCS)、N−ブロモコハク酸イミド(NBS)、N−ヨウドコハク酸イミド(NIS)、臭素、ヨウ素、1,2−ジブロモエタンあるいは1,2−ジヨードエタンを作用させることが好ましい。 In the reaction, butyllithium, lithium bistrimethylsilylamide, preferably LDA is used as a base, reacted in THF solvent at −78 to 0 ° C., and then N-chlorosuccinimide (NCS), N-bromosuccinimide ( NBS), N-iodosuccinimide (NIS), bromine, iodine, 1,2-dibromoethane or 1,2-diiodoethane is preferably used.
合成経路Eで前記一般式(21)で表される化合物は上記一般式(23)で表される化合物を脱保護し、酸化することによって製造することができる(工程E−3)。 In the synthesis route E, the compound represented by the general formula (21) can be produced by deprotecting and oxidizing the compound represented by the general formula (23) (step E-3).
脱保護反応はメトキシメチル基、テトラヒドロピラニル基の場合、塩化水素含有メタノール、エタノール、酢酸エチル、ジエチルエーテルを用い0℃〜常温下にて反応させることが好ましい。シリル保護基の場合、フッ化カリウム、フッ化セシウム、テトラブチルアンモニウムフルオリドを用い、アセトニトリルまたはTHF溶媒中0℃〜常温下に行うことが好ましい。またアセチル基の場合、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化リチウム水溶液を用い、THF、メタノール、エタノール、1,4−ジオキサンなどを溶媒として用い0℃〜常温下に行うことができる。酸化反応はクロロクロム酸ピリジニウム、二クロム酸ピリジニウムなどの酸化クロム−ピリジン錯体や酸化クロム、炭酸銀、二酸化マンガンなどの金属酸化剤や、塩化オキザリル、無水トリフルオロ酢酸、無水酢酸、DCC、三酸化硫黄−ピリジン錯体などの各種DMSO活性化剤を用いたDMSO酸化、Dess−Martin酸化などが挙げられる。 In the case of a methoxymethyl group and a tetrahydropyranyl group, the deprotection reaction is preferably carried out using hydrogen chloride-containing methanol, ethanol, ethyl acetate, and diethyl ether at 0 ° C. to room temperature. In the case of a silyl protecting group, it is preferable to use potassium fluoride, cesium fluoride, tetrabutylammonium fluoride in acetonitrile or THF solvent at 0 ° C. to room temperature. In the case of an acetyl group, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, or a lithium hydroxide aqueous solution is used, and THF, methanol, ethanol, 1,4-dioxane or the like can be used as a solvent at 0 ° C. to room temperature. Oxidation reactions include chromium oxide-pyridine complexes such as pyridinium chlorochromate and pyridinium dichromate, metal oxidizers such as chromium oxide, silver carbonate and manganese dioxide, oxalyl chloride, trifluoroacetic anhydride, acetic anhydride, DCC, and trioxide. DMSO oxidation using various DMSO activators such as sulfur-pyridine complex, Dess-Martin oxidation and the like can be mentioned.
前述一般式(21)で表される化合物は下記合成経路Fによっても製造することができる。 The compound represented by the general formula (21) can also be produced by the following synthesis route F.
<合成経路F> <Synthesis route F>
合成経路Fで一般式(24) In the synthesis route F, the general formula (24)
[式中、R2及びR7は前述の通り]
で表される化合物は、一般式(6)で表される化合物でR1が水素原子である化合物、すなわち一般式(6a)
[Wherein R 2 and R 7 are as described above]
The compound represented by general formula (6) is a compound represented by general formula (6), in which R 1 is a hydrogen atom, that is, general formula (6a)
[式中、R2及びR3は前述の通り]
で表される化合物、及び一般式(6’)で表される化合物でR1が水素原子である化合物、すなわち一般式(6’a)
[Wherein R 2 and R 3 are as described above]
And a compound represented by the general formula (6 ′) in which R 1 is a hydrogen atom, that is, the general formula (6′a)
[式中、R2は前述の通り]
で表される化合物、または一般式(18)で表される化合物でR1が水素原子である化合物、すなわち一般式(18a)
[Wherein R 2 is as described above]
Or a compound represented by the general formula (18) wherein R 1 is a hydrogen atom, that is, the general formula (18a)
[式中、R2は前述の通り]
で表される化合物をエチレングリコールと反応させることによって製造することができる(工程F−1)。
[Wherein R 2 is as described above]
It can manufacture by making the compound represented by ethylene glycol react (process F-1).
反応は、パラトルエンスルホン酸、ピリジニウムパラトルエンスルホネートを触媒量用い、ベンゼン、トルエン、キシレン中、加熱還流下に反応させることが好ましい。また、Dean-Starkをとりつけ脱水下に行うこともできる。 The reaction is preferably carried out using benzene, toluene or xylene under heating and refluxing using a catalytic amount of paratoluenesulfonic acid or pyridinium paratoluenesulfonate. Dean-Stark can also be attached and dehydrated.
合成経路Fで一般式(25) In the synthesis route F, the general formula (25)
[式中、R2、R7及びXは前述の通り]
で表される化合物は上記一般式(24)で表される化合物をハロゲン化することによって製造することができる(工程F−2)。
[Wherein R 2 , R 7 and X are as described above]
Can be produced by halogenating the compound represented by the general formula (24) (step F-2).
反応は、ブチルリチウム、リチウムビストリメチルシリルアミド、好ましくはLDAを塩基として用い、THF溶媒中、−78〜0℃にて反応させた後、NCS、NBS、NIS、臭素、ヨウ素、1,2−ジブロモエタンあるいは1,2−ジヨードエタンを作用させることが好ましい。 The reaction is performed using butyllithium, lithium bistrimethylsilylamide, preferably LDA as a base, in a THF solvent at −78 to 0 ° C., then NCS, NBS, NIS, bromine, iodine, 1,2-dibromo. It is preferable to act on ethane or 1,2-diiodoethane.
合成経路Fで一般式(21)で表される化合物は上記一般式(25)で表される化合物を脱保護することによって製造することができる(工程F−3)。 The compound represented by general formula (21) in the synthetic pathway F can be manufactured by deprotecting the compound represented by the said general formula (25) (process F-3).
反応はアセトン溶媒中、パラトルエンスルホン酸、ピリジニウムパラトルエンスルホネートなどの酸触媒を用い、常温〜加熱還流下に作用させるか、あるいは塩化水素含有メタノール、エタノール、酢酸エチル、ジエチルエーテルを用い0℃〜常温下にて反応させることが好ましい。 The reaction is carried out in an acetone solvent using an acid catalyst such as p-toluenesulfonic acid, pyridinium p-toluenesulfonate, and the reaction is carried out at normal temperature to heating under reflux, or using hydrogen chloride-containing methanol, ethanol, ethyl acetate, diethyl ether at 0 ° C to It is preferable to make it react at normal temperature.
一般式(6)、(6’)及び(18)で表される化合物の中、R1がピラゾロピリジン環の7位でかつ置換基を有しても良い炭素数1〜4の低級アルコキシ基、炭素数1〜4の低級アルキルチオ基又は炭素数1〜4の低級アルキルアミノ基である化合物、すなわち一般式(26) Of the compounds represented by the general formulas (6), (6 ′) and (18), R 1 is the 7-position of the pyrazolopyridine ring and optionally having 1 to 4 carbon atoms. Group, a compound having a lower alkylthio group having 1 to 4 carbon atoms or a lower alkylamino group having 1 to 4 carbon atoms, that is, the general formula (26)
[式中、Yは置換基を有しても良い炭素数1〜4の低級アルコキシ基、炭素数1〜4の低級アルキルチオ基又は炭素数1〜4の低級アルキルアミノ基を、R2及びR7は前述の通り]
で表される化合物は前述一般式(21)で表される化合物を対応する化合物に誘導することによって製造することができる。
[In the formula, Y is an optionally substituted lower alkoxy group having 1 to 4 carbon atoms, a lower alkylthio group or a lower alkylamino group having 1 to 4 carbon atoms having 1 to 4 carbon atoms, R 2 and R 7 is as described above]
Can be produced by derivatizing the compound represented by the general formula (21) into the corresponding compound.
置換基を有しても良い炭素数1〜4の低級アルコキシ基、炭素数1〜4の低級アルキルチオ基の場合、対応するアルコールまたはチオールに水素化ナトリウム又は水素化カリウムを塩基として加え、THF、DMSO、好ましくはDMFを溶媒として用い常温〜60℃にて加熱することが好ましい。
炭素数1〜4の低級アルキルアミノ基の場合、対応するアミンをメタノール、THF好ましくはDMF溶媒中、60〜70℃にて反応させることが好ましい。
In the case of a lower alkoxy group having 1 to 4 carbon atoms and a lower alkylthio group having 1 to 4 carbon atoms which may have a substituent, sodium hydride or potassium hydride is added as a base to the corresponding alcohol or thiol, THF, It is preferable to use DMSO, preferably DMF as a solvent and heat at normal temperature to 60 ° C.
In the case of a lower alkylamino group having 1 to 4 carbon atoms, the corresponding amine is preferably reacted at 60 to 70 ° C. in methanol, THF, preferably DMF solvent.
一般式(6)、(6’)及び(18)で表される化合物の中、R1がピラゾロピリジン環の7位でかつヒドロキシメチル基である化合物すなわち一般式(27) Of the compounds represented by the general formulas (6), (6 ′) and (18), a compound in which R 1 is the 7-position of the pyrazolopyridine ring and is a hydroxymethyl group, that is, the general formula (27)
[式中、R2、R7は前述の通り]
で表される化合物は、下記合成経路Gに示すように一般式(24)で表される化合物を原料として合成することができる。
[Wherein R 2 and R 7 are as described above]
As shown in the following synthesis route G, the compound represented by can be synthesized using the compound represented by the general formula (24) as a raw material.
<合成経路G> <Synthetic route G>
合成経路Gで一般式(29) In the synthesis route G, the general formula (29)
[式中、R2、R7は前述の通り]
で表される化合物は上記一般式(24)で表される化合物をホルミル化することによって製造することができる(工程G−1)。
[Wherein R 2 and R 7 are as described above]
Can be produced by formylating the compound represented by the general formula (24) (step G-1).
反応は、ブチルリチウム、リチウムビストリメチルシリルアミド、好ましくはLDAを塩基として用い、THF溶媒中、−78〜0℃にて反応させた後、ギ酸エチルまたはDMFを作用させることが好ましい。 In the reaction, butyl lithium, lithium bistrimethylsilylamide, preferably LDA is used as a base, and after reacting in THF solvent at −78 to 0 ° C., ethyl formate or DMF is preferably allowed to act.
合成経路Gで一般式(30) In the synthesis route G, the general formula (30)
[式中、R2、R7は前述の通り]
で表される化合物は上記一般式(29)で表される化合物を還元することによって製造することができる(工程G−2)。
[Wherein R 2 and R 7 are as described above]
Can be produced by reducing the compound represented by the general formula (29) (step G-2).
反応は、水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化ジイソブチルアルミニウム、水素化リチウムアルミニウムなどの還元剤を用い、反応溶媒としては、水素化ホウ素ナトリウムの場合、THFなどのエーテル系溶媒、好ましくはエタノール、メタノールなどのアルコール系溶媒を用い、水素化ホウ素リチウムの場合、THF、好ましくはTHFにエタノールなどのアルコール系溶媒を添加して用い、水素化ジイソブチルアルミニウムの場合、
THF、トルエン、塩化メチレンなどを用い、水素化リチウムアルミニウムの場合、THF、ジエチルエーテルなどのエーテル系溶媒を用い0℃〜常温下に行うことができる。
The reaction uses a reducing agent such as sodium borohydride, lithium borohydride, diisobutylaluminum hydride, lithium aluminum hydride, and the reaction solvent is an ether solvent such as THF in the case of sodium borohydride, preferably In the case of lithium borohydride using an alcohol solvent such as ethanol and methanol, THF, preferably used by adding an alcohol solvent such as ethanol to THF, in the case of diisobutylaluminum hydride,
In the case of lithium aluminum hydride using THF, toluene, methylene chloride or the like, the reaction can be performed at 0 ° C. to room temperature using an ether solvent such as THF or diethyl ether.
合成経路Gで一般式(27)で表される化合物は上記一般式(30)で表される化合物を脱保護することによって製造することができる(工程G−3)。 The compound represented by General Formula (27) in Synthesis Route G can be produced by deprotecting the compound represented by General Formula (30) (Step G-3).
反応はアセトン溶媒中、パラトルエンスルホン酸、ピリジニウムパラトルエンスルホネートなどの酸触媒を用い、常温〜加熱還流下に作用させるか、あるいは塩化水素含有メタノール、エタノール、酢酸エチル、ジエチルエーテルを用い0℃〜常温下にて反応させることが好ましい。 The reaction is carried out in an acetone solvent using an acid catalyst such as p-toluenesulfonic acid, pyridinium p-toluenesulfonate, and the reaction is carried out at normal temperature to heating under reflux, or using hydrogen chloride-containing methanol, ethanol, ethyl acetate, diethyl ether at 0 ° C to It is preferable to make it react at normal temperature.
一般式(6)、(6’)及び(18)で表される化合物の中、R1がピラゾロピリジン環の7位でかつ1位にヒドロキシ基を有する炭素数2〜4の低級アルキル基である化合物すなわち一般式(28) Among the compounds represented by the general formulas (6), (6 ′) and (18), R 1 is the 7-position of the pyrazolopyridine ring and the lower alkyl group having 2 to 4 carbon atoms having a hydroxy group at the 1-position. A compound of the general formula (28)
[式中、R8は炭素数1〜3の低級アルキル基を示し、R2、R7は前述の通り]
で表される化合物は、下記合成経路Hに示すように一般式(29)で表される化合物を原料として合成することができる。
<合成経路H>
[Wherein R 8 represents a lower alkyl group having 1 to 3 carbon atoms, and R 2 and R 7 are as described above]
The compound represented by general formula (29) can be synthesized using the compound represented by the general formula (29) as a raw material, as shown in Synthesis Route H below.
<Synthetic route H>
合成経路Hで一般式(30) General formula (30) in synthesis route H
[式中、R2、R7及びR8は前述の通り]
で表される化合物は上記一般式(29)で表される化合物に一般式(19’)
[Wherein R 2 , R 7 and R 8 are as described above]
The compound represented by general formula (19 ′) is the same as the compound represented by general formula (29).
[式中、R8及びMは前述の通り]
で表される化合物を反応させることによって製造することができる(工程H−1)。
[Wherein R 8 and M are as described above]
It can manufacture by making the compound represented by (process H-1) react.
反応は、THF、エーテル、1,4−ジオキサンを反応溶媒として用い、反応温度としては−78℃〜常温下に行うことができる。 The reaction can be carried out using THF, ether, 1,4-dioxane as a reaction solvent and a reaction temperature of −78 ° C. to room temperature.
合成経路Hで一般式(28)で表される化合物は、上記一般式(30)で表される化合物を脱保護することによって製造することができる(工程H−2)。 The compound represented by general formula (28) in the synthetic pathway H can be manufactured by deprotecting the compound represented by the said general formula (30) (process H-2).
反応はアセトン溶媒中、パラトルエンスルホン酸、ピリジニウムパラトルエンスルホネートなどの酸触媒を用い、常温〜加熱還流下に作用させるか、あるいは塩化水素含有メタノール、エタノール、酢酸エチル、ジエチルエーテルを用い0℃〜常温下にて反応させることが好ましい。 The reaction is carried out in an acetone solvent using an acid catalyst such as p-toluenesulfonic acid, pyridinium p-toluenesulfonate, and the reaction is carried out at normal temperature to heating under reflux, or using hydrogen chloride-containing methanol, ethanol, ethyl acetate, diethyl ether at 0 ° C to It is preferable to make it react at normal temperature.
一般式(6)、(6’)及び(18)で表される化合物の中、R1がピラゾロピリジン環の7位でかつ炭素数1〜4の低級アルコキシ基を有するメチル基である化合物すなわち一般式(27’) Among the compounds represented by the general formulas (6), (6 ′) and (18), a compound in which R 1 is a methyl group having a lower alkoxy group having 1 to 4 carbon atoms at the 7-position of the pyrazolopyridine ring That is, the general formula (2 ')
[式中、R2、R3及びR7は前述の通り]
で表される化合物は下記合成経路Iに示すように一般式(22)および(30)で表される化合物を原料として合成することができる。
[Wherein R 2 , R 3 and R 7 are as described above]
As shown in the following synthesis route I, the compound represented by can be synthesized using the compounds represented by the general formulas (22) and (30) as raw materials.
<合成経路I> <Synthetic route I>
合成経路Iで一般式(29’) In the synthesis route I, the general formula (29 ')
[式中、R2、R7及びProは前述の通り]
で表される化合物は上記一般式(22)で表される化合物をホルミル化することによって製造することができる(工程I−1)。
[Wherein R 2 , R 7 and Pro are as described above]
Can be produced by formylating the compound represented by the general formula (22) (step I-1).
反応は、ブチルリチウム、リチウムビストリメチルシリルアミド、好ましくはLDAを塩基として用い、THF溶媒中、−78〜0℃にて反応させた後、ギ酸エチルまたはDMFを作用させることが好ましい。 In the reaction, butyl lithium, lithium bistrimethylsilylamide, preferably LDA is used as a base, and after reacting in THF solvent at −78 to 0 ° C., ethyl formate or DMF is preferably allowed to act.
合成経路Iで一般式(30’) In the synthesis route I, the general formula (30 ')
[式中、R2、R7及びProは前述の通り]
で表される化合物は上記一般式(29’)で表される化合物を還元することによって製造することができる(工程H−2)。
[Wherein R 2 , R 7 and Pro are as described above]
Can be produced by reducing the compound represented by the general formula (29 ′) (step H-2).
反応は、水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化ジイソブチルアルミニウム、水素化リチウムアルミニウムなどの還元剤を用い、反応溶媒としては、水素化ホウ素ナトリウムの場合、THFなどのエーテル系溶媒、好ましくはエタノール、メタノールなどのアルコール系溶媒を用い、水素化ホウ素リチウムの場合、THF、好ましくはTHFにエタノールなどのアルコール系溶媒を添加して用い、水素化ジイソブチルアルミニウムの場合、
THF、トルエン、塩化メチレンなどを用い、水素化リチウムアルミニウムの場合、THF、ジエチルエーテルなどのエーテル系溶媒を用い0℃〜常温下に行うことができる。
The reaction uses a reducing agent such as sodium borohydride, lithium borohydride, diisobutylaluminum hydride, lithium aluminum hydride, and the reaction solvent is an ether solvent such as THF in the case of sodium borohydride, preferably In the case of lithium borohydride using an alcohol solvent such as ethanol and methanol, THF, preferably used by adding an alcohol solvent such as ethanol to THF, in the case of diisobutylaluminum hydride,
In the case of lithium aluminum hydride using THF, toluene, methylene chloride or the like, the reaction can be performed at 0 ° C. to room temperature using an ether solvent such as THF or diethyl ether.
合成経路Iで一般式(31) In the synthesis route I, the general formula (31)
[式中、R2、R3、R7及びProは前述の通り]
で表される化合物は上記一般式(30’)で表される化合物を酸化銀存在下、前述一般式(20)で表される化合物と反応させることによって製造することができる(工程I−3)。
反応は、アセトニトリル、DMFなどを溶媒として用い、常温〜80℃にて行うことができる。
[Wherein R 2 , R 3 , R 7 and Pro are as described above]
The compound represented by general formula (30 ′) can be produced by reacting the compound represented by general formula (30 ′) with the compound represented by general formula (20) in the presence of silver oxide (step I-3). ).
The reaction can be performed at room temperature to 80 ° C. using acetonitrile, DMF or the like as a solvent.
合成経路Iで一般式(31’) In the synthesis route I, the general formula (31 ')
[式中、R2、R3、及びR7は前述の通り]
で表される化合物は上記一般式(30’)で表される化合物を酸化銀存在下、前述一般式(20)で表される化合物と反応させることによって製造することができる(工程I−5)。
反応は、アセトニトリルまたはDMFなどを溶媒として用い、常温〜80℃にて行うことができる。
[Wherein R 2 , R 3 and R 7 are as described above]
The compound represented by general formula (30 ′) can be produced by reacting the compound represented by general formula (30 ′) with the compound represented by general formula (20) in the presence of silver oxide (step I-5). ).
The reaction can be performed at room temperature to 80 ° C. using acetonitrile or DMF as a solvent.
合成経路Iで一般式(27’) In the synthesis route I, the general formula (27 ')
[式中、R2、R3、及びR7は前述の通り]
で表される化合物は上記一般式(31)で表される化合物を脱保護後酸化反応に付すことによって製造することができる(工程I−4)。
[Wherein R 2 , R 3 and R 7 are as described above]
Can be produced by subjecting the compound represented by the general formula (31) to an oxidation reaction after deprotection (step I-4).
脱保護反応は、メトキシメチル基、テトラヒドロピラニル基の場合、塩化水素含有メタノール、エタノール、酢酸エチル、ジエチルエーテルを用い0℃〜常温下にて反応させることが好ましい。シリル保護基の場合、フッ化カリウム、フッ化セシウム、テトラブチルアンモニウムフルオリドを用い、アセトニトリルまたはTHF溶媒中0℃〜常温下に行うことが好ましい。またアセチル基の場合、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化リチウム水溶液を用い、THF、メタノール、エタノール、1,4−ジオキサンなどを溶媒として用い0℃〜常温下に行うことができる。酸化反応は、クロロクロム酸ピリジニウム、二クロム酸ピリジニウムなどの酸化クロム−ピリジン錯体や酸化クロム、炭酸銀、二酸化マンガンなどの金属酸化剤や、塩化オキザリル、無水トリフルオロ酢酸、無水酢酸、DCC、三酸化硫黄−ピリジン錯体などの各種DMSO活性化剤を用いたDMSO酸化、Dess−Martin酸化などが挙げられる。 In the case of a methoxymethyl group or a tetrahydropyranyl group, the deprotection reaction is preferably carried out using hydrogen chloride-containing methanol, ethanol, ethyl acetate, and diethyl ether at 0 ° C. to room temperature. In the case of a silyl protecting group, it is preferable to use potassium fluoride, cesium fluoride, tetrabutylammonium fluoride in acetonitrile or THF solvent at 0 ° C. to room temperature. In the case of an acetyl group, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, or a lithium hydroxide aqueous solution is used, and THF, methanol, ethanol, 1,4-dioxane or the like can be used as a solvent at 0 ° C. to room temperature. Oxidation reactions include chromium oxide-pyridine complexes such as pyridinium chlorochromate and pyridinium dichromate, metal oxidizing agents such as chromium oxide, silver carbonate and manganese dioxide, oxalyl chloride, trifluoroacetic anhydride, acetic anhydride, DCC, Examples include DMSO oxidation using various DMSO activators such as sulfur oxide-pyridine complex, and Dess-Martin oxidation.
上記一般式(27’)で表される化合物は前記一般式(31’)で表される化合物を脱保護することによっても製造することができる(工程I−6)。 The compound represented by the general formula (27 ') can also be produced by deprotecting the compound represented by the general formula (31') (Step I-6).
反応は、アセトン溶媒中、パラトルエンスルホン酸、ピリジニウムパラトルエンスルホネートなどの酸触媒を用い、常温〜加熱還流下に作用させるか、あるいは塩化水素含有メタノール、エタノール、酢酸エチル、ジエチルエーテルを用い0℃〜常温下にて反応させることが好ましい。 The reaction is carried out using an acid catalyst such as p-toluenesulfonic acid and pyridinium p-toluenesulfonate in an acetone solvent at room temperature to heating under reflux, or using hydrogen chloride-containing methanol, ethanol, ethyl acetate, diethyl ether at 0 ° C. -It is preferable to make it react at normal temperature.
前述一般式(1b)で表される化合物の中、R1が炭素数1〜4の低級アルカノイル基である化合物すなわち一般式(32) Of the compounds represented by the general formula (1b), a compound in which R 1 is a lower alkanoyl group having 1 to 4 carbon atoms, that is, the general formula (32)
[式中、R2、R3、R4、及びR8は前述の通り]
で表される化合物は一般式(33)
[Wherein R 2 , R 3 , R 4 , and R 8 are as described above]
The compound represented by general formula (33)
[式中、R2、R3、R4、及びR8は前述の通り]
で表される化合物を酸化することによって製造することができる。
[Wherein R 2 , R 3 , R 4 , and R 8 are as described above]
It can manufacture by oxidizing the compound represented by these.
反応は、クロロクロム酸ピリジニウム、二クロム酸ピリジニウムなどの酸化クロム−ピリジン錯体や酸化クロム、炭酸銀、二酸化マンガンなどの金属酸化剤や、塩化オキザリル、無水トリフルオロ酢酸、無水酢酸、DCC、三酸化硫黄−ピリジン錯体などの各種DMSO活性化剤を用いたDMSO酸化、Dess−Martin酸化などが挙げられる。 Reactions include chromium oxide-pyridine complexes such as pyridinium chlorochromate and pyridinium dichromate, metal oxidants such as chromium oxide, silver carbonate, manganese dioxide, oxalyl chloride, trifluoroacetic anhydride, acetic anhydride, DCC, trioxide DMSO oxidation using various DMSO activators such as sulfur-pyridine complex, Dess-Martin oxidation and the like can be mentioned.
前述一般式(1)で表される化合物の中、R5が置換基を有しても良いベンジル基又はピリジルメチル基である化合物すなわち一般式(1c) Among the compounds represented by the general formula (1), a compound in which R 5 is a benzyl group or a pyridylmethyl group which may have a substituent, that is, the general formula (1c)
[式中、R9は置換基を有しても良いフェニル基又はピリジン環を示し、R1、R2、R3及びR4は前述のとおり]
で表される化合物は前述一般式(1b)と一般式(34)
[Wherein R 9 represents an optionally substituted phenyl group or pyridine ring, and R 1 , R 2 , R 3 and R 4 are as described above]
The compounds represented by general formula (1b) and general formula (34)
[式中、R8及びXは前述の通り]
で表される化合物を塩基の存在下に反応させることによって製造することができる。
[Wherein R 8 and X are as described above]
Can be produced by reacting in the presence of a base.
反応は、水素化ナトリウム、ナトリウムアルコキシド、カリウムアルコキシドなどを塩基として用い、反応溶媒としてTHFまたはDMFを用いて0℃〜60℃にて行うことが望ましい。 The reaction is desirably performed at 0 ° C. to 60 ° C. using sodium hydride, sodium alkoxide, potassium alkoxide or the like as a base and THF or DMF as a reaction solvent.
実施例
次に本発明を具体例によって説明するが、これらの例によって本発明が限定されるものではない。
EXAMPLES Next, the present invention will be described with reference to specific examples, but the present invention is not limited to these examples.
<実施例1>
N-アミノ−3−クロロピリジニウムメシチレンスルホネート
<Example 1>
N-amino-3-chloropyridinium mesitylene sulfonate
N−ヒドロキシアセトイミド酸エチル(47.2 g) のDMF(200 mL)溶液を0℃にて撹拌下、トリエチルアミン(70.0 mL)、ついでメシチレンスルホニルクロリド(100 g)をゆっくりと加えた。同温にて1.5時間撹拌後、氷水を加え、酢酸エチル:ヘキサン=1:1の混液にて抽出後、水、飽和食塩水の順に洗浄し、無水硫酸ナトリウムで乾燥後、濃縮し無色固形物を得た。得られた固形物をジオキサン(100 mL)に溶解し、0℃冷却撹拌下に70%HClO4(40.0 mL)をゆっくりと滴下した。滴下後、同温にて30分撹拌し、氷水を加え析出物を濾取し(注意:この固形物を完全に乾燥状態にしてしまうと爆発する)、水洗後ぬれた状態のままで塩化メチレン約300mLに溶解し、有機層を分取後、硫酸マグネシウムで乾燥した。3−クロロピリジン(43.0 g)の塩化メチレン(40.0 mL)溶液を0℃にて撹拌下、上記の硫酸マグネシウムで乾燥した塩化メチレン溶液を滴下した。その後、常温にて30分撹拌し約350 mLのジエチルエーテルを加え、析出した結晶を濾取した。エーテルにて洗浄後、乾燥物(69.0 g)を無色粉末として得た。
元素分析(%):C14H17ClN2O3Sとして
C H N
計算値 51.14 5.21 8.52
実測値 51.20 5.10 8.47
While stirring a solution of ethyl N-hydroxyacetimidate (47.2 g) in DMF (200 mL) at 0 ° C., triethylamine (70.0 mL) and then mesitylenesulfonyl chloride (100 g) were slowly added. After stirring at the same temperature for 1.5 hours, ice water was added, and the mixture was extracted with a mixed solution of ethyl acetate: hexane = 1: 1, washed with water and then saturated brine, dried over anhydrous sodium sulfate, and concentrated to a colorless solid. Got. The resulting solid was dissolved in dioxane (100 mL), and slowly added dropwise 0 ℃ cooled stirred 70% under HClO 4 (40.0 mL). After dropwise addition, the mixture is stirred at the same temperature for 30 minutes, ice water is added, and the precipitate is collected by filtration (Caution: If this solid is completely dried, it explodes). After washing with water, methylene chloride remains wet. After dissolving in about 300 mL, the organic layer was separated and dried over magnesium sulfate. While stirring a solution of 3-chloropyridine (43.0 g) in methylene chloride (40.0 mL) at 0 ° C., the methylene chloride solution dried over magnesium sulfate was added dropwise. Thereafter, the mixture was stirred at room temperature for 30 minutes, about 350 mL of diethyl ether was added, and the precipitated crystals were collected by filtration. After washing with ether, a dried product (69.0 g) was obtained as a colorless powder.
Elemental analysis (%): as C 14 H 17 ClN 2 O 3 S
CHN
Calculated 51.14 5.21 8.52
Actual value 51.20 5.10 8.47
<実施例2−16>
各種ピリジン誘導体を用いて上記実施例1と同様に反応させ表1に示す化合物を合成した。
<Example 2-16>
The compounds shown in Table 1 were synthesized by reacting in the same manner as in Example 1 using various pyridine derivatives.
実施例2:1H-NMR (400 MHz, DMSO-d6) δ 2.17 (3H, s), 2.49 (6H, s), 6.74 (2H, s), 8.05-8.11 (1H, m), 8.28-8.32 (1H, m), 8.68 (1H, t, J = 6.4 Hz), 8.71(2H, brs), 9.06-9.08(1H, m). Example 2: 1 H-NMR (400 MHz, DMSO-d 6 ) δ 2.17 (3H, s), 2.49 (6H, s), 6.74 (2H, s), 8.05-8.11 (1H, m), 8.28- 8.32 (1H, m), 8.68 (1H, t, J = 6.4 Hz), 8.71 (2H, brs), 9.06-9.08 (1H, m).
実施例3:1H-NMR (400 MHz, DMSO-d6) δ 2.16 (3H, s), 2.48 (3H, s), 2.49(6H, s), 6.73 (2H, br s), 8.59-8.65 (1H, m), 8.91 (2H, brs), 9.00-9.01(2H, m). Example 3: 1 H-NMR (400 MHz, DMSO-d 6 ) δ 2.16 (3H, s), 2.48 (3H, s), 2.49 (6H, s), 6.73 (2H, br s), 8.59-8.65 (1H, m), 8.91 (2H, brs), 9.00-9.01 (2H, m).
実施例4:1H-NMR (400 MHz, DMSO-d6) δ 2.16 (3H, s), 2.48 (3H, s), 2.49(6H, s), 6.73 (2H, br s), 8.71 (2H, brs), 8.78-8.79 (1H, m), 9.01-9.02(1H, m). Example 4: 1 H-NMR (400 MHz, DMSO-d 6 ) δ 2.16 (3H, s), 2.48 (3H, s), 2.49 (6H, s), 6.73 (2H, br s), 8.71 (2H , brs), 8.78-8.79 (1H, m), 9.01-9.02 (1H, m).
実施例5:1H-NMR (400 MHz, DMSO-d6) δ 2.17 (3H, s), 2.49 (6H, s), 3.98(3H, s), 6.74 (2H, s), 8.20-8.21 (1H, m), 8.58 (2H, brs), 8.59-8.60(1H, m), 8.67-8.68(1H, m). Example 5: 1 H-NMR (400 MHz, DMSO-d 6 ) δ 2.17 (3H, s), 2.49 (6H, s), 3.98 (3H, s), 6.74 (2H, s), 8.20-8.21 ( 1H, m), 8.58 (2H, brs), 8.59-8.60 (1H, m), 8.67-8.68 (1H, m).
実施例6:1H-NMR (400 MHz, DMSO-d6) δ 2.17 (3H, s), 2.49 (6H, s), 3.98 (3H, s), 6.74 (2H, s), 8.19 (1H, s), 8.60 (2H, brs), 8.67 (1H, s). Example 6: 1 H-NMR (400 MHz, DMSO-d 6 ) δ 2.17 (3H, s), 2.49 (6H, s), 3.98 (3H, s), 6.74 (2H, s), 8.19 (1H, s), 8.60 (2H, brs), 8.67 (1H, s).
実施例7:1H-NMR (400 MHz, DMSO-d6) δ 2.33 (3H, s), 2.50 (6H, s), 4.69 (2H, s), 5.86 (1H, brs), 6.74 (2H, s), 7.96 (1H, dd, J = 6.1, 8.0 Hz), 8.15 (1H, d, J = 8.0 Hz), 8.50 (2H, s), 8.66 (1H, d, J = 6.1 Hz), 8.71 (1H, s). Example 7: 1 H-NMR (400 MHz, DMSO-d 6 ) δ 2.33 (3H, s), 2.50 (6H, s), 4.69 (2H, s), 5.86 (1H, brs), 6.74 (2H, s), 7.96 (1H, dd, J = 6.1, 8.0 Hz), 8.15 (1H, d, J = 8.0 Hz), 8.50 (2H, s), 8.66 (1H, d, J = 6.1 Hz), 8.71 ( 1H, s).
実施例8:1H-NMR (400 MHz, DMSO-d6) δ 1.35 (3H, d, J = 6.7 Hz), 2.14 (3H, s), 2.47 (6H, s), 4.84 (1H, q, J = 6.7 Hz), 6.72 (2H, s), 7.63 (1H, dd, J = 4.9, 7.9 Hz), 8.07-8.09 (1H, m), 8.58 (1H, dd, J = 1.5, 4.9 Hz), 8.66 (1H, s). Example 8: 1 H-NMR (400 MHz, DMSO-d 6 ) δ 1.35 (3H, d, J = 6.7 Hz), 2.14 (3H, s), 2.47 (6H, s), 4.84 (1H, q, J = 6.7 Hz), 6.72 (2H, s), 7.63 (1H, dd, J = 4.9, 7.9 Hz), 8.07-8.09 (1H, m), 8.58 (1H, dd, J = 1.5, 4.9 Hz), 8.66 (1H, s).
実施例9:1H-NMR (400 MHz, DMSO-d6) δ 2.14 (3H, s), 2.47 (6H, s), 3.55 (3H, s), 3.72-3.78 (2H, m), 4.01-4.04 (2H, m), 6.72 (2H, s), 7.98 (1H, dd, J = 6.7, 7.9 Hz), 8.22 (1H, d, J = 7.9 Hz), 8.70-8.72 (1H, m), 8.77 (1H, s). Example 9: 1 H-NMR (400 MHz, DMSO-d 6 ) δ 2.14 (3H, s), 2.47 (6H, s), 3.55 (3H, s), 3.72-3.78 (2H, m), 4.01- 4.04 (2H, m), 6.72 (2H, s), 7.98 (1H, dd, J = 6.7, 7.9 Hz), 8.22 (1H, d, J = 7.9 Hz), 8.70-8.72 (1H, m), 8.77 (1H, s).
実施例10:1H-NMR (400MHz, DMSO-d6) δ 2.15 (3H, s), 2.47 (6H, s), 4.23 (3H ,s), 4.56 (2H, s), 6.72 (2H ,s), 7.68-7.70 (3H, m), 8.14-8.17 (1H, s), 8.44 (1H, s). Example 10: 1 H-NMR (400 MHz, DMSO-d 6 ) δ 2.15 (3H, s), 2.47 (6H, s), 4.23 (3H, s), 4.56 (2H, s), 6.72 (2H, s ), 7.68-7.70 (3H, m), 8.14-8.17 (1H, s), 8.44 (1H, s).
