JP2007090404A - Joined body, semi-conductor apparatus, and joined body manufacturing method - Google Patents

Joined body, semi-conductor apparatus, and joined body manufacturing method Download PDF

Info

Publication number
JP2007090404A
JP2007090404A JP2005285241A JP2005285241A JP2007090404A JP 2007090404 A JP2007090404 A JP 2007090404A JP 2005285241 A JP2005285241 A JP 2005285241A JP 2005285241 A JP2005285241 A JP 2005285241A JP 2007090404 A JP2007090404 A JP 2007090404A
Authority
JP
Japan
Prior art keywords
base material
metal
bonding
layer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005285241A
Other languages
Japanese (ja)
Inventor
Toshihide Takahashi
利英 高橋
Kazutaka Matsumoto
一高 松本
Izuru Komatsu
出 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005285241A priority Critical patent/JP2007090404A/en
Publication of JP2007090404A publication Critical patent/JP2007090404A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joined body capable of maintaining the excellent mechanical strength even under a high-temperature condition and forming a joined portion in a short time by using a joining material substantially containing no Pb or Au, and to provide a semi-conductor apparatus and a joined body manufacturing method. <P>SOLUTION: The joined body consists of a first base material consisting of a metal to be selected from Cu, Ag, Au, Pt, Pd and Ni, or an alloy consisting mainly of at least one thereof, a second base material with at least a joined face consisting of a metal, and a joined layer for joining the first base material with the second base material having a layer of a joining material consisting of a Zn-Sn alloy, Zn containing Sn phase formed by the interface reaction between the joining material with the first base material, and a layer of an intermetallic compound with a component of the first base material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、接合体、半導体装置及び接合体の製造方法に係り、特に電子機器の部品の接合に好適に用いられ、金属材料または金属がメタライズされた非金属材料を、実質的にPb及びAuを含有しない接合材を用いて接合した接合体、半導体装置及び接合体の製造方法に関する。   The present invention relates to a bonded body, a semiconductor device, and a manufacturing method of the bonded body. In particular, the present invention is preferably used for bonding electronic parts, and a metal material or a metallized nonmetallic material is substantially made of Pb and Au. The present invention relates to a bonded body, a semiconductor device, and a manufacturing method of the bonded body, which are bonded using a bonding material that does not contain a metal.

従来、電子部品の実装技術においては、実用に極めて適していることから、Sn−Pb系共晶はんだが多用されてきた。しかし、Sn−Pb系共晶はんだに含まれるPbは、人体に対し有害であることから、Pbを含まない、いわゆる非Pb系はんだの開発が急務とされている。   Conventionally, Sn-Pb eutectic solder has been widely used in electronic component mounting technology because it is extremely suitable for practical use. However, since Pb contained in the Sn—Pb eutectic solder is harmful to the human body, development of so-called non-Pb solder that does not contain Pb is urgently required.

現在半導体デバイスの中で例えばパワーデバイスのPb系接合材としては、主に融点が約183℃以下の低温系はんだ(Sn−Pb共晶はんだ)と、融点が約300℃程度の高温系はんだ(Pb−5Snはんだ)が多用されており、それぞれ使用目的に応じて使い分けられている。   Currently, for example, Pb-based bonding materials for power devices among semiconductor devices are mainly low-temperature solder (Sn—Pb eutectic solder) having a melting point of about 183 ° C. or lower and high-temperature solder having a melting point of about 300 ° C. ( Pb-5Sn solder) is widely used, and is used properly according to the purpose of use.

低温系はんだについては、Sn−Ag−Cu系合金を中心としたものが実用化の段階に到達しており、今後数年で多くのセットメーカーで非Pb系共晶はんだの代替は完了することが予定されている。   As for low-temperature solders, those centered on Sn-Ag-Cu alloys have reached the stage of practical application, and replacement of non-Pb eutectic solders will be completed in many set manufacturers in the next few years. Is scheduled.

しかしながら、高温系はんだ、例えば250℃の高温条件下においても良好な機械的強度を保持する接合部を形成する接合材については、高Pb含有材料を除くとAuを主成分としたAu基合金が挙げられるが、貴金属のAuを使用するので、材料価格が大幅に上昇するため汎用的に使用するには難しい材料である。   However, for a high-temperature solder, for example, a bonding material that forms a bonding portion that maintains good mechanical strength even under a high-temperature condition of 250 ° C., an Au-based alloy containing Au as a main component except for a high Pb-containing material is used. Although it is mentioned, since the noble metal Au is used, the material price is significantly increased, so that it is difficult to use for general purposes.

これまでに、Pb及びAu以外の金属材料を主成分とし250℃の高温条件下においても良好な機械的強度を保持する接合部を形成する接合材のひとつとして、Zn−Sn二元系合金が候補として挙げられている(例えば、特許文献1、2及び3)。この接合材料は、ZnとSn元素からなる金属材料であるため、安価であり、環境にも配慮された接合材である。しかしながら、Cuとの接合性が悪いため、この金属材料を接合材料として用いるためにフラックスが使用されている。   So far, Zn-Sn binary alloys have been used as one of the bonding materials that form a bonded portion that has a metal material other than Pb and Au as a main component and maintains good mechanical strength even under high temperature conditions of 250 ° C. It is listed as a candidate (for example, Patent Documents 1, 2, and 3). Since this bonding material is a metal material composed of Zn and Sn elements, the bonding material is inexpensive and environmentally friendly. However, since the bondability with Cu is poor, flux is used to use this metal material as a bonding material.

しかしながら、近年フロンの使用規制にともない、はんだ付け後のフラックスの洗浄が困難となってきており、フラックス残渣が耐湿性や絶縁性の低下を招く恐れが懸念されている。特に、高温はんだが使用される部品内部接合においては、フラックスの使用が制限される場合が多い。従って、Pb及びAu以外の金属材料を主成分とした金属合金も、高温系はんだとしては未だ実用化には至っていない。
特開2001−121285 特開2001−009587 特開2004−237357
However, in recent years, it has become difficult to clean the flux after soldering due to restrictions on the use of CFCs, and there is a concern that the flux residue may cause a decrease in moisture resistance and insulation. In particular, the use of flux is often limited in internal joining of parts where high-temperature solder is used. Therefore, a metal alloy containing a metal material other than Pb and Au as a main component has not yet been put into practical use as a high-temperature solder.
JP2001-121285A JP 2001-009587 A JP 2004-237357 A

本発明は、実質的にPbおよびAuを含有しない接合材を用い、高温条件下においてもなお良好な機械的強度を保持可能で、接合部が短時間で形成可能な接合体、半導体装置及び接合体の製造方法を提供することを目的とする。   The present invention uses a bonding material that substantially does not contain Pb and Au, can maintain a good mechanical strength even under high temperature conditions, and can form a bonded portion in a short time. It aims at providing the manufacturing method of a body.

本発明は、Cu、Ag、Au、Pt、Pd及びNiから選ばれる金属又はこれらの少なくとも1種を主体とする合金からなる第1の基材と、少なくとも接合面が金属からなる第2の基材と、Zn−Sn系合金からなる接合材の層、該接合材と前記第1の基材との界面反応により形成されたSn相を含むZn、及び前記第1の基材の構成元素との金属間化合物の層とを有する、前記第1の基材と前記第2の基材とを接合する接合層とからなることを特徴とする接合体である。前記接合体において、前記第1の基材がCu、Ag若しくはAu又はこれらの少なくとも1種を主体とする合金からなることが望ましく、Cu又はCu基合金からなることがより望ましい。   The present invention includes a first base material made of a metal selected from Cu, Ag, Au, Pt, Pd and Ni or an alloy mainly composed of at least one of these, and a second base made of at least a bonding surface made of metal. And a layer of a bonding material made of a Zn—Sn-based alloy, Zn containing an Sn phase formed by an interface reaction between the bonding material and the first base material, and a constituent element of the first base material, And a bonding layer for bonding the first base material and the second base material, each having a layer of an intermetallic compound. In the joined body, the first base material is preferably made of Cu, Ag, Au, or an alloy mainly composed of at least one of these, and more preferably made of Cu or a Cu-based alloy.