実施例12:1H-NMR (400 MHz, DMSO-d6) δ 2.14 (3H, s), 2.49 (6H, s), 4.26 (3H, s), 6.74 (2H, s), 7.70 (1H, d, J = 9.2 Hz), 7.79 (2H, brs), 8.50 (1H, dd, J = 9.2, 1.8 Hz), 8.88 (1H, d, J = 2.4 Hz). Example 12: 1 H-NMR (400 MHz, DMSO-d 6 ) δ 2.14 (3H, s), 2.49 (6H, s), 4.26 (3H, s), 6.74 (2H, s), 7.70 (1H, d, J = 9.2 Hz), 7.79 (2H, brs), 8.50 (1H, dd, J = 9.2, 1.8 Hz), 8.88 (1H, d, J = 2.4 Hz).
実施例13:1H-NMR (400 MHz, DMSO-d6) δ 0.81 (3H, t, J = 7.3 Hz), 1.54-1.66 (2H, m), 2.11 (3H, s), 2.44 (6H, s), 4.68 (1H, t, J = 6.7 Hz), 6.68 (2H, s), 7.89-7.93 (1H, m), 8.14 (1H, d, J = 7.9 Hz), 8.41 (2H, brs), 8.58-8.63 (1H, m), 8.68 (1H, s). Example 13: 1 H-NMR (400 MHz, DMSO-d 6 ) δ 0.81 (3H, t, J = 7.3 Hz), 1.54-1.66 (2H, m), 2.11 (3H, s), 2.44 (6H, s), 4.68 (1H, t, J = 6.7 Hz), 6.68 (2H, s), 7.89-7.93 (1H, m), 8.14 (1H, d, J = 7.9 Hz), 8.41 (2H, brs), 8.58-8.63 (1H, m), 8.68 (1H, s).
実施例14:1H-NMR (400 MHz, DMSO-d6) δ 1.44-1.69 (6H, m), 2.11 (3H, s), 2.44 (6H, s), 3.42-3.47 (1H, m), 3.68-3.73 (1H, m), 4.63 (1H, d, J = 14.1 Hz), 4.71 (1H, t, J = 3.3 Hz), 4.79 (1H, d, J = 14.1 Hz), 7.93 (1H, dd, J = 6.5, 7.9 Hz), 8.16 (1H, d, J = 7.9 Hz), 8.47 (2H, brs), 8.64 (1H, d, J = 6.5 Hz), 8.71 (1H, s) Example 14: 1 H-NMR (400 MHz, DMSO-d 6 ) δ 1.44-1.69 (6H, m), 2.11 (3H, s), 2.44 (6H, s), 3.42-3.47 (1H, m), 3.68-3.73 (1H, m), 4.63 (1H, d, J = 14.1 Hz), 4.71 (1H, t, J = 3.3 Hz), 4.79 (1H, d, J = 14.1 Hz), 7.93 (1H, dd , J = 6.5, 7.9 Hz), 8.16 (1H, d, J = 7.9 Hz), 8.47 (2H, brs), 8.64 (1H, d, J = 6.5 Hz), 8.71 (1H, s)
実施例15: 1H-NMR (400 MHz, DMSO-d6) δ 0.13(6H, s), 0.92(9H, s), 2.18(3H, s), 2.50(6H, s), 3.57(3H, s), 4.25(2H, d, J = 1.2 Hz), 6.76(2H, s), 7.69-7.73(2H, m), 8.11-8.16(1H, m), 8.43-8.48(1H, m). Example 15: 1 H-NMR (400 MHz, DMSO-d 6 ) δ 0.13 (6H, s), 0.92 (9H, s), 2.18 (3H, s), 2.50 (6H, s), 3.57 (3H, s), 4.25 (2H, d, J = 1.2 Hz), 6.76 (2H, s), 7.69-7.73 (2H, m), 8.11-8.16 (1H, m), 8.43-8.48 (1H, m).
実施例16:1H-NMR (400 MHz, DMSO-d6) δ 1.11 (3H, t, J = 7.3 Hz), 2.17 (3H, s), 2.50 (6H, s), 2.77 (3H, s), 3.12 (2H, q, J = 7.3 Hz), 6.74 (2H, s), 8.10 (1H, d, J = 8.0 Hz), 8.23 (2H, brs), 8.64 (1H, d, J = 8.0 Hz), 9.32 (1H, s). Example 16: 1 H-NMR (400 MHz, DMSO-d 6 ) δ 1.11 (3H, t, J = 7.3 Hz), 2.17 (3H, s), 2.50 (6H, s), 2.77 (3H, s) , 3.12 (2H, q, J = 7.3 Hz), 6.74 (2H, s), 8.10 (1H, d, J = 8.0 Hz), 8.23 (2H, brs), 8.64 (1H, d, J = 8.0 Hz) , 9.32 (1H, s).
<実施例17>
3−アセチル−2−エチル−4−メトキシ−ピラゾロ[1,5−a]ピリジン
<Example 17>
3-Acetyl-2-ethyl-4-methoxy-pyrazolo [1,5-a] pyridine
実施例5の化合物(29.8 g)をDMF(100 mL)に溶解し、3−ヘキシン−2−オン(10.0 mL)及び炭酸カリウム(37.9 g)を加え、常温にて24時間撹拌した。氷水を注ぎ、酢酸エチルにて抽出後、水(2回)及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムにて乾燥した。溶媒を留去後、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル = 10:1 〜 5:1)で精製し、目的物(8.02 g)を黄色粉末として得た。
1H-NMR(400MHz、CDCl3) δ 1.32 (3H, t, J = 7.6 Hz), 2.63 (3H, s), 2.98 (2H, q, J = 7.6 Hz), 3.97 (3H, s), 6.61(1H, d, J = 7.3 Hz), 6.76 (1H, t, J = 7.3 Hz), 8.11 (1H, d, J = 7.3 Hz).
The compound of Example 5 (29.8 g) was dissolved in DMF (100 mL), 3-hexyn-2-one (10.0 mL) and potassium carbonate (37.9 g) were added, and the mixture was stirred at room temperature for 24 hours. Ice water was poured, and the mixture was extracted with ethyl acetate, washed successively with water (twice) and saturated brine, and dried over anhydrous sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 10: 1-5: 1) to obtain the desired product (8.02 g) as a yellow powder.
1 H-NMR (400 MHz, CDCl 3 ) δ 1.32 (3H, t, J = 7.6 Hz), 2.63 (3H, s), 2.98 (2H, q, J = 7.6 Hz), 3.97 (3H, s), 6.61 (1H, d, J = 7.3 Hz), 6.76 (1H, t, J = 7.3 Hz), 8.11 (1H, d, J = 7.3 Hz).
<実施例18〜40>
実施例1〜4、6〜16の化合物を用い、各種アルキン誘導体と反応させ表2に示す化合物を得た。
<Examples 18 to 40>
The compounds shown in Table 2 were obtained by reacting with the various alkyne derivatives using the compounds of Examples 1 to 4 and 6 to 16.
実施例18: LRMS(EI+):254 [M+]
1H-NMR (400 MHz, CDCl3) δ 1.34 (3H, t, J = 7.6 Hz), 1.40(3H, t, J = 7.0 Hz), 3.10 (2H, q, J = 7.6 Hz), 4.37 (2H, q, J = 7.0 Hz), 7.00-7.05 (1H, m), 8.27-8.29 (1H, m)
Example 18: LRMS (EI + ): 254 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.34 (3H, t, J = 7.6 Hz), 1.40 (3H, t, J = 7.0 Hz), 3.10 (2H, q, J = 7.6 Hz), 4.37 ( 2H, q, J = 7.0 Hz), 7.00-7.05 (1H, m), 8.27-8.29 (1H, m)
実施例19: LRMS(FAB+):353 [M+H]+
1H-NMR (400 MHz, CDCl3) δ1.25 (6H, t, J = 7.3Hz), 1.44 (3H, t, J = 7.3 Hz), 3.66-3.74 (4H,m), 4.12 (3H, s), 4.42 (2H, q, J = 7.3 Hz), 4.77-4.81 (2H, m), 6.19 (1H, s), 6.22 (1H, d, J = 7.3 Hz), 7.31 (1H, d, J = 7.3 Hz)
Example 19: LRMS (FAB + ): 353 [M + H] +
1 H-NMR (400 MHz, CDCl 3 ) δ1.25 (6H, t, J = 7.3 Hz), 1.44 (3H, t, J = 7.3 Hz), 3.66-3.74 (4H, m), 4.12 (3H, s), 4.42 (2H, q, J = 7.3 Hz), 4.77-4.81 (2H, m), 6.19 (1H, s), 6.22 (1H, d, J = 7.3 Hz), 7.31 (1H, d, J = 7.3 Hz)
実施例20:1H-NMR (400 MHz, CDCl3) δ 3.31 (3H, s), 4.15 (3H, s), 4.73-4.86 (5H, m), 5.39 (2H, s), 6.26 (1H, d, J = 7.9 Hz), 7.32-7.44 (4H, m), 7.50 (2H, d, J = 6.7 Hz) Example 20: 1 H-NMR (400 MHz, CDCl 3 ) δ 3.31 (3H, s), 4.15 (3H, s), 4.73-4.86 (5H, m), 5.39 (2H, s), 6.26 (1H, d, J = 7.9 Hz), 7.32-7.44 (4H, m), 7.50 (2H, d, J = 6.7 Hz)
実施例21:1H-NMR (400 MHz, CDCl3) δ1.50-1.70 (2H, m), 1.70-1.90 (2H, m), 3.52-3.61 (2H, m), 3.80-3.88 (2H, m), 4.41 (2H, s), 4.83 (1H, t, J = 3.1 Hz). Example 21: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.50-1.70 (2H, m), 1.70-1.90 (2H, m), 3.52-3.61 (2H, m), 3.80-3.88 (2H, m), 4.41 (2H, s), 4.83 (1H, t, J = 3.1 Hz).
実施例22:1H-NMR (400 MHz, CDCl3) δ 0.89-1.06 (4H, m), 1.55 (3H, s), 2.48-2.53 (1H, m), 4.67 (1H, d, J = 5.5 Hz), 5.40 (1H, d, J = 12.2 Hz), 5.44 (1H, d, J = 12.2 Hz), 5.50-5.58 (1H, m), 6.87 (1H, t, J = 7.3 Hz), 7.38-7.49 (6H, m), 8.28 (1H, dd, J = 1.2, 6.7 Hz). Example 22: 1 H-NMR (400 MHz, CDCl 3 ) δ 0.89-1.06 (4H, m), 1.55 (3H, s), 2.48-2.53 (1H, m), 4.67 (1H, d, J = 5.5 Hz), 5.40 (1H, d, J = 12.2 Hz), 5.44 (1H, d, J = 12.2 Hz), 5.50-5.58 (1H, m), 6.87 (1H, t, J = 7.3 Hz), 7.38- 7.49 (6H, m), 8.28 (1H, dd, J = 1.2, 6.7 Hz).
実施例23:1H-NMR (400 MHz, CDCl3) δ 0.83 (3H, t, J = 7.3 Hz), 0.99 (3H, t, J = 7.3 Hz), 1.76-1.82 (4H, m), 2.89-2.91 (2H, m), 4.55-4.57 (1H, m), 5.36 (2H, s), 6.89 (1H, t, J = 6.7 Hz), 7.35-7.47 (6H, m), 8.35 (1H, d, J = 6.7 Hz) Example 23: 1 H-NMR (400 MHz, CDCl 3 ) δ 0.83 (3H, t, J = 7.3 Hz), 0.99 (3H, t, J = 7.3 Hz), 1.76-1.82 (4H, m), 2.89 -2.91 (2H, m), 4.55-4.57 (1H, m), 5.36 (2H, s), 6.89 (1H, t, J = 6.7 Hz), 7.35-7.47 (6H, m), 8.35 (1H, d , J = 6.7 Hz)
実施例24:1H-NMR (400 MHz, CDCl3) δ1.30 (3H, t, J = 7.3 Hz), 3.92 (3H, s), 4.26 (2H, q, J = 7.3 Hz), 6.57 (1H, d, J = 7.3 Hz), 6.75 (1H, dd, J = 7.3, 7.3 Hz), 8.09 (1H, d, J = 7.3 Hz) Example 24: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.30 (3H, t, J = 7.3 Hz), 3.92 (3H, s), 4.26 (2H, q, J = 7.3 Hz), 6.57 ( 1H, d, J = 7.3 Hz), 6.75 (1H, dd, J = 7.3, 7.3 Hz), 8.09 (1H, d, J = 7.3 Hz)
実施例25:1H-NMR (400 MHz, CDCl3) δ 1.43 (3H, t, J = 7.3 Hz), 2.63 (3H, s), 3.99 (3H, s), 4.39 (2H, q, J = 7.3 Hz), 6.62 (1H, d, J = 7.3 Hz), 6.78 (1H, dd, J = 7.3, 7.3 Hz), 8.09 (1H, d, J = 7.3 Hz) Example 25: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.43 (3H, t, J = 7.3 Hz), 2.63 (3H, s), 3.99 (3H, s), 4.39 (2H, q, J = 7.3 Hz), 6.62 (1H, d, J = 7.3 Hz), 6.78 (1H, dd, J = 7.3, 7.3 Hz), 8.09 (1H, d, J = 7.3 Hz)
実施例26:1H-NMR (400 MHz, CDCl3) δ 1.23 (3H, t, J = 6.7 Hz), 1.34 (3H, t, J = 7.3 Hz), 1.80 (3H, s), 2.77-2.83 (4H, m), 3.61-3.64 (2H, m), 3.96-3.99 (2H, m), 6.73 (1H, t, J = 6.7 Hz), 7.31 (1H, d, J = 6.7 Hz), 8.33 (1H, d, J = 6.7 Hz). Example 26: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.23 (3H, t, J = 6.7 Hz), 1.34 (3H, t, J = 7.3 Hz), 1.80 (3H, s), 2.77-2.83 (4H, m), 3.61-3.64 (2H, m), 3.96-3.99 (2H, m), 6.73 (1H, t, J = 6.7 Hz), 7.31 (1H, d, J = 6.7 Hz), 8.33 ( (1H, d, J = 6.7 Hz).
実施例27:1H-NMR (400 MHz, CDCl3) δ1.39 (3H, t, J = 7.3 Hz), 1.84 (3H, s), 3.60-3.71 (2H, m), 3.97-4.07 (2H, m), 4.40 (2H, q, J = 7.3 Hz), 6.98 (1H, t, J = 7.3 Hz), 7.52 (1H, dd, J = 7.3, 1.2 Hz), 8.44-8.47 (1H, m) Example 27: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.39 (3H, t, J = 7.3 Hz), 1.84 (3H, s), 3.60-3.71 (2H, m), 3.97-4.07 (2H , m), 4.40 (2H, q, J = 7.3 Hz), 6.98 (1H, t, J = 7.3 Hz), 7.52 (1H, dd, J = 7.3, 1.2 Hz), 8.44-8.47 (1H, m)
実施例28: LRMS(EI+):248 [M+]
1H-NMR (400 MHz, CDCl3) δ 1.35 (3H, t, J = 7.3 Hz), 1.44 (3H, t, J = 7.3 Hz), 3.08 (2H, q, J = 7.3 Hz), 4.41 (2H, q, J = 7.3 Hz), 4.86 (2H, d, J = 7.3 Hz), 5.02 (1H, t, J = 7.3 Hz), 6.87 (1H, t, J = 6.7 Hz), 7.30 (1H, d, J = 6.7 Hz), 8.40 (1H, d, J = 6.7 Hz).
Example 28: LRMS (EI + ): 248 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.35 (3H, t, J = 7.3 Hz), 1.44 (3H, t, J = 7.3 Hz), 3.08 (2H, q, J = 7.3 Hz), 4.41 ( 2H, q, J = 7.3 Hz), 4.86 (2H, d, J = 7.3 Hz), 5.02 (1H, t, J = 7.3 Hz), 6.87 (1H, t, J = 6.7 Hz), 7.30 (1H, d, J = 6.7 Hz), 8.40 (1H, d, J = 6.7 Hz).
実施例29:LRMS(EI+): 278[M+]
1H-NMR (400 MHz, CDCl3) δ1.34 (3H, t, J = 8.0 Hz), 1.44 (3H, t, J = 6.7 Hz), 3.12 (2H, q, J = 8.0 Hz), 4.16 (3H, s), 4.41 (2H, q, J = 6.7 Hz), 4.81 (2H, d, J = 7.3 Hz), 4.94(1H, d, J = 7.3 Hz), 6.22 (1H, d, J = 7.3Hz), 7.30(1H, d, J = 7.3 Hz)
Example 29: LRMS (EI + ): 278 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ1.34 (3H, t, J = 8.0 Hz), 1.44 (3H, t, J = 6.7 Hz), 3.12 (2H, q, J = 8.0 Hz), 4.16 (3H, s), 4.41 (2H, q, J = 6.7 Hz), 4.81 (2H, d, J = 7.3 Hz), 4.94 (1H, d, J = 7.3 Hz), 6.22 (1H, d, J = 7.3Hz), 7.30 (1H, d, J = 7.3 Hz)
実施例30:1H-NMR (400 MHz, CDCl3) δ 1.42 (3H, t, J = 7.0 Hz), 4.20 (3H, s), 4.43 (2H, q, J = 7.0Hz), 4.62 (1H, t, J = 7.6Hz), 4.83 (2H, d, J = 7.6 Hz), 6.36 (1H, d, J = 7.6 Hz), 7.44 (1H, d, J = 7.6 Hz) Example 30: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.42 (3H, t, J = 7.0 Hz), 4.20 (3H, s), 4.43 (2H, q, J = 7.0 Hz), 4.62 (1H , t, J = 7.6Hz), 4.83 (2H, d, J = 7.6 Hz), 6.36 (1H, d, J = 7.6 Hz), 7.44 (1H, d, J = 7.6 Hz)
実施例31:1H-NMR (400 MHz, CDCl3) δ 1.02 (3H, t, J = 7.3 Hz), 1.42 (3H, t, J = 7.3 Hz), 1.83-1.91 (2H, m), 4.03 (1H, d, J = 5.7Hz), 4.19 (3H, s), 4.38-4.47 (2H, m), 5.17 (1H, q, J = 7.3 Hz), 6.39 (1H, d, J = 7.9 Hz), 7.58 (1H, d, J = 7.9 Hz). Example 31: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.02 (3H, t, J = 7.3 Hz), 1.42 (3H, t, J = 7.3 Hz), 1.83-1.91 (2H, m), 4.03 (1H, d, J = 5.7Hz), 4.19 (3H, s), 4.38-4.47 (2H, m), 5.17 (1H, q, J = 7.3 Hz), 6.39 (1H, d, J = 7.9 Hz) , 7.58 (1H, d, J = 7.9 Hz).
実施例32:1H-NMR (400 MHz, CDCl3) δ3.99 (3H, s), 4.00 (3H, s), 4.17 (3H, s), 6.20 (1H, d, J = 7.9 Hz), 7.49 (1H, d, J = 8.6 Hz) Example 32: 1 H-NMR (400 MHz, CDCl 3 ) δ 3.99 (3H, s), 4.00 (3H, s), 4.17 (3H, s), 6.20 (1H, d, J = 7.9 Hz), 7.49 (1H, d, J = 8.6 Hz)
実施例33:LRMS (EI+): 288 [M+]
1H-NMR (400 MHz, CDCl3) δ 1.43 (3H, t, J = 7.3 Hz), 4.44 (2H, q, J = 7.3 Hz), 4.65 (1H, t, J = 7.3 Hz), 4.90 (2H, d, J = 7.3 Hz), 7.06 (1H, t, J = 7.3 Hz), 7.45 (1H, d, J = 7.3 Hz), 8.50 (1H, d, J = 7.3 Hz)
Example 33: LRMS (EI + ): 288 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.43 (3H, t, J = 7.3 Hz), 4.44 (2H, q, J = 7.3 Hz), 4.65 (1H, t, J = 7.3 Hz), 4.90 ( 2H, d, J = 7.3 Hz), 7.06 (1H, t, J = 7.3 Hz), 7.45 (1H, d, J = 7.3 Hz), 8.50 (1H, d, J = 7.3 Hz)
実施例34:1H-NMR (400 MHz, CDCl3) δ 1.32 (3H, t, J = 7.3 Hz), 1.40 (3H, t, J = 7.3 Hz), 3.01 (2H, q, J = 7.3 Hz), 3.96 (3H, s), 4.36 (2H, q, J = 7.3 Hz), 6.56 (1H, s), 8.13 (1H, s). Example 34: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.32 (3H, t, J = 7.3 Hz), 1.40 (3H, t, J = 7.3 Hz), 3.01 (2H, q, J = 7.3 Hz) ), 3.96 (3H, s), 4.36 (2H, q, J = 7.3 Hz), 6.56 (1H, s), 8.13 (1H, s).
実施例35:1H-NMR (400 MHz, CDCl3) δ 1.21 (3H, t, J = 7.3 Hz), 1.33 (3H, t, J = 7.3 Hz), 2.93-2.99 (2H, m), 3.05 (2H, q, J = 7.3 Hz), 7.03-7.09 (1H, m), 8.31 (1H, brs). Example 35: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.21 (3H, t, J = 7.3 Hz), 1.33 (3H, t, J = 7.3 Hz), 2.93-2.99 (2H, m), 3.05 (2H, q, J = 7.3 Hz), 7.03-7.09 (1H, m), 8.31 (1H, brs).
実施例36:1H-NMR (400 MHz, CDCl3) δ 0.11 (6H, s), 0.95 (9H, s), 1.33 (3H, t, J = 7.3Hz), 1.41 (3H, t, J = 7.3Hz), 3.09 (2H, q, J = 7.3Hz), 4.14 (3H, s), 4.35 (2H, q, J = 7.3Hz), 5.12 (2H, d, J = 1.8Hz), 6.24 (1H, d, J = 7.9Hz), 7.56 (1H, td, J = 1.8, 7.9 Hz) Example 36: 1 H-NMR (400 MHz, CDCl 3 ) δ 0.11 (6H, s), 0.95 (9H, s), 1.33 (3H, t, J = 7.3 Hz), 1.41 (3H, t, J = 7.3Hz), 3.09 (2H, q, J = 7.3Hz), 4.14 (3H, s), 4.35 (2H, q, J = 7.3Hz), 5.12 (2H, d, J = 1.8Hz), 6.24 (1H , d, J = 7.9Hz), 7.56 (1H, td, J = 1.8, 7.9 Hz)
実施例37:1H-NMR (400 MHz, CDCl3) δ0.04 (6H, s), 0.87 (9H, s), 4.14 (3H, s), 4.63 (1H, brs), 4.81 (2H, s), 5.08 (2H, s), 5.38 (2H, s), 6.23 (1H, d, J = 7.9 Hz), 7.30-7.42 (4H, m), 7.49 (2H, dd, J = 7.9, 1.2 Hz), 8.14 (1H, d, J = 2.4 Hz). Example 37: 1 H-NMR (400 MHz, CDCl 3 ) δ0.04 (6H, s), 0.87 (9H, s), 4.14 (3H, s), 4.63 (1H, brs), 4.81 (2H, s ), 5.08 (2H, s), 5.38 (2H, s), 6.23 (1H, d, J = 7.9 Hz), 7.30-7.42 (4H, m), 7.49 (2H, dd, J = 7.9, 1.2 Hz) , 8.14 (1H, d, J = 2.4 Hz).
実施例38:LRMS(EI+) : 232 [M+]
1H-NMR (400 MHz, CDCl3) δ 1.27 (3H, t, J = 7.3 Hz), 1.42 (3H, t, J = 7.3 Hz), 2.97 (2H, q, J = 7.3 Hz), 3.09 (2H, q, J = 7.3 Hz), 4.75 (2H, d, J = 7.3 Hz), 5.04 (1H, t, J = 7.3 Hz), 5.89 (1H, t, J = 6.7 Hz), 7.30-7.32 (1H, m), 8.37-8.39 (1H, m).
Example 38: LRMS (EI + ): 232 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.27 (3H, t, J = 7.3 Hz), 1.42 (3H, t, J = 7.3 Hz), 2.97 (2H, q, J = 7.3 Hz), 3.09 ( 2H, q, J = 7.3 Hz), 4.75 (2H, d, J = 7.3 Hz), 5.04 (1H, t, J = 7.3 Hz), 5.89 (1H, t, J = 6.7 Hz), 7.30-7.32 ( 1H, m), 8.37-8.39 (1H, m).
実施例39: 1H-NMR (400 MHz, CDCl3) δ 1.33 (3H, t, J = 7.6 Hz), 1.40(3H, t, J = 7.0 Hz), 3.03 (2H, q, J = 7.6 Hz), 3.96 (3H, s), 4.37 (2H, q, J = 7.0 Hz), 6.59 (1H, d, J = 7.6 Hz), 6.75 (1H, t, J = 7.6 Hz), 8.09 (1H, d, J = 7.6 Hz). Example 39: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.33 (3H, t, J = 7.6 Hz), 1.40 (3H, t, J = 7.0 Hz), 3.03 (2H, q, J = 7.6 Hz) ), 3.96 (3H, s), 4.37 (2H, q, J = 7.0 Hz), 6.59 (1H, d, J = 7.6 Hz), 6.75 (1H, t, J = 7.6 Hz), 8.09 (1H, d , J = 7.6 Hz).
実施例40: LRMS (EI+): 288 [M+]
1H-NMR (400 MHz, CDCl3) δ 1.22 (3H, t, J = 7.3 Hz), 1.35 (3H, t. J = 7.3 Hz), 1.36 (3H, t, J = 7.3 Hz), 2.79 (3H, s), 2.84 (2H, q, J = 7.3 Hz), 3.10 (2H, q, J = 7.3 Hz), 4.33 (2H, q, J = 7.3 Hz), 6.76 (1H, d, J = 7.3 Hz), 7.29 (1H, d, J = 1.8 Hz).
Example 40: LRMS (EI + ): 288 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.22 (3H, t, J = 7.3 Hz), 1.35 (3H, t. J = 7.3 Hz), 1.36 (3H, t, J = 7.3 Hz), 2.79 ( 3H, s), 2.84 (2H, q, J = 7.3 Hz), 3.10 (2H, q, J = 7.3 Hz), 4.33 (2H, q, J = 7.3 Hz), 6.76 (1H, d, J = 7.3 Hz), 7.29 (1H, d, J = 1.8 Hz).
<実施例41>
3−エトキシカルボニルー2−メチルチオ−4−(テトラヒドロピラン−2−イルオキシメチル)−ピラゾロ[1,5−a]ピリジン
<Example 41>
3-Ethoxycarbonyl-2-methylthio-4- (tetrahydropyran-2-yloxymethyl) -pyrazolo [1,5-a] pyridine
実施例14の化合物(45.6 g)をエタノール(500 mL)に溶解させ、二硫化炭素(10.3 mL)、ジメチル硫酸(16.3 mL)を加え、水酸化カリウム(14.5 g)の水(100 mL)に溶液を1.5時間かけてゆっくりと滴下した.氷水を加え酢酸エチルにて抽出し、有機層を飽和食塩水で洗浄した。硫酸ナトリウムで乾燥し減圧下溶媒を留去した。シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル = 1:4)で精製し、黄色油状物(6.78 g)を得た。得られた油状物 (8.64 g)をクロロホルム(200 mL)に溶解し、ブロモ酢酸エチル(6.66 mL)を加え常温にて6時間攪拌した。溶媒留去後、ジエチルエーテルにて洗浄し黄色油状物を得た。得られた油状物をクロロホルム(290 mL)に溶解し、炭酸カリウム(20.0 g)を加え常温にて16時間攪拌した。ろ過後、溶媒を留去し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=8:1)で精製し、目的物と3−エトキシカルボニルー2−メチルチオ−6−(テトラヒドロピラン−2−イルオキシメチル)−ピラゾロ[1,5−a]ピリジンを分離不能の混合物(3.71 g、0.6:1)黄色油状物として得た。 The compound of Example 14 (45.6 g) was dissolved in ethanol (500 mL), carbon disulfide (10.3 mL) and dimethyl sulfate (16.3 mL) were added, and potassium hydroxide (14.5 g) in water (100 mL) was added. The solution was slowly added dropwise over 1.5 hours. Ice water was added and the mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine. The extract was dried over sodium sulfate and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography (hexane: ethyl acetate = 1: 4) gave a yellow oil (6.78 g). The obtained oil (8.64 g) was dissolved in chloroform (200 mL), ethyl bromoacetate (6.66 mL) was added, and the mixture was stirred at room temperature for 6 hr. After the solvent was distilled off, it was washed with diethyl ether to obtain a yellow oily substance. The obtained oil was dissolved in chloroform (290 mL), potassium carbonate (20.0 g) was added, and the mixture was stirred at room temperature for 16 hr. After filtration, the solvent was distilled off, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 8: 1) to obtain the desired product and 3-ethoxycarbonyl-2-methylthio-6- (tetrahydropyran-2-yloxymethyl). ) -Pyrazolo [1,5-a] pyridine was obtained as an inseparable mixture (3.71 g, 0.6: 1) as a yellow oil.
<実施例42>
4−アセチルー3−ベンジルオキシカルボニルー2−シクロプロピル−ピラゾロ[1,5−a]ピリジン
<Example 42>
4-acetyl-3-benzyloxycarbonyl-2-cyclopropyl-pyrazolo [1,5-a] pyridine
実施例22の化合物(7.60 g)をジクロロメタン(100 mL)に溶解し、活性二酸化マンガン(59.0 g)を加え常温にて30時間攪拌した。セライトろ過し減圧下溶媒を留去した。シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル= 8:1 → 1:1)で精製し、黄色固体を得た。得られた固体に原料の残存が確認されたため、ジクロロメタン(90.0 mL)に溶解し、再度活性二酸化マンガン(32.0 g)を加え、再度常温にて24時間攪拌した。セライトろ過し減圧下溶媒を留去することで目的物(5.57 g)を黄色粉末として得た。
1H-NMR (400 MHz, CDCl3) δ1.02 -1.05 (2H, m), 1.07-1.10 (2H, m), 2.42 (3H, s), 2.64-2.70 (1H, m), 5.35 (2H, s), 6.89 (1H, t, J = 6.7 Hz), 7.36-7.44 (6H, m), 8.41 (1H, d, J = 6.7 Hz).
The compound of Example 22 (7.60 g) was dissolved in dichloromethane (100 mL), activated manganese dioxide (59.0 g) was added, and the mixture was stirred at room temperature for 30 hours. Celite filtration was carried out, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography (hexane: ethyl acetate = 8: 1 → 1: 1) gave a yellow solid. Since it was confirmed that the raw material remained in the obtained solid, it was dissolved in dichloromethane (90.0 mL), active manganese dioxide (32.0 g) was added again, and the mixture was stirred again at room temperature for 24 hours. The target product (5.57 g) was obtained as a yellow powder by filtering through Celite and distilling off the solvent under reduced pressure.
1 H-NMR (400 MHz, CDCl 3 ) δ1.02 -1.05 (2H, m), 1.07-1.10 (2H, m), 2.42 (3H, s), 2.64-2.70 (1H, m), 5.35 (2H , s), 6.89 (1H, t, J = 6.7 Hz), 7.36-7.44 (6H, m), 8.41 (1H, d, J = 6.7 Hz).
<実施例43>
3−エトキシカルボニル−2−エチル−6−フルオロ−4−メトキシピラゾロ[1,5−a]ピリジン
<Example 43>
3-Ethoxycarbonyl-2-ethyl-6-fluoro-4-methoxypyrazolo [1,5-a] pyridine
実施例18の化合物(340 mg)のメタノール(15.0 mL)溶液にナトリウムメトキシド(362 mg)を加え、3時間加熱還流した。更にナトリウムメトキシド(181 mg)を加え、2時間撹拌した。放冷後、飽和塩化アンモニウムを加え、酢酸エチルで抽出し、水及び飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を留去し、シリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 5 : 1)で精製し、目的物(302 mg)を無色粉末として得た。
1H-NMR (400 MHz, CDCl3) δ1.31 (3H, t, J = 7.6 Hz), 3.00 (2H, q, J = 7.6 Hz), 3.89 (3H, s), 3.98 (3H, s), 6.55 (1H, dd, J = 1.8, 10.1 Hz), 8.05 (1H, dd, J = 1.8, 3.4 Hz).
Sodium methoxide (362 mg) was added to a solution of the compound of Example 18 (340 mg) in methanol (15.0 mL), and the mixture was heated to reflux for 3 hours. Further sodium methoxide (181 mg) was added and stirred for 2 hours. After allowing to cool, saturated ammonium chloride was added, extracted with ethyl acetate, and washed with water and saturated brine. After drying over anhydrous sodium sulfate, the solvent was distilled off and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 5: 1) to obtain the desired product (302 mg) as a colorless powder.
1 H-NMR (400 MHz, CDCl 3 ) δ1.31 (3H, t, J = 7.6 Hz), 3.00 (2H, q, J = 7.6 Hz), 3.89 (3H, s), 3.98 (3H, s) , 6.55 (1H, dd, J = 1.8, 10.1 Hz), 8.05 (1H, dd, J = 1.8, 3.4 Hz).
<実施例44>
4−アセチルオキシメチル−3−エトキシカルボニル−2−ジエトキシメチル−7−メトキシ−ピラゾロ[1,5−a]ピリジン
<Example 44>
4-acetyloxymethyl-3-ethoxycarbonyl-2-diethoxymethyl-7-methoxy-pyrazolo [1,5-a] pyridine
実施例19の化合物(2.10 g)をピリジン(20.0 mL)に溶解し、無水酢酸(1.12 mL)を加え、常温で6時間攪拌した。反応液を水で希釈後、酢酸エチルで抽出後、水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、目的物 (2.01 g) を無色油状物として得た。
LRMS (EI+): 394[M+]
1H-NMR (400MHz, CDCl3) δ1.25 (6H, t, J = 7.3 Hz), 1.41 (3H, t, J = 7.3 Hz), 2.04 (3H, s), 3.67-3.75 (4H, m), 4.13 (3H, s), 4.37 (2H, q, J = 7.3 Hz), 5.47 (2H, s), 6.17 (1H, s), 6.19 (1H, d, J = 8.0 Hz), 7.35 (1H, d, J = 8.0 Hz).
The compound of Example 19 (2.10 g) was dissolved in pyridine (20.0 mL), acetic anhydride (1.12 mL) was added, and the mixture was stirred at room temperature for 6 hr. The reaction mixture was diluted with water, extracted with ethyl acetate, washed with water and then saturated brine and dried over anhydrous sodium sulfate. After evaporating the solvent, the desired product (2.01 g) was obtained as a colorless oil.
LRMS (EI + ): 394 [M + ]
1 H-NMR (400MHz, CDCl 3 ) δ1.25 (6H, t, J = 7.3 Hz), 1.41 (3H, t, J = 7.3 Hz), 2.04 (3H, s), 3.67-3.75 (4H, m ), 4.13 (3H, s), 4.37 (2H, q, J = 7.3 Hz), 5.47 (2H, s), 6.17 (1H, s), 6.19 (1H, d, J = 8.0 Hz), 7.35 (1H , d, J = 8.0 Hz).
<実施例45>
4−アセチルオキシメチル−3−エトキシカルボニル−2−ホルミル−7−メトキシ−ピラゾロ[1,5−a]ピリジン
<Example 45>
4-acetyloxymethyl-3-ethoxycarbonyl-2-formyl-7-methoxy-pyrazolo [1,5-a] pyridine
実施例44の化合物(2.01 g)をアセトン-水(2 : 1)の混合溶媒に溶解させ、パラトルエンスルホン酸一水和物(97.3 mg)を加え、70℃で2時間加熱攪拌した。放冷後、酢酸エチルにて抽出後、水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル = 1 : 2) にて精製することで目的物 (1.47 g) を無色粉末として得た。
LRMS (EI+): 320[M+]
1H-NMR (400MHz,CDCl3) :δ1.43 (3H, t, J = 7.3 Hz), 2.05 (3H, s), 4.21 (3H, s), 4.45 (2H, q, J = 7.3 Hz), 5.50 (2H, s), 6.36 (1H, d, J = 8.0 Hz), 7.46 (1H, d, J = 8.0 Hz), 10.5 (1H, s).
The compound of Example 44 (2.01 g) was dissolved in a mixed solvent of acetone-water (2: 1), paratoluenesulfonic acid monohydrate (97.3 mg) was added, and the mixture was heated with stirring at 70 ° C. for 2 hours. The mixture was allowed to cool, extracted with ethyl acetate, washed with water and then saturated brine, and dried over anhydrous sodium sulfate. After evaporating the solvent, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1: 2) to obtain the desired product (1.47 g) as a colorless powder.
LRMS (EI + ): 320 [M + ]
1 H-NMR (400 MHz, CDCl 3 ): δ1.43 (3H, t, J = 7.3 Hz), 2.05 (3H, s), 4.21 (3H, s), 4.45 (2H, q, J = 7.3 Hz) , 5.50 (2H, s), 6.36 (1H, d, J = 8.0 Hz), 7.46 (1H, d, J = 8.0 Hz), 10.5 (1H, s).
<実施例46>
4−アセチルオキシメチル−3−エトキシカルボニル−2−ジフルオロメチル−7−メトキシ−ピラゾロ[1,5−a]ピリジン
<Example 46>
4-acetyloxymethyl-3-ethoxycarbonyl-2-difluoromethyl-7-methoxy-pyrazolo [1,5-a] pyridine
アルゴンガス雰囲気下にて、実施例45の化合物 (1.47g)をジクロロメタン(23.0 mL )に溶解し、氷冷下にてジエチルアミノスルファートリフルオリド(1.52 mL)を滴下し、常温にて1.5時間攪拌した。反応液を飽和重曹水でクエンチ後、酢酸エチルにて抽出後、水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル = 2 : 3) にて精製することで目的物 (1.21 g, 3.54 mmol) を無色粉末として得た。
LRMS (EI+): 342[M+]
1H-NMR (400MHz,CDCl3) δ1.42 (3H, t, J = 7.3 Hz), 2.06 (3H, s), 4.20 (3H, s), 4.40 (2H, q, J = 7.3 Hz), 5.60 (2H, s), 6.35 (1H, d, J = 7.9 Hz), 7.26 (1H, t, J = 53.8 Hz), 7.49 (1H, d, J = 7.9 Hz).
In an argon gas atmosphere, the compound of Example 45 (1.47 g) was dissolved in dichloromethane (23.0 mL), and diethylaminosulfur trifluoride (1.52 mL) was added dropwise under ice cooling, followed by stirring at room temperature for 1.5 hours. did. The reaction mixture was quenched with saturated aqueous sodium hydrogen carbonate, extracted with ethyl acetate, washed with water and then saturated brine, and dried over anhydrous sodium sulfate. After evaporating the solvent, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 2: 3) to obtain the desired product (1.21 g, 3.54 mmol) as a colorless powder.
LRMS (EI + ): 342 [M + ]
1 H-NMR (400MHz, CDCl 3 ) δ1.42 (3H, t, J = 7.3 Hz), 2.06 (3H, s), 4.20 (3H, s), 4.40 (2H, q, J = 7.3 Hz), 5.60 (2H, s), 6.35 (1H, d, J = 7.9 Hz), 7.26 (1H, t, J = 53.8 Hz), 7.49 (1H, d, J = 7.9 Hz).
<実施例47>
2−エチル−4−ヒドロキシピラゾロ[1,5−a]ピリジン
<Example 47>
2-Ethyl-4-hydroxypyrazolo [1,5-a] pyridine
アルゴンガス雰囲気下にて、実施例17の化合物(4.00 g)をジクロロメタン(50.0 mL)に溶解し、氷冷撹拌下、1.00 mol/L三臭化ホウ素 / ジクロロメタン溶液 (27.5 mL)を加え、同温にて30分撹拌した。氷水を加え、酢酸エチルにて抽出し、水及び飽和食塩水で順次洗浄後、無水硫酸ナトリウムにて乾燥した。溶媒を留去後、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル = 10:1 〜 5:1)で精製し、目的物(1.85 g)を黄色粉末として得た。
1H-NMR(400MHz、CDCl3) δ 1.44 (3H, t, J = 7.3 Hz), 2.62 (3H, s), 3.08 (2H, q, J = 7.3 Hz), 6.81 (1H, dd, J = 0.9, 7.6 Hz), 6.90 (1H, dd, J = 6.4, 7.6 Hz), 8.00 (1H, dd, J = 0.9, 6.4 Hz), 13.0(1H, s).
得られたフェノール体(1.85 g)を50%硫酸水溶液(70.0 mL)に懸濁し、150℃にて10時間撹拌した。放冷後、水で希釈し、炭酸カリウムで中和し、酢酸エチルにて抽出した。水及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムにて乾燥し、溶媒を留去することにより、目的物(1.42 g)を褐色粉末として得た。(方法A)。
1H-NMR(400MHz、CDCl3) δ 1.36 (3H, t, J = 7.6 Hz), 2.87 (2H, q, J = 7.6 Hz), 5.68 (1H, brs), 6.41-6.43(2H, m), 6.54 (1H, t, J = 7.0 Hz), 8.06(1H, d, J = 7.0 Hz).
Under an argon gas atmosphere, the compound of Example 17 (4.00 g) was dissolved in dichloromethane (50.0 mL), and a 1.00 mol / L boron tribromide / dichloromethane solution (27.5 mL) was added with stirring under ice cooling. Stir at warm for 30 minutes. Ice water was added, the mixture was extracted with ethyl acetate, washed successively with water and saturated brine, and dried over anhydrous sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 10: 1-5: 1) to obtain the desired product (1.85 g) as a yellow powder.
1 H-NMR (400 MHz, CDCl 3 ) δ 1.44 (3H, t, J = 7.3 Hz), 2.62 (3H, s), 3.08 (2H, q, J = 7.3 Hz), 6.81 (1H, dd, J = 0.9, 7.6 Hz), 6.90 (1H, dd, J = 6.4, 7.6 Hz), 8.00 (1H, dd, J = 0.9, 6.4 Hz), 13.0 (1H, s).
The obtained phenol compound (1.85 g) was suspended in a 50% aqueous sulfuric acid solution (70.0 mL) and stirred at 150 ° C. for 10 hours. The mixture was allowed to cool, diluted with water, neutralized with potassium carbonate, and extracted with ethyl acetate. The extract was washed successively with water and saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated to give the object product (1.42 g) as a brown powder. (Method A).
1 H-NMR (400 MHz, CDCl 3 ) δ 1.36 (3H, t, J = 7.6 Hz), 2.87 (2H, q, J = 7.6 Hz), 5.68 (1H, brs), 6.41-6.43 (2H, m) , 6.54 (1H, t, J = 7.0 Hz), 8.06 (1H, d, J = 7.0 Hz).
<実施例48>
2−エチル−6−フルオロ−4−ヒドロキシピラゾロ[1,5−a]ピリジン
<Example 48>
2-Ethyl-6-fluoro-4-hydroxypyrazolo [1,5-a] pyridine
実施例43の化合物(4.53 g) をジクロロメタン (50.0 mL)に溶解させ、0 ℃にて1.00 mol/L三臭化ホウ素 / ジクロロメタン溶液 (21.6 mL) を加え1時間攪拌した。水を加え酢酸エチルにて3回抽出し、有機層を飽和食塩水で洗浄した。硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた個体 (4.29 g) をエタノール (40.0 mL) に溶解させ、水 (40.0 mL)、水酸化カリウム (4.10 g) を加え加熱還流条件下2時間攪拌した。水と濃塩酸を加え酸性とし、酢酸エチルにて3回抽出し、有機層を飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた固体 (3.58 g) をエタノール (100 mL)に溶解させ、濃硫酸 (2.00 mL) を加え加熱還流条件下7.5時間攪拌した。溶媒留去後、酢酸エチルにて三回抽出し、有機層を飽和食塩水で洗浄した。硫酸ナトリウムで乾燥し溶媒留去することで目的物 (2.88 g)を灰色粉末として得た。(方法B)。
1H-NMR (400MHz、CDCl3) δ 1.34 (3H, t, J = 8.0 Hz), 2.84 (2H, q, J = 8.0 Hz), 6.42-6.45 (2H, m), 8.03 (1H, d, J = 3.0 Hz).
The compound of Example 43 (4.53 g) was dissolved in dichloromethane (50.0 mL), and a 1.00 mol / L boron tribromide / dichloromethane solution (21.6 mL) was added at 0 ° C., followed by stirring for 1 hour. Water was added and extracted three times with ethyl acetate, and the organic layer was washed with saturated brine. It dried with sodium sulfate and the solvent was distilled off under reduced pressure. The obtained solid (4.29 g) was dissolved in ethanol (40.0 mL), water (40.0 mL) and potassium hydroxide (4.10 g) were added, and the mixture was stirred under heating under reflux for 2 hr. Water and concentrated hydrochloric acid were added to acidify, extraction was performed 3 times with ethyl acetate, and the organic layer was washed with saturated brine. After drying over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure. The obtained solid (3.58 g) was dissolved in ethanol (100 mL), concentrated sulfuric acid (2.00 mL) was added, and the mixture was stirred under heating under reflux for 7.5 hours. After the solvent was distilled off, extraction was performed three times with ethyl acetate, and the organic layer was washed with saturated brine. Drying with sodium sulfate and evaporation of the solvent gave the desired product (2.88 g) as a gray powder. (Method B).
1 H-NMR (400 MHz, CDCl 3 ) δ 1.34 (3H, t, J = 8.0 Hz), 2.84 (2H, q, J = 8.0 Hz), 6.42-6.45 (2H, m), 8.03 (1H, d, J = 3.0 Hz).
<実施例49>
4−ヒドロキシピラゾロ[1,5−a]ピリジン
<Example 49>
4-Hydroxypyrazolo [1,5-a] pyridine
アルゴンガス雰囲気下にて、実施例24の化合物(4.30 g,)をジクロロメタン(50 mL)に溶解し、0℃にて1.0 mol/L三臭化ホウ素 / ジクロロメタン溶液 (23.4 mL,)を加え1時間攪拌した。1.0 mol/L三臭化ホウ素 / ジクロロメタン溶液 (23.4 mL)を更に加え、常温にて3時間攪拌した。水を加え酢酸エチルにて抽出し、有機層を飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を留去することで黄色粉末(4.80 g)を得た。得られた個体に47%臭化水素酸(100 mL)を加え、加熱還流条件下5時間攪拌した。水酸化ナトリウムにより塩基性とした後、塩酸により酸性へ戻し酢酸エチルにて3回抽出し、有機層を飽和食塩水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去することで目的物(2.10 g)を黄色粉末として得た。(方法C)
1H-NMR (400MHz、CDCl3) δ 5.76 (1H, brs), 6.47 (1H, d, J = 7.3 Hz), 6.62-6.65 (2H, m), 7.92 (1H, d, J = 2.4 Hz), 8.17 (1H, d, J = 6.7 Hz).
In an argon gas atmosphere, the compound of Example 24 (4.30 g,) was dissolved in dichloromethane (50 mL), and a 1.0 mol / L boron tribromide / dichloromethane solution (23.4 mL) was added at 0 ° C. Stir for hours. A 1.0 mol / L boron tribromide / dichloromethane solution (23.4 mL) was further added, and the mixture was stirred at room temperature for 3 hours. Water was added and the mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine. After drying over anhydrous sodium sulfate, the solvent was distilled off to obtain a yellow powder (4.80 g). 47% hydrobromic acid (100 mL) was added to the obtained solid, and the mixture was stirred for 5 hours under reflux with heating. The mixture was basified with sodium hydroxide, acidified with hydrochloric acid, extracted three times with ethyl acetate, and the organic layer was washed with saturated brine. After drying over sodium sulfate, the solvent was distilled off to obtain the desired product (2.10 g) as a yellow powder. (Method C)
1 H-NMR (400 MHz, CDCl 3 ) δ 5.76 (1H, brs), 6.47 (1H, d, J = 7.3 Hz), 6.62-6.65 (2H, m), 7.92 (1H, d, J = 2.4 Hz) , 8.17 (1H, d, J = 6.7 Hz).
<実施例50>
4−アセチルー2−シクロプロピルピラゾロ[1,5−a]ピリジン
<Example 50>
4-acetyl-2-cyclopropylpyrazolo [1,5-a] pyridine
実施例42の化合物(5.57 g)をエタノール(30.0 mL)、水(30.0 mL)に溶解し、水酸化カリウム(3.70 g)を加え加熱還流条件下3.5時間攪拌した。濃塩酸により中和し酢酸エチルで3回抽出し、有機層を飽和食塩水で洗浄した。硫酸ナトリウムで乾燥後、溶媒留去した。得られた固体をトルエン(150 mL)に溶解し、加熱還流条件下6時間攪拌した。溶媒を留去し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル= 4:1 〜 1:1)で精製し目的物(2.64 g)を黄色粉末として得た。(方法D)
1H-NMR (400MHz、CDCl3) δ 0.85-0.89 (2H, m), 0.98-1.03 (2H, m), 2.04-2.11(1H, m), 2.58 (3H, s), 6.66 (1H, t, J = 6.7 Hz), 6.88 (1H, s), 7.68 (1H, d, J = 6.7 Hz), 8.44 (1H, d, J = 6.7 Hz).
The compound of Example 42 (5.57 g) was dissolved in ethanol (30.0 mL) and water (30.0 mL), potassium hydroxide (3.70 g) was added, and the mixture was stirred under heating under reflux for 3.5 hours. The mixture was neutralized with concentrated hydrochloric acid, extracted three times with ethyl acetate, and the organic layer was washed with saturated brine. After drying with sodium sulfate, the solvent was distilled off. The obtained solid was dissolved in toluene (150 mL) and stirred for 6 hours under heating under reflux. The solvent was distilled off, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1 to 1: 1) to obtain the desired product (2.64 g) as a yellow powder. (Method D)
1 H-NMR (400 MHz, CDCl 3 ) δ 0.85-0.89 (2H, m), 0.98-1.03 (2H, m), 2.04-2.11 (1H, m), 2.58 (3H, s), 6.66 (1H, t , J = 6.7 Hz), 6.88 (1H, s), 7.68 (1H, d, J = 6.7 Hz), 8.44 (1H, d, J = 6.7 Hz).
<実施例51>
2−エチル−4−メトキシ−ピラゾロ[1,5−a]ピリジン
<Example 51>
2-Ethyl-4-methoxy-pyrazolo [1,5-a] pyridine
実施例39の化合物 (2.80 g) をエタノール (30.0 mL) に溶解させ、水 (30.0 mL)、 水酸化カリウム (3.35 g) を加え、加熱還流条件下1.5時間攪拌した。溶媒を一部減圧留去した後、大量の水と濃塩酸を加え酸性とした。酢酸エチルにて3回抽出し、有機層を飽和食塩水で洗浄した。硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた無色粉末をエタノール (75.0 mL) に溶解させ、濃硫酸 (1.50 mL) を加え、加熱還流条件下4時間攪拌した。溶媒を一部留去後、酢酸エチルにて3回抽出し、有機層を飽和食塩水で洗浄した。硫酸ナトリウムで乾燥後、溶媒留去し目的物を灰色油状物(2.07 g) として得た。(方法E)
1H-NMR (CDCl3, 400 MHz) δ 1.35 (3H, t, J = 8.0 Hz), 2.84 (2H, q, J = 8.0 Hz), 3.94 (3H, s), 6.32 (1H, d, J = 7.3 Hz), 6.42 (1H, s), 6.57 (1H, t, J = 7.3 Hz), 8.03 (1H, t, J = 7.3 Hz).
The compound of Example 39 (2.80 g) was dissolved in ethanol (30.0 mL), water (30.0 mL) and potassium hydroxide (3.35 g) were added, and the mixture was stirred under heating under reflux for 1.5 hours. After partially distilling off the solvent under reduced pressure, a large amount of water and concentrated hydrochloric acid were added to make it acidic. The mixture was extracted 3 times with ethyl acetate, and the organic layer was washed with saturated brine. After drying with sodium sulfate, the solvent was distilled off under reduced pressure. The obtained colorless powder was dissolved in ethanol (75.0 mL), concentrated sulfuric acid (1.50 mL) was added, and the mixture was stirred under heating under reflux for 4 hr. Part of the solvent was distilled off, followed by extraction three times with ethyl acetate, and the organic layer was washed with saturated brine. After drying over sodium sulfate, the solvent was distilled off to obtain the desired product as a gray oil (2.07 g). (Method E)
1 H-NMR (CDCl 3 , 400 MHz) δ 1.35 (3H, t, J = 8.0 Hz), 2.84 (2H, q, J = 8.0 Hz), 3.94 (3H, s), 6.32 (1H, d, J = 7.3 Hz), 6.42 (1H, s), 6.57 (1H, t, J = 7.3 Hz), 8.03 (1H, t, J = 7.3 Hz).
<実施例52>
6−クロロ−2−エチル−4−ヒドロキシ−ピラゾロ[1,5−a]ピリジン
<Example 52>
6-chloro-2-ethyl-4-hydroxy-pyrazolo [1,5-a] pyridine
実施例34の化合物(220 mg)を47%臭化水素酸に懸濁し、5時間加熱還流した。20%水酸化カリウム水溶液でアルカリ性にした後、濃塩酸で中和し、酢酸エチルにて抽出した。水及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を留去後、シリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 4 : 1)で精製し、目的物(80.0 mg)を無色粉末として得た。(方法F)
1H-NMR (400 MHz, DMSO-d6) δ 1.24 (3H, t, J = 7.6 Hz), 2.71 (2H, q, J = 7.6 Hz), 6.40 (1H, d, J = 1.5 Hz), 6.48 (1H, s), 8.35(1H, dd, J = 0.9, 1.5 Hz), 10.91 (1H, brs).
The compound of Example 34 (220 mg) was suspended in 47% hydrobromic acid and heated to reflux for 5 hours. The mixture was made alkaline with 20% aqueous potassium hydroxide solution, neutralized with concentrated hydrochloric acid, and extracted with ethyl acetate. The extract was washed with water and saturated brine, dried over anhydrous sodium sulfate, evaporated, and purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1) to give the desired product (80.0 mg) as a colorless powder. Obtained. (Method F)
1 H-NMR (400 MHz, DMSO-d 6 ) δ 1.24 (3H, t, J = 7.6 Hz), 2.71 (2H, q, J = 7.6 Hz), 6.40 (1H, d, J = 1.5 Hz), 6.48 (1H, s), 8.35 (1H, dd, J = 0.9, 1.5 Hz), 10.91 (1H, brs).
<実施例53〜65>
表2に示した化合物及び実施例41、実施例46を用い、実施例47〜52と同様に反応させ表3に示す化合物を合成した。
<Examples 53 to 65>
Using the compounds shown in Table 2 and Examples 41 and 46, the compounds shown in Table 3 were synthesized by reacting in the same manner as in Examples 47 to 52.
実施例53:LRMS (EI+): 228[M+]
1H-NMR (400 MHz, CDCl3) δ 1.77 (1H, t, J = 5.5 Hz), 4.18 (3H, s), 4.87 (2H, d, J = 5.5 Hz), 6.17 (1H, d, J = 7.3 Hz), 6.86 (1H, s), 6.94 (1H, t, J = 54.4 Hz), 7.22 (1H, d, J = 7.3 Hz)
Example 53: LRMS (EI + ): 228 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.77 (1H, t, J = 5.5 Hz), 4.18 (3H, s), 4.87 (2H, d, J = 5.5 Hz), 6.17 (1H, d, J = 7.3 Hz), 6.86 (1H, s), 6.94 (1H, t, J = 54.4 Hz), 7.22 (1H, d, J = 7.3 Hz)
実施例54:1H-NMR (400 MHz, CDCl3) δ1.76 (1H, brs), 3.45 (3H, s), 4.14 (3H, s), 4.74 (2H, s), 4.83 (2H, s), 6.05 (1H, d, J = 7.9 Hz), 6.64 (1H, s), 7.13 (1H, d, J = 6.7 Hz). Example 54: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.76 (1H, brs), 3.45 (3H, s), 4.14 (3H, s), 4.74 (2H, s), 4.83 (2H, s ), 6.05 (1H, d, J = 7.9 Hz), 6.64 (1H, s), 7.13 (1H, d, J = 6.7 Hz).
実施例55:1H-NMR (400 MHz, CDCl3) δ1.28 (3H, t, J = 7.3 Hz), 3.03 (2H, q, J = 7.3 Hz), 4.27 (3H, s), 6.31 (1H, d, J = 7.9 Hz), 7.69 (1H, s), 8.01 (1H, d, J = 7.9 Hz). Example 55: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.28 (3H, t, J = 7.3 Hz), 3.03 (2H, q, J = 7.3 Hz), 4.27 (3H, s), 6.31 ( 1H, d, J = 7.9 Hz), 7.69 (1H, s), 8.01 (1H, d, J = 7.9 Hz).
実施例56:1H-NMR (400 MHz, CDCl3) δ0.97 (3H, t, J = 7.3 Hz), 1.01 (3H, t, J = 7.3 Hz), 1.75-1.90 (4H, m), 2.77-2.81 (2H, m), 4.86 (1H, t, J = 6.1 Hz), 6.38 (1H, s), 6.66 (1H, t, J = 6.7 Hz), 7.07 (1H, d, J = 6.7 Hz), 8.29 (1H, d, J = 6.7 Hz). Example 56: 1 H-NMR (400 MHz, CDCl 3 ) δ 0.97 (3H, t, J = 7.3 Hz), 1.01 (3H, t, J = 7.3 Hz), 1.75-1.90 (4H, m), 2.77-2.81 (2H, m), 4.86 (1H, t, J = 6.1 Hz), 6.38 (1H, s), 6.66 (1H, t, J = 6.7 Hz), 7.07 (1H, d, J = 6.7 Hz) ), 8.29 (1H, d, J = 6.7 Hz).
実施例57:1H-NMR (400 MHz, CDCl3) δ 2.49 (3H, s), 6.38 (1H, s), 6.42 (1H, d, J = 7.3 Hz), 6.54 (1H, dd, J = 7.3, 7.3 Hz), 8.05 (1H, d, J = 7.3 Hz). Example 57: 1 H-NMR (400 MHz, CDCl 3 ) δ 2.49 (3H, s), 6.38 (1H, s), 6.42 (1H, d, J = 7.3 Hz), 6.54 (1H, dd, J = 7.3, 7.3 Hz), 8.05 (1H, d, J = 7.3 Hz).
実施例58:1H-NMR (400 MHz, CDCl3) δ2.70 (3H, s), 7.04 (1H, t, J = 6.7 Hz), 7.62 (1H, s), 7.92 (1H, d, J = 7.9 Hz), 8.67 (1H, d, J = 6.7 Hz). Example 58: 1 H-NMR (400 MHz, CDCl 3 ) δ 2.70 (3H, s), 7.04 (1H, t, J = 6.7 Hz), 7.62 (1H, s), 7.92 (1H, d, J = 7.9 Hz), 8.67 (1H, d, J = 6.7 Hz).
実施例59:LRMS(EI+) : 176[M+]
1H-NMR (400 MHz, CDCl3) δ 1.37 (3H, t, J = 7.3 Hz), 2.87 (2H, q, J = 7.3 Hz), 4.86 (2H, brs), 6.38 (1H, s), 6.68 (1H, t, J = 7.3 Hz), 7.09-7.10 (1H, m), 8.33 ( 1H, d, J = 7.3 Hz).
Example 59: LRMS (EI + ): 176 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.37 (3H, t, J = 7.3 Hz), 2.87 (2H, q, J = 7.3 Hz), 4.86 (2H, brs), 6.38 (1H, s), 6.68 (1H, t, J = 7.3 Hz), 7.09-7.10 (1H, m), 8.33 (1H, d, J = 7.3 Hz).
実施例60:LRMS(EI+):206 [M+]
1H-NMR (400 MHz, CDCl3) δ1.36 (3H, t, J = 8.0 Hz), 1.65 (1H, brs), 2.92 (2H, q, J = 8.0 Hz), 4.13 (3H, s), 4.81 (2H, s), 5.99 (1H, d, J = 7.3 Hz), 6.43 (1H, s), 7.08 (1H, d, J = 7.3 Hz).
Example 60: LRMS (EI <+> ): 206 [M <+ >]
1 H-NMR (400 MHz, CDCl 3 ) δ1.36 (3H, t, J = 8.0 Hz), 1.65 (1H, brs), 2.92 (2H, q, J = 8.0 Hz), 4.13 (3H, s) , 4.81 (2H, s), 5.99 (1H, d, J = 7.3 Hz), 6.43 (1H, s), 7.08 (1H, d, J = 7.3 Hz).
実施例61:1H-NMR (400 MHz, CDCl3) δ 1.56 (1H, brs), 4.18 (3H, s), 4.87 (2H, d, J = 0.9 Hz), 6.22 (1H, d, J = 7.6 Hz), 6.92 (1H, s), 7.24-7.27 (1H, m). Example 61: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.56 (1H, brs), 4.18 (3H, s), 4.87 (2H, d, J = 0.9 Hz), 6.22 (1H, d, J = 7.6 Hz), 6.92 (1H, s), 7.24-7.27 (1H, m).
実施例62:1H-NMR (400 MHz, CDCl3) δ 0.96 (3H, t, J = 7.3 Hz), 1.88-1.96 (2H, m), 1.98 (1H, brs), 4.17 (3H, s), 4.87 (1H, t, J = 5.8 Hz), 6.23 (1H, d, J = 7.6 Hz), 6.93 (1H, s), 7.25 (1H, d, J = 7.6 Hz). Example 62: 1 H-NMR (400 MHz, CDCl 3 ) δ 0.96 (3H, t, J = 7.3 Hz), 1.88-1.96 (2H, m), 1.98 (1H, brs), 4.17 (3H, s) , 4.87 (1H, t, J = 5.8 Hz), 6.23 (1H, d, J = 7.6 Hz), 6.93 (1H, s), 7.25 (1H, d, J = 7.6 Hz).
実施例63:1H-NMR (400 MHz, CDCl3) δ1.44 (3H, t, J = 7.3 Hz), 4.15 (3H, s), 4.48 (2H, q, J = 7.3 Hz), 6.12 (1H, d, J = 7.9 Hz), 7.20 (1H, s), 7.37 (1H, d, J = 7.9 Hz). Example 63: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.44 (3H, t, J = 7.3 Hz), 4.15 (3H, s), 4.48 (2H, q, J = 7.3 Hz), 6.12 ( 1H, d, J = 7.9 Hz), 7.20 (1H, s), 7.37 (1H, d, J = 7.9 Hz).
実施例64:実施例50と同一化合物。1H-NMR (400 MHz, CDCl3) δ 1.34 (3H, t, J = 7.6 Hz), 2.84 (2H, q, J = 7.6 Hz), 6.12 (1H, brs), 6.43 (1H, s), 6.46 (1H, d, J = 1.5 Hz), 8.10-8.11 (1H, m). Example 64: Same compound as Example 50. 1 H-NMR (400 MHz, CDCl 3 ) δ 1.34 (3H, t, J = 7.6 Hz), 2.84 (2H, q, J = 7.6 Hz), 6.12 (1H, brs), 6.43 (1H, s), 6.46 (1H, d, J = 1.5 Hz), 8.10-8.11 (1H, m).
実施例65:1H-NMR (400 MHz, CDCl3) δ 1.57-1.86 (6H, m), 2.61 (3H, s), 3.55-3.60 (1H, m), 3.89-3.92 (1H, m), 4.64 (1H, d, J = 12.8 Hz), 4.72-4.74 (1H, m), 4.90 (1H, d, J = 12.8 Hz), 6.65 (1H, s), 6.66 (1H, t, J = 7.3 Hz), 7.11 (1H, d, J = 7.3 Hz), 8.30 (1H, d, J = 7.3 Hz). Example 65: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.57-1.86 (6H, m), 2.61 (3H, s), 3.55-3.60 (1H, m), 3.89-3.92 (1H, m), 4.64 (1H, d, J = 12.8 Hz), 4.72-4.74 (1H, m), 4.90 (1H, d, J = 12.8 Hz), 6.65 (1H, s), 6.66 (1H, t, J = 7.3 Hz ), 7.11 (1H, d, J = 7.3 Hz), 8.30 (1H, d, J = 7.3 Hz).
実施例66:1H-NMR (400 MHz, CDCl3) δ 1.27 (3H, t, J = 7.3 Hz), 1.39 (3H, t. J = 7.3 Hz), 2.81 (3H, s), 2.93 (2H, q, J = 7.3 Hz), 3.04 (2H, q, J = 7.3 Hz), 6.62 (1H, d, J = 7.3 Hz), 7.21 (1H, s), 7.76 (1H, d, J = 7.3 Hz).
LRMS (EI+): 216 [M+]
Example 66: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.27 (3H, t, J = 7.3 Hz), 1.39 (3H, t. J = 7.3 Hz), 2.81 (3H, s), 2.93 (2H , q, J = 7.3 Hz), 3.04 (2H, q, J = 7.3 Hz), 6.62 (1H, d, J = 7.3 Hz), 7.21 (1H, s), 7.76 (1H, d, J = 7.3 Hz ).
LRMS (EI + ): 216 [M + ]
<実施例67>
4−ヒドロキシメチル−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン
<Example 67>
4-Hydroxymethyl-2-trifluoromethyl-pyrazolo [1,5-a] pyridine
実施例33の化合物(10.0 g)を40%硫酸水溶液(300 mL)に溶解し、100℃にて2.5時間攪拌した。放冷後、反応液を氷水中に注ぎ、炭酸カリウムにより中和した後、濃塩酸にて酸性とした。これを酢酸エチルにて3回抽出し、有機層を水、飽和食塩水の順に洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1)にて精製し、目的物(5.17 g, crude)を茶褐色粉末として得た。これをそのまま次の反応に用いた。 The compound of Example 33 (10.0 g) was dissolved in a 40% aqueous sulfuric acid solution (300 mL) and stirred at 100 ° C. for 2.5 hours. After allowing to cool, the reaction solution was poured into ice water, neutralized with potassium carbonate, and acidified with concentrated hydrochloric acid. This was extracted three times with ethyl acetate, and the organic layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1) to obtain the desired product (5.17 g, crude) as a brown powder. This was directly used in the next reaction.
<実施例68>
2−エチルー6−フルオロ−4−トリフルオロメタンスルホニルオキシ−ピラゾロ[1,5−a]ピリジン
<Example 68>
2-Ethyl-6-fluoro-4-trifluoromethanesulfonyloxy-pyrazolo [1,5-a] pyridine
実施例48の化合物 (2.88 g) をジクロロメタン (100 mL) に溶解させ、トリエチルアミン (4.51 mL)を加えた後0 ℃にて無水トリフルオロメタンスルホン酸 (2.97 mL) を加え、常温にて1時間攪拌した。水を加えた後、酢酸エチルにて3回抽出し有機層を飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥し、溶媒留去後シリカゲルカラムクロマトグラフィー (ヘキサン : 酢酸エチル = 20 : 1) で精製し、目的物(4.25 g)を黄色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ 1.36 (3H, t, J = 8.0 Hz), 2.87 (2H, q, J = 8.0 Hz), 6.51 (1H, s), 7.10 (1H, dd, J = 1.8, 8.6 Hz), 8.39-8.40 (1H, m).
The compound of Example 48 (2.88 g) was dissolved in dichloromethane (100 mL), triethylamine (4.51 mL) was added, trifluoromethanesulfonic anhydride (2.97 mL) was added at 0 ° C., and the mixture was stirred at room temperature for 1 hr. did. Water was added, and the mixture was extracted 3 times with ethyl acetate, and the organic layer was washed with saturated brine. The extract was dried over anhydrous sodium sulfate, the solvent was distilled off, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 20: 1) to obtain the desired product (4.25 g) as a yellow oil.
1 H-NMR (400 MHz, CDCl 3 ) δ 1.36 (3H, t, J = 8.0 Hz), 2.87 (2H, q, J = 8.0 Hz), 6.51 (1H, s), 7.10 (1H, dd, J = 1.8, 8.6 Hz), 8.39-8.40 (1H, m).
<実施例69〜72>
実施例47、49、52(64)、57の化合物を用い上記実施例68と同様に反応させ表4に示す化合物を合成した。
<Examples 69 to 72>
The compounds shown in Table 4 were synthesized by reacting the compounds of Examples 47, 49, 52 (64) and 57 in the same manner as in Example 68 above.
実施例69: 1H-NMR (400 MHz, CDCl3) δ 6.70 (1H, d, J = 2.1 Hz), 6.79 (1H, t ,J = 7.3 Hz), 7.13 (1H, d, J = 7.3 Hz), 8.03 (1H, d, J = 2.1 H), 8.50 (1H, d, J = 7.3 Hz). Example 69: 1 H-NMR (400 MHz, CDCl 3 ) δ 6.70 (1H, d, J = 2.1 Hz), 6.79 (1H, t, J = 7.3 Hz), 7.13 (1H, d, J = 7.3 Hz) ), 8.03 (1H, d, J = 2.1 H), 8.50 (1H, d, J = 7.3 Hz).
実施例70: 1H-NMR (400 MHz, CDCl3) δ 2.51 (3H, s), 6.47 (1H, s), 6.67 (1H, t, J = 7.3 Hz), 7.06 (1H, d, J = 7.3 Hz), 8.37 (1H, d, J = 7.3 Hz). Example 70: 1 H-NMR (400 MHz, CDCl 3 ) δ 2.51 (3H, s), 6.47 (1H, s), 6.67 (1H, t, J = 7.3 Hz), 7.06 (1H, d, J = 7.3 Hz), 8.37 (1H, d, J = 7.3 Hz).
実施例71: 1H-NMR(400MHz、CDCl3) δ 1.37 (3H, t, J = 7.6 Hz), 2.89 (2H, q, J = 7.6 Hz), 6.49 (1H, s), 6.68 (1H, dd, J = 7.0, 7,6Hz), 7.07 (1H, d, J = 7.6 Hz), 8.39 (1H, d, J = 7.0 Hz). Example 71: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.37 (3H, t, J = 7.6 Hz), 2.89 (2H, q, J = 7.6 Hz), 6.49 (1H, s), 6.68 (1H, dd, J = 7.0, 7,6Hz), 7.07 (1H, d, J = 7.6 Hz), 8.39 (1H, d, J = 7.0 Hz).
実施例72: 1H-NMR(400MHz、CDCl3) δ 1.36 (3H, t, J = 7.6 Hz), 2.87 (2H, q, J = 7.6 Hz), 6.51 (1H, s), 7.10 (1H, d, J = 1.5 Hz), 8.43-8.44 (1H, m). Example 72: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.36 (3H, t, J = 7.6 Hz), 2.87 (2H, q, J = 7.6 Hz), 6.51 (1H, s), 7.10 (1H, d, J = 1.5 Hz), 8.43-8.44 (1H, m).
<実験例73>
2−エチルー6−フルオロ−4−プロピオニル−ピラゾロ[1,5−a]ピリジン
<Experimental example 73>
2-Ethyl-6-fluoro-4-propionyl-pyrazolo [1,5-a] pyridine
アルゴンガス雰囲気下にて、酢酸パラジウム (102 mg) をDMF (25.0 mL) に溶解させ、1,3-ビス(ジフェニルホスフィノ)プロパン (374 mg) を加え、常温にて15分攪拌した後、DMF (65.0 mL) に溶解させた実施例68の化合物 (4.25 g)、エチル-1-プロペニルエーテル (15.0 mL)、 トリエチルアミン (3.80 mL) を加え、80 ℃にて20時間攪拌した。水を加えた後、酢酸エチルにて三回抽出し、有機層を飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥し溶媒留去後、THF (50.0 mL)、 3 mol/L 塩酸 (50.0 mL)を加え常温にて16時間攪拌した。酢酸エチルにて3回抽出し、有機層を飽和食塩水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去しシリカゲルカラムクロマトグラフィー (ヘキサン : 酢酸エチル = 6 : 1) で精製し目的物(670 mg)を黄色粉末として得た。
1H-NMR (400MHz、CDCl3) δ 1.29 (3H, t, J = 7.0 Hz), 1.38 (3H, t, J = 7.6 Hz), 2.89 (2H, q, J = 7.6 Hz), 3.06 (2H, q, J = 7.3 Hz), 7.13 (1H, s), 7.71 (1H, dd, J = 2.1, 7.8 Hz), 8.53 (1H, t, J = 2.4 Hz).