また、本発明は、Cu、Ag、Au、Pt、Pd及びNiから選ばれる金属又はこれらの少なくとも1種を主体とする合金からなる金属リードフレームと、前記金属リードフレームに実装された接合面がメタライズされた半導体素子と、前記金属リードフレームと前記半導体素子のメタライズされた面を接合する、Zn−Sn系合金からなる第1の層と前記金属リードフレームとの界面反応により形成されたSn相を含むZnと前記金属リードフレームの構成元素との金属間化合物からなる第2の層とを有する接合層と、前記半導体素子を封止する封止樹脂とを有することを特徴とする半導体装置である。前記半導体装置において、前記金属リードフレームがCu又はCu基合金からなることが望ましい。   The present invention also provides a metal lead frame made of a metal selected from Cu, Ag, Au, Pt, Pd, and Ni or an alloy mainly composed of at least one of them, and a joint surface mounted on the metal lead frame. An Sn phase formed by an interfacial reaction between a metallized semiconductor element, a first layer made of a Zn-Sn alloy, and the metal lead frame joining the metallized surface of the metal lead frame and the semiconductor element A bonding layer having a second layer made of an intermetallic compound of Zn containing Zn and a constituent element of the metal lead frame, and a sealing resin for sealing the semiconductor element. is there. In the semiconductor device, the metal lead frame is preferably made of Cu or a Cu-based alloy.

さらにまた、本発明は、Cu、Ag、Au、Pt、Pd及びNiから選ばれる金属又はこれらの少なくとも1種を主体とする合金からなり、接合面にSn又はSn基合金からなる金属層を形成させた第1の基材と、少なくとも接合面が金属からなる第2の基材とを、Zn−Sn系合金からなる接合材を介して積層体とする積層工程と、前記積層体を、非酸化雰囲気中で、300℃以上、450℃以下の温度で加熱して、前記第1の基材と前記接合材との接合界面に、Sn相を含むZnと前記第1の基材の構成元素との金属間化合物の層を形成させつつ一体に接合する工程とからなることを特徴とする接合体の製造方法である。前記接合体の製造方法において、前記Zn−Sn系合金からなる接合材が、質量構成比でZnを50質量%以上、95質量%以下含み、残部が実質的にSnからなることが望ましい。前記接合体の製造方法において、前記Sn又はSn基合金からなる金属層が、少なくとも前記接合材との接触下で、250℃以下の温度で溶融可能であることが望ましい。前記接合体の製造方法において、前記第1の基材がCu又はCu基合金からなることが望ましい。
なお、本発明におけるZn−Sn系合金とは、ZnおよびSnのみからなる合金だけでなく、Ag10%以下、Cu5%以下、Au10%以下程度を添加元素として含んだものであっても構わない。
Furthermore, the present invention is made of a metal selected from Cu, Ag, Au, Pt, Pd, and Ni or an alloy mainly composed of at least one of them, and a metal layer made of Sn or a Sn-based alloy is formed on the joint surface. A laminating step in which the first base material and the second base material having at least a joining surface made of metal are laminated via a joining material made of a Zn-Sn alloy, In an oxidizing atmosphere, heating is performed at a temperature of 300 ° C. or higher and 450 ° C. or lower, and Zn containing Sn phase at the bonding interface between the first base material and the bonding material and the constituent elements of the first base material And a step of joining together while forming an intermetallic compound layer. In the method for manufacturing the joined body, it is desirable that the joining material made of the Zn—Sn alloy contains 50% by mass or more and 95% by mass or less of Zn by mass composition ratio, and the balance is substantially made of Sn. In the method for manufacturing the joined body, it is desirable that the metal layer made of Sn or an Sn-based alloy can be melted at a temperature of 250 ° C. or lower at least in contact with the joining material. In the method for manufacturing the joined body, it is preferable that the first base material is made of Cu or a Cu-based alloy.
Note that the Zn—Sn alloy in the present invention is not limited to an alloy composed only of Zn and Sn, but may include an additive element of about 10% Ag or less, 5% Cu or less, and 10% Au or less.

本発明の接合体によれば、Znと基材の構成元素との金属間化合物が形成されるので、十分な接合強度を有し、かつ高温条件下においても機械的強度が維持可能である。   According to the joined body of the present invention, an intermetallic compound of Zn and a constituent element of the base material is formed, so that it has a sufficient joining strength and can maintain the mechanical strength even under high temperature conditions.

また、本発明の半導体装置によれば、Znと基材の構成元素との金属間化合物が形成されるので、高温条件下においても半導体素子とリードフレーム間の接合強度は維持可能である。   Further, according to the semiconductor device of the present invention, an intermetallic compound of Zn and the constituent element of the base material is formed, so that the bonding strength between the semiconductor element and the lead frame can be maintained even under high temperature conditions.

本発明の接合方法によれば、Zn−Sn系合金からなる接合材に対しフラックスを使用しなくても良好な接合状態を確保することが可能であり、耐熱性が高い接合部が形成される。   According to the bonding method of the present invention, it is possible to ensure a good bonding state without using a flux with respect to a bonding material made of a Zn—Sn alloy, and a bonded portion having high heat resistance is formed. .

図1は、第1の基材1と第2の基材2とが、第1の基材1の表面上に、Sn相3を含んでなるZnと第1の基材の構成元素との金属間化合物の層4と、Zn−Sn系合金からなる接合材の層5を介して接合された本発明の一実施形態に係る接合体6を拡大して示す断面図である。   FIG. 1 shows that the first base material 1 and the second base material 2 are composed of Zn containing Sn phase 3 on the surface of the first base material 1 and the constituent elements of the first base material. It is sectional drawing which expands and shows the joined body 6 which concerns on one Embodiment of this invention joined through the layer 4 of the intermetallic compound, and the layer 5 of the joining material which consists of Zn-Sn type alloys.

第1の基材1は金属材料が使用される。第1の基材として使用する金属材料は用途に応じて選択可能であるが、第1の基材1は、高温条件下において溶融した接合材に溶解−拡散した場合、形成される合金の固相線温度が著しく低下しない材料であることが望ましい。第1の基材1の主たる金属材料の構成元素はZnと金属間化合物を形成する。このような金属材料は、具体的には、Cu、Ag、Au、Pt、Pd若しくはNiから選ばれた金属又はこれらの少なくとも1種を主体とする合金である。これらの金属を用いた場合には、耐熱性に優れた接合部を形成することができる。これらの金属材料のうち、Cu、Ag若しくはAuから選ばれた金属又はこれらの少なくとも1種を主体とする合金がより耐熱性を有するため好ましく、Cu又はCu基合金からなることが良好な導電性を有するためより好ましい。なお、これらの金属以外でもAl、Ge、Be、Nb、Mnなどが、合金成分として使われてもよい。   A metal material is used for the first substrate 1. The metal material used as the first base material can be selected depending on the application. However, the first base material 1 is a solid solution of the alloy formed when it is dissolved and diffused into the molten bonding material under high temperature conditions. It is desirable that the material does not significantly decrease the phase line temperature. The constituent element of the main metal material of the first substrate 1 forms an intermetallic compound with Zn. Specifically, such a metal material is a metal selected from Cu, Ag, Au, Pt, Pd, or Ni, or an alloy mainly composed of at least one of them. When these metals are used, a joint having excellent heat resistance can be formed. Among these metal materials, a metal selected from Cu, Ag, or Au or an alloy mainly composed of at least one of them is preferable because it has higher heat resistance, and is preferably made of Cu or a Cu-based alloy. This is more preferable. In addition to these metals, Al, Ge, Be, Nb, Mn, etc. may be used as alloy components.