In an argon gas atmosphere, palladium acetate (102 mg) was dissolved in DMF (25.0 mL), 1,3-bis (diphenylphosphino) propane (374 mg) was added, and the mixture was stirred at room temperature for 15 minutes. The compound of Example 68 (4.25 g), ethyl-1-propenyl ether (15.0 mL) and triethylamine (3.80 mL) dissolved in DMF (65.0 mL) were added, and the mixture was stirred at 80 ° C. for 20 hours. After adding water, extraction was performed three times with ethyl acetate, and the organic layer was washed with saturated brine. After drying over anhydrous sodium sulfate and distilling off the solvent, THF (50.0 mL) and 3 mol / L hydrochloric acid (50.0 mL) were added, and the mixture was stirred at room temperature for 16 hours. The mixture was extracted 3 times with ethyl acetate, and the organic layer was washed with saturated brine. After drying over sodium sulfate, the solvent was distilled off and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 6: 1) to obtain the desired product (670 mg) as a yellow powder.
1 H-NMR (400MHz, CDCl 3 ) δ 1.29 (3H, t, J = 7.0 Hz), 1.38 (3H, t, J = 7.6 Hz), 2.89 (2H, q, J = 7.6 Hz), 3.06 (2H , q, J = 7.3 Hz), 7.13 (1H, s), 7.71 (1H, dd, J = 2.1, 7.8 Hz), 8.53 (1H, t, J = 2.4 Hz).
<実施例74〜78>
表4の化合物を用い、実施例73と同様に反応させ表5に示す化合物を合成した。なおRがメチルの化合物はブチルビニルエーテルを使用した。
<Examples 74 to 78>
The compounds shown in Table 5 were synthesized using the compounds shown in Table 4 in the same manner as in Example 73. In addition, the compound whose R is methyl used butyl vinyl ether.
実施例74: 1H-NMR (400MHz、CDCl3) δ 2.64 (3H, s), 6.85 (1H, t, J = 7.3 Hz), 7.32 (1H, d, J = 1.8 Hz), 7.82 (1H, d, J = 7.3 Hz), 8.10 (1H, d, J = 1.8 Hz), 8.66 (1H, d, J = 7.3 Hz). Example 74: 1 H-NMR (400 MHz, CDCl 3 ) δ 2.64 (3H, s), 6.85 (1H, t, J = 7.3 Hz), 7.32 (1H, d, J = 1.8 Hz), 7.82 (1H, d, J = 7.3 Hz), 8.10 (1H, d, J = 1.8 Hz), 8.66 (1H, d, J = 7.3 Hz).
実施例75: 1H-NMR (400MHz、CDCl3) δ 2.53 (3H, s), 2.67 (3H, s), 6.75 (1H, dd, J = 7.3, 7.3 Hz), 7.09 (1H, s), 7.77 (1H, d, J = 7.3 Hz), 8.54 (1H, d, J = 7.3 Hz). Example 75: 1 H-NMR (400 MHz, CDCl 3 ) δ 2.53 (3H, s), 2.67 (3H, s), 6.75 (1H, dd, J = 7.3, 7.3 Hz), 7.09 (1H, s), 7.77 (1H, d, J = 7.3 Hz), 8.54 (1H, d, J = 7.3 Hz).
実施例76: 1H-NMR(400MHz、CDCl3) δ 1.38 (3H, t, J = 7.6 Hz), 2.67 (3H, s), 2.90 (2H, q, J = 7.6Hz), 6.75 (1H, t, J = 7.0 Hz), 7.78 (1H, dd, J = 0.9, 7.0 Hz), 8.55 (1H, td, J = 0.9, 7.0 Hz). Example 76: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.38 (3H, t, J = 7.6 Hz), 2.67 (3H, s), 2.90 (2H, q, J = 7.6 Hz), 6.75 (1H, t, J = 7.0 Hz), 7.78 (1H, dd, J = 0.9, 7.0 Hz), 8.55 (1H, td, J = 0.9, 7.0 Hz).
実施例77: 1H-NMR(400MHz、CDCl3) δ 1.36 (3H, t, J = 7.6 Hz), 2.67 (3H, s), 2.88 (2H, q, J = 7.6 Hz), 7.11 (1H, s), 7.71 (1H, d, J = 1.8 Hz), 8.58-8.59 (1H, m). Example 77: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.36 (3H, t, J = 7.6 Hz), 2.67 (3H, s), 2.88 (2H, q, J = 7.6 Hz), 7.11 (1H, s), 7.71 (1H, d, J = 1.8 Hz), 8.58-8.59 (1H, m).
実施例78: 1H-NMR(400MHz、CDCl3) δ 1.27 (3H, t, J = 7.3 Hz), 1.36 (3H, t, J = 7.6 Hz), 2.88 (2H, q, J = 7.6 Hz), 3.04 (2H, q, J = 7.3 Hz), 7.12 (1H, s), 7.72 (1H, d, J = 1.8 Hz), 8.58 (1H, d, J = 1.8 Hz). Example 78: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.27 (3H, t, J = 7.3 Hz), 1.36 (3H, t, J = 7.6 Hz), 2.88 (2H, q, J = 7.6 Hz) , 3.04 (2H, q, J = 7.3 Hz), 7.12 (1H, s), 7.72 (1H, d, J = 1.8 Hz), 8.58 (1H, d, J = 1.8 Hz).
<実施例79>
2−エチル−4−プロピオニル−ピラゾロ[1,5−a]ピリジン
<Example 79>
2-Ethyl-4-propionyl-pyrazolo [1,5-a] pyridine
アルゴンガス雰囲気下にて、実施例76の化合物(3.08 g)をTHF(160 mL)に溶解し、-78℃にて1.00 mol/Lリチウムビストリメチルシリルアミド / THF溶液(18.0 mL)を滴下し、-30℃まで徐々に昇温させながら3.5時間攪拌した。その後、-78℃にてヨウ化メチル(1.10 mL)を適下し、常温まで徐々に昇温させながら6時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルにて抽出した。有機層を水、飽和食塩水の順に洗浄後、無水硫酸ナトリウムにて乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー (ヘキサン : 酢酸エチル = 3 : 1) で精製し、目的物(1.37 g)を黄色粉末として得た。
LRMS(EI+) 202 [M+]
1H-NMR(400MHz、CDCl3) δ 1.27 (3H, t, J = 7.3 Hz), 1.38 (3H, t, J = 7.3 Hz), 2.90 (2H, q, J = 7.3 Hz), 3.05 (2H, q, J = 7.3 Hz), 6.75 (1H, t, J = 7.3 Hz), 7.13 (1H, s), 7.80 (1H, dd, J = 1.2, 7.3 Hz), 8.55 (1H, dd, J = 1.2, 7.3 Hz).
Under an argon gas atmosphere, the compound of Example 76 (3.08 g) was dissolved in THF (160 mL), and a 1.00 mol / L lithium bistrimethylsilylamide / THF solution (18.0 mL) was added dropwise at -78 ° C. The mixture was stirred for 3.5 hours while gradually raising the temperature to -30 ° C. Thereafter, methyl iodide (1.10 mL) was appropriately dropped at −78 ° C., and the mixture was stirred for 6 hours while gradually warming to room temperature. A saturated aqueous ammonium chloride solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine in that order and then dried over anhydrous sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1) to obtain the desired product (1.37 g) as a yellow powder.
LRMS (EI +) 202 [M +]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.27 (3H, t, J = 7.3 Hz), 1.38 (3H, t, J = 7.3 Hz), 2.90 (2H, q, J = 7.3 Hz), 3.05 (2H , q, J = 7.3 Hz), 6.75 (1H, t, J = 7.3 Hz), 7.13 (1H, s), 7.80 (1H, dd, J = 1.2, 7.3 Hz), 8.55 (1H, dd, J = 1.2, 7.3 Hz).
<実施例80>
4−プロピオニル−2−プロピル−ピラゾロ[1,5−a]ピリジン
<Example 80>
4-propionyl-2-propyl-pyrazolo [1,5-a] pyridine
実施例56の化合物 (3.17 g)をトルエン(72.5 mL)に溶解し、活性二酸化マンガン(6.31 g)を加え加熱還流下にて7時間攪拌した。活性二酸化マンガン(6.31 g)を更に加え、加熱還流下にて6時間攪拌した。セライトろ過後、ろ液を留去し、シリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 4 : 1)で精製した。得られた黄色油状物を再度同様にして酸化し精製後、目的物(850 mg)を黄色粉末として得た.
1H-NMR (400MHz、CDCl3) δ 1.01 (3H, t, J = 7.3 Hz), 1.27 (3H, t, J = 7.3 Hz), 1.76-1.84 (2H, m), 2.84 (2H, t, J = 7.3 Hz), 3.05 (2H, q, J = 7.3 Hz), 6.74 (1H, t, J = 6.7 Hz), 7.12 (1H, s), 7.79 (1H, d, J = 6.7 Hz), 8.54 (1H, d, J = 6.7 Hz).
The compound of Example 56 (3.17 g) was dissolved in toluene (72.5 mL), activated manganese dioxide (6.31 g) was added, and the mixture was stirred for 7 hours under heating to reflux. Activated manganese dioxide (6.31 g) was further added, and the mixture was stirred with heating under reflux for 6 hours. After filtration through celite, the filtrate was distilled off and purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1). The obtained yellow oil was again oxidized and purified in the same manner to obtain the desired product (850 mg) as a yellow powder.
1 H-NMR (400 MHz, CDCl 3 ) δ 1.01 (3H, t, J = 7.3 Hz), 1.27 (3H, t, J = 7.3 Hz), 1.76-1.84 (2H, m), 2.84 (2H, t, J = 7.3 Hz), 3.05 (2H, q, J = 7.3 Hz), 6.74 (1H, t, J = 6.7 Hz), 7.12 (1H, s), 7.79 (1H, d, J = 6.7 Hz), 8.54 (1H, d, J = 6.7 Hz).
<実施例81>
2−エチル−4−(2−エチル−[1, 3]ジオキソラン−2−イル)−ピラゾロ[1,5−a]ピリジン
<Example 81>
2-Ethyl-4- (2-ethyl- [1,3] dioxolan-2-yl) -pyrazolo [1,5-a] pyridine
実施例79の化合物(1.37 g)をトルエン(50.0 mL)に溶解し、エチレングリコール(5.00 mL)およびパラトルエンスルホン酸一水和物(137 mg)を加え、Dean-Starkトラップを用い加熱還流条件下にて10時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え酢酸エチルで抽出し、有機層を水、飽和食塩水の順に洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 4 : 1)で精製し、目的物(1.51 g)を黄色油状物として得た。
LRMS (EI+): 246 [M+]
1H-NMR (400 MHz, CDCl3) δ 0.89 (3H, t, J = 7.3 Hz), 1.37 (3H, t, J = 7.3 Hz), 2.07 (2H, q, J = 7.3 Hz), 2.86 (2H, q, J = 7.3 Hz), 3.80-3.84 (2H, m), 4.05-4.08 (2H, m), 6.54 (1H, s), 6.64 (1H, t, J = 7.3 Hz), 7.13-7.15 (1H, m), 8.32 (1H, d, J = 7.3 Hz).
The compound of Example 79 (1.37 g) was dissolved in toluene (50.0 mL), ethylene glycol (5.00 mL) and paratoluenesulfonic acid monohydrate (137 mg) were added, and the mixture was heated under reflux using a Dean-Stark trap. Stirred under for 10 hours. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1) to obtain the desired product (1.51 g) as a yellow oil.
LRMS (EI + ): 246 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 0.89 (3H, t, J = 7.3 Hz), 1.37 (3H, t, J = 7.3 Hz), 2.07 (2H, q, J = 7.3 Hz), 2.86 ( 2H, q, J = 7.3 Hz), 3.80-3.84 (2H, m), 4.05-4.08 (2H, m), 6.54 (1H, s), 6.64 (1H, t, J = 7.3 Hz), 7.13-7.15 (1H, m), 8.32 (1H, d, J = 7.3 Hz).
<実施例82〜93>
実施例50、58、74、75、76、80の化合物を用い上記実施例81と同様に反応させ表6に示す化合物を合成した。
<Examples 82 to 93>
The compounds shown in Table 6 were synthesized by reacting the compounds of Examples 50, 58, 74, 75, 76 and 80 in the same manner as in Example 81.
実施例82: 1H-NMR (400 MHz, CDCl3) δ 1.77 (3H, s), 3.79-3.85 (2H, m), 4.05-4.13 (2H, m), 6.73 (1H, t, J = 7.3 Hz), 6.78 (1H, d, J = 2.4 Hz), 7.22 (1H, d, J = 7.3 Hz), 7.95 (1H, d, J = 2.4 Hz), 8.42 (1H, d, J = 7.3 Hz). Example 82: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.77 (3H, s), 3.79-3.85 (2H, m), 4.05-4.13 (2H, m), 6.73 (1H, t, J = 7.3 Hz), 6.78 (1H, d, J = 2.4 Hz), 7.22 (1H, d, J = 7.3 Hz), 7.95 (1H, d, J = 2.4 Hz), 8.42 (1H, d, J = 7.3 Hz) .
実施例83: 1H-NMR (400 MHz, CDCl3) δ 1.76 (3H, s), 2.49 (3H, s), 3.79-3.82 (2H, m), 4.07-4.10 (2H, m), 6.53(1H, s), 6.63 (1H, t, J = 7.3 Hz), 7.17 (1H, d, J = 7.3 Hz), 8.30 (1H, d, J = 7.3 Hz). Example 83: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.76 (3H, s), 2.49 (3H, s), 3.79-3.82 (2H, m), 4.07-4.10 (2H, m), 6.53 ( 1H, s), 6.63 (1H, t, J = 7.3 Hz), 7.17 (1H, d, J = 7.3 Hz), 8.30 (1H, d, J = 7.3 Hz).
実施例84: 1H-NMR(400MHz、CDCl3) δ 1.38 (3H, t, J = 7.6 Hz), 1.77 (3H, s), 2.87 (2H, q, J = 7.6 Hz), 3.79-3.83 (2H, m), 4.07-4.10 (2H, m), 6.56 (1H, s), 6.65 (1H, t, J = 6.7 Hz), 7.18 (1H, d, J = 6.7 Hz), 8.35 (1H, d, J = 6.7 Hz). Example 84: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.38 (3H, t, J = 7.6 Hz), 1.77 (3H, s), 2.87 (2H, q, J = 7.6 Hz), 3.79-3.83 ( 2H, m), 4.07-4.10 (2H, m), 6.56 (1H, s), 6.65 (1H, t, J = 6.7 Hz), 7.18 (1H, d, J = 6.7 Hz), 8.35 (1H, d , J = 6.7 Hz).
実施例85: 1H-NMR (400 MHz, CDCl3) δ 0.89 (3H, t, J = 7.3 Hz), 1.02 (3H, t, J = 7.3 Hz), 1.77-1.83 (2H, m), 2.06 (2H, q, J = 7.3 Hz), 2.80 (2H, t, J = 7.3 Hz), 3.82-3.84 (2H, m), 4.04-4.08 (2H, m), 6.53 (1H, s), 6.64 (1H, t, J = 6.7 Hz), 7.14 (1H, d, J = 6.7 Hz), 8.32 (1H, d, J = 6.7 Hz). Example 85: 1 H-NMR (400 MHz, CDCl 3 ) δ 0.89 (3H, t, J = 7.3 Hz), 1.02 (3H, t, J = 7.3 Hz), 1.77-1.83 (2H, m), 2.06 (2H, q, J = 7.3 Hz), 2.80 (2H, t, J = 7.3 Hz), 3.82-3.84 (2H, m), 4.04-4.08 (2H, m), 6.53 (1H, s), 6.64 ( 1H, t, J = 6.7 Hz), 7.14 (1H, d, J = 6.7 Hz), 8.32 (1H, d, J = 6.7 Hz).
実施例86: 1H-NMR (400 MHz, CDCl3) δ 0.90-0.92 (2H, m), 0.92-1.04 (2H, m), 2.07-2.12 (1H, m), 3.78-3.84 (2H, m), 4.03-4.09 (2H, m), 6.41 (1H, s), 6.61 (1H, t, J = 7.3 Hz), 7.15 (1H, d, J = 7.3 Hz). Example 86: 1 H-NMR (400 MHz, CDCl 3 ) δ 0.90-0.92 (2H, m), 0.92-1.04 (2H, m), 2.07-2.12 (1H, m), 3.78-3.84 (2H, m ), 4.03-4.09 (2H, m), 6.41 (1H, s), 6.61 (1H, t, J = 7.3 Hz), 7.15 (1H, d, J = 7.3 Hz).
実施例87:1H-NMR (400 MHz, CDCl3) δ1.76 (3H, s), 3.75-3.86 (2H, m), 4.06-4.16 (2H, m), 6.90 (1H, t, J = 6.7 Hz), 7.08 (1H, s), 7.35 (1H, dd, J = 6.7, 1.2 Hz), 8.44 (1H, d, J = 6.7 Hz). Example 87: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.76 (3H, s), 3.75-3.86 (2H, m), 4.06-4.16 (2H, m), 6.90 (1H, t, J = 6.7 Hz), 7.08 (1H, s), 7.35 (1H, dd, J = 6.7, 1.2 Hz), 8.44 (1H, d, J = 6.7 Hz).
<実施例88>
4−t−ブチルジメチルシリルオキシメチル−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン
<Example 88>
4-t-butyldimethylsilyloxymethyl-2-trifluoromethyl-pyrazolo [1,5-a] pyridine
実施例67の化合物(5.17 g, crude)をDMF(100 mL)に溶解し、イミダゾール(4.89 g)およびt‐ブチルジメチルシリルクロリド(4.33 g)を加え、常温にて1.5時間攪拌した。反応液に水を加えた後、酢酸エチルで抽出した。有機層を水、飽和食塩水の順に洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 9 : 1)にて精製し、目的物(3.42 g)を黄色油状物として得た。
LRMS (EI+): 330 [M+]
1H-NMR (400 MHz, CDCl3): δ 0.14 (6H, s), 0.96 (9H, s), 4.90 (2H, s), 6.78 (1H, s), 6.93 (1H, t, J = 7.3 Hz), 7.28 (1H, m), 8.41 (1H, d, J = 7.3 Hz).
The compound of Example 67 (5.17 g, crude) was dissolved in DMF (100 mL), imidazole (4.89 g) and t-butyldimethylsilyl chloride (4.33 g) were added, and the mixture was stirred at room temperature for 1.5 hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine in that order and then dried over anhydrous sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 9: 1) to obtain the desired product (3.42 g) as a yellow oil.
LRMS (EI + ): 330 [M + ]
1 H-NMR (400 MHz, CDCl 3 ): δ 0.14 (6H, s), 0.96 (9H, s), 4.90 (2H, s), 6.78 (1H, s), 6.93 (1H, t, J = 7.3 Hz), 7.28 (1H, m), 8.41 (1H, d, J = 7.3 Hz).
<実施例89>
4−t−ブチルジメチルシリルオキシメチル−7−ヨード−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン
<Example 89>
4-t-butyldimethylsilyloxymethyl-7-iodo-2-trifluoromethyl-pyrazolo [1,5-a] pyridine
アルゴンガス雰囲気下にて、上記実施例88の化合物(3.42 g)をTHF(30.0 mL)に溶解した後、−78℃にて1.59 mol/L n‐ブチルリチウム / n‐ヘキサン溶液(8.50 mL)を適下し、そのまま1時間攪拌した。その後、−78℃にて1,2−ジヨードエタン(3.52 g)のTHF溶液(30.0 mL)を滴下し、そのまま2時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えた後、酢酸エチルで抽出し、有機層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 19 : 1)にて精製し、目的物(4.57 g)を淡黄色粉末として得た。
LRMS (EI+): 456 [M+]
1H-NMR (400 MHz, CDCl3): δ 0.14 (6H, s), 0.96 (9H, s), 4.89 (2H, s), 7.01 (1H, s), 7.04 (1H, d, J = 7.3 Hz), 7.49 (1H, d, J = 7.3 Hz).
After dissolving the compound of Example 88 (3.42 g) in THF (30.0 mL) under an argon gas atmosphere, a 1.59 mol / L n-butyllithium / n-hexane solution (8.50 mL) at −78 ° C. Was stirred for 1 hour. Thereafter, a THF solution (30.0 mL) of 1,2-diiodoethane (3.52 g) was added dropwise at −78 ° C., followed by stirring for 2 hours. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 19: 1) to obtain the desired product (4.57 g) as a pale yellow powder.
LRMS (EI + ): 456 [M + ]
1 H-NMR (400 MHz, CDCl 3 ): δ 0.14 (6H, s), 0.96 (9H, s), 4.89 (2H, s), 7.01 (1H, s), 7.04 (1H, d, J = 7.3 Hz), 7.49 (1H, d, J = 7.3 Hz).
<実施例90〜96>
表6の化合物及び実施例81の化合物を用いて実施例89と同様に反応させ表7に示した化合物を合成した。
<Examples 90 to 96>
The compounds shown in Table 7 were synthesized by reacting in the same manner as in Example 89 using the compounds in Table 6 and the compounds of Example 81.
実施例90: 1H-NMR (400 MHz, CDCl3) δ 1.77 (3H, s), 3.75-3.81 (2H, m), 4.08-4.11 (2H, m), 6.99 (1H, d, J = 7.3 Hz), 7.04 (1H, d, J = 2.1 Hz), 7.32 (1H, d, J = 7.3 Hz), 8.06 (1H, d, J = 2.1 Hz). Example 90: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.77 (3H, s), 3.75-3.81 (2H, m), 4.08-4.11 (2H, m), 6.99 (1H, d, J = 7.3 Hz), 7.04 (1H, d, J = 2.1 Hz), 7.32 (1H, d, J = 7.3 Hz), 8.06 (1H, d, J = 2.1 Hz).
実施例91: 1H-NMR (400 MHz, CDCl3) δ 1.75 (3H, s), 2.55 (3H, s), 3.77-3.80 (2H, m), 4.03-4.10 (2H, m), 6.80 (1H, s), 6.92 (1H, d, J = 7.3 Hz), 7.21 (1H, d, J = 7.3 Hz). Example 91: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.75 (3H, s), 2.55 (3H, s), 3.77-3.80 (2H, m), 4.03-4.10 (2H, m), 6.80 ( 1H, s), 6.92 (1H, d, J = 7.3 Hz), 7.21 (1H, d, J = 7.3 Hz).
実施例92: 1H-NMR(400MHz、CDCl3) δ 1.38 (3H, t, J = 7.6 Hz), 1.76 (3H, s), 2.93(2H, q, J= 7.6 Hz), 3.77-3.81 (2H, m), 4.06-4.13 (2H, m), 6.83 (1H, s), 6.92 (1H, d, J = 7.3 Hz), 7.21 (1H, d, J = 7.3 Hz). Example 92: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.38 (3H, t, J = 7.6 Hz), 1.76 (3H, s), 2.93 (2H, q, J = 7.6 Hz), 3.77-3.81 ( 2H, m), 4.06-4.13 (2H, m), 6.83 (1H, s), 6.92 (1H, d, J = 7.3 Hz), 7.21 (1H, d, J = 7.3 Hz).
実施例93: 1H-NMR (400 MHz, CDCl3) δ 0.89 (3H, t, J = 7.3 Hz), 1.04 (3H, t, J = 7.3 Hz), 1.78-1.84 (2H, m), 2.04 (2H, q, J = 7.3 Hz), 2.85 (2H, t, J = 7.3 Hz), 3.78-3.82 (2H, m), 4.04-4.07 (2H, m), 6.80 (1H, s), 6.88 (1H, d, J = 7.3 Hz), 7.21 (1H, d, J = 7.3 Hz). Example 93: 1 H-NMR (400 MHz, CDCl 3 ) δ 0.89 (3H, t, J = 7.3 Hz), 1.04 (3H, t, J = 7.3 Hz), 1.78-1.84 (2H, m), 2.04 (2H, q, J = 7.3 Hz), 2.85 (2H, t, J = 7.3 Hz), 3.78-3.82 (2H, m), 4.04-4.07 (2H, m), 6.80 (1H, s), 6.88 ( 1H, d, J = 7.3 Hz), 7.21 (1H, d, J = 7.3 Hz).
実施例94: 1H-NMR (400 MHz, CDCl3) δ 0.89-0.93 (2H, m), 1.04-1.09 (2H, m), 1.73 (3H, s), 2.19-2.23 (1H, m), 3.76-3.79 (2H, m), 4.05-4.09 (2H, m), 6.60 (1H, s), 6.90 (1H, d, J = 7.3 Hz), 7.19 (1H, d, J = 7.3 Hz). Example 94: 1 H-NMR (400 MHz, CDCl 3 ) δ 0.89-0.93 (2H, m), 1.04-1.09 (2H, m), 1.73 (3H, s), 2.19-2.23 (1H, m), 3.76-3.79 (2H, m), 4.05-4.09 (2H, m), 6.60 (1H, s), 6.90 (1H, d, J = 7.3 Hz), 7.19 (1H, d, J = 7.3 Hz).
実施例95: 1H-NMR (400 MHz, CDCl3) δ1.75 (3H, s), 3.74-3.84 (2H, m), 4.06-4.16 (2H, m), 7.09 (1H, d, J = 7.3 Hz), 7.33 (1H, s), 7.47 (1H, d, J = 7.3 Hz). Example 95: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.75 (3H, s), 3.74-3.84 (2H, m), 4.06-4.16 (2H, m), 7.09 (1H, d, J = 7.3 Hz), 7.33 (1H, s), 7.47 (1H, d, J = 7.3 Hz).
実施例96: LRMS(EI+): 372 [M+]
1H-NMR (400 MHz, CDCl3) δ 0.89 (3H, t, J = 7.3 Hz), 1.37 (3H, t, J = 7.3 Hz), 2.06 (2H, q, J = 7.3 Hz), 2.92 (2H, q, J = 7.3 Hz), 3.79-3.82 (2H, m), 4.04-4.08 (2H, m), 6.81 (1H, s), 6.89 (1H, d, J = 7.3 Hz), 7.22 (1H, d, J = 7.3 Hz).
Example 96: LRMS (EI + ): 372 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 0.89 (3H, t, J = 7.3 Hz), 1.37 (3H, t, J = 7.3 Hz), 2.06 (2H, q, J = 7.3 Hz), 2.92 ( 2H, q, J = 7.3 Hz), 3.79-3.82 (2H, m), 4.04-4.08 (2H, m), 6.81 (1H, s), 6.89 (1H, d, J = 7.3 Hz), 7.22 (1H , d, J = 7.3 Hz).
<実施例97>
7−ヨード−2−メチルチオー4−(テトラヒドロピラン−2−イルオキシメチル)−ピラゾロ[1,5−a]ピリジン
<Example 97>
7-Iodo-2-methylthio-4- (tetrahydropyran-2-yloxymethyl) -pyrazolo [1,5-a] pyridine
分離不可な異性体を含む実施例65の化合物を用い、実施例89と同様に反応させ目的物を分離不能な異性体を含む褐色油状物として得た.
1H-NMR (400 MHz, CDCl3): δ1.55-1.87 (6H, m), 2.65 (3H, s), 3.53-3.57 (1H, m), 3.87-3.92 (1H, m), 4.63(1H, d, J = 7.9 Hz), 4.71(1H, t, J = 6.7 Hz), 4.88(1H, d, J = 7.9 Hz), 6.68(1H, s), 6.87 (1H, d, J = 7.3 Hz), 7.21 (1H, d, J = 7.3 Hz).
The compound of Example 65 containing an inseparable isomer was used in the same manner as in Example 89 to obtain the desired product as a brown oil containing an inseparable isomer.
1 H-NMR (400 MHz, CDCl 3 ): δ1.55-1.87 (6H, m), 2.65 (3H, s), 3.53-3.57 (1H, m), 3.87-3.92 (1H, m), 4.63 ( 1H, d, J = 7.9 Hz), 4.71 (1H, t, J = 6.7 Hz), 4.88 (1H, d, J = 7.9 Hz), 6.68 (1H, s), 6.87 (1H, d, J = 7.3 Hz), 7.21 (1H, d, J = 7.3 Hz).
<実施例98>
2−エチル−7−ヨード−4−プロピオニル−ピラゾロ[1,5−a]ピリジン
<Example 98>
2-Ethyl-7-iodo-4-propionyl-pyrazolo [1,5-a] pyridine
実施例96の化合物(1.97 g)をアセトン(50.0 mL)および水(25.0 mL)に溶解し、パラトルエンスルホン酸一水和物(197 mg)を加え、60℃にて4時間攪拌した。反応液を溶媒留去後、酢酸エチルで抽出した。有機層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 9 : 1)にて精製し、目的物(1.64 g)を黄色粉末として得た。
LRMS(EI+) 328 [M+]
1H-NMR (400 MHz, CDCl3) δ 1.26 (3H, t, J = 7.3 Hz), 1.38 (3H, t, J = 7.3 Hz), 2.95 (2H, q, J = 7.3 Hz), 3.04 (2H, q, J = 7.3 Hz), 7.34 (1H, d, J = 7.3 Hz), 7.41 (1H, s), 7.49 (1H, d, J = 7.3 Hz).
The compound of Example 96 (1.97 g) was dissolved in acetone (50.0 mL) and water (25.0 mL), paratoluenesulfonic acid monohydrate (197 mg) was added, and the mixture was stirred at 60 ° C. for 4 hr. The reaction mixture was evaporated and extracted with ethyl acetate. The organic layer was washed with water and then saturated brine, and then dried over anhydrous sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 9: 1) to obtain the desired product (1.64 g) as a yellow powder.
LRMS (EI + ) 328 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.26 (3H, t, J = 7.3 Hz), 1.38 (3H, t, J = 7.3 Hz), 2.95 (2H, q, J = 7.3 Hz), 3.04 ( 2H, q, J = 7.3 Hz), 7.34 (1H, d, J = 7.3 Hz), 7.41 (1H, s), 7.49 (1H, d, J = 7.3 Hz).
<実施例99〜104>
実施例90〜95の化合物を用い、上記実施例98と同様に反応させ表8に示す化合物を合成した。
<Examples 99 to 104>
The compounds shown in Table 8 were synthesized by reacting the compounds of Examples 90 to 95 in the same manner as in Example 98.
実施例99: 1H-NMR (400 MHz, CDCl3) δ 2.70 (3H, s), 7.47 (1H, d, J = 7.3 Hz), 7.54 (1H, d, J = 7.3 Hz), 7.61 (1H, d, J = 2.1 Hz), 8.20 (1H, d, J = 2.1 Hz). Example 99: 1 H-NMR (400 MHz, CDCl 3 ) δ 2.70 (3H, s), 7.47 (1H, d, J = 7.3 Hz), 7.54 (1H, d, J = 7.3 Hz), 7.61 (1H , d, J = 2.1 Hz), 8.20 (1H, d, J = 2.1 Hz).
実施例100: 1H-NMR (400 MHz, CDCl3) δ 2.58 (3H, s), 2.65 (3H, s), 7.34 (1H, d, J = 7.3 Hz), 7.36 (1H, s), 7.46 (1H, d, J = 7.3 Hz). Example 100: 1 H-NMR (400 MHz, CDCl 3 ) δ 2.58 (3H, s), 2.65 (3H, s), 7.34 (1H, d, J = 7.3 Hz), 7.36 (1H, s), 7.46 (1H, d, J = 7.3 Hz).
実施例101: 1H-NMR(400MHz、CDCl3) δ 1.39 (3H, t, J = 7.6 Hz), 2.66 (3H, s), 2.95 (2H, q, J = 7.6 Hz), 7.35 (1H, d, J = 7.3 Hz), 7.40 (1H, s), 7.46 (1H, d, J = 7.6 Hz). Example 101: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.39 (3H, t, J = 7.6 Hz), 2.66 (3H, s), 2.95 (2H, q, J = 7.6 Hz), 7.35 (1H, d, J = 7.3 Hz), 7.40 (1H, s), 7.46 (1H, d, J = 7.6 Hz).
実施例102: 1H-NMR (400 MHz, CDCl3) δ 1.03 (3H, t, J = 7.3 Hz), 1.26 (3H, t, J = 7.3 Hz), 1.79-1.85 (2H, m), 2.89 (2H, t, J = 7.3 Hz), 3.03 (2H, q, J = 7.3 Hz), 7.33 (1H, d, J = 7.9 Hz), 7.40 (1H, s), 7.48 (1H, d, J = 7.9 Hz). Example 102: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.03 (3H, t, J = 7.3 Hz), 1.26 (3H, t, J = 7.3 Hz), 1.79-1.85 (2H, m), 2.89 (2H, t, J = 7.3 Hz), 3.03 (2H, q, J = 7.3 Hz), 7.33 (1H, d, J = 7.9 Hz), 7.40 (1H, s), 7.48 (1H, d, J = (7.9 Hz).
実施例103: 1H-NMR (400 MHz, CDCl3) δ 0.96-0.98 (2H, m), 1.10-1.14 (2H, m), 2.23-2.29 (1H, m), 2.67 (3H, s), 7.19 (1H, s), 7.34 (1H, d, J = 7.3 Hz), 7.47 (1H, d, J = 7.3 Hz). Example 103: 1 H-NMR (400 MHz, CDCl 3 ) δ 0.96-0.98 (2H, m), 1.10-1.14 (2H, m), 2.23-2.29 (1H, m), 2.67 (3H, s), 7.19 (1H, s), 7.34 (1H, d, J = 7.3 Hz), 7.47 (1H, d, J = 7.3 Hz).
実施例104:1H-NMR (400 MHz, CDCl3) δ2.69 (3H, s), 7.59 (2H, d, J = 7.3 Hz), 7.62 (2H, d, J = 7.9 Hz), 7.87 (1H, s). Example 104: 1 H-NMR (400 MHz, CDCl 3 ) δ 2.69 (3H, s), 7.59 (2H, d, J = 7.3 Hz), 7.62 (2H, d, J = 7.9 Hz), 7.87 ( 1H, s).
<実施例105>
4−ヒドロキシメチル−7−ヨード−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン
<Example 105>
4-Hydroxymethyl-7-iodo-2-trifluoromethyl-pyrazolo [1,5-a] pyridine
実施例89の化合物(4.57 g)をTHF(50.0 mL)に溶解し、氷冷下にて1.00 mol/L テトラn‐ブチルアンモニウムフルオリド / THF溶液(12.0 mL)を加え、常温にて1時間攪拌した。反応液に水を加えた後、酢酸エチルで抽出した。有機層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル =2 : 1)にて精製し、目的物(3.26 g)を淡黄色粉末として得た。
LRMS (EI+): 342 [M+]
1H-NMR (400 MHz, CDCl3) δ 1.88 (1H, t, J = 5.5 Hz), 4.93 (2H, d, J = 5.5 Hz), 7.04 (1H, d, J = 7.3 Hz), 7.11 (1H, s), 7.50 (1H, d, J = 7.3 Hz).
The compound of Example 89 (4.57 g) was dissolved in THF (50.0 mL), and 1.00 mol / L tetra-n-butylammonium fluoride / THF solution (12.0 mL) was added under ice-cooling. Stir. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and then saturated brine, and then dried over anhydrous sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 2: 1) to obtain the desired product (3.26 g) as a pale yellow powder.
LRMS (EI + ): 342 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.88 (1H, t, J = 5.5 Hz), 4.93 (2H, d, J = 5.5 Hz), 7.04 (1H, d, J = 7.3 Hz), 7.11 ( 1H, s), 7.50 (1H, d, J = 7.3 Hz).
<実施例106>
4−ホルミル−7−ヨード−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン
<Example 106>
4-Formyl-7-iodo-2-trifluoromethyl-pyrazolo [1,5-a] pyridine
上記実施例105の化合物(3.26 g)を ジクロロメタン(50.0 mL)に溶解し、活性二酸化マンガン(8.29 g)を加え、常温にて14時間攪拌した。反応液をセライトろ過後、ろ液を溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 4 : 1)にて精製し、目的物(2.97 g)を黄色粉末として得た。
LRMS (EI+): 340 [M+]
1H-NMR (400 MHz, CDCl3) δ 7.52 (1H, d, J = 7.3 Hz), 7.74 (1H, d, J = 7.3 Hz), 7.86 (1H, s), 10.1 (1H, s).
The compound of Example 105 (3.26 g) was dissolved in dichloromethane (50.0 mL), activated manganese dioxide (8.29 g) was added, and the mixture was stirred at room temperature for 14 hours. The reaction mixture was filtered through celite, the filtrate was evaporated, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1) to obtain the desired product (2.97 g) as a yellow powder.
LRMS (EI + ): 340 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 7.52 (1H, d, J = 7.3 Hz), 7.74 (1H, d, J = 7.3 Hz), 7.86 (1H, s), 10.1 (1H, s).
<実施例107>
4−ホルミル−7−ヨード−2−メチルチオ−ピラゾロ[1,5−a]ピリジン
<Example 107>
4-Formyl-7-iodo-2-methylthio-pyrazolo [1,5-a] pyridine
分離不可な異性体を含む実施例97の化合物(665 mg, 1.64 mmol)をメタノール(15.0 mL)に溶解し、パラトルエンスルホン酸一水和物(31.2 mg)を加え、常温で2時間攪拌した。飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルにて三回抽出し有機層を飽和食塩水で洗浄した。硫酸ナトリウムで乾燥し、溶媒留去した。得られた固体をジクロロメタン(20.0 mL)に溶解し、活性二酸化マンガン(1.37 g)を加え、常温で3時間超音波照射を行った。セライトろ過後、溶媒留去し、シリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル = 20 : 1) で精製し目的物 (333 mg)を黄色粉末として得た.
1H-NMR (400 MHz, CDCl3) δ 2.69 (3H, s), 7.36 (3H, d, J = 7.3 Hz), 7.43 (1H, d, J = 7.3 Hz), 7.44 (1H, s), 10.0 (1H, s).
The compound of Example 97 (665 mg, 1.64 mmol) containing an inseparable isomer was dissolved in methanol (15.0 mL), paratoluenesulfonic acid monohydrate (31.2 mg) was added, and the mixture was stirred at room temperature for 2 hours. . Saturated aqueous sodium hydrogen carbonate solution was added, extracted three times with ethyl acetate, and the organic layer was washed with saturated brine. The extract was dried over sodium sulfate and evaporated. The obtained solid was dissolved in dichloromethane (20.0 mL), activated manganese dioxide (1.37 g) was added, and ultrasonic irradiation was performed at room temperature for 3 hours. After filtration through celite, the solvent was distilled off, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 20: 1) to obtain the desired product (333 mg) as a yellow powder.
1 H-NMR (400 MHz, CDCl 3 ) δ 2.69 (3H, s), 7.36 (3H, d, J = 7.3 Hz), 7.43 (1H, d, J = 7.3 Hz), 7.44 (1H, s), 10.0 (1H, s).
<実施例108>
4−ホルミル−7−メトキシ−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン
<Example 108>
4-Formyl-7-methoxy-2-trifluoromethyl-pyrazolo [1,5-a] pyridine
実施例106の化合物(2.97 g)をメタノール(50.0 mL)に溶解し、ナトリウムメトキシド(1.42 g)を加え、加熱還流下にて2時間攪拌した。放冷後、反応液を溶媒留去し、残渣に水を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、ジイソプロピルエーテルを加えて懸濁させ、固体をろ取することで、目的物(1.93 g)を黄緑色粉末として得た。
LRMS (EI+): 244 [M+]
1H-NMR (400 MHz, CDCl3) δ 4.41 (3H, s), 6.43 (1H, d, J = 7.3 Hz), 7.65 (1H, s), 7.87 (1H, d, J = 7.3 Hz), 9.98 (1H, s).
The compound of Example 106 (2.97 g) was dissolved in methanol (50.0 mL), sodium methoxide (1.42 g) was added, and the mixture was stirred with heating under reflux for 2 hr. After allowing to cool, the reaction mixture was evaporated, water was added to the residue, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and then saturated brine, and then dried over anhydrous sodium sulfate. After distilling off the solvent, diisopropyl ether was added and suspended, and the solid was collected by filtration to obtain the desired product (1.93 g) as a yellow-green powder.
LRMS (EI + ): 244 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 4.41 (3H, s), 6.43 (1H, d, J = 7.3 Hz), 7.65 (1H, s), 7.87 (1H, d, J = 7.3 Hz), 9.98 (1H, s).
<実施例109〜115>
実施例99〜104及び107の化合物を用い、上記実施例108と同様に反応させ表9に示した化合物を合成した。
<Examples 109 to 115>
The compounds shown in Table 9 were synthesized by reacting the compounds of Examples 99 to 104 and 107 in the same manner as in Example 108 above.
実施例109: 1H-NMR (400 MHz, CDCl3) δ 2.64 (3H, s), 4.25 (3H, s), 6.16 (1H, d, J = 8.0 Hz), 7.37 (1H, d, J = 2.4 Hz), 7.90 (1H, d, J = 8.0 Hz), 8.12 (1H, d, J = 2.4 Hz). Example 109: 1 H-NMR (400 MHz, CDCl 3 ) δ 2.64 (3H, s), 4.25 (3H, s), 6.16 (1H, d, J = 8.0 Hz), 7.37 (1H, d, J = 2.4 Hz), 7.90 (1H, d, J = 8.0 Hz), 8.12 (1H, d, J = 2.4 Hz).
実施例110: 1H-NMR (400 MHz, CDCl3) δ 2.55 (3H, s), 2.62 (3H, s), 4.23 (3H, s), 6.08 (1H, d, J = 7.9 Hz), 7.14 (1H, s), 7.85 (1H, d, J = 7.9 Hz). Example 110: 1 H-NMR (400 MHz, CDCl 3 ) δ 2.55 (3H, s), 2.62 (3H, s), 4.23 (3H, s), 6.08 (1H, d, J = 7.9 Hz), 7.14 (1H, s), 7.85 (1H, d, J = 7.9 Hz).
実施例111: 1H-NMR(400 MHz, CDCl3) δ 1.38 (3H, t, J = 7.6 Hz), 2.62 (3H, s), 2.93 (2H, q, J = 7.6 Hz), 4.23 (3H, s), 6.09 (1H, d, J = 7.9 Hz), 7.19 (1H, s), 7.86 (1H, d, J = 7.9 Hz). Example 111: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.38 (3H, t, J = 7.6 Hz), 2.62 (3H, s), 2.93 (2H, q, J = 7.6 Hz), 4.23 (3H , s), 6.09 (1H, d, J = 7.9 Hz), 7.19 (1H, s), 7.86 (1H, d, J = 7.9 Hz).
実施例112: 1H-NMR (400 MHz, CDCl3) δ 1.00 (3H, t, J = 7.3 Hz), 1.26 (3H, t, J = 7.3 Hz), 1.78-1.84 (2H, m), 2.87 (2H, t, J = 7.3 Hz), 3.00 (2H, q, J = 7.3 Hz), 4.22 (3H, s), 6.07 (1H, d, J = 7.9 Hz), 7.19 (1H, s), 7.88 (1H, d, J = 7.9 Hz). Example 112: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.00 (3H, t, J = 7.3 Hz), 1.26 (3H, t, J = 7.3 Hz), 1.78-1.84 (2H, m), 2.87 (2H, t, J = 7.3 Hz), 3.00 (2H, q, J = 7.3 Hz), 4.22 (3H, s), 6.07 (1H, d, J = 7.9 Hz), 7.19 (1H, s), 7.88 (1H, d, J = 7.9 Hz).
実施例113: 1H-NMR (400 MHz, CDCl3) δ 0.90-0.94 (2H, m), 1.04-1.08 (2H, m), 2.20-2.26 (1H, m), 2.60 (3H, s), 4.22 (3H, s), 6.06 (1H, d, J = 8.2 Hz), 6.94 (1H, s), 7.83 (1H, d, J = 8.2 Hz). Example 113: 1 H-NMR (400 MHz, CDCl 3 ) δ 0.90-0.94 (2H, m), 1.04-1.08 (2H, m), 2.20-2.26 (1H, m), 2.60 (3H, s), 4.22 (3H, s), 6.06 (1H, d, J = 8.2 Hz), 6.94 (1H, s), 7.83 (1H, d, J = 8.2 Hz).
実施例114:1H-NMR (400 MHz, CDCl3) δ 2.65 (3H, s), 4.28 (3H, s), 6.31 (1H, d, J = 7.9 Hz), 7.67 (1H, s), 7.98 (1H, d, J = 7.9 Hz). Example 114: 1 H-NMR (400 MHz, CDCl 3 ) δ 2.65 (3H, s), 4.28 (3H, s), 6.31 (1H, d, J = 7.9 Hz), 7.67 (1H, s), 7.98 (1H, d, J = 7.9 Hz).
実施例115: 1H-NMR (400 MHz, CDCl3) δ 2.66 (3H, s), 4.25(3H, s), 6.20 (1H, d, J = 7.9 Hz), 7.22 (1H, s), 7.72 (1H, s), 7.72 (1H, d, J = 7.9 Hz), 9.91 (1H, s). Example 115: 1 H-NMR (400 MHz, CDCl 3 ) δ 2.66 (3H, s), 4.25 (3H, s), 6.20 (1H, d, J = 7.9 Hz), 7.22 (1H, s), 7.72 (1H, s), 7.72 (1H, d, J = 7.9 Hz), 9.91 (1H, s).
<実施例116>
2−エチル−7−メチルチオ−4−プロピオニル−ピラゾロ[1,5−a]ピリジン
<Example 116>
2-Ethyl-7-methylthio-4-propionyl-pyrazolo [1,5-a] pyridine
実施例98の化合物(400 mg)をDMF (10.0 mL)に溶解し、ナトリウムチオメトキシド(128 mg)を加え、60℃にて1.5時間攪拌した。反応液に水を加えた後、酢酸エチルで抽出し、有機層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 4 : 1)にて精製し、目的物(253 mg)を黄色粉末として得た。
LRMS (EI+): 248 [M+]
1H-NMR (400 MHz, CDCl3) δ 1.27 (3H, t, J = 7.3 Hz), 1.38 (3H, t, J = 7.3 Hz), 2.66 (3H, s), 2.94 (2H, q, J = 7.3 Hz), 3.04 (2H, q, J = 7.3 Hz), 6.52 (1H, d, J = 8.0 Hz), 7.20 (1H, s), 7.82 (1H, d, J = 8.0 Hz).
The compound of Example 98 (400 mg) was dissolved in DMF (10.0 mL), sodium thiomethoxide (128 mg) was added, and the mixture was stirred at 60 ° C. for 1.5 hr. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1) to obtain the desired product (253 mg) as a yellow powder.
LRMS (EI + ): 248 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.27 (3H, t, J = 7.3 Hz), 1.38 (3H, t, J = 7.3 Hz), 2.66 (3H, s), 2.94 (2H, q, J = 7.3 Hz), 3.04 (2H, q, J = 7.3 Hz), 6.52 (1H, d, J = 8.0 Hz), 7.20 (1H, s), 7.82 (1H, d, J = 8.0 Hz).
<実施例117>
7−ジメチルアミノ−2−エチル−4−プロピオニル−ピラゾロ[1,5−a]ピリジン
<Example 117>
7-Dimethylamino-2-ethyl-4-propionyl-pyrazolo [1,5-a] pyridine
実施例98の化合物(400 mg)を2.00 mol/L ジメチルアミン/メタノール溶液 (6.10 mL)に溶解し、60℃にて7時間攪拌した。反応液を溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 5 : 1)にて精製し、目的物(289 mg)を黄色油状物として得た。
LRMS (EI+): 245 [M+]
1H-NMR (400 MHz, CDCl3) δ 1.25 (3H, t, J = 7.3 Hz), 1.38 (3H, t, J = 7.3 Hz), 2.91 (2H, q, J = 7.3 Hz), 2.98 (2H, q, J = 7.3 Hz), 3.25 (6H, s), 6.04 (1H, d, J = 8.0 Hz), 7.21 (1H, s), 7.82 (1H, d, J = 8.0 Hz).
The compound of Example 98 (400 mg) was dissolved in a 2.00 mol / L dimethylamine / methanol solution (6.10 mL) and stirred at 60 ° C. for 7 hours. After evaporating the reaction solution, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 5: 1) to obtain the desired product (289 mg) as a yellow oil.
LRMS (EI + ): 245 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.25 (3H, t, J = 7.3 Hz), 1.38 (3H, t, J = 7.3 Hz), 2.91 (2H, q, J = 7.3 Hz), 2.98 ( 2H, q, J = 7.3 Hz), 3.25 (6H, s), 6.04 (1H, d, J = 8.0 Hz), 7.21 (1H, s), 7.82 (1H, d, J = 8.0 Hz).
<実施例118>
2−エチル−7−メチルアミノ−4−プロピオニル−ピラゾロ[1,5−a]ピリジン
<Example 118>
2-Ethyl-7-methylamino-4-propionyl-pyrazolo [1,5-a] pyridine
実施例98の化合物(400 mg)を2.00 mol/L メチルアミン/THF溶液 (6.10 mL)に溶解し、60℃にて10時間攪拌した。反応液を溶媒留去後、残渣を2.00 mol/L メチルアミン/THF溶液 (6.10 mL)に溶解し、60℃にてさらに4時間攪拌した。反応液を溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 4 : 1)にて精製し、目的物(209 mg)を黄色粉末として得た。
LRMS (EI+): 231 [M+]
1H-NMR (400 MHz, CDCl3) δ 1.25 (3H, t, J = 7.3 Hz), 1.37 (3H, t, J = 7.3 Hz), 2.86 (2H, q, J = 7.3 Hz), 2.96 (2H, q, J = 7.3 Hz), 3.15 (3H, d, J = 5.5 Hz), 5.82 (1H, d, J = 8.0 Hz), 6.54 (1H, brs), 7.14 (1H, s), 7.89 (1H, d, J = 8.0 Hz).
The compound of Example 98 (400 mg) was dissolved in a 2.00 mol / L methylamine / THF solution (6.10 mL) and stirred at 60 ° C. for 10 hours. After the solvent of the reaction solution was distilled off, the residue was dissolved in a 2.00 mol / L methylamine / THF solution (6.10 mL), and the mixture was further stirred at 60 ° C. for 4 hours. After evaporating the reaction solution, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1) to obtain the desired product (209 mg) as a yellow powder.
LRMS (EI + ): 231 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.25 (3H, t, J = 7.3 Hz), 1.37 (3H, t, J = 7.3 Hz), 2.86 (2H, q, J = 7.3 Hz), 2.96 ( 2H, q, J = 7.3 Hz), 3.15 (3H, d, J = 5.5 Hz), 5.82 (1H, d, J = 8.0 Hz), 6.54 (1H, brs), 7.14 (1H, s), 7.89 ( 1H, d, J = 8.0 Hz).
<実施例119>
N−t−ブトキシカルボニル−2−エチル−7−メチルアミノ−4−プロピオニル−ピラゾロ[1,5−a]ピリジン
<Example 119>
Nt-butoxycarbonyl-2-ethyl-7-methylamino-4-propionyl-pyrazolo [1,5-a] pyridine
実施例118の化合物(208 mg)をアセトニトリル(10.0 mL)に溶解し、ジ−t−ブチル−ジ−カーボネート(236 mg)および触媒量の4−ジメチルアミノピリジンを加え、加熱還流下にて6時間攪拌した。反応液に水を加えた後、酢酸エチルで抽出し、有機層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 5 : 1)にて精製し、目的物(298 mg)を黄色粉末として得た。
LRMS (EI+): 331 [M+]
1H-NMR (400 MHz, CDCl3) δ 1.27 (3H, t, J = 7.3 Hz), 1.31 (9H, s), 1.36 (3H, t, J = 7.3 Hz), 2.90 (2H, q, J = 7.3 Hz), 3.05 (2H, q, J = 7.3 Hz), 3.35 (3H, s), 6.66 (1H, d, J = 8.0 Hz), 7.20 (1H, s), 7.80 (1H, d, J = 8.0 Hz).
The compound of Example 118 (208 mg) was dissolved in acetonitrile (10.0 mL), di-t-butyl-di-carbonate (236 mg) and a catalytic amount of 4-dimethylaminopyridine were added, and the mixture was heated under reflux. Stir for hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 5: 1) to obtain the desired product (298 mg) as a yellow powder.
LRMS (EI + ): 331 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.27 (3H, t, J = 7.3 Hz), 1.31 (9H, s), 1.36 (3H, t, J = 7.3 Hz), 2.90 (2H, q, J = 7.3 Hz), 3.05 (2H, q, J = 7.3 Hz), 3.35 (3H, s), 6.66 (1H, d, J = 8.0 Hz), 7.20 (1H, s), 7.80 (1H, d, J = 8.0 Hz).
<実施例120>
2−エチル−4−ホルミル−7−ヨード−ピラゾロ[1,5−a]ピリジン
<Example 120>
2-Ethyl-4-formyl-7-iodo-pyrazolo [1,5-a] pyridine
実施例59の化合物を用い、実施例88、89、105、106の順に従って反応を行い目的物を黄色粉末として得た。
1H-NMR (400 MHz, CDCl3) δ 1.40 (3H, t, J = 7.3 Hz), 2.97 (2H, q, J = 7.3 Hz), 7.36 (1H, d, J = 7.3 Hz), 7.40 (1H, s), 7.46 (1H, d, J = 7.3 Hz), 10.1 (1H, s).
Using the compound of Example 59, the reaction was carried out in the order of Examples 88, 89, 105, and 106 to obtain the desired product as a yellow powder.
1 H-NMR (400 MHz, CDCl 3 ) δ 1.40 (3H, t, J = 7.3 Hz), 2.97 (2H, q, J = 7.3 Hz), 7.36 (1H, d, J = 7.3 Hz), 7.40 ( 1H, s), 7.46 (1H, d, J = 7.3 Hz), 10.1 (1H, s).
<実施例121>
7−アセチルアミノ−2−エチル−4−ホルミル−ピラゾロ[1,5−a]ピリジン
<Example 121>
7-acetylamino-2-ethyl-4-formyl-pyrazolo [1,5-a] pyridine
アルゴンガス雰囲気下にて、上記実施例120の化合物(100 mg)、アセトアミド(23.6 mg)、トリス(ジベンジリデンアセトン)ジパラジウム(15.3 mg)、Xantphos(28.9 mg)および炭酸セシウム(152 mg)をジオキサン(3.00 mL)に懸濁させ、100℃にて5時間攪拌した。反応液を塩化メチレンにて希釈し、セライトろ過後、ろ液を溶媒留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 5 : 1)にて精製し、目的物(62.5 mg)を黄色粉末として得た。
LRMS (EI+): 231 [M+]
1H-NMR (400 MHz, CDCl3) δ 1.39 (3H, t, J = 7.3 Hz), 2.42 (3H, s), 2.90 (2H, q, J = 7.3 Hz), 7.16 (1H, s), 7.74 (1H, d, J = 8.0 Hz), 7.82 (1H, d, J = 8.0 Hz), 9.56 (1H, brs), 9.95 (1H, brs).
Under an argon gas atmosphere, the compound of Example 120 (100 mg), acetamide (23.6 mg), tris (dibenzylideneacetone) dipalladium (15.3 mg), Xantphos (28.9 mg) and cesium carbonate (152 mg) were added. The suspension was suspended in dioxane (3.00 mL), and the mixture was stirred at 100 ° C. for 5 hours. The reaction solution was diluted with methylene chloride, filtered through celite, and the filtrate was evaporated. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 5: 1) to obtain the desired product (62.5 mg) as a yellow powder.
LRMS (EI + ): 231 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.39 (3H, t, J = 7.3 Hz), 2.42 (3H, s), 2.90 (2H, q, J = 7.3 Hz), 7.16 (1H, s), 7.74 (1H, d, J = 8.0 Hz), 7.82 (1H, d, J = 8.0 Hz), 9.56 (1H, brs), 9.95 (1H, brs).
<実施例122>
4−(1−ヒドロキシエチル)−7−メトキシ−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン
<Example 122>
4- (1-Hydroxyethyl) -7-methoxy-2-trifluoromethyl-pyrazolo [1,5-a] pyridine
アルゴンガス雰囲気下にて、実施例108の化合物(1.63 g)をTHF(70.0 mL)に溶解し、−78℃にて0.90 mol/L 臭化メチルマグネシウム/THF溶液(8.90 mL)を滴下し、−40℃まで徐々に昇温させながら1.5時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加えた後、酢酸エチルで抽出し、有機層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)にて精製し、目的物(1.64 g)を無色粉末として得た。
LRMS (EI+): 260 [M+]
1H-NMR (400 MHz, CDCl3) δ 1.62 (3H, d, J = 6.1 Hz), 1.92 (1H, d, J = 3.7 Hz), 4.17 (3H, s), 5.15-5.17 (1H, m), 6.22 (1H, d, J = 8.0 Hz), 6.93 (1H, s), 7.28 (1H, d, J = 8.0 Hz).
Under an argon gas atmosphere, the compound of Example 108 (1.63 g) was dissolved in THF (70.0 mL), and a 0.90 mol / L methylmagnesium bromide / THF solution (8.90 mL) was added dropwise at -78 ° C. The mixture was stirred for 1.5 hours while gradually raising the temperature to −40 ° C. A saturated aqueous ammonium chloride solution was added to the reaction solution, followed by extraction with ethyl acetate. The organic layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1: 1) to obtain the desired product (1.64 g) as a colorless powder.
LRMS (EI + ): 260 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.62 (3H, d, J = 6.1 Hz), 1.92 (1H, d, J = 3.7 Hz), 4.17 (3H, s), 5.15-5.17 (1H, m ), 6.22 (1H, d, J = 8.0 Hz), 6.93 (1H, s), 7.28 (1H, d, J = 8.0 Hz).
<実施例123>
4−(1−ヒドロキシプロピル)−7−メトキシ−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン
<Example 123>
4- (1-hydroxypropyl) -7-methoxy-2-trifluoromethyl-pyrazolo [1,5-a] pyridine
上記実施例122と同様にして実施例108の化合物と臭化エチルマグネシウムを反応させ目的物を淡黄色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ 0.96 (3H, t, J = 7.6 Hz), 1.88-1.96 (3H, m), 4.17 (3H, s), 4.87 (1H, t, J = 6.4 Hz), 6.23 (1H, d, J = 7.6 Hz), 6.93 (1H, s), 7.25 (1H, d, J = 7.6 Hz).
In the same manner as in Example 122, the compound of Example 108 was reacted with ethyl magnesium bromide to obtain the desired product as a pale yellow oil.
1 H-NMR (400 MHz, CDCl 3 ) δ 0.96 (3H, t, J = 7.6 Hz), 1.88-1.96 (3H, m), 4.17 (3H, s), 4.87 (1H, t, J = 6.4 Hz) ), 6.23 (1H, d, J = 7.6 Hz), 6.93 (1H, s), 7.25 (1H, d, J = 7.6 Hz).
<実験例124>
4−アセチル−7−メトキシ−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン
<Experimental example 124>
4-acetyl-7-methoxy-2-trifluoromethyl-pyrazolo [1,5-a] pyridine
実施例122の化合物(1.64 g)を ジクロロメタン(30.0 mL)に溶解し、活性二酸化マンガン(5.48 g)を加え、常温にて16時間攪拌した後、反応液に活性二酸化マンガン(5.48 g)を追加し、常温にて10時間攪拌した。その後さらに活性二酸化マンガン(5.48 g)を加え、常温にて10.5時間攪拌後、再度活性二酸化マンガン(2.74 g)を追加し、13.5時間攪拌した。反応液をセライトろ過後、ろ液を溶媒留去し、目的物(1.08 g)を淡黄色粉末として得た。
LRMS (EI+): 258[M+]
1H-NMR (400 MHz, CDCl3) δ 2.65 (3H, s), 4.28 (3H, s), 6.32 (1H, d, J = 8.0 Hz), 7.68 (1H, s), 7.99 (1H, d, J = 8.0 Hz).
Dissolve the compound of Example 122 (1.64 g) in dichloromethane (30.0 mL), add active manganese dioxide (5.48 g), stir at room temperature for 16 hours, and then add active manganese dioxide (5.48 g) to the reaction mixture. And stirred for 10 hours at room temperature. Thereafter, active manganese dioxide (5.48 g) was further added, and the mixture was stirred at room temperature for 10.5 hours. Then, active manganese dioxide (2.74 g) was added again and stirred for 13.5 hours. The reaction mixture was filtered through celite, and the filtrate was evaporated to give the object product (1.08 g) as a pale-yellow powder.
LRMS (EI + ): 258 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 2.65 (3H, s), 4.28 (3H, s), 6.32 (1H, d, J = 8.0 Hz), 7.68 (1H, s), 7.99 (1H, d , J = 8.0 Hz).
<実施例125>
7−メトキシ−4−プロピオニル−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン
<Example 125>
7-Methoxy-4-propionyl-2-trifluoromethyl-pyrazolo [1,5-a] pyridine
実施例123の化合物を用い、上記実施例124と同様にして目的物を無色粉末として得た。 Using the compound of Example 123, the target product was obtained as a colorless powder in the same manner as in Example 124 above.
また、アルゴンガス雰囲気下にて、実施例123の化合物(32.1 g)をDMSO (780 mL)に溶解し、トリエチルアミン(163 mL)、三酸化硫黄ピリジン錯体(93.1 g)の順に加え、常温にて1時間攪拌した。反応液を氷水に注ぎ、生じた固体をろ取した後、水で洗浄した。得られた固体を酢酸エチルに溶解後、無水硫酸ナトリウムで乾燥した。溶媒留去後、目的物(24.0 g)を無色粉末として得た。
1H-NMR (400 MHz, CDCl3) δ 1.28 (3H, t, J = 7.3 Hz), 3.03 (2H, q, J = 7.3 Hz), 4.27 (3H, s), 6.31 (1H, d, J = 8.0 Hz), 7.70 (1H, s), 8.01 (1H, d, J = 8.0 Hz).
Also, in an argon gas atmosphere, the compound of Example 123 (32.1 g) was dissolved in DMSO (780 mL), and triethylamine (163 mL) and sulfur trioxide pyridine complex (93.1 g) were added in that order at room temperature. Stir for 1 hour. The reaction solution was poured into ice water, and the resulting solid was collected by filtration and washed with water. The obtained solid was dissolved in ethyl acetate and then dried over anhydrous sodium sulfate. After evaporating the solvent, the desired product (24.0 g) was obtained as a colorless powder.
1 H-NMR (400 MHz, CDCl 3 ) δ 1.28 (3H, t, J = 7.3 Hz), 3.03 (2H, q, J = 7.3 Hz), 4.27 (3H, s), 6.31 (1H, d, J = 8.0 Hz), 7.70 (1H, s), 8.01 (1H, d, J = 8.0 Hz).
<実施例126>
7−メトキシ−2−メトキシメチル−4−プロピオニル−ピラゾロ[1,5−a]ピリジン
<Example 126>
7-Methoxy-2-methoxymethyl-4-propionyl-pyrazolo [1,5-a] pyridine
実施例54の化合物を用い、実施例124と同様にして酸化し、実施例123と同様にアルキル化後、再度実施例124と同様にして酸化し目的物を無色粉末として得た。
1H-NMR (400 MHz, CDCl3)δ1.26 (3H, t, J = 7.3 Hz), 3.02 (2H, q, J = 7.3 Hz), 3.45 (3H, s), 4.23 (3H, s), 4.75 (2H, s), 6.14 (1H, d, J = 7.9 Hz), 7.39 (1H, s), 7.92 (1H, d, J = 7.9 Hz).
Using the compound of Example 54, oxidation was carried out in the same manner as in Example 124. After alkylation in the same manner as in Example 123, oxidation was again carried out in the same manner as in Example 124 to obtain the desired product as a colorless powder.
1 H-NMR (400 MHz, CDCl 3 ) δ1.26 (3H, t, J = 7.3 Hz), 3.02 (2H, q, J = 7.3 Hz), 3.45 (3H, s), 4.23 (3H, s) , 4.75 (2H, s), 6.14 (1H, d, J = 7.9 Hz), 7.39 (1H, s), 7.92 (1H, d, J = 7.9 Hz).
<実施例127>
2−ジフルオロメチル−7−メトキシ−4−プロピオニル−ピラゾロ[1,5−a]ピリジン
<Example 127>
2-Difluoromethyl-7-methoxy-4-propionyl-pyrazolo [1,5-a] pyridine
実施例53の化合物を用い、実施例124と同様にして酸化し、実施例123と同様にアルキル化後、再度実施例124と同様にして酸化し目的物を無色粉末として得た。
LRMS (EI+): 254[M+]
1H-NMR (400MHz,CDCl3) δ1.27 (3H, t, J = 7.3 Hz), 3.03 (2H, q, J = 7.3 Hz), 4.27 (3H, s), 6.26 (1H, d, J = 8.0 Hz), 6.94 (1H, t, J = 55.0 Hz), 7.62 (1H, s), 7.98 (1H, d, J = 8.0 Hz).
Using the compound of Example 53, oxidation was carried out in the same manner as in Example 124. After alkylation in the same manner as in Example 123, oxidation was again carried out in the same manner as in Example 124 to obtain the desired product as a colorless powder.
LRMS (EI + ): 254 [M + ]
1 H-NMR (400MHz, CDCl 3 ) δ1.27 (3H, t, J = 7.3 Hz), 3.03 (2H, q, J = 7.3 Hz), 4.27 (3H, s), 6.26 (1H, d, J = 8.0 Hz), 6.94 (1H, t, J = 55.0 Hz), 7.62 (1H, s), 7.98 (1H, d, J = 8.0 Hz).
<実施例128>
7−メトキシ−4−プロピオニル−2−(テトラヒドロピラニル−2−イルオキシメチル)−ピラゾロ[1,5−a]ピリジン
<Example 128>
7-Methoxy-4-propionyl-2- (tetrahydropyranyl-2-yloxymethyl) -pyrazolo [1,5-a] pyridine
実施例55の化合物を用い、実施例124と同様にして酸化し、実施例123と同様にアルキル化後、再度実施例124と同様にして酸化し目的物を淡黄色粉末として得た。
1H-NMR (400 MHz, CDCl3,) δ 1.26 (3H, t, J = 7.3 Hz), 1.48−1.80 (5H, m), 1.81−1.95 (1H, m), 3.02 (2H, q, J = 7.3 Hz), 3.53−3.61 (1H, m), 3.91−4.00 (1H, m), 4.23 (3H, s), 4.80 (1H, d, J = 12.8 Hz), 4.81−4.84 (1H, m), 5.03 (1H, d, J = 12.8 Hz), 6.13 (1H, d, J = 7.9 Hz), 7.42 (1H, s), 7.91 (1H, d, J = 7.9 Hz).
Using the compound of Example 55, oxidation was carried out in the same manner as in Example 124. After alkylation in the same manner as in Example 123, oxidation was again carried out in the same manner as in Example 124 to obtain the desired product as a pale yellow powder.
1 H-NMR (400 MHz, CDCl 3 ) δ 1.26 (3H, t, J = 7.3 Hz), 1.48−1.80 (5H, m), 1.81-1−1.95 (1H, m), 3.02 (2H, q, J = 7.3 Hz), 3.53−3.61 (1H, m), 3.91−4.00 (1H, m), 4.23 (3H, s), 4.80 (1H, d, J = 12.8 Hz), 4.81−4.84 (1H, m) , 5.03 (1H, d, J = 12.8 Hz), 6.13 (1H, d, J = 7.9 Hz), 7.42 (1H, s), 7.91 (1H, d, J = 7.9 Hz).
<実施例129>
7−アセチルアミノ−2−エチル−4−プロピオニル−ピラゾロ[1,5−a]ピリジン
<Example 129>
7-acetylamino-2-ethyl-4-propionyl-pyrazolo [1,5-a] pyridine
実施例121の化合物を用い、実施例123と同様にアルキル化後、実施例124と同様にして酸化し目的物を黄色粉末として得た。
LRMS (EI+): 259[M+]
1H-NMR (400 MHz, CDCl3)δ1.26 (3H, t, J = 7.3 Hz), 1.38 (3H, t, J = 7.3 Hz), 2.40 (3H, s), 2.89 (2H, q, J = 7.3 Hz), 3.03 (2H, q, J = 7.3 Hz), 7.20 (1H, s), 7.71 (1H, d, J = 8.0 Hz), 7.90 (1H, d, J = 8.0 Hz), 9.55 (1H, brs).
Using the compound of Example 121, alkylation was conducted in the same manner as in Example 123, followed by oxidation in the same manner as in Example 124 to obtain the desired product as a yellow powder.
LRMS (EI + ): 259 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ1.26 (3H, t, J = 7.3 Hz), 1.38 (3H, t, J = 7.3 Hz), 2.40 (3H, s), 2.89 (2H, q, J = 7.3 Hz), 3.03 (2H, q, J = 7.3 Hz), 7.20 (1H, s), 7.71 (1H, d, J = 8.0 Hz), 7.90 (1H, d, J = 8.0 Hz), 9.55 (1H, brs).
<実施例130>
7−メトキシ−4−プロピオニル−ピラゾロ[1,5−a]ピリジン
<Example 130>
7-Methoxy-4-propionyl-pyrazolo [1,5-a] pyridine
アルゴンガス雰囲気下にて、実施例109の化合物(1.0 g) をTHF (50.0 mL) に溶解し、-78℃にて1.00 mol/Lリチウムビストリメチルシリルアミド / THF溶液(6.30 mL) を加え,-78℃から常温にて30分間攪拌した。その後-78℃にてヨウ化メチル (393 μL) を加え,-78℃から常温にて4.5時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加えた後、酢酸エチルにて三回抽出し、有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー ( ヘキサン : 酢酸エチル = 1 : 5) で精製し、目的物(647 mg)を黄色粉末として得た.
1H-NMR (400 MHz, CDCl3) δ 1.27 (3H, t, J = 7.3 Hz), 3.03 (2H, q, J = 7.3 Hz), 4.25 (3H, s), 6.15 (1H, d, J = 7.9 Hz), 7.38 (1H, d, J = 1.8 Hz), 7.93 (1H, d, J = 7.9 Hz), 8.12 (1H, d, J = 1.8 Hz).
In an argon gas atmosphere, the compound of Example 109 (1.0 g) was dissolved in THF (50.0 mL), and a 1.00 mol / L lithium bistrimethylsilylamide / THF solution (6.30 mL) was added at -78 ° C. The mixture was stirred at 78 ° C to room temperature for 30 minutes. Thereafter, methyl iodide (393 μL) was added at −78 ° C., and the mixture was stirred at −78 ° C. at room temperature for 4.5 hours. A saturated aqueous ammonium chloride solution was added to the reaction solution, followed by extraction three times with ethyl acetate. The organic layer was washed with saturated brine and then dried over anhydrous sodium sulfate. After evaporation of the solvent, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1: 5) to obtain the desired product (647 mg) as a yellow powder.
1 H-NMR (400 MHz, CDCl 3 ) δ 1.27 (3H, t, J = 7.3 Hz), 3.03 (2H, q, J = 7.3 Hz), 4.25 (3H, s), 6.15 (1H, d, J = 7.9 Hz), 7.38 (1H, d, J = 1.8 Hz), 7.93 (1H, d, J = 7.9 Hz), 8.12 (1H, d, J = 1.8 Hz).
<実施例131〜133>
実施例110、113及び114の化合物を用い、上記実施例130と同様にして反応させ表10に示す化合物を合成した。
<Examples 131 to 133>
The compounds shown in Table 10 were synthesized by reacting the compounds of Examples 110, 113 and 114 in the same manner as in Example 130 above.
実施例131: 1H-NMR (400 MHz, CDCl3) δ 1.25 (1H, t, J = 7.3 Hz), 2.55 (3H ,s), 3.00 (2H, q, J = 7.3 Hz), 4.22 (3H, s), 6.08 (1H, d, J = 7.9 Hz), 7.15 (1H, s), 7.88 (1H, d, J = 7.9 Hz). Example 131: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.25 (1H, t, J = 7.3 Hz), 2.55 (3H, s), 3.00 (2H, q, J = 7.3 Hz), 4.22 (3H , s), 6.08 (1H, d, J = 7.9 Hz), 7.15 (1H, s), 7.88 (1H, d, J = 7.9 Hz).
実施例132: 1H-NMR (400 MHz, CDCl3) δ 0.91-0.93 (2H, m), 1.05-1.08 (2H, m), 1.25 (3H, t, J =7.3 Hz), 2.21-2.26 (1H, m), 2.99 (2H, q, J = 7.3 Hz), 4.22 (3H, s), 6.05 (1H, d, J = 7.9 Hz), 6.96 (1H, s), 7.86 (1H, d, J = 7.9 Hz). Example 132: 1 H-NMR (400 MHz, CDCl 3 ) δ 0.91-0.93 (2H, m), 1.05-1.08 (2H, m), 1.25 (3H, t, J = 7.3 Hz), 2.21-2.26 ( 1H, m), 2.99 (2H, q, J = 7.3 Hz), 4.22 (3H, s), 6.05 (1H, d, J = 7.9 Hz), 6.96 (1H, s), 7.86 (1H, d, J = 7.9 Hz).