第2の基材2は金属材料が使用される。この金属材料は用途に応じて選択可能であるが、特に限定されることはない。第2の基材2は、高温条件下において溶融した接合材に溶解−拡散した場合、接合材中に固溶して形成される合金の固相線温度が著しく低下しない材料であることが望ましい。これらの金属としては、例えば、Cu、Ag、Au、Pt、Pd、Ni、若しくはAlから選ばれた金属又はこれらの少なくとも1種を主体とする合金などがある。これらの金属を用いた場合には、耐熱性に優れた接合部を形成することができる。これらの金属材料のうち、Cu、Ag若しくはAuから選ばれた金属又はこれらの少なくとも1種を主体とする合金がより優れたSnとの接合性を有するため好ましく、Cu又はCu基合金からなることが安価な金属材料を用い製造コストを抑えることができるためより好ましい。なお、これらの金属以外でもGe、Be、Nb、Mnなどが、合金成分として使われてもよい。第2の基材2の金属材料は、上記の第1の基材1の金属材料と同じであってもよい。この場合、第2の基材2として使用される主たる金属材料の構成元素はZnと金属間化合物を形成する。   A metal material is used for the second substrate 2. Although this metal material can be selected according to a use, it is not specifically limited. The second base material 2 is desirably a material that does not significantly lower the solidus temperature of an alloy formed by solid solution in the bonding material when dissolved and diffused in the molten bonding material under high temperature conditions. . Examples of these metals include a metal selected from Cu, Ag, Au, Pt, Pd, Ni, or Al, or an alloy mainly composed of at least one of them. When these metals are used, a joint having excellent heat resistance can be formed. Among these metal materials, a metal selected from Cu, Ag, or Au or an alloy mainly composed of at least one of them is preferable because it has better bonding properties with Sn, and is made of Cu or a Cu-based alloy. However, it is more preferable because an inexpensive metal material can be used and manufacturing cost can be suppressed. In addition to these metals, Ge, Be, Nb, Mn, etc. may be used as alloy components. The metal material of the second substrate 2 may be the same as the metal material of the first substrate 1 described above. In this case, the constituent element of the main metal material used as the second substrate 2 forms an intermetallic compound with Zn.

また、第2の基材2は、図1に示されるように、接合層5により直接接合されていてもよいし、Znと第2の基材2の構成元素との金属間化合物の層を介して接合層5により接合されていてもよい。   Moreover, the 2nd base material 2 may be directly joined by the joining layer 5, as FIG. 1 shows, and the layer of the intermetallic compound of Zn and the structural element of the 2nd base material 2 is carried out. It may be bonded by the bonding layer 5.

Sn相3は、Znと第1の基材1の構成元素との金属間化合物の層4中に分散されて存在する。Sn相は、5〜6μm程度のSnの粒子から構成される。金属間化合物の層4中に可撓性を有するSn相3が存在することにより、接合体6のクラックの発生が抑制される傾向になる。   The Sn phase 3 is dispersed and present in the intermetallic compound layer 4 of Zn and the constituent elements of the first substrate 1. The Sn phase is composed of Sn particles of about 5 to 6 μm. The presence of the flexible Sn phase 3 in the intermetallic compound layer 4 tends to suppress the occurrence of cracks in the joined body 6.

Znと第1の基材1との構成元素との金属間化合物の層4は、接合条件、例えば加熱温度、加熱時間、又は加熱前に予め形成する第1の基材1上に形成するSn又はSn基合金の金属層の厚さ等によるが、通常10μm以上の厚さを有する。   The intermetallic compound layer 4 of Zn and the constituent element of the first base material 1 is formed on the first base material 1 formed in advance before joining conditions, for example, heating temperature, heating time, or heating. Or, depending on the thickness of the metal layer of the Sn-based alloy, etc., the thickness is usually 10 μm or more.

Zn−Sn系合金からなる接合材の層5は、実質的にZnとSnとからなる。その組成比率は、加熱溶融される前のZn−Sn系合金からなる接合材の質量構成比(Znが50%以上95%以下であり、残部が実質的にSnである)、とほぼ同じである。この接合材の層5は、SnZn共晶、Zn初晶相等を有していてもよい。
また、この接合材の層5中には、第1の基材1の構成金属元素及び/又は第2の基材2の構成金属元素が溶解・拡散することにより形成したZn又はSnとの金属間化合物が存在していても良い。
The bonding material layer 5 made of a Zn—Sn alloy is substantially made of Zn and Sn. The composition ratio is substantially the same as the mass composition ratio (Zn is 50% or more and 95% or less and the balance is substantially Sn) of the bonding material made of the Zn—Sn alloy before being heated and melted. is there. The bonding material layer 5 may have a SnZn eutectic, a Zn primary crystal phase, or the like.
Further, in the bonding material layer 5, a metal with Zn or Sn formed by dissolving / diffusing the constituent metal element of the first base material 1 and / or the constituent metal element of the second base material 2. An intercalation compound may be present.

上記の接合体の製造は以下に詳細を示すような接合体の製造方法により行うことができる。   The above-mentioned joined body can be manufactured by a method for manufacturing a joined body as will be described in detail below.

図2は、本発明の他の実施形態に係る接合体の製造方法を示す断面図である。図2(a)に示すように、まず、第1の基材1と、第1の基材1の表面上に形成するSn又はSn基合金からなる金属層7と、第2の基材2と、第2の基材2の表面上に形成するSn又はSn基合金からなる金属層8とを、それぞれの金属層7,8の間にZn−Sn系合金からなる接合材9とを介在させて積層し、積層体10を形成する。このとき加圧を行ってもよい。   FIG. 2 is a cross-sectional view illustrating a method for manufacturing a joined body according to another embodiment of the present invention. As shown in FIG. 2 (a), first, the first substrate 1, the metal layer 7 made of Sn or Sn-based alloy formed on the surface of the first substrate 1, and the second substrate 2 And a metal layer 8 made of Sn or a Sn-based alloy formed on the surface of the second substrate 2 and a bonding material 9 made of a Zn—Sn-based alloy interposed between the metal layers 7, 8. Then, the stacked body 10 is formed. At this time, pressurization may be performed.

次に、この積層体10を300℃以上450℃以下で加熱することによって、図2(b)に示すように第1の基材1及び第2の基材2が、第1の基材1の接合界面に、Sn相11を含むZnと第1の基材1の構成元素との金属間化合物の層12、第2の基材2の接合界面に、Sn相13を含むZnと第2の基材2の構成元素との金属間化合物の層14、及びこれらの金属層の間の接合層15を介して接合された接合体16が製造される。   Next, by heating the laminate 10 at a temperature of 300 ° C. or higher and 450 ° C. or lower, the first base material 1 and the second base material 2 become the first base material 1 as shown in FIG. Zn containing Sn phase 11 and the intermetallic compound layer 12 of the constituent elements of the first base material 1 at the bonding interface, and Zn containing Sn phase 13 at the bonding interface of the second base material 2 and the second The joined body 16 joined through the layer 14 of the intermetallic compound with the constituent element of the substrate 2 and the joining layer 15 between these metal layers is manufactured.

なお、第1の基材1又は第2の基材2の一方の表面にSn又はSn基合金からなる金属層を形成させずに、第1の基材1と第2の基材2とを接合させて接合体を製造することも可能である。また、場合によりSn又はSn基合金からなる金属層を形成させた第1の基材又は第2の基材のいずれか一方の上に、Zn−Sn系合金からなる接合材9を例えば蒸着法により予め形成させた後、これらを接合することにより第1の基材と第2の基材とを接合する方法も本発明の範疇に含まれる。   In addition, without forming the metal layer which consists of Sn or a Sn group alloy on the one surface of the 1st base material 1 or the 2nd base material 2, the 1st base material 1 and the 2nd base material 2 are used. It is also possible to manufacture a joined body by bonding. In addition, a bonding material 9 made of a Zn—Sn-based alloy is deposited on, for example, a vapor deposition method on either the first base material or the second base material on which a metal layer made of Sn or an Sn-based alloy is optionally formed. A method of joining the first base material and the second base material by joining them together after being formed in advance is also included in the scope of the present invention.

第1の基材1及び第2の基材2は、上記の接合体における第1の基材1及び第2の基材2と実質的に同じである。Sn又はSn基合金からなる金属層7,8をそれぞれ第1の基材1及び第2の基材2にメタライズする手段としては、蒸着、めっき処理や電子ビーム処理等が挙げられる。   The first base material 1 and the second base material 2 are substantially the same as the first base material 1 and the second base material 2 in the joined body. Examples of means for metallizing the metal layers 7 and 8 made of Sn or Sn-based alloy to the first base material 1 and the second base material 2 include vapor deposition, plating treatment, electron beam treatment, and the like.

図3は、本発明のさらに他の実施形態に係る接合体の製造方法を示す断面図である。この実施形態では、第2の基材2が、金属、セラミックス、半導体等からなる母材17の表面に形成されたメタライズ層2となっている。メタライズ層2を構成する金属材料は用途に応じて選択可能である。前記メタライズ層2は、Cu、Ag、Au、Pt、Pd若しくはNiから選ばれる金属又はこれらの少なくとも1種を主体とする合金からなる材料であることが好ましい。さらに、メタライズ層2の表面には、Sn又はSn基合金からなる金属層8を形成し、また、第1の基材1の表面にも、Sn又はSn基合金からなる金属層7を形成し、各金属層の間にはZn−Sn系合金からなる接合材9を配置し積層体18を構成し、その後、この積層体18を加熱することによって、接合体を製造することができる。   FIG. 3 is a cross-sectional view illustrating a method for manufacturing a joined body according to still another embodiment of the present invention. In this embodiment, the second substrate 2 is a metallized layer 2 formed on the surface of a base material 17 made of metal, ceramics, semiconductor, or the like. The metal material which comprises the metallization layer 2 can be selected according to a use. The metallized layer 2 is preferably a material made of a metal selected from Cu, Ag, Au, Pt, Pd or Ni, or an alloy mainly composed of at least one of them. Further, a metal layer 8 made of Sn or Sn-based alloy is formed on the surface of the metallized layer 2, and a metal layer 7 made of Sn or Sn-based alloy is also formed on the surface of the first base 1. The bonding material 9 made of a Zn—Sn-based alloy is disposed between the metal layers to form the laminated body 18, and then the laminated body 18 is heated to manufacture the bonded body.

一方、第1の基材1が、金属、セラミックス、半導体等からなる母材の表面上にメタライズ層が形成されることによって、接合体を製造してもよい。
さらに、第1の基材1及び第2の基材2が共に、金属、セラミックス、半導体等からなる母材の表面上にメタライズ層が形成されることによって、接合体を製造してもよい。なお、メタライズ層となる第1の基材1及び/又は第2の基材2と母材の間には、さらにいくつかのメタライズ層が存在していても本発明の範疇に含まれる。
第1の基材1又は第2の基材のいずれか一方の表面上にSn又はSn基合金からなる金属層を形成する場合には、他方の表面上にSn又はSn基合金からなる金属層を形成しないで、積層体を構成し、その後、積層体を加熱することによって、接合体を製造することも可能である。
On the other hand, the first base material 1 may be manufactured by forming a metallized layer on the surface of a base material made of metal, ceramics, semiconductor, or the like.
Furthermore, the first base material 1 and the second base material 2 may be manufactured by forming a metallized layer on the surface of a base material made of metal, ceramics, semiconductor, or the like. In addition, even if some metallization layers exist between the 1st base material 1 and / or 2nd base material 2 used as a metallization layer, and a base material, it is contained in the category of this invention.
When a metal layer made of Sn or a Sn-based alloy is formed on the surface of either the first base material 1 or the second base material, a metal layer made of a Sn or Sn-based alloy on the other surface It is also possible to manufacture a joined body by forming a laminated body without forming the film, and then heating the laminated body.

前記金属層7,8を第1の基材1及び/又は第2の基材2にメタライズする手段としては、蒸着、めっき処理や電子ビーム処理等が挙げられる。   Examples of means for metallizing the metal layers 7 and 8 on the first base material 1 and / or the second base material 2 include vapor deposition, plating treatment, and electron beam treatment.

以下、本発明の実施形態に係る接合体の製造方法で用いられる部材について説明する。第1の基材1及び第2の基材2は、上記の接合体において説明した第1の基材1及び第2の基材2と実質的に同じである。第1の基材1及び第2の基材2の厚さ(平均厚さ)は特に限定されるものではないが、図3に示されるように他の母材表面にメタライズされた場合には、0.1μm以上、500μm以下の範囲であることが好ましい。   Hereinafter, the member used with the manufacturing method of the conjugate | zygote which concerns on embodiment of this invention is demonstrated. The first substrate 1 and the second substrate 2 are substantially the same as the first substrate 1 and the second substrate 2 described in the above joined body. The thickness (average thickness) of the first base material 1 and the second base material 2 is not particularly limited, but when it is metallized on the surface of another base material as shown in FIG. , Preferably in the range of 0.1 μm or more and 500 μm or less.

Sn又はSn基合金からなる金属層は、主としてSnからなる金属層であるが、例えば融点を下げる、等のため、Ag、Cu等の他の成分を加えることが可能である。この金属層は、少なくとも接合材との接触下で、250℃以下の温度で溶融することが、Znと第1の基材の構成元素とからなる金属間化合物、及び場合によりZnと第2の基材の構成元素とからなる金属間化合物が形成しやすくなるため好ましい。   The metal layer made of Sn or an Sn-based alloy is a metal layer mainly made of Sn, but other components such as Ag and Cu can be added to lower the melting point, for example. The metal layer melts at a temperature of 250 ° C. or less at least in contact with the bonding material, and is an intermetallic compound composed of Zn and the constituent elements of the first base material, and in some cases, Zn and the second layer. It is preferable because an intermetallic compound composed of the constituent elements of the base material is easily formed.

また、Sn又はSn基合金からなる金属層は、3μm以上、30μm以下の範囲であることが望ましい。金属層が3μmより薄い場合には、Zn−Sn系合金からなる接合材の良好な接合性を確保することが困難となり、また30μm以上の場合には、接合後にZn−Sn系合金からなる接合材と金属層が混合した際に、Zn−Sn系合金からなる接合材のSn量が必要以上に上昇し、接合部の耐熱性低下が起こる恐れがあるためである。   In addition, the metal layer made of Sn or an Sn-based alloy is desirably in the range of 3 μm or more and 30 μm or less. If the metal layer is thinner than 3 μm, it is difficult to ensure good bonding properties of the bonding material made of Zn—Sn alloy, and if it is 30 μm or more, bonding made of Zn—Sn alloy after bonding is difficult. This is because when the material and the metal layer are mixed, the Sn amount of the bonding material made of the Zn—Sn alloy increases more than necessary, and the heat resistance of the bonded portion may be lowered.

前記金属層7,8を第1の基材1及び/又は第2の基材2にメタライズする手段としては、蒸着、めっき処理や電子ビーム処理等が挙げられる。   Examples of means for metallizing the metal layers 7 and 8 on the first base material 1 and / or the second base material 2 include vapor deposition, plating treatment, and electron beam treatment.

Zn−Sn系合金からなる接合材9は、質量構成比で、Znを50%以上、95%以下含み、残部は実質的にSnからなる。Znを70%以上、90%以下含み、残部が実質的にSnからなる金属材料であることが経済性、作業性の面から望ましい。Zn−Sn系合金からなる接合材は、第3の成分として、例えば、耐熱性を向上させるためにAg、Cuを、また脱酸のためにBiを、その他Al、Co、Ni、Sb等が加えられていてもよい。これらの第3成分の配合量は、Zn−Sn系合金からなる接合材の合計の100重量%に基づいて、5重量%以下である。   The bonding material 9 made of a Zn—Sn-based alloy contains 50% or more and 95% or less of Zn by mass composition ratio, and the balance is substantially made of Sn. It is desirable from the viewpoints of economy and workability that the metal material contains 70% or more and 90% or less of Zn and the balance is substantially made of Sn. A bonding material made of a Zn—Sn alloy includes, for example, Ag and Cu for improving heat resistance, Bi for deoxidation, Al, Co, Ni, Sb, and the like as a third component. It may be added. The blending amount of these third components is 5% by weight or less based on 100% by weight of the total of the bonding material made of the Zn—Sn alloy.