実施例133:実施例125と同じ Example 133: Same as Example 125
<実施例134>
7−メトキシ−3−メチルチオ−4−プロピオニル−ピラゾロ[1,5−a]ピリジン
<Example 134>
7-Methoxy-3-methylthio-4-propionyl-pyrazolo [1,5-a] pyridine
実施例115の化合物を用い、実施例123と同様にアルキル化後、実施例124と同様にして酸化し目的物を黄色粉末として得た。
1H-NMR (400 MHz, CDCl3)δ1.27 (3H, t, J = 7.3 Hz), 2.66(3H, s), 3.01 (2H, q, J = 7.3 Hz), 4.23(3H, s), 6.10(1H, d, J=7.9Hz), 7.30 (1H, s), 7.90 (1H, d, J = 7.9 Hz).
Using the compound of Example 115, alkylation was carried out in the same manner as in Example 123, followed by oxidation in the same manner as in Example 124 to obtain the desired product as a yellow powder.
1 H-NMR (400 MHz, CDCl 3 ) δ1.27 (3H, t, J = 7.3 Hz), 2.66 (3H, s), 3.01 (2H, q, J = 7.3 Hz), 4.23 (3H, s) , 6.10 (1H, d, J = 7.9Hz), 7.30 (1H, s), 7.90 (1H, d, J = 7.9 Hz).
<実施例135>
2−エチル−4−(2−エチルー[1,3]ジオキソラン−2−イル)−7−ホルミル−ピラゾロ[1,5−a]ピリジン
<Example 135>
2-Ethyl-4- (2-ethyl- [1,3] dioxolan-2-yl) -7-formyl-pyrazolo [1,5-a] pyridine
アルゴンガス気流下、実施例81の化合物(415 mg)をTHF (10.0 mL)に溶解し、-78℃にて1.54 mol / L n-ブチルリチウム / ヘキサン溶液 (1.40 mL)を滴下し、同温にて30分間攪拌した。その後、-78℃にてギ酸エチル(164 μL)のTHF溶液(10.0 mL)を適下し、徐々に常温まで昇温させながら3時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル =9 : 1)にて精製し、目的物(322 mg)を黄色粉末として得た。
LRMS (EI+): 274 [M+]
1H-NMR(400MHz、CDCl3) δ 0.91 (3H, t, J = 7.3 Hz), 1.40 (3H, t, J = 7.3 Hz), 2.07 (2H, q, J = 7.3 Hz), 2.92 (2H, q, J = 7.3 Hz), 3.08-3.84 (2H, m), 4.07-4.10 (2H, m), 6.74 (1H, s), 7.25(1H, d, J = 7.3 Hz), 7.38 (1H, d, J = 7.3 Hz), 10.9 (1H, s).
Under an argon gas stream, the compound of Example 81 (415 mg) was dissolved in THF (10.0 mL), and 1.54 mol / L n-butyllithium / hexane solution (1.40 mL) was added dropwise at -78 ° C. For 30 minutes. Then, a THF solution (10.0 mL) of ethyl formate (164 μL) was appropriately applied at −78 ° C., and the mixture was stirred for 3 hours while gradually warming to room temperature. A saturated aqueous ammonium chloride solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and then saturated brine, and then dried over anhydrous sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 9: 1) to obtain the desired product (322 mg) as a yellow powder.
LRMS (EI + ): 274 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 0.91 (3H, t, J = 7.3 Hz), 1.40 (3H, t, J = 7.3 Hz), 2.07 (2H, q, J = 7.3 Hz), 2.92 (2H , q, J = 7.3 Hz), 3.08-3.84 (2H, m), 4.07-4.10 (2H, m), 6.74 (1H, s), 7.25 (1H, d, J = 7.3 Hz), 7.38 (1H, d, J = 7.3 Hz), 10.9 (1H, s).
<実施例136>
2−エチル−4−(2−エチルー[1,3]ジオキソラン−2−イル)−7−(1−ヒドロキシエチル)−ピラゾロ[1,5−a]ピリジン
<Example 136>
2-Ethyl-4- (2-ethyl- [1,3] dioxolan-2-yl) -7- (1-hydroxyethyl) -pyrazolo [1,5-a] pyridine
アルゴンガス雰囲気下、上記実施例135の化合物(321 mg)をTHF (12.0 mL)に溶解し、-78℃にて0.90 mol/L 臭化メチルマグネシウム / THF溶液(1.70 mL)を滴下し、徐々に常温まで昇温させながら3.5時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去し、目的物(340 mg)を黄色油状物として得た。
LRMS (EI+): 290 [M+]
1H-NMR(400MHz、CDCl3) δ 0.89 (3H, t, J = 7.3 Hz), 1.37 (3H, t, J = 7.3 Hz), 1.73 (3H, d, J = 6.1 Hz), 2.06 (2H, q, J = 7.3 Hz), 2.87 (2H, q, J = 7.3 Hz), 3.78-3.82 (2H, m), 4.04-4.08 (2H, m), 5.28 (1H, q, J = 6.1 Hz), 5.73 (1H, brs), 6.58 (1H, s), 6.61(1H, d, J = 8.0 Hz), 7.17 (1H, d, J = 8.0 Hz).
In an argon gas atmosphere, the compound of Example 135 (321 mg) was dissolved in THF (12.0 mL), and 0.90 mol / L methylmagnesium bromide / THF solution (1.70 mL) was added dropwise at -78 ° C. The mixture was stirred for 3.5 hours while warming to room temperature. A saturated aqueous ammonium chloride solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and then saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off to obtain the desired product (340 mg) as a yellow oil.
LRMS (EI + ): 290 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 0.89 (3H, t, J = 7.3 Hz), 1.37 (3H, t, J = 7.3 Hz), 1.73 (3H, d, J = 6.1 Hz), 2.06 (2H , q, J = 7.3 Hz), 2.87 (2H, q, J = 7.3 Hz), 3.78-3.82 (2H, m), 4.04-4.08 (2H, m), 5.28 (1H, q, J = 6.1 Hz) , 5.73 (1H, brs), 6.58 (1H, s), 6.61 (1H, d, J = 8.0 Hz), 7.17 (1H, d, J = 8.0 Hz).
<実施例137>
2−エチル−7−(1−ヒドロキシエチル)−4−プロピオニル−ピラゾロ[1,5−a]ピリジン
<Example 137>
2-Ethyl-7- (1-hydroxyethyl) -4-propionyl-pyrazolo [1,5-a] pyridine
上記実施例136の化合物を用い、実施例98と同様に反応させ目的物を黄色油状物として得た。
LRMS (EI+): 246 [M+]
1H-NMR(400MHz、CDCl3) δ 1.27 (3H, t, J = 7.3 Hz), 1.38 (3H, t, J = 7.3 Hz), 1.75 (3H, d, J = 6.1 Hz), 2.91 (2H, q, J = 7.3 Hz), 3.05 (2H, q, J = 7.3 Hz), 5.34 (1H, q, J = 6.1 Hz), 5.46 (1H, brs), 6.73 (1H, d, J = 8.0 Hz), 7.18(1H, s), 7.82 (1H, d, J = 8.0 Hz).
The target product was obtained as a yellow oil by reacting in the same manner as in Example 98 using the compound of Example 136.
LRMS (EI + ): 246 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.27 (3H, t, J = 7.3 Hz), 1.38 (3H, t, J = 7.3 Hz), 1.75 (3H, d, J = 6.1 Hz), 2.91 (2H , q, J = 7.3 Hz), 3.05 (2H, q, J = 7.3 Hz), 5.34 (1H, q, J = 6.1 Hz), 5.46 (1H, brs), 6.73 (1H, d, J = 8.0 Hz ), 7.18 (1H, s), 7.82 (1H, d, J = 8.0 Hz).
<実施例138>
7−(1−t−ブチルジメチルシロキシエチル)−2−エチル−4−プロピオニル−ピラゾロ[1,5−a]ピリジン
<Example 138>
7- (1-t-Butyldimethylsiloxyethyl) -2-ethyl-4-propionyl-pyrazolo [1,5-a] pyridine
上記実施例137の化合物を用い、実施例88と同様に反応させ目的物を黄色油状物として得た。
LRMS (EI+): 360 [M+]
1H-NMR(400MHz、CDCl3) δ 0.05 (3H, s), 0.14 (3H, s), 0.96 (9H, s), 1.27 (3H, t, J = 7.3 Hz), 1.37 (3H, t, J = 7.3 Hz), 1.60 (3H, d, J = 6.1 Hz), 2.90 (2H, q, J = 7.3 Hz), 3.05 (2H, q, J = 7.3 Hz), 5.65 (1H, q, J = 6.1 Hz), 7.00 (1H, d, J = 7.3 Hz), 7.19(1H, s), 7.86 (1H, d, J = 7.3 Hz).
The target product was obtained as a yellow oil by reacting in the same manner as in Example 88 using the compound of Example 137.
LRMS (EI + ): 360 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 0.05 (3H, s), 0.14 (3H, s), 0.96 (9H, s), 1.27 (3H, t, J = 7.3 Hz), 1.37 (3H, t, J = 7.3 Hz), 1.60 (3H, d, J = 6.1 Hz), 2.90 (2H, q, J = 7.3 Hz), 3.05 (2H, q, J = 7.3 Hz), 5.65 (1H, q, J = 6.1 Hz), 7.00 (1H, d, J = 7.3 Hz), 7.19 (1H, s), 7.86 (1H, d, J = 7.3 Hz).
<実施例139>
4−t−ブチルジメチルシリルオキシメチル−7−ホルミル−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン
<Example 139>
4-t-butyldimethylsilyloxymethyl-7-formyl-2-trifluoromethyl-pyrazolo [1,5-a] pyridine
実施例88の化合物を用い、実施例135と同様に反応させ目的物を得た。これを精製せずそのまま次の反応に用いた。 The target product was obtained by reacting in the same manner as in Example 135 using the compound of Example 88. This was used in the next reaction without purification.
<実施例140>
4−t−ブチルジメチルシリルオキシメチル−7−ヒドロキシメチル−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン
<Example 140>
4-t-butyldimethylsilyloxymethyl-7-hydroxymethyl-2-trifluoromethyl-pyrazolo [1,5-a] pyridine
上記実施例139の化合物 (12.3 g, crude)をメタノール (200 mL)に溶解し、氷冷下にて水素化ホウ素ナトリウム (1.56 g)を加え、そのまま1時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、濃縮後、酢酸エチルで抽出した。有機層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー (ヘキサン : 酢酸エチル = 9 : 1 )にて精製し、目的物(9.86 g)を無色粉末として得た。
1H-NMR (400 MHz, CDCl3) δ 0.14 (6H, s), 0.96 (9H, s), 4.91 (2H, d, J = 1.2 Hz), 5.06 (2H, s), 6.85 (1H, s), 6.94 (1H, d, J = 7.3 Hz), 7.30 (1H, dt, J = 1.2, 7.3 Hz).
The compound of Example 139 (12.3 g, crude) was dissolved in methanol (200 mL), sodium borohydride (1.56 g) was added under ice cooling, and the mixture was stirred as it was for 1 hr. A saturated aqueous ammonium chloride solution was added to the reaction mixture, and the mixture was concentrated and extracted with ethyl acetate. The organic layer was washed with water and then saturated brine, and then dried over anhydrous sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 9: 1) to obtain the desired product (9.86 g) as a colorless powder.
1 H-NMR (400 MHz, CDCl 3 ) δ 0.14 (6H, s), 0.96 (9H, s), 4.91 (2H, d, J = 1.2 Hz), 5.06 (2H, s), 6.85 (1H, s ), 6.94 (1H, d, J = 7.3 Hz), 7.30 (1H, dt, J = 1.2, 7.3 Hz).
<実施例141>
4−t−ブチルジメチルシリルオキシメチル−7−メトキシメチル−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン
<Example 141>
4-t-butyldimethylsilyloxymethyl-7-methoxymethyl-2-trifluoromethyl-pyrazolo [1,5-a] pyridine
上記実施例140 の化合物(9.53 g)をアセトニトリル (300 mL)に溶解し、そこに酸化銀 (30.0 g)およびヨウ化メチル (16.1 mL)を加え、常温下にて85時間攪拌した。反応液をセライトろ過し、ろ液を溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー (ヘキサン : 酢酸エチル = 15 : 1 )ににて精製し、目的物(8.76 g)を淡黄色粉末として得た。
1H-NMR (400 MHz, CDCl3) δ 0.13 (6H, s), 0.95 (9H, s), 3.60 (3H, s), 4.91 (2H, s), 4.97 (2H, s), 6.83 (1H, s), 7.07 (1H, d, J = 7.3 Hz), 7.32 (1H, d, J = 7.3 Hz).
The compound of Example 140 (9.53 g) was dissolved in acetonitrile (300 mL), silver oxide (30.0 g) and methyl iodide (16.1 mL) were added thereto, and the mixture was stirred at room temperature for 85 hours. The reaction solution was filtered through Celite, and the filtrate was evaporated. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 15: 1) to obtain the desired product (8.76 g) as a pale yellow powder. .
1 H-NMR (400 MHz, CDCl 3 ) δ 0.13 (6H, s), 0.95 (9H, s), 3.60 (3H, s), 4.91 (2H, s), 4.97 (2H, s), 6.83 (1H , s), 7.07 (1H, d, J = 7.3 Hz), 7.32 (1H, d, J = 7.3 Hz).
<実施例142>
4−ヒドロキシメチル−7−メトキシメチル−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン
<Example 142>
4-Hydroxymethyl-7-methoxymethyl-2-trifluoromethyl-pyrazolo [1,5-a] pyridine
上記実施例141の化合物を用い、実施例105と同様に反応させ目的物を無色粉末として得た。
1H-NMR(400MHz、CDCl3) δ 1.79 (1H, brs), 3.61 (3H, s), 4.93 (2H, s), 4.98 (2H, s), 6.93 (1H, s), 7.07 (1H, d, J = 7.3 Hz), 7.31 (1H, d, J = 7.3 Hz).
The target product was obtained as a colorless powder by reacting in the same manner as in Example 105 using the compound of Example 141.
1 H-NMR (400 MHz, CDCl 3 ) δ 1.79 (1H, brs), 3.61 (3H, s), 4.93 (2H, s), 4.98 (2H, s), 6.93 (1H, s), 7.07 (1H, d, J = 7.3 Hz), 7.31 (1H, d, J = 7.3 Hz).
<実施例143>
4−(1−ヒドロキシプロピル)−7−メトキシメチル−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン
<Example 143>
4- (1-Hydroxypropyl) -7-methoxymethyl-2-trifluoromethyl-pyrazolo [1,5-a] pyridine
上記実施例142の化合物を用い、実施例124と同様に酸化後、実施例125と同様にアルキル化し、目的物を無色粉末として得た。
1H-NMR(400MHz、CDCl3) δ 0.98 (3H, t, J = 7.3 Hz), 1.84−2.01 (2H, m), 3.61 (3H, s), 4.93 (1H, t, J = 6.7 Hz), 4.97 (2H, s), 6.95 (1H, s), 7.06 (1H, d, J = 7.3 Hz), 7.30 (1H, d, J = 7.3 Hz).
The compound of Example 142 was used, oxidized in the same manner as in Example 124, and then alkylated in the same manner as in Example 125 to obtain the desired product as a colorless powder.
1 H-NMR (400 MHz, CDCl 3 ) δ 0.98 (3H, t, J = 7.3 Hz), 1.84−2.01 (2H, m), 3.61 (3H, s), 4.93 (1H, t, J = 6.7 Hz) , 4.97 (2H, s), 6.95 (1H, s), 7.06 (1H, d, J = 7.3 Hz), 7.30 (1H, d, J = 7.3 Hz).
<実施例144>
7−メトキシメチル−4−プロピオニル−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン
<Example 144>
7-Methoxymethyl-4-propionyl-2-trifluoromethyl-pyrazolo [1,5-a] pyridine
上記実施例143の化合物を用い、実施例124と同様に酸化し、目的物を無色粉末として得た。
1H-NMR(400MHz、CDCl3) δ 1.29 (3H, t, J = 7.3 Hz), 3.09 (2H, q, J = 7.3 Hz), 3.64 (3H, s), 5.04 (2H, d, J = 1.2 Hz), 7.20 (1H, dt, J = 1.2, 7.3 Hz), 7.69 (1H, s), 7.99 (1H, d, J = 7.3 Hz).
The compound of Example 143 was used and oxidized in the same manner as in Example 124 to obtain the target product as a colorless powder.
1 H-NMR (400 MHz, CDCl 3 ) δ 1.29 (3H, t, J = 7.3 Hz), 3.09 (2H, q, J = 7.3 Hz), 3.64 (3H, s), 5.04 (2H, d, J = 1.2 Hz), 7.20 (1H, dt, J = 1.2, 7.3 Hz), 7.69 (1H, s), 7.99 (1H, d, J = 7.3 Hz).
<実施例145>
2−エチル−7−ホルミル−4−(2−メチルー[1,3]ジオキソラン−2−イル)−ピラゾロ[1,5−a]ピリジン
<Example 145>
2-Ethyl-7-formyl-4- (2-methyl- [1,3] dioxolan-2-yl) -pyrazolo [1,5-a] pyridine
実施例84の化合物を用い、実施例135と同様に反応させ目的物を黄色油状物として得た。
LRMS (EI+): 260 [M+]
1H-NMR(400MHz、CDCl3) δ 1.40 (3H, t, J = 7.3 Hz), 1.77 (3H, s), 2.93 (2H, q, J = 7.3 Hz), 3.79-3.83 (2H, m), 4.09-4.13 (2H, m), 6.75 (1H, s), 7.28 (1H, d, J = 6.7 Hz), 7.37 (1H, d, J = 6.7 Hz), 10.9 (1H, s).
The target product was obtained as a yellow oil by reacting in the same manner as in Example 135 using the compound of Example 84.
LRMS (EI + ): 260 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.40 (3H, t, J = 7.3 Hz), 1.77 (3H, s), 2.93 (2H, q, J = 7.3 Hz), 3.79-3.83 (2H, m) , 4.09-4.13 (2H, m), 6.75 (1H, s), 7.28 (1H, d, J = 6.7 Hz), 7.37 (1H, d, J = 6.7 Hz), 10.9 (1H, s).
<実施例146>
2−エチル−7−ヒドロキシメチル−4−(2−メチルー[1,3]ジオキソラン−2−イル)−ピラゾロ[1,5−a]ピリジン
<Example 146>
2-Ethyl-7-hydroxymethyl-4- (2-methyl- [1,3] dioxolan-2-yl) -pyrazolo [1,5-a] pyridine
実施例145の化合物を用い、実施例140と同様に反応をさせ目的物を黄色粉末として得た。
LRMS (EI+): 262 [M+]
1H-NMR(400MHz、CDCl3) δ1.38 (3H, t, J = 7.3 Hz), 1.76 (3H, s), 2.88 (2H, q, J = 7.3 Hz), 3.78-3.81 (2H, m), 4.07-4.10 (2H, m), 4.82 (1H, brs), 4.99 (2H, s), 6.61 (1H, s), 6.62 (1H, d, J = 6.7 Hz), 7.19 (1H, d, J = 6.7 Hz).
The target product was obtained as a yellow powder by reacting in the same manner as in Example 140 using the compound of Example 145.
LRMS (EI + ): 262 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ1.38 (3H, t, J = 7.3 Hz), 1.76 (3H, s), 2.88 (2H, q, J = 7.3 Hz), 3.78-3.81 (2H, m ), 4.07-4.10 (2H, m), 4.82 (1H, brs), 4.99 (2H, s), 6.61 (1H, s), 6.62 (1H, d, J = 6.7 Hz), 7.19 (1H, d, J = 6.7 Hz).
<実施例147>
2−エチル−7−(1−ヒドロキシエチル)−4−(2−メチルー[1,3]ジオキソラン−2−イル)−ピラゾロ[1,5−a]ピリジン
<Example 147>
2-Ethyl-7- (1-hydroxyethyl) -4- (2-methyl- [1,3] dioxolan-2-yl) -pyrazolo [1,5-a] pyridine
実施例145の化合物を用い、実施例122と同様に反応させ目的物を黄色油状物として得た。
LRMS (EI+): 276 [M+]
1H-NMR(400MHz、CDCl3) δ 1.38 (3H, t, J = 7.3 Hz), 1.72 (3H, d, J = 6.7 Hz), 1.76 (3H, s), 2.88 (2H, q, J = 7.3 Hz), 3.77-3.84 (2H, m), 4.06-4.10 (2H, m), 5.28 (1H, q, J = 6.7 Hz), 5.70 (1H, brs), 6.60 (1H, s), 6.61 (1H, d, J = 7.3 Hz), 7.20 (1H, d, J = 7.3 Hz).
The target product was obtained as a yellow oil by reacting in the same manner as in Example 122 using the compound of Example 145.
LRMS (EI + ): 276 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.38 (3H, t, J = 7.3 Hz), 1.72 (3H, d, J = 6.7 Hz), 1.76 (3H, s), 2.88 (2H, q, J = 7.3 Hz), 3.77-3.84 (2H, m), 4.06-4.10 (2H, m), 5.28 (1H, q, J = 6.7 Hz), 5.70 (1H, brs), 6.60 (1H, s), 6.61 ( 1H, d, J = 7.3 Hz), 7.20 (1H, d, J = 7.3 Hz).
<実施例148>
4−アセチル−2−エチル−7−(1−ヒドロキシエチル)−ピラゾロ[1,5−a]ピリジン
<Example 148>
4-acetyl-2-ethyl-7- (1-hydroxyethyl) -pyrazolo [1,5-a] pyridine
実施例147の化合物を用い、実施例98と同様に反応を行い目的物を得た。精製せずそのまま次の反応に用いた。 Using the compound of Example 147, reaction was carried out in the same manner as in Example 98 to obtain the desired product. The product was used in the next reaction without purification.
<実施例149>
4−アセチル−7−(1−t−ブチルジメチルシリルオキシエチル)−2−エチル−ピラゾロ[1,5−a]ピリジン
<Example 149>
4-acetyl-7- (1-tert-butyldimethylsilyloxyethyl) -2-ethyl-pyrazolo [1,5-a] pyridine
上記実施例148の化合物を用い、実施例88と同様に反応させ目的物を黄色粉末として得た。
LRMS (FAB+): 347 [M+H+]
1H-NMR(400MHz、CDCl3) δ 0.05 (3H, s), 0.14 (3H, s), 0.96 (9H, s), 1.37 (3H, t, J = 7.3 Hz), 1.61 (3H, d, J = 6.1 Hz), 2.66 (3H, s), 2.91 (1H, q, J = 6.1 Hz), 7.01 (1H, d, J = 7.3 Hz), 7.18 (1H, s), 7.84 (1H, d, J = 7.3 Hz).
The target product was obtained as a yellow powder by reacting in the same manner as Example 88 using the compound of Example 148.
LRMS (FAB + ): 347 [M + H + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 0.05 (3H, s), 0.14 (3H, s), 0.96 (9H, s), 1.37 (3H, t, J = 7.3 Hz), 1.61 (3H, d, J = 6.1 Hz), 2.66 (3H, s), 2.91 (1H, q, J = 6.1 Hz), 7.01 (1H, d, J = 7.3 Hz), 7.18 (1H, s), 7.84 (1H, d, J = 7.3 Hz).
<実施例150>
4−アセチル−2−エチル−7−ヒドロキシメチル−ピラゾロ[1,5−a]ピリジン
<Example 150>
4-acetyl-2-ethyl-7-hydroxymethyl-pyrazolo [1,5-a] pyridine
実施例146の化合物を用い、実施例98と同様に反応させ目的物を得た。精製せずそのまま次の反応に用いた。 The target product was obtained by reacting in the same manner as in Example 98, using the compound of Example 146. The product was used in the next reaction without purification.
<実施例151>
4−アセチル−7−t−ブチルジメチルシリルオキシメチル−2−エチル−ピラゾロ[1,5−a]ピリジン
<Example 151>
4-acetyl-7-t-butyldimethylsilyloxymethyl-2-ethyl-pyrazolo [1,5-a] pyridine
上記実施例150の化合物を用い、実施例88と同様に反応させ目的物を黄色粉末として得た。
LRMS (FAB+): 333 [M+H+]
1H-NMR(400MHz、CDCl3) δ 0.19 (6H, s), 1.01 (9H, s), 1.38 (3H, t, J = 7.3 Hz), 2.67 (3H, s), 2.91 (2H, q, J = 7.3 Hz), 5.21 (2H, d, J = 1.2 Hz), 7.01 (1H, dd, J = 1.2, 7.3 Hz), 7.19 (1H, s), 7.87 (1H, d, J = 7.3 Hz).
The compound of Example 150 was reacted in the same manner as in Example 88 to obtain the target product as a yellow powder.
LRMS (FAB + ): 333 [M + H + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 0.19 (6H, s), 1.01 (9H, s), 1.38 (3H, t, J = 7.3 Hz), 2.67 (3H, s), 2.91 (2H, q, J = 7.3 Hz), 5.21 (2H, d, J = 1.2 Hz), 7.01 (1H, dd, J = 1.2, 7.3 Hz), 7.19 (1H, s), 7.87 (1H, d, J = 7.3 Hz) .
<実施例152>
3−(2−エチル−7−メチル−ピラゾロ[1,5−a]ピリジン−4−イル)−2−メチル−3−オキソプロピオン酸メチルエステル
<Example 152>
3- (2-Ethyl-7-methyl-pyrazolo [1,5-a] pyridin-4-yl) -2-methyl-3-oxopropionic acid methyl ester
アルゴンガス雰囲気下にて、実施例66の化合物(250 mg)を炭酸ジメチル(10.0 mL)に溶解し、60%水素化ナトリウム(137 mg)を加え、加熱還流下にて1時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水の順に洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 4: 1)にて精製し、目的物(307 mg)を黄色粉末として得た。
LRMS (EI+): 274 [M+]
1H-NMR(400MHz、CDCl3) δ 1.38 (3H, t, J = 7.3 Hz), 1.54 (3H, d, J = 7.3 Hz), 2.82 (3H, s), 3.69 (3H, s), 4.47 (1H, q, J = 7.3 Hz), 6.65 (1H, d, J = 7.3 Hz), 7.25 (1H, s), 7.81 (1H, d, J = 7.3 Hz).
Under an argon gas atmosphere, the compound of Example 66 (250 mg) was dissolved in dimethyl carbonate (10.0 mL), 60% sodium hydride (137 mg) was added, and the mixture was stirred with heating under reflux for 1 hr. A saturated aqueous ammonium chloride solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine in that order and then dried over anhydrous sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1) to obtain the desired product (307 mg) as a yellow powder.
LRMS (EI + ): 274 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.38 (3H, t, J = 7.3 Hz), 1.54 (3H, d, J = 7.3 Hz), 2.82 (3H, s), 3.69 (3H, s), 4.47 (1H, q, J = 7.3 Hz), 6.65 (1H, d, J = 7.3 Hz), 7.25 (1H, s), 7.81 (1H, d, J = 7.3 Hz).
<実施例153〜163>
実施例109、111、113、114 (124)、116(134)、119、126、127、130、149、151の化合物を用い、上記実施例152と同様に反応させ、表11に示す化合物を合成した。
<Examples 153 to 163>
Using the compounds of Examples 109, 111, 113, 114 (124), 116 (134), 119, 126, 127, 130, 149, and 151, the reaction was carried out in the same manner as in Example 152, and the compounds shown in Table 11 were obtained. Synthesized.
実施例153:精製せずにそのまま次の反応に進んだ。 Example 153: The next reaction was directly performed without purification.
実施例154:1H-NMR(400MHz、CDCl3) δ 1.37 (3H, t, J = 7.6 Hz), 2.93 (2H, q, J = 7.6 Hz), 3.76 (3H, s), 4.01 (2H, s), 4.24 (3H, s), 6.11 (1H, d, J = 7.9 Hz), 7.22 (1H, s), 7.86 (1H, d, J = 7.9 Hz). Example 154: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.37 (3H, t, J = 7.6 Hz), 2.93 (2H, q, J = 7.6 Hz), 3.76 (3H, s), 4.01 (2H, s), 4.24 (3H, s), 6.11 (1H, d, J = 7.9 Hz), 7.22 (1H, s), 7.86 (1H, d, J = 7.9 Hz).
実施例155:1H-NMR(400MHz、CDCl3) δ 0.92-0.96 (2H, m), 1.08-1.12 (2H, m), 2.22-2.29 (1H, m), 3.78 (3H, s), 4.03 (2H, s), 4.26 (3H, s), 6.11 (1H, d, J = 7.9 Hz), 6.99 (1H, s), 7.86 (1H, d, J = 7.9 Hz). Example 155: 1 H-NMR (400 MHz, CDCl 3 ) δ 0.92-0.96 (2H, m), 1.08-1.12 (2H, m), 2.22-2.29 (1H, m), 3.78 (3H, s), 4.03 (2H, s), 4.26 (3H, s), 6.11 ( 1H, d, J = 7.9 Hz), 6.99 (1H, s), 7.86 (1H, d, J = 7.9 Hz).
実施例156: LRMS (EI+): 316 [M+]
1H-NMR (400 MHz, CDCl3) δ 3.77 (3H, s), 4.03 (2H, s), 4.29 (3H, s), 6.34 (1H, d, J = 8.0 Hz), 7.70 (1H, s), 8.00 (1H, d, J = 8.0 Hz).
Example 156: LRMS (EI + ): 316 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 3.77 (3H, s), 4.03 (2H, s), 4.29 (3H, s), 6.34 (1H, d, J = 8.0 Hz), 7.70 (1H, s ), 8.00 (1H, d, J = 8.0 Hz).
実施例157:LRMS (EI+): 306 [M+]
1H-NMR(400MHz、CDCl3) δ 1.38 (3H, t, J = 7.3 Hz), 1.54 (3H, d, J = 7.3 Hz), 2.67 (3H, s), 2.94 (2H, q, J = 7.3 Hz), 3.69 (3H, s), 4.46 (1H, q, J = 7.3 Hz), 6.54 (1H, d, J = 8.0 Hz), 7.24 (1H, s), 7.86 (1H, d, J = 8.0 Hz).
Example 157: LRMS (EI + ): 306 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.38 (3H, t, J = 7.3 Hz), 1.54 (3H, d, J = 7.3 Hz), 2.67 (3H, s), 2.94 (2H, q, J = 7.3 Hz), 3.69 (3H, s), 4.46 (1H, q, J = 7.3 Hz), 6.54 (1H, d, J = 8.0 Hz), 7.24 (1H, s), 7.86 (1H, d, J = 8.0 Hz).
実施例158:LRMS (EI+): 389 [M+]
1H-NMR(400MHz、CDCl3) δ 1.36 (9H, s), 1.36 (3H, t, J = 7.3 Hz), 1.54 (3H, d, J = 7.3 Hz), 2.90 (2H, q, J = 7.3 Hz), 3.36 (3H, s), 3.70 (3H, s), 4.46 (1H, q, J = 7.3 Hz), 6.68 (1H, d, J = 7.3 Hz), 7.24 (1H, s), 7.85 (1H, d, J = 7.3 Hz).
Example 158: LRMS (EI + ): 389 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.36 (9H, s), 1.36 (3H, t, J = 7.3 Hz), 1.54 (3H, d, J = 7.3 Hz), 2.90 (2H, q, J = 7.3 Hz), 3.36 (3H, s), 3.70 (3H, s), 4.46 (1H, q, J = 7.3 Hz), 6.68 (1H, d, J = 7.3 Hz), 7.24 (1H, s), 7.85 (1H, d, J = 7.3 Hz).
実施例159:1H-NMR(400MHz、CDCl3) δ 1.53 (3H, d, J = 7.3 Hz), 3.44 (3H, s), 3.69 (3H, s), 4.25 (3H, s), 4.43 (1H, q, J = 7.3 Hz), 4.74 (2H, s), 6.17 (1H, d, J = 8.6 Hz), 7.43 (1H, s), 7.98 (1H, d, J = 8.6 Hz). Example 159: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.53 (3H, d, J = 7.3 Hz), 3.44 (3H, s), 3.69 (3H, s), 4.25 (3H, s), 4.43 ( 1H, q, J = 7.3 Hz), 4.74 (2H, s), 6.17 (1H, d, J = 8.6 Hz), 7.43 (1H, s), 7.98 (1H, d, J = 8.6 Hz).
実施例160: LRMS (EI+): 312 [M+]
1H-NMR (400 MHz,CDCl3) δ1.54 (3H, d, J = 8.0 Hz), 3.70 (3H, s), 4.28 (3H, s), 4.42 (1H, q, J = 8.0 Hz), 6.29 (1H, t, J = 8.0 Hz), 6.94 (1H, t, J = 54.4 Hz), 7.65 (1H, s), 8.05 (1H, d, J = 8.0 Hz).
Example 160: LRMS (EI + ): 312 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ1.54 (3H, d, J = 8.0 Hz), 3.70 (3H, s), 4.28 (3H, s), 4.42 (1H, q, J = 8.0 Hz) , 6.29 (1H, t, J = 8.0 Hz), 6.94 (1H, t, J = 54.4 Hz), 7.65 (1H, s), 8.05 (1H, d, J = 8.0 Hz).
実施例161:1H-NMR(400MHz、CDCl3) δ 1.56 (3H, d, J = 6.7 Hz), 3.64 (3H, s), 3.70 (3H, s), 4.48 (1H, q, J = 6.7 Hz), 5.04 (2H, brs), 7.23 (1H, dt, J = 1.2, 7.3 Hz), 7.70 (1H, s), 8.03 (1H, d, J = 7.3 Hz). Example 161: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.56 (3H, d, J = 6.7 Hz), 3.64 (3H, s), 3.70 (3H, s), 4.48 (1H, q, J = 6.7 Hz), 5.04 (2H, brs), 7.23 (1H, dt, J = 1.2, 7.3 Hz), 7.70 (1H, s), 8.03 (1H, d, J = 7.3 Hz).
実施例162:LRMS (FAB+): 391 [M+H+]
1H-NMR(400MHz、CDCl3) δ 0.19 (6H, s), 1.01 (9H, s), 1.37 (3H, t, J = 7.3 Hz), 2.90 (2H, q, J = 7.3 Hz), 3.77 (3H, s), 4.06 (2H, s), 5.21 (2H, s), 7.04 (1H, d, J = 7.3 Hz), 7.21 (1H, s), 7.85 (1H, d, J = 7.3 Hz).
Example 162: LRMS (FAB + ): 391 [M + H + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 0.19 (6H, s), 1.01 (9H, s), 1.37 (3H, t, J = 7.3 Hz), 2.90 (2H, q, J = 7.3 Hz), 3.77 (3H, s), 4.06 (2H, s), 5.21 (2H, s), 7.04 (1H, d, J = 7.3 Hz), 7.21 (1H, s), 7.85 (1H, d, J = 7.3 Hz) .
実施例163:LRMS (FAB+): 404 [M+H+]
1H-NMR(400MHz、CDCl3) δ 0.05 (3H, s), 0.15 (3H, s), 0.96 (9H, s), 1.37 (3H, t, J = 7.3 Hz), 1.61 (3H, d, J = 6.1 Hz), 2.90 (2H, q, J = 7.3 Hz), 3.77 (3H, s), 4.06 (2H, s), 5.66 (1H, q, J = 6.1 Hz), 7.03 (1H, d, J = 7.3 Hz), 7.21 (1H, s), 7.82 (1H, d, J = 7.3 Hz).
Example 163: LRMS (FAB + ): 404 [M + H + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 0.05 (3H, s), 0.15 (3H, s), 0.96 (9H, s), 1.37 (3H, t, J = 7.3 Hz), 1.61 (3H, d, J = 6.1 Hz), 2.90 (2H, q, J = 7.3 Hz), 3.77 (3H, s), 4.06 (2H, s), 5.66 (1H, q, J = 6.1 Hz), 7.03 (1H, d, J = 7.3 Hz), 7.21 (1H, s), 7.82 (1H, d, J = 7.3 Hz).