また、Zn−Sn系合金からなる接合材は、良好な接合強度を確保するために厚さ1μm以上、500μm以下、より好ましくは10μm以上、50μm以下とすることが望ましい。Zn−Sn系合金からなる接合材の厚さが厚すぎると、接合時間において熱が接合材全体に均等に伝わらず溶融しない箇所が現れ、ぬれ性の低下を招く恐れがあり、薄すぎると、接合後の接合強度が確保できない恐れがある。   In addition, the bonding material made of a Zn—Sn alloy is desirably 1 μm or more and 500 μm or less, more preferably 10 μm or more and 50 μm or less in order to ensure good bonding strength. If the thickness of the bonding material made of a Zn-Sn alloy is too thick, there will be a portion where heat does not transmit evenly throughout the bonding material and does not melt in the bonding time, which may lead to a decrease in wettability. There is a possibility that the bonding strength after bonding cannot be secured.

Zn−Sn系合金からなる接合材の供給手段としては、めっき処理、シートはんだ、ワイヤーはんだ、又はスーパージャフィット法やスーパーソルダー法などによるはんだプリコート等が挙げられる。   Examples of means for supplying a bonding material made of a Zn—Sn alloy include plating, sheet solder, wire solder, or solder pre-coating by a super-jafit method or a super solder method.

シートはんだ材を使用する場合は、シート厚を極端に大きくした場合も同様に、数秒の接合時間において、熱が接合材全体に均等に伝わらず溶融しない箇所が現れ、ぬれ性の低下を招く恐れが考えられる。そのため、短時間で接合を行なうためには、可能な限りシート厚を小さくするため30〜50μmの範囲内にすることが望ましい。   When using sheet solder material, even when the sheet thickness is extremely increased, in the same way, within several seconds of bonding time, heat may not be transmitted evenly throughout the bonding material, resulting in the appearance of non-melting parts, which may lead to a decrease in wettability. Can be considered. Therefore, in order to perform bonding in a short time, it is desirable that the sheet thickness is within a range of 30 to 50 μm in order to reduce the sheet thickness as much as possible.

さらに本発明の実施形態に係る接合体の製造方法について更に説明する。積層体を加熱する際の加熱温度は300℃以上、450℃以下の範囲内である。この範囲であると、高温系マウント材として求められる保証温度である260℃の高温環境下においても固相保持可能なZn−Sn系接合材が溶融し、基材との接合が可能となる。加熱温度は好ましくは350℃以上である。   Furthermore, the manufacturing method of the conjugate | zygote based on embodiment of this invention is further demonstrated. The heating temperature for heating the laminate is in the range of 300 ° C. or higher and 450 ° C. or lower. Within this range, the Zn—Sn bonding material that can be solid-phase retained melts even in a high-temperature environment of 260 ° C., which is a guaranteed temperature required for a high-temperature mounting material, and can be bonded to the substrate. The heating temperature is preferably 350 ° C. or higher.

加熱時間は0.1秒以上が望ましく、特にピーク温度での加熱時間が0.5秒以上となるように加熱すればより好ましい。また、加熱時間は長くとも30秒以下で十分であり、ピーク温度での加熱時間が10秒以下となるように加熱すれば十分である。   The heating time is desirably 0.1 seconds or more, and it is more preferable to perform heating so that the heating time at the peak temperature is 0.5 seconds or more. Further, at most 30 seconds or less is sufficient for the heating time, and it is sufficient if heating is performed so that the heating time at the peak temperature is 10 seconds or less.

また、本発明の実施形態に係る接合体の製造方法は、非酸化雰囲気下、例えばフォーミングガス雰囲気下で加熱が行われる。具体的には、酸素濃度を100ppm以下にしたフォーミングガス(窒素+水素)雰囲気下で加熱が行われる。   In the method for manufacturing a joined body according to the embodiment of the present invention, heating is performed in a non-oxidizing atmosphere, for example, a forming gas atmosphere. Specifically, heating is performed in a forming gas (nitrogen + hydrogen) atmosphere with an oxygen concentration of 100 ppm or less.

なお、本発明によれば接合時間が極度に増加することがないため、接合体の製造効率の低下を招かない。すなわち、従来のPb含有の高温系はんだと同等の接合時間で良好な接合を達成できる。例えば、実際の半導体装置の実装工程においてPb含有はんだを用いた現行の製造速度と同程度の製造速度に設定することを可能とし、製造効率を低減させない。   In addition, according to this invention, since joining time does not increase extremely, it does not cause the fall of the manufacturing efficiency of a joined body. That is, good joining can be achieved in a joining time equivalent to that of a conventional high-temperature solder containing Pb. For example, in an actual semiconductor device mounting process, it is possible to set a manufacturing speed comparable to the current manufacturing speed using Pb-containing solder, and the manufacturing efficiency is not reduced.

本発明の接合体の製造方法によれば、260℃以上の耐熱性を有する接合層が形成されるため、高温系マウント材として求められる260℃保証として、260℃の高温条件下においても接合層の耐熱性を維持することができる。また、接合材内部において、第1の基材及び/又は第2の基材の構成元素が、Zn−Sn系合金からなる接合材に固溶した相、または、Zn−Sn系合金からなる接合材中のZnもしくはSnと各基材構成元素とで構成される金属間化合物相等が生成してもよい。結果として、高温条件下においても機械的強度の良好な接合体が短時間で得ることができる。   According to the method for manufacturing a joined body of the present invention, a joining layer having a heat resistance of 260 ° C. or higher is formed. The heat resistance of can be maintained. Further, in the bonding material, a phase in which the constituent elements of the first base material and / or the second base material are dissolved in the bonding material made of the Zn—Sn alloy, or the bonding made of the Zn—Sn alloy. An intermetallic compound phase or the like composed of Zn or Sn in the material and each base material constituent element may be generated. As a result, a bonded body having good mechanical strength can be obtained in a short time even under high temperature conditions.

本発明に係る接合体、接合体の製造方法は、どのような分野で用いられてもよいが、特に製造プロセス、あるいは製品使用時に高温条件下に置かれる電子機器部品、半導体デバイス特にパワー系半導体デバイスにおける部品の接合に好適に用いられる。特に半導体素子とリードフレームとの接合に際しては特に好適に用いられる。   The bonded body and the manufacturing method of the bonded body according to the present invention may be used in any field, but in particular, an electronic device component, a semiconductor device, particularly a power semiconductor, which is placed under a high temperature condition during the manufacturing process or product use. It is suitably used for joining parts in a device. In particular, it is particularly preferably used for joining a semiconductor element and a lead frame.

図4は、本発明のさらに別の実施形態である半導体装置を示す正面図である。尚、図4の半導体装置の右半分は、この半導体装置の理解を容易にするために、透視図としている。この実施形態の半導体装置は、リード21、封止樹脂22、ワイヤ23、リード部24を有するリードフレーム25、接合材の層26及び半導体素子27を含んでなるものである。2本のリード21は、ワイヤ23で半導体素子27とそれぞれ接続される。リードフレーム25のリード部24は、2本のリード21の間に配置される。これらの2本のリード21及びリード部24が、それぞれ、例えばエミッタ、ベース、コレクタとして機能する。   FIG. 4 is a front view showing a semiconductor device according to still another embodiment of the present invention. The right half of the semiconductor device in FIG. 4 is a perspective view for easy understanding of the semiconductor device. The semiconductor device of this embodiment includes a lead 21, a sealing resin 22, a wire 23, a lead frame 25 having a lead portion 24, a bonding material layer 26, and a semiconductor element 27. The two leads 21 are connected to the semiconductor element 27 by wires 23, respectively. The lead portion 24 of the lead frame 25 is disposed between the two leads 21. These two leads 21 and lead portions 24 function as, for example, an emitter, a base, and a collector, respectively.

前記半導体装置において、前記金属リードフレームは用途に応じて選択可能である。金属リードフレームとして使用される主たる金属材料の構成元素はZnと金属間化合物を形成する。金属材料は、具体的には、Cu、Ag、Au、Pt、Pd若しくはNiから選ばれた金属又はこれらの少なくとも1種を主体とする合金である。これらの金属を用いた場合には、耐熱性に優れた接合部を形成することができる。これらの金属材料のうち、Cu、Ag若しくはAuから選ばれた金属又はこれらの少なくとも1種を主体とする合金がより耐熱性を有するため好ましく、Cu又はCu基合金からなることが良好な導電性を有するためより好ましい。なお、これらの金属以外でもAl、Ge、Be、Nb、Mnなどが、合金成分として使われてもよい。   In the semiconductor device, the metal lead frame can be selected according to the application. The constituent element of the main metal material used as the metal lead frame forms an intermetallic compound with Zn. Specifically, the metal material is a metal selected from Cu, Ag, Au, Pt, Pd, or Ni, or an alloy mainly composed of at least one of these. When these metals are used, a joint having excellent heat resistance can be formed. Among these metal materials, a metal selected from Cu, Ag, or Au or an alloy mainly composed of at least one of them is preferable because it has higher heat resistance, and is preferably made of Cu or a Cu-based alloy. This is more preferable. In addition to these metals, Al, Ge, Be, Nb, Mn, etc. may be used as alloy components.

図5は、図4の半導体装置を破線により表された切断面において切断した断面図である。図6は、図5の断面図の破線部をさらに拡大した断面図である。   FIG. 5 is a cross-sectional view of the semiconductor device of FIG. 4 cut along a cut surface indicated by a broken line. 6 is a cross-sectional view further enlarging the broken line portion of the cross-sectional view of FIG.

図6を参照して理解されるように、この半導体装置は、半導体素子27の金属薄膜がメタライズさた面と金属リードフレーム25とを、Zn−Sn系合金からなる接合材の層26とSn相28を含むZnと金属リードフレームの構成元素との金属間化合物の層29を介して接合され、封止樹脂22により封止されるものである。リードフレーム25は、例えばAgめっきが施されていてもよい。   As can be understood with reference to FIG. 6, the semiconductor device includes a surface of the semiconductor element 27 on which the metal thin film is metallized and the metal lead frame 25, a bonding material layer 26 made of a Zn—Sn alloy, and Sn. It is bonded via a layer 29 of an intermetallic compound of Zn containing the phase 28 and a constituent element of the metal lead frame, and sealed with a sealing resin 22. The lead frame 25 may be subjected to Ag plating, for example.

このような半導体装置は、上記の接合体の製造方法により製造することができる。なお、半導体装置の製造方法において、金属薄膜は、用途に応じて選択可能である。Au、Ni、Ag、Cu、Pd、Pt及びAl、またはこれらの金属材料を用いた金属合金からなる群より選択される材料を用いることが望ましい。また、半導体装置の製造方法において、例えば、予め、半導体素子27上にAuなどの金属層が設けられ、その表面上にSn又はSn基合金からなる金属層を形成させて、加熱接合することにより半導体装置を製造する場合には、半導体素子27上に形成するAuなどの金属層の厚さにもよるが、ZnとAuなどとの金属間化合物の層が形成されてもよい。   Such a semiconductor device can be manufactured by the above manufacturing method of the joined body. In the semiconductor device manufacturing method, the metal thin film can be selected according to the application. It is desirable to use a material selected from the group consisting of Au, Ni, Ag, Cu, Pd, Pt, and Al, or a metal alloy using these metal materials. In the method of manufacturing a semiconductor device, for example, a metal layer such as Au is provided on the semiconductor element 27 in advance, and a metal layer made of Sn or a Sn-based alloy is formed on the surface, and then heated and bonded. When manufacturing a semiconductor device, although depending on the thickness of a metal layer such as Au formed on the semiconductor element 27, an intermetallic compound layer of Zn and Au may be formed.

なお、本発明のさらに別の実施形態に係る半導体装置としては、例えばダイオード、トランジスタ、コンデンサ、サイリスタ等を挙げることができる。   Examples of the semiconductor device according to another embodiment of the present invention include a diode, a transistor, a capacitor, and a thyristor.

本発明のさらに他の実施形態に係る半導体装置の製造方法としては、半導体装置の製造の際に適当な圧力を加えて製造することもできる。このような半導体装置の製造方法は、有害なPb及び高価なAuを実質的含まない接合材を使用して、高温条件下にさらされても半導体素子とリードフレーム間の接合強度は維持され、信頼性の高い半導体装置を短時間で提供できるものである。   As a method for manufacturing a semiconductor device according to still another embodiment of the present invention, an appropriate pressure can be applied when manufacturing the semiconductor device. Such a method for manufacturing a semiconductor device uses a bonding material substantially free of harmful Pb and expensive Au, and maintains the bonding strength between the semiconductor element and the lead frame even when exposed to high temperature conditions. A highly reliable semiconductor device can be provided in a short time.

さらに、本発明の実施形態に係る接合体について顕微鏡写真を用いて説明する。図7は、第1の基材であるCu板1の上に、Sn又はSn3.5Ag合金による金属皮膜を形成し、その上にZn−40Sn系合金の接合材5を積層して350℃で5秒間加熱してCu板1と接合材5を一体化した模擬接合体の接合界面近傍における断面の顕微鏡写真である((a)200倍、(b)500倍、(c)1000倍)。図中、符号3はSn相、符号4はZn−Cu金属間化合物の層である。なお、試料No.1はCu上にSn金属層を形成させずに接合体を製造したもの、試料No.2は、Cu板1上に5μmのSn金属層を形成させて接合体を製造したもの、試料No.3は、Cu板1上に10μmのSn金属層を形成させて接合体を製造したもの、試料No.4は、Cu板1上に10μmのSn3.5Ag金属層を形成させて接合体を製造したものである。   Furthermore, the bonded body according to the embodiment of the present invention will be described using a micrograph. FIG. 7 shows a case where a metal film made of Sn or Sn3.5Ag alloy is formed on a Cu plate 1 as a first substrate, and a bonding material 5 of Zn-40Sn alloy is laminated thereon at 350 ° C. It is the microscope picture of the cross section in the joint interface vicinity of the mock joined body which united Cu board 1 and joining material 5 by heating for 5 seconds ((a) 200 times, (b) 500 times, (c) 1000 times). In the figure, reference numeral 3 is an Sn phase, and reference numeral 4 is a layer of Zn—Cu intermetallic compound. Sample No. No. 1 produced a joined body without forming a Sn metal layer on Cu. No. 2 is a sample manufactured by forming a 5 μm Sn metal layer on the Cu plate 1 to produce a joined body, Sample No. No. 3 is a sample in which a 10 μm Sn metal layer was formed on the Cu plate 1 to produce a joined body. 4 shows a joined body manufactured by forming a 10 μm Sn3.5Ag metal layer on the Cu plate 1.

以下、実施例により本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail by way of examples.