<実施例164及び165>
3−(2−エチル−7−メチル−ピラゾロ[1,5−a]ピリジン−4−イル)−2, 2−ジメチル−3−オキソプロピオン酸メチルエステル
<Examples 164 and 165>
3- (2-Ethyl-7-methyl-pyrazolo [1,5-a] pyridin-4-yl) -2,2-dimethyl-3-oxopropionic acid methyl ester
3−(2、7−ジエチル−ピラゾロ[1,5−a]ピリジン−4−イル)−2, 2−ジメチル−3−オキソプロピオン酸メチルエステル 3- (2,7-Diethyl-pyrazolo [1,5-a] pyridin-4-yl) -2,2-dimethyl-3-oxopropionic acid methyl ester
アルゴンガス雰囲気下にて、実施例152の化合物(306 mg)をDMF(10.0 mL)に溶解し、氷冷下にて60%水素化ナトリウム(58.0 mg)を加え、常温下にて30分間攪拌した後、氷冷下にて反応液にヨウ化メチル(105 μL)を加え、常温下にて4時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した後、有機層を水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 4: 1)にて精製し、7−メチル体、実施例164(170 mg)を黄色粉末、7−エチル体、実施例165(75.1 mg)を黄色油状物として得た。
7−メチル体 : LRMS (EI+): 288 [M+]
1H-NMR(400MHz、CDCl3) δ 1.39 (3H, t, J = 7.3 Hz), 1.59 (6H, s), 2.79 (3H, s), 2.93 (2H, q, J = 7.3 Hz), 3.64 (3H, s), 6.56 (1H, d, J = 7.3 Hz), 7.24 (1H, s), 7.52 (1H, d, J = 7.3 Hz).
7−エチル体 : LRMS (EI+): 302 [M+]
1H-NMR(400MHz、CDCl3) δ 1.38 (3H, t, J = 7.3 Hz), 1.44 (3H, t, J = 7.3 Hz), 1.59 (6H, s), 2.92 (2H, q, J = 7.3 Hz), 3.23 (2H, q, J = 7.3 Hz), 3.65 (3H, s), 6.56 (1H, d, J = 8.0 Hz), 7.23 (1H, s), 7.56 (1H, d, J = 8.0 Hz).
Under an argon gas atmosphere, dissolve the compound of Example 152 (306 mg) in DMF (10.0 mL), add 60% sodium hydride (58.0 mg) under ice cooling, and stir at room temperature for 30 minutes. Then, methyl iodide (105 μL) was added to the reaction solution under ice cooling, and the mixture was stirred at room temperature for 4 hours. A saturated aqueous ammonium chloride solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1), and the 7-methyl compound, Example 164 (170 mg) was yellow powder, 7-ethyl compound, Example 165. (75.1 mg) was obtained as a yellow oil.
7-methyl: LRMS (EI + ): 288 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.39 (3H, t, J = 7.3 Hz), 1.59 (6H, s), 2.79 (3H, s), 2.93 (2H, q, J = 7.3 Hz), 3.64 (3H, s), 6.56 (1H, d, J = 7.3 Hz), 7.24 (1H, s), 7.52 (1H, d, J = 7.3 Hz).
7-ethyl form: LRMS (EI + ): 302 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.38 (3H, t, J = 7.3 Hz), 1.44 (3H, t, J = 7.3 Hz), 1.59 (6H, s), 2.92 (2H, q, J = 7.3 Hz), 3.23 (2H, q, J = 7.3 Hz), 3.65 (3H, s), 6.56 (1H, d, J = 8.0 Hz), 7.23 (1H, s), 7.56 (1H, d, J = 8.0 Hz).
<実施例166>
3−(2−エチル−7−メトキシ−ピラゾロ[1,5−a]ピリジン−4−イル)−2, 2−ジメチル−3−オキソプロピオン酸メチルエステル
<Example 166>
3- (2-Ethyl-7-methoxy-pyrazolo [1,5-a] pyridin-4-yl) -2,2-dimethyl-3-oxopropionic acid methyl ester
アルゴンガス雰囲気下にて、実施例154 (412 mg)をDMF(15.0 mL)に溶解し、氷冷化にて60%水素化ナトリウム (77.6 mg)を加え、常温下にて30分間撹拌後、反応液にヨウ化メチル(139 μL)を加え、常温下にて3時間撹拌した。再度60%水素化ナトリウム(77.6mg)を加え、常温下にて30分間撹拌後、ヨウ化メチル(139 μL)を加え、常温下にて3時間撹拌した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルにて抽出し、水、飽和食塩水の順で洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (ヘキサン: 酢酸エチル = 1 : 1)で精製し、目的物 (380 mg)を黄色油状物として得た。(方法A)
1H-NMR(400MHz、CDCl3) δ 1.37(3H, t, J = 7.6 Hz), 1.59 (6H, s), 2.93 (2H, q, J = 7.6 Hz), 3.65 (3H, s), 4.22 (3H, s), 6.03 (1H, d, J = 8.3 Hz), 7.25 (1H, s), 7.67 (1H, d, J = 8.3 Hz).
In an argon gas atmosphere, Example 154 (412 mg) was dissolved in DMF (15.0 mL), 60% sodium hydride (77.6 mg) was added with ice cooling, and the mixture was stirred at room temperature for 30 minutes. Methyl iodide (139 μL) was added to the reaction solution, and the mixture was stirred at room temperature for 3 hours. 60% sodium hydride (77.6 mg) was added again, and the mixture was stirred at room temperature for 30 minutes, methyl iodide (139 μL) was added, and the mixture was stirred at room temperature for 3 hours. A saturated aqueous ammonium chloride solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate, and washed with water and saturated brine in this order. After drying over anhydrous sodium sulfate, the solvent was distilled off, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1: 1) to obtain the desired product (380 mg) as a yellow oil. (Method A)
1 H-NMR (400 MHz, CDCl 3 ) δ 1.37 (3H, t, J = 7.6 Hz), 1.59 (6H, s), 2.93 (2H, q, J = 7.6 Hz), 3.65 (3H, s), 4.22 (3H, s), 6.03 (1H, d, J = 8.3 Hz), 7.25 (1H, s), 7.67 (1H, d, J = 8.3 Hz).
<実施例167>
3−(2−エチル−7−メチルチオ−ピラゾロ[1,5−a]ピリジン−4−イル)−2, 2−ジメチル−3−オキソプロピオン酸メチルエステル
<Example 167>
3- (2-Ethyl-7-methylthio-pyrazolo [1,5-a] pyridin-4-yl) -2,2-dimethyl-3-oxopropionic acid methyl ester
アルゴンガス雰囲気下にて、実施例157の化合物(87.0 mg)をDMF(5.00 mL)に溶解し、氷冷下にて60%水素化ナトリウム(14.0 mg)を加え、常温下にて30分間攪拌した後、氷冷下にて反応液にヨウ化メチル(27.0 μL)を加え、常温下にて2時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した後、有機層を水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 3: 1)にて精製し、目的物(83.2 mg)を黄色油状物として得た。(方法B)
LRMS (EI+): 320 [M+]
1H-NMR(400MHz、CDCl3) δ 1.38 (3H, t, J = 7.3 Hz), 1.59 (6H, s), 2.65 (3H, s), 2.94 (2H, q, J = 7.3 Hz), 3.65 (3H, s), 6.46 (1H, d, J = 8.0 Hz), 7.25 (1H, s), 7.59 (1H, d, J = 8.0 Hz).
Under an argon gas atmosphere, dissolve the compound of Example 157 (87.0 mg) in DMF (5.00 mL), add 60% sodium hydride (14.0 mg) under ice cooling, and stir at room temperature for 30 minutes. After that, methyl iodide (27.0 μL) was added to the reaction solution under ice cooling, and the mixture was stirred at room temperature for 2 hours. A saturated aqueous ammonium chloride solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate. After evaporating the solvent, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1) to obtain the desired product (83.2 mg) as a yellow oil. (Method B)
LRMS (EI + ): 320 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.38 (3H, t, J = 7.3 Hz), 1.59 (6H, s), 2.65 (3H, s), 2.94 (2H, q, J = 7.3 Hz), 3.65 (3H, s), 6.46 (1H, d, J = 8.0 Hz), 7.25 (1H, s), 7.59 (1H, d, J = 8.0 Hz).
<実施例168〜176 >
実施例153、155、156、158〜163の化合物を用い、上記実施例166、167と同様に反応させ表12に示す化合物を合成した。
<Examples 168 to 176>
Using the compounds of Examples 153, 155, 156, and 158 to 163, the compounds shown in Table 12 were synthesized by reacting in the same manner as in Examples 166 and 167.
実施例168:精製せずにそのまま次の反応に進んだ。 Example 168: The next reaction was directly performed without purification.
実施例169:1H-NMR(400MHz、CDCl3) δ 0.89-0.93 (2H, m), 1.04-1.09 (2H, m), 1.58 (6H, s), 2.22-2.26 (1H, m), 6.00 (1H, d, J = 7.9 Hz), 6.99 (1H, s), 7.65 (1H, d, J = 7.9 Hz). Example 169: 1 H-NMR (400 MHz, CDCl 3 ) δ 0.89-0.93 (2H, m), 1.04-1.09 (2H, m), 1.58 (6H, s), 2.22-2.26 (1H, m), 6.00 (1H, d, J = 7.9 Hz), 6.99 (1H, s), 7.65 (1H, d, J = 7.9 Hz).
実施例170:LRMS (EI+): 344 [M+]
1H-NMR(400MHz、CDCl3) δ 1.60 (6H, s), 4.00 (3H, s), 4.27 (3H,s), 6.33 (1H, d, J = 8.0 Hz), 7.42 (1H, s), 8.16 (1H, d, J = 8.0 Hz).
Example 170: LRMS (EI + ): 344 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.60 (6H, s), 4.00 (3H, s), 4.27 (3H, s), 6.33 (1H, d, J = 8.0 Hz), 7.42 (1H, s) , 8.16 (1H, d, J = 8.0 Hz).
実施例171:精製せずにそのまま次の反応に進んだ。 Example 171: The next reaction was directly performed without purification.
実施例172:精製せずにそのまま次の反応に進んだ。 Example 172: The next reaction was directly performed without purification.
実施例173:LRMS (EI+): 326 [M+]
1H-NMR (400 MHz,CDCl3) δ1.60 (6H, s), 3.66 (3H, s), 4.26 (3H, s), 6.20 (1H, d, J = 7.9 Hz), 6.94 (1H, t, J = 54.4 Hz), 7.66 (1H, s), 7.77 (1H, d, J = 7.9 Hz).
Example 173: LRMS (EI + ): 326 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ1.60 (6H, s), 3.66 (3H, s), 4.26 (3H, s), 6.20 (1H, d, J = 7.9 Hz), 6.94 (1H, t, J = 54.4 Hz), 7.66 (1H, s), 7.77 (1H, d, J = 7.9 Hz).
実施例174:1H-NMR (400MHz、CDCl3) δ 1.61 (6H, s), 3.63 (3H, s), 3.66 (3H, s), 5.02 (2H, d, J = 1.2 Hz), 7.14 (1H, dt, J = 1.2, 7.3 Hz), 7.69 (1H, s), 7.74 (1H, d, J = 7.3 Hz). Example 174: 1 H-NMR (400 MHz, CDCl 3 ) δ 1.61 (6H, s), 3.63 (3H, s), 3.66 (3H, s), 5.02 (2H, d, J = 1.2 Hz), 7.14 ( 1H, dt, J = 1.2, 7.3 Hz), 7.69 (1H, s), 7.74 (1H, d, J = 7.3 Hz).
実施例175:LRMS (FAB+): 419 [M+H+]
1H-NMR(400MHz、CDCl3) δ 0.19 (6H, s), 1.01 (9H, s), 1.37 (3H, t, J = 7.3 Hz), 1.69 (6H, s), 2.90 (2H, q, J = 7.3 Hz), 3.66 (3H, s), 5.20 (2H, s), 6.95 (1H, d, J = 7.3 Hz), 7.22 (1H, s), 7.65 (1H, d, J = 7.3 Hz).
Example 175: LRMS (FAB + ): 419 [M + H + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 0.19 (6H, s), 1.01 (9H, s), 1.37 (3H, t, J = 7.3 Hz), 1.69 (6H, s), 2.90 (2H, q, J = 7.3 Hz), 3.66 (3H, s), 5.20 (2H, s), 6.95 (1H, d, J = 7.3 Hz), 7.22 (1H, s), 7.65 (1H, d, J = 7.3 Hz) .
実施例176:LRMS (FAB+): 433 [M+H+]
1H-NMR(400MHz、CDCl3) δ 0.04 (3H, s), 0.14 (3H, s), 0.95 (9H, s), 1.37 (3H, t, J = 7.3 Hz), 1.60 (6H, s), 1.60 (3H, d, J = 6.1 Hz), 2.90 (2H, q, J = 7.3 Hz), 3.66 (3H, s), 5.63 (1H, q, J = 6.1 Hz), 6.94 (1H, d, J = 8.0 Hz), 7.21 (1H, s), 7.61 (1H, d, J = 8.0 Hz).
Example 176: LRMS (FAB + ): 433 [M + H + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 0.04 (3H, s), 0.14 (3H, s), 0.95 (9H, s), 1.37 (3H, t, J = 7.3 Hz), 1.60 (6H, s) , 1.60 (3H, d, J = 6.1 Hz), 2.90 (2H, q, J = 7.3 Hz), 3.66 (3H, s), 5.63 (1H, q, J = 6.1 Hz), 6.94 (1H, d, J = 8.0 Hz), 7.21 (1H, s), 7.61 (1H, d, J = 8.0 Hz).
<実施例177>
3−(2−エチル−7−ヒドロキシメチル−ピラゾロ[1,5−a]ピリジン−4−イル)−2, 2−ジメチル−3−オキソプロピオン酸メチルエステル
<Example 177>
3- (2-Ethyl-7-hydroxymethyl-pyrazolo [1,5-a] pyridin-4-yl) -2,2-dimethyl-3-oxopropionic acid methyl ester
実施例175の化合物を用い、実施例105と同様に反応させ目的物を黄色油状物として得た。
LRMS (EI+): 304 [M+]
1H-NMR(400MHz、CDCl3) δ 1.38 (3H, t, J = 7.3 Hz), 1.59 (6H, s), 2.91 (2H, q, J = 7.3 Hz), 3.65 (3H,s), 4.54 (1H, brs), 5.04 (2H, s), 6.68 (1H, d, J = 7.3 Hz), 7.20 (1H, s), 7.57 (1H, d, J = 7.3 Hz).
The target product was obtained as a yellow oil by reacting in the same manner as in Example 105 using the compound of Example 175.
LRMS (EI + ): 304 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.38 (3H, t, J = 7.3 Hz), 1.59 (6H, s), 2.91 (2H, q, J = 7.3 Hz), 3.65 (3H, s), 4.54 (1H, brs), 5.04 (2H, s), 6.68 (1H, d, J = 7.3 Hz), 7.20 (1H, s), 7.57 (1H, d, J = 7.3 Hz).
<実施例178>
5−(2−エチル−7−メチル−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−ピラゾール−3−オン
<Example 178>
5- (2-Ethyl-7-methyl-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-pyrazol-3-one
実施例164の化合物(170 mg)をエタノール(5.00 mL)に溶解し、そこにヒドラジン一水和物(287 μL)を加え、加熱還流下にて5時間攪拌した。反応液を溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 2: 1)にて精製し、目的物(138 mg)を無色粉末として得た。(方法A)
元素分析 (%) :C1 5H18N4O として
C H N
計算値 66.64 6.71 20.73
実測値 66.47 6.76 20.64
HRMS (EI+): 270.1521 (+4.0 mmu) [M+]
1H-NMR (CDCl3, 400 MHz) δ 1.39 (3H, t, J = 7.3 Hz), 1.58 (6H, s), 2.80 (3H, s), 2.93 (2H, q, J = 7.3 Hz), 6.61 (1H, d, J = 7.3 Hz), 7.18 (1H, s), 7.38 (1H, d, J = 7.3 Hz), 8.65 (1H, brs).
The compound of Example 164 (170 mg) was dissolved in ethanol (5.00 mL), hydrazine monohydrate (287 μL) was added thereto, and the mixture was stirred for 5 hours under reflux with heating. After evaporating the solvent of the reaction solution, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 2: 1) to obtain the desired product (138 mg) as a colorless powder. (Method A)
Elemental analysis (%): C 1 5 H 18 N 4 O As
CHN
Calculated value 66.64 6.71 20.73
Actual value 66.47 6.76 20.64
HRMS (EI + ): 270.1521 (+4.0 mmu) [M + ]
1 H-NMR (CDCl 3 , 400 MHz) δ 1.39 (3H, t, J = 7.3 Hz), 1.58 (6H, s), 2.80 (3H, s), 2.93 (2H, q, J = 7.3 Hz), 6.61 (1H, d, J = 7.3 Hz), 7.18 (1H, s), 7.38 (1H, d, J = 7.3 Hz), 8.65 (1H, brs).
<実施例179>
5−(2−エチル−7−メトキシ−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−ピラゾール−3−オン
<Example 179>
5- (2-Ethyl-7-methoxy-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-pyrazol-3-one
実施例166の化合物 (298mg)をエタノール(10.0 mL)に溶解し、酢酸 (2.47 mL)及びヒドラジン一水和物 (951 μL)を加え、加熱還流下にて20時間攪拌した。溶媒留去後、酢酸エチルに溶解し、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (ヘキサン : 酢酸エチル = 1 : 2 〜 1 : 4)で精製し、目的物 (86.0mg)を淡褐色粉末として得た。(方法B)
HRMS (EI+): 286.1431 (+0.1 mmu) [M+]
1H-NMR(400MHz、CDCl3) δ 1.38 (3H, t, J = 7.6 Hz), 1.57 (6H, s), 2.94 (2H, q, J = 7.6 Hz), 4.20 (3H, s), 6.08 (1H, d, J = 7.9 Hz), 7.16 (1H, s), 7.46 (1H, d, J = 7.9 Hz), 8.57 (1H, brs).
The compound of Example 166 (298 mg) was dissolved in ethanol (10.0 mL), acetic acid (2.47 mL) and hydrazine monohydrate (951 μL) were added, and the mixture was stirred for 20 hours under heating to reflux. After evaporating the solvent, the residue was dissolved in ethyl acetate, washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and then dried over anhydrous sodium sulfate. The solvent was distilled off, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1: 2 to 1: 4) to obtain the desired product (86.0 mg) as a light brown powder. (Method B)
HRMS (EI +): 286.1431 (+0.1 mmu) [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.38 (3H, t, J = 7.6 Hz), 1.57 (6H, s), 2.94 (2H, q, J = 7.6 Hz), 4.20 (3H, s), 6.08 (1H, d, J = 7.9 Hz), 7.16 (1H, s), 7.46 (1H, d, J = 7.9 Hz), 8.57 (1H, brs).
<実施例180〜189>
実施例165、167〜173、176、177の化合物を用い、上記実施例178、179の方法と同様に反応させ表13に示す化合物を合成した。
<Examples 180 to 189>
Using the compounds of Examples 165, 167 to 173, 176, and 177, the compounds shown in Table 13 were synthesized by reacting in the same manner as in the above Examples 178 and 179.
実施例180:HRMS (EI+) 259.1151 (-4.4 mmu)
1H-NMR(400MHz、CDCl3) δ 1.58 (6H, s), 4.22 (3H, s), 6.15 (1H, d, J = 7.9 Hz), 7.34 (1H, d, J = 1.8 Hz), 7.50 (1H, d, J = 7.9 Hz), 8.10 (1H, d, J = 7.9 Hz), 8.65 (1H, brs).
Example 180: HRMS (EI + ) 259.1151 (-4.4 mmu)
1 H-NMR (400 MHz, CDCl 3 ) δ 1.58 (6H, s), 4.22 (3H, s), 6.15 (1H, d, J = 7.9 Hz), 7.34 (1H, d, J = 1.8 Hz), 7.50 (1H, d, J = 7.9 Hz), 8.10 (1H, d, J = 7.9 Hz), 8.65 (1H, brs).
実施例181:元素分析 (%) :C1 6H18N4O2 1/10H2Oとして
C H N
計算値 64.03 6.11 18.67
実測値 64.20 6.13 18.33
HRMS (EI+): 298.1460 (+3.0 mmu)
1H-NMR (400MHz、CDCl3) δ 0.91-0.92 (2H, m), 1.06-1.08 (2H, m), 1.56 (6H, s), 2.23-2.27 (1H, m), 6.06 (1H, d, J = 7.9 Hz), 6.91 (1H, s), 7.44 (1H, d, J = 7.9 Hz), 8.53 (1H, brs).
Example 181: Elemental analysis (%): as C 1 6 H 18 N 4 O 2 1/10 H 2 O
CHN
Calculated value 64.03 6.11 18.67
Actual value 64.20 6.13 18.33
HRMS (EI + ): 298.1460 (+3.0 mmu)
1 H-NMR (400MHz, CDCl 3 ) δ 0.91-0.92 (2H, m), 1.06-1.08 (2H, m), 1.56 (6H, s), 2.23-2.27 (1H, m), 6.06 (1H, d , J = 7.9 Hz), 6.91 (1H, s), 7.44 (1H, d, J = 7.9 Hz), 8.53 (1H, brs).
実施例182:元素分析(%):C14H13F3N4O2として
C H N
計算値 51.54 4.02 17.17
実測値 51.33 4.10 17.10
HRMS (EI+): 326.0961 (-2.9 mmu)
1H-NMR (400 MHz, CDCl3) δ 1.59 (6H, s), 4.24 (3H, s), 6.30 (1H, d, J = 8.0 Hz), 7.58 (1H, d, J = 8.0 Hz), 7.68 (1H, s), 8.89 (1H, brs).
Example 182: Elemental analysis (%): as C 14 H 13 F 3 N 4 O 2
CHN
Calculated 51.54 4.02 17.17
Actual value 51.33 4.10 17.10
HRMS (EI + ): 326.0961 (-2.9 mmu)
1 H-NMR (400 MHz, CDCl 3 ) δ 1.59 (6H, s), 4.24 (3H, s), 6.30 (1H, d, J = 8.0 Hz), 7.58 (1H, d, J = 8.0 Hz), 7.68 (1H, s), 8.89 (1H, brs).
実施例183:HRMS (EI+): 302.1205 (+0.4 mmu)
1H-NMR(400MHz、CDCl3) δ 1.39 (3H, t, J = 7.3 Hz), 1.58 (6H, s), 2.65 (3H, s), 2.95 (2H, q, J = 7.3 Hz), 6.52 (1H, d, J = 8.0 Hz), 7.18 (1H, s), 7.44 (1H, d, J = 8.0 Hz), 8.69 (1H, brs).
Example 183: HRMS (EI + ): 302.1205 (+0.4 mmu)
1 H-NMR (400 MHz, CDCl 3 ) δ 1.39 (3H, t, J = 7.3 Hz), 1.58 (6H, s), 2.65 (3H, s), 2.95 (2H, q, J = 7.3 Hz), 6.52 (1H, d, J = 8.0 Hz), 7.18 (1H, s), 7.44 (1H, d, J = 8.0 Hz), 8.69 (1H, brs).
実施例184:LRMS (EI+): 385 [M+]
1H-NMR(400MHz、CDCl3) δ 1.37 (9H, s), 1.37 (3H, t, J = 7.3 Hz), 1.58 (3H, s), 2.90 (2H, q, J = 7.3 Hz), 3.35 (3H, s), 6.65 (1H, d, J = 7.3 Hz), 7.19 (1H, s), 7.41 (1H, d, J = 7.3 Hz), 8.95 (1H, brs).
Example 184: LRMS (EI + ): 385 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.37 (9H, s), 1.37 (3H, t, J = 7.3 Hz), 1.58 (3H, s), 2.90 (2H, q, J = 7.3 Hz), 3.35 (3H, s), 6.65 (1H, d, J = 7.3 Hz), 7.19 (1H, s), 7.41 (1H, d, J = 7.3 Hz), 8.95 (1H, brs).
実施例185:LRMS (EI+): 302 [M+]
1H-NMR(400MHz、CDCl3) δ 1.57 (6H, s), 3.45 (3H, s), 4.21 (3H, s), 4.76 (2H, s), 6.14 (1H, d, J = 7.9 Hz), 7.38 (1H, s), 7.48 (1H, d, J = 7.9 Hz), 8.59 (1H, s).
Example 185: LRMS (EI + ): 302 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.57 (6H, s), 3.45 (3H, s), 4.21 (3H, s), 4.76 (2H, s), 6.14 (1H, d, J = 7.9 Hz) , 7.38 (1H, s), 7.48 (1H, d, J = 7.9 Hz), 8.59 (1H, s).
実施例186:HRMS (EI+): 308.1084 (-0.1 mmu) [M+]
1H-NMR (400 MHz,CDCl3) δ1.58 (6H, s), 4.24 (3H, s), 6.25 (1H, d, J = 8.0 Hz), 6.95 (1H, t, J = 55.0 Hz), 7.55 (1H, d, J = 8.0 Hz), 7.61 (1H, s), 8.64 (1H, brs).
Example 186: HRMS (EI + ): 308.1084 (−0.1 mmu) [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ1.58 (6H, s), 4.24 (3H, s), 6.25 (1H, d, J = 8.0 Hz), 6.95 (1H, t, J = 55.0 Hz) , 7.55 (1H, d, J = 8.0 Hz), 7.61 (1H, s), 8.64 (1H, brs).
実施例187:元素分析 (%) :C1 6H20N4Oとして
C H N
計算値 67.58 7.09 19.70
実測値 67.34 7.09 19.50
HRMS (EI+): 284.1661 (+2.4 mmu)
1H-NMR (400MHz、CDCl3) δ 1.39 (3H, t, J = 7.3 Hz), 1.45 (3H, t, J = 7.3 Hz), 1.58 (6H, s), 2.93 (2H, q, J = 7.3 Hz), 3.24 (2H, q, J = 7.3 Hz), 6.61 (1H, d, J = 7.3 Hz), 7.16 (1H, s), 7.41 (1H, d, J = 7.3 Hz), 8.59 (1H, brs).
Example 187: Elemental analysis (%): as C 1 6 H 20 N 4 O
CHN
Calculated 67.58 7.09 19.70
Actual value 67.34 7.09 19.50
HRMS (EI + ): 284.1661 (+2.4 mmu)
1 H-NMR (400 MHz, CDCl 3 ) δ 1.39 (3H, t, J = 7.3 Hz), 1.45 (3H, t, J = 7.3 Hz), 1.58 (6H, s), 2.93 (2H, q, J = 7.3 Hz), 3.24 (2H, q, J = 7.3 Hz), 6.61 (1H, d, J = 7.3 Hz), 7.16 (1H, s), 7.41 (1H, d, J = 7.3 Hz), 8.59 (1H , brs).
実施例188:元素分析 (%) :C1 5H18N4O2として
C H N
計算値 62.92 6.34 19.57
実測値 62.61 6.31 19.23
HRMS (EI+): 286.1404 (-2.6 mmu)
1H-NMR (400MHz、CDCl3) δ 1.39 (3H, t, J = 7.3 Hz), 1.58 (6H, s), 2.91 (2H, q, J = 7.3 Hz), 4.63 (1H, brs), 5.05 (2H, s), 6.72 (1H, d, J = 7.3 Hz), 7.16 (1H, s), 7.42 (1H, d, J = 7.3 Hz), 8.74 (1H, brs).
Example 188: Elemental analysis (%): As C 1 5 H 18 N 4 O 2
CHN
Calculated 62.92 6.34 19.57
Actual value 62.61 6.31 19.23
HRMS (EI + ): 286.1404 (-2.6 mmu)
1 H-NMR (400 MHz, CDCl 3 ) δ 1.39 (3H, t, J = 7.3 Hz), 1.58 (6H, s), 2.91 (2H, q, J = 7.3 Hz), 4.63 (1H, brs), 5.05 (2H, s), 6.72 (1H, d, J = 7.3 Hz), 7.16 (1H, s), 7.42 (1H, d, J = 7.3 Hz), 8.74 (1H, brs).
実施例189:LRMS (FAB+): 415 [M+H+]
1H-NMR(400MHz、CDCl3) δ 0.06 (3H, s), 0.15 (3H, s), 0.97 (9H, s), 1.38 (3H, t, J = 7.3 Hz), 1.58-1.62 (9H, m), 2.91 (2H, q, J = 7.3 Hz), 5.66 (1H, q, J = 6.1 Hz), 6.98 (1H, d, J = 7.3 Hz), 7.15 (1H, s), 7.48 (1H, d, J = 7.3 Hz), 8.61 (1H, brs).
Example 189: LRMS (FAB + ): 415 [M + H + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 0.06 (3H, s), 0.15 (3H, s), 0.97 (9H, s), 1.38 (3H, t, J = 7.3 Hz), 1.58-1.62 (9H, m), 2.91 (2H, q, J = 7.3 Hz), 5.66 (1H, q, J = 6.1 Hz), 6.98 (1H, d, J = 7.3 Hz), 7.15 (1H, s), 7.48 (1H, d, J = 7.3 Hz), 8.61 (1H, brs).
<実施例190>
5−(7−メトキシ−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−ピラゾール−3−オン
<Example 190>
5- (7-Methoxy-2-trifluoromethyl-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-pyrazol-3-one
実施例170の化合物(1.15 g)をキシレン(30.0 mL)に溶解し、カルバジン酸t−ブチル(1.32 g)およびピリジニウムパラトルエンスルホネート(100 mg)を加え、Dean-Starkトラップを用い加熱還流下にて16時間攪拌した。反応液をそのままシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 1 : 1 〜 1 : 2)にて精製し、目的物(367 mg)を無色粉末として得た。
実施例182と同じ。
The compound of Example 170 (1.15 g) was dissolved in xylene (30.0 mL), t-butyl carbadate (1.32 g) and pyridinium p-toluenesulfonate (100 mg) were added, and the mixture was heated under reflux using a Dean-Stark trap. And stirred for 16 hours. The reaction solution was directly purified by silica gel column chromatography (hexane: ethyl acetate = 1: 1 to 1: 2) to obtain the desired product (367 mg) as a colorless powder.
Same as Example 182.
<実施例191>
5−[2−エチル−7−(1−ヒドロキシエチル)−ピラゾロ[1,5−a]ピリジン−4−イル]−4,4−ジメチル−2,4−ジヒドロ−ピラゾール−3−オン
<Example 191>
5- [2-Ethyl-7- (1-hydroxyethyl) -pyrazolo [1,5-a] pyridin-4-yl] -4,4-dimethyl-2,4-dihydro-pyrazol-3-one
実施例189の化合物を用い、実施例105と同様に反応させ目的物を淡黄色粉末として得た。
元素分析 (%) :C1 6H20N4O2として
C H N
計算値 63.98 6.71 18.65
実測値 63.83 6.71 18.39
HRMS (EI+): 300.1598 (+1.1 mmu)
1H-NMR (400MHz、CDCl3) δ 1.39 (3H, t, J = 7.3 Hz), 1.57 (6H, s), 1.75 (3H, d, J = 6.7 Hz), 2.91 (2H, q, J = 7.3 Hz), 5.35 (1H, q, J = 6.7 Hz), 5.45 (1H, brs), 6.71 (1H, d, J = 7.3 Hz), 7.15 (1H, s), 7.44 (1H, d, J = 7.3 Hz), 8.67 (1H, brs).
The target product was obtained as a pale yellow powder by reacting in the same manner as in Example 105 using the compound of Example 189.
Elemental analysis (%): As C 1 6 H 20 N 4 O 2
CHN
Calculated 63.98 6.71 18.65
Actual value 63.83 6.71 18.39
HRMS (EI + ): 300.1598 (+1.1 mmu)
1 H-NMR (400 MHz, CDCl 3 ) δ 1.39 (3H, t, J = 7.3 Hz), 1.57 (6H, s), 1.75 (3H, d, J = 6.7 Hz), 2.91 (2H, q, J = 7.3 Hz), 5.35 (1H, q, J = 6.7 Hz), 5.45 (1H, brs), 6.71 (1H, d, J = 7.3 Hz), 7.15 (1H, s), 7.44 (1H, d, J = 7.3 Hz), 8.67 (1H, brs).
<実施例192>
5−(7−アセチル−2−エチル−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−ピラゾール−3−オン
<Example 192>
5- (7-acetyl-2-ethyl-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-pyrazol-3-one
アルゴンガス雰囲気下にて、実施例191の化合物(250 mg)をDMSO(10.0 mL)に溶解し、そこにトリエチルアミン(1.20 mL)、三酸化硫黄−ピリジン錯体(662 mg)を加え、常温下にて1時間攪拌した。反応液を氷水中に注いだ後、酢酸エチルで抽出し、水、飽和食塩水の順に洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 3: 1)にて精製し、目的物(94.8 mg)を黄色粉末として得た。
元素分析 (%) :C1 6H18N4O2として
C H N
計算値 64.41 6.08 18.78
実測値 64.22 5.98 18.65
HRMS (EI+): 298.1435 (+0.5 mmu)
1H-NMR (400MHz、CDCl3) δ 1.40 (3H, t, J = 7.3 Hz), 1.58 (6H, s), 2.93 (2H, q, J = 7.3 Hz), 2.99 (3H, s), 7.24 (1H, d, J = 7.3 Hz), 7.26 (1H, s), 7.44 (1H, d, J = 7.3 Hz), 8.81 (1H, brs).
Under an argon gas atmosphere, the compound of Example 191 (250 mg) was dissolved in DMSO (10.0 mL), triethylamine (1.20 mL) and sulfur trioxide-pyridine complex (662 mg) were added thereto, and the mixture was cooled to room temperature. And stirred for 1 hour. The reaction solution was poured into ice water, extracted with ethyl acetate, washed successively with water and saturated brine, and dried over anhydrous sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1) to obtain the desired product (94.8 mg) as a yellow powder.
Elemental analysis (%): as C 1 6 H 18 N 4 O 2
CHN
Calculated 64.41 6.08 18.78
Actual value 64.22 5.98 18.65
HRMS (EI + ): 298.1435 (+0.5 mmu)
1 H-NMR (400 MHz, CDCl 3 ) δ 1.40 (3H, t, J = 7.3 Hz), 1.58 (6H, s), 2.93 (2H, q, J = 7.3 Hz), 2.99 (3H, s), 7.24 (1H, d, J = 7.3 Hz), 7.26 (1H, s), 7.44 (1H, d, J = 7.3 Hz), 8.81 (1H, brs).
<実施例193>
5−[2−エチル−7−(1−ヒドロキシエチル)−ピラゾロ[1,5−a]ピリジン−4−イル]−4,4−ジメチル−2−メチル−2,4−ジヒドロ−ピラゾール−3−オン
<Example 193>
5- [2-Ethyl-7- (1-hydroxyethyl) -pyrazolo [1,5-a] pyridin-4-yl] -4,4-dimethyl-2-methyl-2,4-dihydro-pyrazole-3 -ON
アルゴンガス雰囲気下にて、実施例191の化合物(266 mg)をDMF(10.0 mL)に溶解し、炭酸カリウム(245 mg)およびヨウ化メチル(65.0 μL)を加え、常温下にて10時間攪拌した。反応液に水を加えた後、酢酸エチルで抽出し、水、飽和食塩水の順に洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : 酢酸エチル = 2: 1)にて精製し、目的物(199 mg)を黄色粉末として得た。
HRMS (EI+): 314.1744 (+0.1 mmu)
1H-NMR (400MHz、CDCl3) δ 1.40 (3H, t, J = 7.3 Hz), 1.54 (6H, s), 1.75 (3H, d, J = 6.7 Hz), 2.92 (2H, q, J = 7.3 Hz), 3.52 (3H, s), 5.34 (1H, q, J = 6.7 Hz), 6.70 (1H, d, J = 7.3 Hz), 7.18 (1H, s), 7.42 (1H, d, J = 7.3 Hz).
In an argon gas atmosphere, dissolve the compound of Example 191 (266 mg) in DMF (10.0 mL), add potassium carbonate (245 mg) and methyl iodide (65.0 μL), and stir at room temperature for 10 hours. did. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate, washed in turn with water and saturated brine, and dried over anhydrous sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 2: 1) to obtain the desired product (199 mg) as a yellow powder.
HRMS (EI + ): 314.1744 (+0.1 mmu)
1 H-NMR (400 MHz, CDCl 3 ) δ 1.40 (3H, t, J = 7.3 Hz), 1.54 (6H, s), 1.75 (3H, d, J = 6.7 Hz), 2.92 (2H, q, J = 7.3 Hz), 3.52 (3H, s), 5.34 (1H, q, J = 6.7 Hz), 6.70 (1H, d, J = 7.3 Hz), 7.18 (1H, s), 7.42 (1H, d, J = (7.3 Hz).