(実施例1)
パワー系半導体装置における半導体素子とリードフレームとの接合を行った。半導体素子とリードフレームとの接合状態については、図3を参照されたい。このパワー系半導体モジュールでは、10mm角のシリコン半導体素子に、第2基材として、Auを蒸着することによりメタライズが施され0.1μm厚のAuよりなるメタライズ層2が形成されている。さらに、メタライズ層2の表面には、5μm厚のSnよりなる金属層8を蒸着形成した。また、第1の基材としてCuよりなるリードフレーム1上にも、5μm厚のSnからなる金属層7を無電解めっき処理により施した。上記金属層の間に、50μm厚のシート状のZn−40mass%Sn接合材9を載置し、金属層7と接合材9とが、また、金属層8と接合材9とが接するように積層し、その後加熱して接合を行なった。加熱は、100ppm以下の酸素濃度にしたフォーミングガス(窒素+水素)雰囲気中で熱板上で加熱した。加熱条件は、350℃、5秒とした。
Example 1
The semiconductor element and the lead frame in the power semiconductor device were joined. Refer to FIG. 3 for the bonding state between the semiconductor element and the lead frame. In this power semiconductor module, a 10 mm square silicon semiconductor element is metalized by vapor-depositing Au as a second base material to form a metallized layer 2 made of 0.1 μm thick Au. Further, a metal layer 8 made of Sn having a thickness of 5 μm was formed on the surface of the metallized layer 2 by vapor deposition. Also, a metal layer 7 made of Sn having a thickness of 5 μm was applied to the lead frame 1 made of Cu as the first base material by electroless plating. A 50 μm thick sheet-like Zn-40 mass% Sn bonding material 9 is placed between the metal layers so that the metal layer 7 and the bonding material 9 are in contact with each other, and the metal layer 8 and the bonding material 9 are in contact with each other. It laminated | stacked and it joined by heating after that. The heating was performed on a hot plate in a forming gas (nitrogen + hydrogen) atmosphere having an oxygen concentration of 100 ppm or less. The heating conditions were 350 ° C. and 5 seconds.

接合後の接合界面の断面をSEM観察から、際立ったボイドの発生は認められず、良好な接合性を示した。   From the SEM observation of the cross section of the bonded interface after bonding, no significant voids were observed, indicating good bonding properties.

最後に接合したリードフレームと半導体素子とを樹脂封止し、250℃の耐熱性を有したパワー系半導体装置を得た。   Finally, the joined lead frame and the semiconductor element were sealed with a resin to obtain a power semiconductor device having heat resistance of 250 ° C.

(実施例2)
本実施例ではリードフレーム1に、無電解めっきにより10μm厚のSn−Ag共晶合金層7を施し、接合材として、シート状のZn−80mass%Sn接合材9を用いた以外は、実施例1と同様にパワー系半導体装置を得た。すわわち、この接合層9を、Cuからなるリードフレーム上1に施されたSn−Ag共晶合金層7に載置し、その上にAuメタライズ層2を施した半導体素子17を載置して、100ppmの酸素濃度にしたフォーミングガス(窒素+水素)雰囲気中で熱板上で加熱した。加熱条件は、350℃、5秒とした。
(Example 2)
In this embodiment, the lead frame 1 was subjected to electroless plating with a 10 μm-thick Sn—Ag eutectic alloy layer 7, and a sheet-like Zn-80 mass% Sn bonding material 9 was used as the bonding material. As in Example 1, a power semiconductor device was obtained. That is, the bonding layer 9 is placed on the Sn—Ag eutectic alloy layer 7 applied on the lead frame 1 made of Cu, and the semiconductor element 17 provided with the Au metallized layer 2 is placed thereon. Then, it was heated on a hot plate in a forming gas (nitrogen + hydrogen) atmosphere having an oxygen concentration of 100 ppm. The heating conditions were 350 ° C. and 5 seconds.

接合後の接合界面の断面をSEM観察から、際立ったボイドは発生せず良好な接合性を示した。   From the SEM observation of the cross section of the bonded interface after bonding, no conspicuous voids were generated and good bonding properties were shown.

最後に接合したリードフレームと半導体素子とを樹脂封止し、パワー系半導体装置を得た。   Finally, the joined lead frame and the semiconductor element were sealed with resin to obtain a power semiconductor device.

(実施例3)
本実施例では、半導体素子17上に真空蒸着により形成された0.1μm厚のAu層2および10μm厚のSn層8の表面上に、更に真空蒸着により10μm厚のZn−Sn系接合層9を形成した以外は実施例1と同様にパワー系半導体装置を得た。蒸着により形成されたZn−Sn接合層9は、Snが50.0重量%、残りがZnからなるZn―Sn系合金を用いている。この接合層9を、Cuからなるリードフレーム1上に施されたSn層7上に搭載して、100ppmの酸素濃度にしたフォーミングガス(窒素+水素)雰囲気中で熱板上で加熱した。加熱条件は、350℃、5秒とした。
(Example 3)
In this embodiment, a Zn-Sn bonding layer 9 having a thickness of 10 μm is further formed on the surfaces of the Au layer 2 having a thickness of 0.1 μm and the Sn layer 8 having a thickness of 10 μm formed on the semiconductor element 17 by vacuum deposition. A power semiconductor device was obtained in the same manner as in Example 1 except that was formed. The Zn—Sn bonding layer 9 formed by vapor deposition uses a Zn—Sn alloy composed of 50.0% by weight of Sn and the balance of Zn. The bonding layer 9 was mounted on the Sn layer 7 formed on the lead frame 1 made of Cu, and heated on a hot plate in a forming gas (nitrogen + hydrogen) atmosphere having an oxygen concentration of 100 ppm. The heating conditions were 350 ° C. and 5 seconds.

接合後の接合界面の断面をSEM観察から、際立ったボイドは発生せず良好な接合性を示した。   From the SEM observation of the cross section of the bonded interface after bonding, no conspicuous voids were generated and good bonding properties were shown.

最後に接合したリードフレームと半導体素子とを樹脂封止し、パワー系半導体装置を得
た。
Finally, the joined lead frame and the semiconductor element were sealed with resin to obtain a power semiconductor device.

本発明の実施形態に係る接合体を示す断面図である。It is sectional drawing which shows the conjugate | zygote which concerns on embodiment of this invention. 本発明の他の実施形態に係る接合体の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the conjugate | zygote which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係る接合体の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the conjugate | zygote which concerns on further another embodiment of this invention. 本発明のさらに別の実施形態に係る半導体装置を示す正面図である。It is a front view which shows the semiconductor device which concerns on another embodiment of this invention. 図4の半導体装置の破線の切断面において切断した断面図である。FIG. 5 is a cross-sectional view taken along a broken line of the semiconductor device of FIG. 4. 図5の断面図をさらに拡大した断面図である。It is sectional drawing which expanded further sectional drawing of FIG. 基材Cu上の接合界面を示す断面写真である。It is a cross-sectional photograph which shows the joining interface on the base material Cu.

符号の説明Explanation of symbols

1…第1の基材、2…第2の基材、3,11,13…Sn相、4,12…Znと第1の基材の構成元素とからなる金属間化合物の層、5,15…Zn−Sn系合金からなる接合材の層、6,16…接合体、7,8…Sn又はSn基合金からなる金属層、9…接合材、10,18…積層体、14…Znと第2の基材の構成元素とからなる金属間化合物の層、17…母材、21…リード、22…封止樹脂、23…ワイヤ、24…リード部、25…リードフレーム、26…接合材の層、27…半導体素子、28…Sn相、29…Znと金属リードフレームの構成元素との金属間化合物の層 DESCRIPTION OF SYMBOLS 1 ... 1st base material, 2 ... 2nd base material, 3,11,13 ... Sn phase, 4,12 ... layer of the intermetallic compound which consists of Zn and the structural element of a 1st base material, 5, DESCRIPTION OF SYMBOLS 15 ... Bonding material layer made of Zn-Sn alloy, 6, 16 ... bonded body, 7, 8 ... metal layer made of Sn or Sn-based alloy, 9 ... bonding material, 10, 18 ... laminated body, 14 ... Zn A layer of an intermetallic compound composed of a constituent element of the second base material, 17 ... base material, 21 ... lead, 22 ... sealing resin, 23 ... wire, 24 ... lead portion, 25 ... lead frame, 26 ... joint Material layer, 27... Semiconductor element, 28... Sn phase, 29... Intermetallic compound layer of Zn and constituent element of metal lead frame

Claims (9)