<実施例194>
5−(2−エチル−7−メトキシ−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2−(ピリジン−3−イルメチル)−2,4−ジヒドロ−ピラゾール−3−オン
<Example 194>
5- (2-Ethyl-7-methoxy-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2- (pyridin-3-ylmethyl) -2,4-dihydro-pyrazole- 3-on
アルゴンガス雰囲気下にて、実施例179の化合物 (60.0 mg)をDMF (2.00 mL)に溶解し、そこに60%水素化ナトリウム (18.5 mg)を加え、常温下にて15分間撹拌した。その後、反応液に3−クロロメチルピリジン塩酸塩 (37.9 mg)を加え、60℃にて5時間撹拌した。反応液に氷水を加え、酢酸エチルにて抽出し、水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去し、分取薄層クロマトグラフィー (酢酸エチル : メタノール = 10 : 1)にて精製し、目的物 (18.0 mg)を褐色アモルファスとして得た。
HRMS (EI+): 377.1883 (+3.1mmu) [M+]
1H-NMR(400MHz、CDCl3) δ 1.36 (3H, t, J = 7.6 Hz), 1.56 (6H, s), 2.92 (2H, q, J = 7.6 Hz), 4.18 (3H, s), 5.02 (2H, s), 6.07 (1H, d, J = 7.9 Hz), 7.00 (1H, s), 7.31 (1H, dd, J = 4.9, 7.9 Hz), 7.44 (1H, d, J = 7.9 Hz), 7.76 (1H, td, J = 1.8, 7.9 Hz), 8.58 (1H, d, J = 4.9 Hz), 8.73 (1H, d, J = 1.8 Hz).
Under an argon gas atmosphere, the compound of Example 179 (60.0 mg) was dissolved in DMF (2.00 mL), 60% sodium hydride (18.5 mg) was added thereto, and the mixture was stirred at room temperature for 15 minutes. Thereafter, 3-chloromethylpyridine hydrochloride (37.9 mg) was added to the reaction solution, and the mixture was stirred at 60 ° C. for 5 hours. Ice water was added to the reaction mixture, and the mixture was extracted with ethyl acetate, washed successively with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off, and the residue was purified by preparative thin layer chromatography (ethyl acetate: methanol = 10: 1) to obtain the desired product (18.0 mg) as a brown amorphous.
HRMS (EI + ): 377.1883 (+ 3.1mmu) [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.36 (3H, t, J = 7.6 Hz), 1.56 (6H, s), 2.92 (2H, q, J = 7.6 Hz), 4.18 (3H, s), 5.02 (2H, s), 6.07 (1H, d, J = 7.9 Hz), 7.00 (1H, s), 7.31 (1H, dd, J = 4.9, 7.9 Hz), 7.44 (1H, d, J = 7.9 Hz) , 7.76 (1H, td, J = 1.8, 7.9 Hz), 8.58 (1H, d, J = 4.9 Hz), 8.73 (1H, d, J = 1.8 Hz).
<実施例195>
5−(2−エチル−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−ピラゾール−3−オン
<Example 195>
5- (2-Ethyl-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-pyrazol-3-one
実施例79の化合物を用い、実施例152次いで、実施例166、実施例178と同様に反応させ目的物を黄色粉末として得た。
1H-NMR(400MHz、CDCl3) δ 1.37 (3H, t, J = 7.6 Hz), 2.90 (2H, q, J = 7.6 Hz), 3.77 (3H, s), 4.06 (2H, s), 6.77 (1H, t, J = 7.0 Hz), 7.16 (1H, s), 7.77 (1H, dd, J = 0.9, 7.0 Hz), 8.58 (1H, td, J = 0.9, 7.0 Hz).
Using the compound of Example 79, Example 152 was then reacted in the same manner as in Example 166 and Example 178 to obtain the desired product as a yellow powder.
1 H-NMR (400 MHz, CDCl 3 ) δ 1.37 (3H, t, J = 7.6 Hz), 2.90 (2H, q, J = 7.6 Hz), 3.77 (3H, s), 4.06 (2H, s), 6.77 (1H, t, J = 7.0 Hz), 7.16 (1H, s), 7.77 (1H, dd, J = 0.9, 7.0 Hz), 8.58 (1H, td, J = 0.9, 7.0 Hz).
<実施例196>
5−(2−エチル−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2−(ピリジン−3−イルメチル)−2,4−ジヒドロ−ピラゾール−3−オン
<Example 196>
5- (2-Ethyl-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2- (pyridin-3-ylmethyl) -2,4-dihydro-pyrazol-3-one
実施例195の化合物を用い、実施例194と同様に反応させ目的物を淡黄色粉末として得た。
HRMS (EI+): 347.1741 (-0.5 mmu) [M+]
1H-NMR(400MHz、CDCl3) δ 1.36 (3H, t, J = 7.3 Hz), 1.56 (6H, s), 2.88 (2H, q, J = 7.3 Hz), 5.04 (2H, s), 6.72 (1H, d, J = 7.9 Hz), 6.94 (1H, s), 7.31 (1H, dd, J = 4.9, 7.9 Hz), 7.39 (1H, d, J = 7.9 Hz), 7.75 (1H, td, J = 1.8, 7.9 Hz), 8.42 (1H, d, J = 4.9 Hz), 8.58 (1H, dd, J = 1.8, 4.9 Hz), 8.73 (1H, d, J = 1.8 Hz).
The target product was obtained as a pale yellow powder by reacting in the same manner as in Example 194 using the compound of Example 195.
HRMS (EI + ): 347.1741 (-0.5 mmu) [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.36 (3H, t, J = 7.3 Hz), 1.56 (6H, s), 2.88 (2H, q, J = 7.3 Hz), 5.04 (2H, s), 6.72 (1H, d, J = 7.9 Hz), 6.94 (1H, s), 7.31 (1H, dd, J = 4.9, 7.9 Hz), 7.39 (1H, d, J = 7.9 Hz), 7.75 (1H, td, J = 1.8, 7.9 Hz), 8.42 (1H, d, J = 4.9 Hz), 8.58 (1H, dd, J = 1.8, 4.9 Hz), 8.73 (1H, d, J = 1.8 Hz).
<実施例197>
5−(2−エチル−7−メトキシ−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2−(3−ニトロベンジル)−2,4−ジヒドロ−ピラゾール−3−オン
<Example 197>
5- (2-Ethyl-7-methoxy-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2- (3-nitrobenzyl) -2,4-dihydro-pyrazole-3 -ON
実施例179の化合物を用い、3−ニトロベンジルクロリドを用い実施例196と同様に反応させ目的物を黄色粉末として得た。
HRMS (EI+): 421.1776 (2.6mmu) [M+]
1H-NMR(400MHz、CDCl3) δ 1.35 (3H, t, J = 7.6 Hz), 1.56 (6H,s), 2.92 (2H, q, J = 7.6 Hz), 4.19 (3H, s), 5.10 (2H, s), 6.08 (1H, d, J = 7.9Hz), 7.01 (1H, s), 7.46 (1H, d, J = 7.9 Hz), 7.56 (1H, t, J = 7.9 Hz), 7.75 (1H, d, J = 7.9 Hz), 8.17-8.20 (1H, m), 8.33 (1H, t, J = 1.8 Hz).
The compound of Example 179 was used and reacted in the same manner as in Example 196 using 3-nitrobenzyl chloride to obtain the desired product as a yellow powder.
HRMS (EI + ): 421.1776 (2.6mmu) [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.35 (3H, t, J = 7.6 Hz), 1.56 (6H, s), 2.92 (2H, q, J = 7.6 Hz), 4.19 (3H, s), 5.10 (2H, s), 6.08 (1H, d, J = 7.9Hz), 7.01 (1H, s), 7.46 (1H, d, J = 7.9 Hz), 7.56 (1H, t, J = 7.9 Hz), 7.75 (1H, d, J = 7.9 Hz), 8.17-8.20 (1H, m), 8.33 (1H, t, J = 1.8 Hz).
<実施例198>
5−(2−エチル−7−メチルアミノ−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−ピラゾール−3−オン
<Example 198>
5- (2-Ethyl-7-methylamino-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-pyrazol-3-one
実施例184の化合物(10.0 mg)をジクロロメタン(1.00 mL)に溶解し、そこにトリフルオロ酢酸(500 μL)を加え、常温にて1時間攪拌した。反応液を溶媒留去後、残渣を分取薄層クロマトグラフィー(ヘキサン : 酢酸エチル = 1 : 1)にて精製し、目的物(7.60 mg)を無色粉末として得た。
HRMS (EI+): 285.1573 (-1.7 mmu)
1H-NMR (400MHz、CDCl3) δ 1.38 (3H, t, J = 7.3 Hz), 1.57 (6H, s), 2.87 (2H, q, J = 7.3 Hz), 3.12 (2H, d, J = 4.9 Hz), 5.82 (1H, d, J = 8.0 Hz), 6.43 (1H, brs), 7.07 (1H, s), 7.48 (1H, d, J = 8.0 Hz), 8.53 (1H, brs).
The compound of Example 184 (10.0 mg) was dissolved in dichloromethane (1.00 mL), trifluoroacetic acid (500 μL) was added thereto, and the mixture was stirred at room temperature for 1 hour. After evaporating the reaction solution, the residue was purified by preparative thin layer chromatography (hexane: ethyl acetate = 1: 1) to obtain the desired product (7.60 mg) as a colorless powder.
HRMS (EI + ): 285.1573 (-1.7 mmu)
1 H-NMR (400 MHz, CDCl 3 ) δ 1.38 (3H, t, J = 7.3 Hz), 1.57 (6H, s), 2.87 (2H, q, J = 7.3 Hz), 3.12 (2H, d, J = 4.9 Hz), 5.82 (1H, d, J = 8.0 Hz), 6.43 (1H, brs), 7.07 (1H, s), 7.48 (1H, d, J = 8.0 Hz), 8.53 (1H, brs).
<実施例199>
2−ベンジル−5−(2−エチル−7−メトキシ−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−ピラゾール−3−オン
<Example 199>
2-Benzyl-5- (2-ethyl-7-methoxy-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-pyrazol-3-one
実施例179の化合物を用い、塩化ベンジルを用いて実施例196と同様に反応させ目的物を無色粉末として得た。
HRMS (EI+): 376.1900 (+0.1 mmu) [M+]
1H-NMR(400MHz、CDCl3) δ 1.33 (3H, t, J = 7.6 Hz), 1.55 (6H, s), 2.91 (2H, q, J = 7.6 Hz), 4.18 (3H, s), 5.00 (2H, s), 6.06 (1H, d, J = 7.9 Hz), 7.02 (1H, s), 7.30-7.40 (5H, m), 7.42 (1H, d, J = 7.9Hz).
The compound of Example 179 was used and reacted in the same manner as in Example 196 using benzyl chloride to obtain the desired product as a colorless powder.
HRMS (EI + ): 376.1900 (+0.1 mmu) [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.33 (3H, t, J = 7.6 Hz), 1.55 (6H, s), 2.91 (2H, q, J = 7.6 Hz), 4.18 (3H, s), 5.00 (2H, s), 6.06 (1H, d, J = 7.9 Hz), 7.02 (1H, s), 7.30-7.40 (5H, m), 7.42 (1H, d, J = 7.9 Hz).
<実施例200>
5−(7−メトキシメチル−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−ピラゾール−3−オン
<Example 200>
5- (7-Methoxymethyl-2-trifluoromethyl-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-pyrazol-3-one
実施例174の化合物を用い、実施例178と同様に反応させ目的物を無色粉末として得た。
元素分析 (%) :C1 5H15N4O2として
C H N
計算値 52.94 4.44 16.46
実測値 52.74 4.39 16.45
LRMS (EI+): 340 [M+]
1H-NMR (400MHz、CDCl3) δ 1.60 (6H, s), 3.64 (3H, s), 5.04 (2H, d, J = 1.2 Hz), 7.15 (1H, dt, J = 1.2, 7.3 Hz), 7.60 (1H, d, J = 7.3 Hz), 7.67 (1H, s), 8.82 (1H, brs).
次に本発明化合物について、有用性を裏付ける成績を実験例によって示す。
The target product was obtained as a colorless powder by reacting in the same manner as in Example 178 using the compound of Example 174.
Elemental analysis (%): as C 1 5 H 15 N 4 O 2
CHN
Calculated value 52.94 4.44 16.46
Actual value 52.74 4.39 16.45
LRMS (EI + ): 340 [M + ]
1 H-NMR (400 MHz, CDCl 3 ) δ 1.60 (6H, s), 3.64 (3H, s), 5.04 (2H, d, J = 1.2 Hz), 7.15 (1H, dt, J = 1.2, 7.3 Hz) , 7.60 (1H, d, J = 7.3 Hz), 7.67 (1H, s), 8.82 (1H, brs).
Next, the results of supporting the usefulness of the compounds of the present invention are shown by experimental examples.
<実験例1> ホスホジエステラーゼ阻害活性
PDE3A触媒領域(以下Catと略す)、 PDE4Bcat、 PDE5Acat、 PDE10A1の cDNAはヒト由来のRNAよりそれぞれRT-PCRを行い単離した。各単離したcDNA断片をGateway system (Invitrogen社製)及びBac-to-Bac(登録商標) Baculovirus Expression system (Invitrogen社製)で昆虫細胞Sf9に導入し、目的の各PDEタンパクを発現させた。これら組み換えPDE3Acat、PDE4Bcat、 PDE5Acat、 PDE10A1はこれらPDEタンパクを高発現したSf9細胞の培養上清もしくは細胞抽出液からそれぞれイオン交換クロマトグラフィーで精製し、以下に示す実験に用いた。
<Experimental Example 1> Phosphodiesterase inhibitory activity
The PDE3A catalytic region (hereinafter abbreviated as Cat), PDE4Bcat, PDE5Acat, and PDE10A1 cDNAs were isolated from human-derived RNA by RT-PCR. Each isolated cDNA fragment was introduced into insect cells Sf9 by Gateway system (Invitrogen) and Bac-to-Bac (registered trademark) Baculovirus Expression system (Invitrogen) to express each target PDE protein. These recombinant PDE3Acat, PDE4Bcat, PDE5Acat, and PDE10A1 were purified by ion exchange chromatography from the culture supernatant or cell extract of Sf9 cells that highly expressed these PDE proteins, respectively, and used in the following experiments.
被験化合物は4 mmol/L溶液を段階的に15%DMSO溶液で4倍希釈し、15 nmol/Lから4 mmol/Lまでの濃度の溶液を用意した(実験での最終濃度は1.5 n mol/Lから400μmol/L)。これら被験化合物溶液 10μLを表14に示した濃度に緩衝液[40 mmol/L Tris-HCl (pH7.4), 10mmol/L MgCl2 ]で希釈した[3H] cAMPもしくは[3H] cGMP 50 μL及び表14に示したunit量の各ヒト由来組み換えPDEタンパク40 μLを96穴プレートに添加し、30℃で20分間反応した。その後65℃で2分間反応させた後、1 mg/mL 5’nucleotidase(Crotalus atrox venom, Sigma社製) 25 μLを添加し、30℃で10分間反応した。反応終了後、Dowex溶液[300 mg/mL Dowex 1x8-400 (Sigma Aldrich社製), 33% Ethanol] 200μLを添加し、4℃で20分間振動混合した後MicroScint 20(Packard社製) 200μLを添加し、シンチレーションカウンター(Topcount, Packard社製)を用いて測定した。IC50値の算出はGraphPad Prism v3.03 (GraphPad Software社製)を用いて行った。 For the test compound, a 4 mmol / L solution was diluted 4-fold with a 15% DMSO stepwise to prepare a solution having a concentration of 15 nmol / L to 4 mmol / L (the final concentration in the experiment was 1.5 nmol / L). L to 400 μmol / L). [ 3 H] cAMP or [ 3 H] cGMP 50 diluted with a buffer solution [40 mmol / L Tris-HCl (pH 7.4), 10 mmol / L MgCl 2 ] to a concentration shown in Table 14 for 10 μL of these test compound solutions. μL and 40 μL of each human-derived recombinant PDE protein in the unit amount shown in Table 14 were added to a 96-well plate and reacted at 30 ° C. for 20 minutes. After reacting at 65 ° C. for 2 minutes, 25 μL of 1 mg / mL 5 ′ nucleotidase (Crotalus atrox venom, Sigma) was added and reacted at 30 ° C. for 10 minutes. After completion of the reaction, add 200 μL of Dowex solution [300 mg / mL Dowex 1x8-400 (Sigma Aldrich), 33% Ethanol], shake and mix at 4 ° C for 20 minutes, then add 200 μL of MicroScint 20 (Packard) And it measured using the scintillation counter (made by Topcount, Packard). The IC 50 value was calculated using GraphPad Prism v3.03 (GraphPad Software).
なお、IC50値 ≧ 10μmol/L (−)、10μmol/L > IC50値 ≧1μmol/L (+)、1μmol/L >IC50値 ≧0.1μmol/L (++)、0.1μmol/L >IC50値 (+++)として表記した。 IC 50 value ≥ 10 μmol / L (−), 10 μmol / L> IC 50 value ≧ 1 μmol / L (+), 1 μmol / L> IC 50 value ≧ 0.1 μmol / L (++), 0.1 μmol / L> IC Expressed as 50 values (++++).
結果を表15に示す。 The results are shown in Table 15.
<実験例2> 摘出モルモット気管筋のヒスタミン収縮に対する弛緩作用
モルモットを脱血致死させ、素早く気管を摘出し、2〜3軟骨分を単位とした気管リング標本を作製した。この標本を、95%O2+5%CO2混合ガスを通気し、37℃で保温した10 mLのTyrode液中にて懸垂した。Tyrode液の組成(mmol/L)はNaCl: 136.9, KCl :2.7, CaCl2:1.8, MgCl2 :1.0, NaH2PO4 :0.4, NaHCO3:11.9, Gucose :5.6とした。収縮反応はアイソメトリックトランスデューサー(UM-203 KISHIMOTO)を介して測定し、レコーダー(GRAPHTEC SERVOCORDER SR6221)上に記録した。1.5 gの負荷をかけ、約1時間平衡化した後、ヒスタミン(10-5 mol/L)を添加し,収縮反応を確認した後、Tyrodeで洗い(10mLで3回)、インドメタシン(10‐5mol/L)を添加し、1.5 gの負荷をかけて30分以上平衡化を行った。そして、再度ヒスタミン(10-5 mol/L)を添加し、収縮が安定した後、化合物を累積的に添加した(10-8mol/L−3×10-5mol/L)。化合物はDMSOで10-1 mol/Lの溶液を作製し、蒸留水で希釈したものを用いた。化合物添加終了後、パパベリン(10-4mol/L)を添加して最大弛緩を求めた。被験化合物の弛緩作用はパパベリンによる最大弛緩に対する弛緩率(%)で示し、50%の弛緩に要した化合物濃度をIC50値として求めた。対照としてDMSOを使用した。
<Experimental example 2> Relaxing effect on histamine contraction of isolated guinea pig tracheal muscle The guinea pig was lethal to death, the trachea was quickly removed, and a tracheal ring specimen with a unit of 2 to 3 cartilage was prepared. This sample was suspended in 10 mL of Tyrode solution which was aerated with 95% O 2 + 5% CO 2 mixed gas and kept at 37 ° C. The composition of the Tyrode solution (mmol / L) is NaCl: 136.9, KCl: 2.7, CaCl 2: 1.8, MgCl 2: 1.0, NaH 2 PO 4: 0.4, NaHCO 3: 11.9, Gucose: was 5.6. Contractile response was measured via an isometric transducer (UM-203 KISHIMOTO) and recorded on a recorder (GRAPHTEC SERVOCORDER SR6221). After applying a load of 1.5 g and equilibrating for about 1 hour, histamine (10 -5 mol / L) was added, and after confirming the contraction reaction, it was washed with Tyrode (3 times with 10 mL), and indomethacin (10 -5 mol / L) was added and equilibrated for 30 minutes or more with a load of 1.5 g. And histamine (10 <-5 > mol / L) was added again, and after shrinkage | contraction became stable, the compound was added cumulatively (10 < -8 > mol / L-3 * 10 < -5 > mol / L). The compound used was a solution of 10 −1 mol / L prepared in DMSO and diluted with distilled water. After completion of compound addition, papaverine (10 −4 mol / L) was added to determine maximum relaxation. The relaxation effect of the test compound was expressed as a relaxation rate (%) with respect to the maximum relaxation by papaverine, and the compound concentration required for 50% relaxation was determined as an IC 50 value. DMSO was used as a control.
結果を表16に示す。 The results are shown in Table 16.
<実験例3>モルモットにおけるヒスタミン誘発気道収縮反応
モルモットをsodium pentbarbital(30mg/kg,i.p.)で麻酔し、 左外頚静脈に静脈投与用カニューレ、右内頚動脈に採血および血圧測定用カニューレ、気管に気管カニューレを挿入した。60 times/min, 10 mL/kg/strokeの条件で人工呼吸し、 気管カニューレの側枝からオーバフローする空気 (エアフロー)をbronchospasm transducer(Ugo-Basile)にて測定し、 Power Lab (ADInstruments Japan)を介してコンピューターに記録した。Gallamine triethiodide(10mg/kg,i.v.)にて不動化した後, 10分おきにHistamine dihydrochloride (12.5μg/kg,i.v.)を投与した。ヒスタミンによる気道収縮が安定した後、 化合物(1mg/kg,i.v.)を投与し、 投与30秒後のヒスタミンによる気道収縮反応を測定し、 化合物の気道収縮抑制作用を調べた。気道収縮をエアフロー値で記録し、 結果は投与30秒後のヒスタミンによるエアフローの最大値を投与前の最大値に対する割合で表した。なお被検化合物はDMSOで溶解し、10mg/mLに調製した。Gallamine triethiodideは生理食塩液で溶解し、 10mg/mLに調整した。Histamine dihydrochlorideは生理食塩液に溶解し、 0.1mg/mLにした後、 生理食塩液で62.5μg/mLに希釈して用いた。
<Experimental Example 3> Histamine-induced airway contraction in guinea pigs Guinea pigs are anesthetized with sodium pentbarbital (30 mg / kg, ip), the left external jugular vein is a cannula for intravenous administration, the right internal carotid artery is a blood collection and blood pressure measurement cannula, the trachea A tracheal cannula was inserted. After artificial respiration at 60 times / min, 10 mL / kg / stroke, the air (airflow) overflowing from the side branch of the tracheal cannula was measured with a bronchospasm transducer (Ugo-Basile) and via Power Lab (AD Instruments Japan) Recorded on a computer. After immobilization with Gallamine triethiodide (10 mg / kg, iv), Histamine dihydrochloride (12.5 μg / kg, iv) was administered every 10 minutes. After the airway contraction by histamine was stabilized, the compound (1 mg / kg, iv) was administered, and the airway contraction response by histamine 30 seconds after administration was measured to examine the inhibitory effect of the compound on the airway contraction. Airway contraction was recorded as an airflow value, and the result was expressed as a ratio of the maximum value of airflow caused by histamine 30 seconds after administration to the maximum value before administration. The test compound was dissolved in DMSO and adjusted to 10 mg / mL. Gallamine triethiodide was dissolved in physiological saline and adjusted to 10 mg / mL. Histamine dihydrochloride was dissolved in physiological saline to 0.1 mg / mL and then diluted to 62.5 μg / mL with physiological saline.
なお抑制率90%以上の場合を(+++)として表し、50%未満の場合を(−)として表示した。 In addition, the case where the suppression rate was 90% or more was expressed as (++), and the case where it was less than 50% was displayed as (−).
結果を表17に示す。 The results are shown in Table 17.
以上のように、一般式(1)で表される本発明化合物はPDE阻害活性を有し、各種動物実験モデルにおいてその有効性が確認された。 As described above, the compound of the present invention represented by the general formula (1) has PDE inhibitory activity, and its effectiveness has been confirmed in various animal experimental models.
本発明の新規なピラゾロピリジン−4−イルピラゾロン誘導体とその付加塩が優れたPDE阻害作用を有する。従って、本発明の新規なピラゾロピリジンピラゾロン誘導体とその付加塩は、狭心症、心不全、高血圧症などの治療薬や血小板凝集抑制薬あるいは気管支喘息、慢性閉塞性肺疾患(COPD)、間質性肺炎、アレルギー性鼻炎、アトピー性皮膚炎、関節リウマチ、多発性硬化症、ハンチントン、アルツハイマー、認知症、パーキンソン病、統合失調症などの各種精神障害等の予防または治療薬ならびに男性性機能障害治療薬として有用である。 The novel pyrazolopyridin-4-ylpyrazolone derivative and its addition salt of the present invention have an excellent PDE inhibitory action. Therefore, the novel pyrazolopyridine pyrazolone derivative and its addition salt of the present invention are useful for treating angina, heart failure, hypertension and the like, platelet aggregation inhibitors, bronchial asthma, chronic obstructive pulmonary disease (COPD), stroma. Preventive or therapeutic agents for various mental disorders such as pneumonia, allergic rhinitis, atopic dermatitis, rheumatoid arthritis, multiple sclerosis, Huntington, Alzheimer, dementia, Parkinson's disease, schizophrenia, and male sexual dysfunction treatment Useful as a medicine.
Claims (9)
R2は水素原子、置換基を有しても良い炭素数1〜4の低級アルキル基または炭素数3〜8のシクロアルキル基を、
R3及びR4は同一または異なって炭素数1〜4の低級アルキル基を、
R5は水素原子、置換基を有しても良いベンジル基またはピリジルメチル基を示す]
で表されることを特徴とするピラゾロピリジン−4−イルピラゾロン誘導体、その光学異性体及び薬理学的に許容しうる塩並びにその水和物。 General formula (1)
R 2 represents a hydrogen atom, an optionally substituted lower alkyl group having 1 to 4 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms,
R 3 and R 4 are the same or different and represent a lower alkyl group having 1 to 4 carbon atoms,
R 5 represents a hydrogen atom, an optionally substituted benzyl group or a pyridylmethyl group]
Pyrazolopyridin-4-ylpyrazolone derivatives, optical isomers and pharmacologically acceptable salts thereof, and hydrates thereof
で表されることを特徴とする請求項1記載のピラゾロピリジン−4−イルピラゾロン誘導体、その光学異性体及び薬理学的に許容しうる塩並びにその水和物。 The compound represented by the general formula (1) is represented by the general formula (1a).
The pyrazolopyridin-4-ylpyrazolone derivative according to claim 1, its optical isomer, pharmacologically acceptable salt, and hydrate thereof, wherein
6−(2−エチル−7−メトキシ−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−3−ピラゾロン、
6−(2−エチル−7−メチルチオ−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−3−ピラゾロン、
6−(2−エチル−7−メチルアミノ−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−3−ピラゾロン、
6−(2−エチル−7−ヒドロキシメチル−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−3−ピラゾロン、
6−(7−アセチル−2−エチル−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−3−ピラゾロン、
6−(2−シクロプロピル−7−メトキシ−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−3−ピラゾロン、
6−(7−メトキシ−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−3−ピラゾロンまたは
6−(7−メトキシメチル−2−トリフルオロメチル−ピラゾロ[1,5−a]ピリジン−4−イル)−4,4−ジメチル−2,4−ジヒドロ−3−ピラゾロンである請求項1記載のピラゾロピリジン−4−イルピラゾロン誘導体、及び薬理学的に許容しうる塩並びにその水和物。 The compound represented by the general formula (1) is
6- (2-ethyl-7-methoxy-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-3-pyrazolone,
6- (2-ethyl-7-methylthio-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-3-pyrazolone,
6- (2-ethyl-7-methylamino-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-3-pyrazolone,
6- (2-ethyl-7-hydroxymethyl-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-3-pyrazolone,
6- (7-acetyl-2-ethyl-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-3-pyrazolone,
6- (2-cyclopropyl-7-methoxy-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-3-pyrazolone,
6- (7-Methoxy-2-trifluoromethyl-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-3-pyrazolone or 6- (7-methoxy The pyrazolopyridine-4 according to claim 1, which is methyl-2-trifluoromethyl-pyrazolo [1,5-a] pyridin-4-yl) -4,4-dimethyl-2,4-dihydro-3-pyrazolone. -Ylpyrazolone derivatives, and pharmacologically acceptable salts and hydrates thereof.
R2は水素原子、置換基を有しても良い炭素数1〜4の低級アルキル基または炭素数3〜8のシクロアルキル基を、
R3及びR4は同一または異なって炭素数1〜4の低級アルキル基を、
R5は水素原子、置換基を有しても良いベンジル基またはピリジルメチル基を示す]
で表されることを特徴とするピラゾロピリジン−4−イルピラゾロン誘導体、その光学異性体及び薬理学的に許容しうる塩並びにその水和物の少なくとも一種類以上を有効成分とするホスホジエステラーゼ阻害剤。 General formula (1)
R 2 represents a hydrogen atom, an optionally substituted lower alkyl group having 1 to 4 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms,
R 3 and R 4 are the same or different and represent a lower alkyl group having 1 to 4 carbon atoms,
R 5 represents a hydrogen atom, an optionally substituted benzyl group or a pyridylmethyl group]
A phosphodiesterase inhibitor comprising at least one of a pyrazolopyridin-4-ylpyrazolone derivative, an optical isomer and a pharmacologically acceptable salt thereof, and a hydrate thereof, characterized in that .
で表されるピラゾロピリジン−4−イルピラゾロン誘導体、その光学異性体及び薬理学的に許容しうる塩並びにその水和物の少なくとも一種類以上を有効成分とすることを特徴とする請求項7に記載のホスホジエステラーゼ阻害剤。 The compound represented by the general formula (1) is represented by the general formula (1a).
The active ingredient is at least one of a pyrazolopyridin-4-ylpyrazolone derivative represented by the following formula, an optical isomer and a pharmacologically acceptable salt thereof, and a hydrate thereof. The phosphodiesterase inhibitor described in 1.
An active ingredient comprising at least one of the pyrazolopyridin-4-ylpyrazolone derivative according to any one of claims 1 to 6, an optical isomer thereof, a pharmacologically acceptable salt, and a hydrate thereof. As a medicinal product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005279376A JP2007091597A (en) | 2005-09-27 | 2005-09-27 | Pyrazolopyridin-4-ylpyrazolon derivative, addition salt thereof, and phosphodiesterase inhibitor comprising the same as effective ingredient |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005279376A JP2007091597A (en) | 2005-09-27 | 2005-09-27 | Pyrazolopyridin-4-ylpyrazolon derivative, addition salt thereof, and phosphodiesterase inhibitor comprising the same as effective ingredient |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007091597A true JP2007091597A (en) | 2007-04-12 |
Family
ID=37977716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005279376A Pending JP2007091597A (en) | 2005-09-27 | 2005-09-27 | Pyrazolopyridin-4-ylpyrazolon derivative, addition salt thereof, and phosphodiesterase inhibitor comprising the same as effective ingredient |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007091597A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008129624A1 (en) * | 2007-04-10 | 2008-10-30 | Kyorin Pharmaceutical Co., Ltd. | Pyrazolopyridine-4-yl-pyrazolone derivative, addition salt thereof and phosphodiesterase inhibitor containing the same as active ingredient |
WO2008156102A1 (en) * | 2007-06-19 | 2008-12-24 | Kyorin Pharmaceutical Co., Ltd. | Pyrazolone derivative and pde inhibitor containing the same as active ingredient |
WO2010035745A1 (en) | 2008-09-25 | 2010-04-01 | 杏林製薬株式会社 | Heterocyclic biaryl derivative, and pde inhibitor comprising same as active ingredient |
WO2010041711A1 (en) | 2008-10-09 | 2010-04-15 | 杏林製薬株式会社 | Isoquinoline derivative, and pde inhibitor comprising same as active ingredient |
JP2012512192A (en) * | 2008-12-19 | 2012-05-31 | レオ ファーマ アクティーゼルスカブ | Triazolopyridine derivatives as phosphodiesterase inhibitors for the treatment of skin diseases |
KR20150003208A (en) * | 2012-04-05 | 2015-01-08 | 하이드로-퀘벡 | Ionic compounds having a silyloxy group |
-
2005
- 2005-09-27 JP JP2005279376A patent/JP2007091597A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008129624A1 (en) * | 2007-04-10 | 2008-10-30 | Kyorin Pharmaceutical Co., Ltd. | Pyrazolopyridine-4-yl-pyrazolone derivative, addition salt thereof and phosphodiesterase inhibitor containing the same as active ingredient |
WO2008156102A1 (en) * | 2007-06-19 | 2008-12-24 | Kyorin Pharmaceutical Co., Ltd. | Pyrazolone derivative and pde inhibitor containing the same as active ingredient |
WO2010035745A1 (en) | 2008-09-25 | 2010-04-01 | 杏林製薬株式会社 | Heterocyclic biaryl derivative, and pde inhibitor comprising same as active ingredient |
WO2010041711A1 (en) | 2008-10-09 | 2010-04-15 | 杏林製薬株式会社 | Isoquinoline derivative, and pde inhibitor comprising same as active ingredient |
JP2012512192A (en) * | 2008-12-19 | 2012-05-31 | レオ ファーマ アクティーゼルスカブ | Triazolopyridine derivatives as phosphodiesterase inhibitors for the treatment of skin diseases |
US8952162B2 (en) | 2008-12-19 | 2015-02-10 | Leo Pharma A/S | Triazolopyridines as phosphodiesterase inhibitors for treatment of dermal diseases |
KR20150003208A (en) * | 2012-04-05 | 2015-01-08 | 하이드로-퀘벡 | Ionic compounds having a silyloxy group |
JP2015514717A (en) * | 2012-04-05 | 2015-05-21 | ハイドロ−ケベック | Ionic compounds having a silyloxy group |
US9969757B2 (en) | 2012-04-05 | 2018-05-15 | Hydro-Quebec | Ionic compounds having a silyloxy group |
KR102084095B1 (en) * | 2012-04-05 | 2020-03-04 | 하이드로-퀘벡 | Ionic compounds having a silyloxy group |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4890439B2 (en) | Pyrazolopyridin-4-ylpyridazinone derivatives and their addition salts and PDE inhibitors containing them as active ingredients | |
JP6494622B2 (en) | Substituted 4,5,6,7-tetrahydropyrazolo [1,5-A] pyrazine derivatives as casein kinase 1D / E inhibitors | |
CN101362765B (en) | 5,7-diaminopyrazolo '4,3-d-pyrimidines with PDE-5 inhibiting activity | |
JP2021500330A (en) | Imidazo-pyridine compound as a PAD inhibitor | |
KR101026819B1 (en) | Pyrrolopyridazine derivatives | |
EP2909212B1 (en) | Substituted 1,4-dihydropyrazolo[4,3-b]indoles | |
JP7575952B2 (en) | 15-PGDH inhibitors | |
CN111566105A (en) | Octahydropyrido [1, 2-alpha ] pyrazines as MAGL inhibitors | |
KR20150074004A (en) | Heteroaryl inhibitors of pde4 | |
KR20110031355A (en) | 1,2-disubstituted heterocyclic compounds | |
TWI680129B (en) | Novel pyrrolo[2,3-d]pyrimidine derivatives | |
JPWO2008156094A1 (en) | Pyridazinone derivatives and PDE inhibitors containing them as active ingredients | |
JP2006117647A (en) | Halogenopyrazolopyridine pyridazinone derivative, its addition salt and pde inhibitor having them as active ingredient | |
US11471455B2 (en) | Compounds and compositions for treating conditions associated with APJ receptor activity | |
JP2007091597A (en) | Pyrazolopyridin-4-ylpyrazolon derivative, addition salt thereof, and phosphodiesterase inhibitor comprising the same as effective ingredient | |
CA2580831A1 (en) | Novel bis-azaindole derivatives, preparation and pharmaceutical use thereof as kinase inhibitors | |
JP7090036B2 (en) | New [1,2,3] triazolo [4,5-d] pyrimidine derivative | |
JP7425925B2 (en) | Bifunctional compounds and methods of use | |
WO2008029882A1 (en) | 2-alkyl-6-(pyrazolopyridin-4-yl)pyridazinone derivative, addition salt thereof, and pde inhibitor comprising the derivative or the salt as active ingredient | |
JPWO2008026687A1 (en) | Pyrazolopyridine carboxamide derivatives and phosphodiesterase (PDE) inhibitors containing them | |
JP2009040711A (en) | Carbostyril derivative and pde inhibitor comprising the same as active ingredient | |
WO2019067442A1 (en) | DIHYDROTHIENO[3,2-b]PYRIDINE COMPOUNDS | |
JP2008024599A (en) | Pyridazinone derivative, pde inhibitor and medicine comprising the same as active ingredient | |
JP2006169138A (en) | Pyrazolopyridinepyrazolone derivative, its acid addition salt and pde inhibitor | |
JPWO2008029829A1 (en) | Pyrazolopyridine derivatives and phosphodiesterase (PDE) inhibitors containing them as active ingredients |