Cu、Ag、Au、Pt、Pd及びNiから選ばれる金属又はこれらの少なくとも1種を主体とする合金からなる第1の基材と、
少なくとも接合面が金属からなる第2の基材と、
Zn−Sn系合金からなる接合材の層、該接合材と前記第1の基材との界面反応により形成されたSn相を含むZn、及び前記第1の基材の構成元素との金属間化合物の層とを有する、前記第1の基材と前記第2の基材とを接合する接合層とからなることを特徴とする接合体。
A first substrate made of a metal selected from Cu, Ag, Au, Pt, Pd, and Ni or an alloy mainly composed of at least one of them,
A second base material having at least a joining surface made of metal;
Between a metal of a bonding material layer made of a Zn-Sn alloy, Zn containing an Sn phase formed by an interface reaction between the bonding material and the first base material, and a constituent element of the first base material A joined body comprising a joining layer for joining the first base material and the second base material, each having a compound layer.
前記第1の基材がCu、Ag若しくはAu又はこれらの少なくとも1種を主体とする合金からなることを特徴とする請求項1記載の接合体。   The joined body according to claim 1, wherein the first base material is made of Cu, Ag, Au, or an alloy mainly composed of at least one of them. 前記第1の基材がCu又はCu基合金からなることを特徴とする請求項1記載の接合体。   The joined body according to claim 1, wherein the first base material is made of Cu or a Cu-based alloy. Cu、Ag、Au、Pt、Pd及びNiから選ばれる金属又はこれらの少なくとも1種を主体とする合金からなる金属リードフレームと、
前記金属リードフレームに実装された接合面がメタライズされた半導体素子と、
前記金属リードフレームと前記半導体素子のメタライズされた面を接合する、Zn−Sn系合金からなる第1の層と前記金属リードフレームとの界面反応により形成されたSn相を含むZnと前記金属リードフレームの構成元素との金属間化合物からなる第2の層とを有する接合層と、
前記半導体素子を封止する封止樹脂と
を有することを特徴とする半導体装置。
A metal lead frame made of a metal selected from Cu, Ag, Au, Pt, Pd and Ni, or an alloy mainly composed of at least one of them,
A semiconductor element having a metallized bonding surface mounted on the metal lead frame;
Zn containing Sn phase formed by an interfacial reaction between the metal lead frame and the first layer made of a Zn—Sn alloy that joins the metallized surface of the metal lead frame and the semiconductor element, and the metal lead A bonding layer having a second layer made of an intermetallic compound with a constituent element of the frame;
A semiconductor device comprising: a sealing resin for sealing the semiconductor element.
前記金属リードフレームがCu又はCu基合金からなることを特徴とする請求項4記載の半導体装置。   The semiconductor device according to claim 4, wherein the metal lead frame is made of Cu or a Cu-based alloy. Cu、Ag、Au、Pt、Pd及びNiから選ばれる金属又はこれらの少なくとも1種を主体とする合金からなり、接合面にSn又はSn基合金からなる金属層を形成させた第1の基材と、少なくとも接合面が金属からなる第2の基材とを、Zn−Sn系合金からなる接合材を介して積層体とする積層工程と、
前記積層体を、非酸化雰囲気中で、300℃以上、450℃以下の温度で加熱して、前記第1の基材と前記接合材との接合界面に、Sn相を含むZnと前記第1の基材の構成元素との金属間化合物の層を形成させつつ一体に接合する工程と
からなることを特徴とする接合体の製造方法。
A first substrate made of a metal selected from Cu, Ag, Au, Pt, Pd, and Ni or an alloy mainly composed of at least one of them, and having a metal layer made of Sn or a Sn-based alloy formed on the bonding surface And a laminating step in which at least a second base material having a bonding surface made of a metal is laminated through a bonding material made of a Zn-Sn alloy,
The laminated body is heated in a non-oxidizing atmosphere at a temperature of 300 ° C. or higher and 450 ° C. or lower, and Zn containing Sn phase at the bonding interface between the first base material and the bonding material and the first And a step of integrally joining together while forming a layer of an intermetallic compound with a constituent element of the base material.
前記Zn−Sn系合金からなる接合材が、質量構成比でZnを50質量%以上、95質量%以下含み、残部が実質的にSnからなることを特徴とする請求項6記載の接合体の製造方法。   The bonded material according to claim 6, wherein the bonding material made of the Zn-Sn alloy contains 50 mass% or more and 95 mass% or less of Zn by mass composition ratio, and the balance is substantially made of Sn. Production method. 前記Sn又はSn基合金からなる金属層が、少なくとも前記接合材との接触下で、250℃以下の温度で溶融可能であることを特徴とする請求項6又は7記載の接合体の製造方法。   The method for manufacturing a joined body according to claim 6 or 7, wherein the metal layer made of Sn or an Sn-based alloy can be melted at a temperature of 250 ° C or lower at least in contact with the joining material. 前記第1の基材がCu又はCu基合金からなることを特徴とする請求項6ないし8のいずれか一項記載の接合体の製造方法。   The method for manufacturing a joined body according to any one of claims 6 to 8, wherein the first base material is made of Cu or a Cu-based alloy.
JP2005285241A 2005-09-29 2005-09-29 Joined body, semi-conductor apparatus, and joined body manufacturing method Pending JP2007090404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005285241A JP2007090404A (en) 2005-09-29 2005-09-29 Joined body, semi-conductor apparatus, and joined body manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005285241A JP2007090404A (en) 2005-09-29 2005-09-29 Joined body, semi-conductor apparatus, and joined body manufacturing method

Publications (1)

Publication Number Publication Date
JP2007090404A true JP2007090404A (en) 2007-04-12

Family

ID=37976680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005285241A Pending JP2007090404A (en) 2005-09-29 2005-09-29 Joined body, semi-conductor apparatus, and joined body manufacturing method

Country Status (1)

Country Link
JP (1) JP2007090404A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI381901B (en) * 2009-12-15 2013-01-11 Univ Yuan Ze Method for inhibiting formation of tin-nickel intermetallic in solder joints

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI381901B (en) * 2009-12-15 2013-01-11 Univ Yuan Ze Method for inhibiting formation of tin-nickel intermetallic in solder joints

Similar Documents

Publication Publication Date Title
JP5601275B2 (en) Bonding material, manufacturing method thereof, and manufacturing method of bonding structure
TWI335850B (en) Joints and method for forming the same
JP5523680B2 (en) Bonded body, semiconductor device, and manufacturing method of bonded body
JP2010179336A (en) Joint product, semiconductor module, and method for manufacturing the joint product
JP2002307188A (en) PRODUCT USING Zn-Al BASED SOLDER
JP5943065B2 (en) Bonding method, electronic device manufacturing method, and electronic component
WO2002049797A1 (en) Solder foil and semiconductor device and electronic device
US20060081995A1 (en) Soldered material, semiconductor device, method of soldering, and method of manufacturing semiconductor device
JP2006108604A (en) Semiconductor device and its manufacturing method
JP5041102B2 (en) Lead-free solder alloy, joining member and manufacturing method thereof, and electronic component
JP2005288458A (en) Joined body, semiconductor device, joining method and method for producing semiconductor device
WO2013140936A1 (en) Semiconductor element, semiconductor device, method for manufacturing semiconductor device, and connection material
JPWO2006131979A1 (en) Soldering method for electroless Ni plating part
JP2008238233A (en) Non-lead based alloy joining material, joining method, and joined body
JP5231727B2 (en) Joining method
JP4959539B2 (en) Laminated solder material, soldering method and solder joint using the same
JP2008221290A (en) Joined member and joining method
JP2005503926A (en) Improved composition, method and device suitable for high temperature lead-free solders
JP2008080393A (en) Joining body using peritectic system alloy, joining method, and semiconductor device
JP2013176780A (en) Junction material, method of manufacturing the same, and method of manufacturing junction structure
JP2005032834A (en) Joining method of semiconductor chip and substrate
JP5376356B2 (en) Electronic element mounting method and electronic component mounted by the mounting method
JP2004247742A (en) Electronic apparatus
JP2007090404A (en) Joined body, semi-conductor apparatus, and joined body manufacturing method
WO2011036829A1 (en) Semiconductor device and process for production thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020