JP2007090253A - Swirl type atomizing nozzle capable of variously mixing and atomizing powder and liquid - Google Patents

Swirl type atomizing nozzle capable of variously mixing and atomizing powder and liquid Download PDF

Info

Publication number
JP2007090253A
JP2007090253A JP2005284126A JP2005284126A JP2007090253A JP 2007090253 A JP2007090253 A JP 2007090253A JP 2005284126 A JP2005284126 A JP 2005284126A JP 2005284126 A JP2005284126 A JP 2005284126A JP 2007090253 A JP2007090253 A JP 2007090253A
Authority
JP
Japan
Prior art keywords
liquid
nozzle
powder
supply port
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005284126A
Other languages
Japanese (ja)
Other versions
JP5021925B2 (en
Inventor
Masaaki Ikeda
正明 池田
Daisuke Ikeda
大祐 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATOMAKKUSU KK
Original Assignee
ATOMAKKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATOMAKKUSU KK filed Critical ATOMAKKUSU KK
Priority to JP2005284126A priority Critical patent/JP5021925B2/en
Publication of JP2007090253A publication Critical patent/JP2007090253A/en
Application granted granted Critical
Publication of JP5021925B2 publication Critical patent/JP5021925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for a swirl type atomizing nozzle capable of variously spraying by atomizing a mixed liquid while continuously mixing one or more kinds of powders into one or more kinds of liquids. <P>SOLUTION: In the swirl type atomizing nozzle mixing and spraying, at a focus point focusing in the front side, the liquid ejected out to the front of the nozzle through a liquid ejecting opening 22 and a swirl gas with a high revolving speed ejected in a tapered-off cone shape toward the front of the nozzle through a gas ejecting opening 23 by successively making the swirl gas pass through a spiral groove 25 to a swirl chamber W, a powder supplying opening 34 introducing the powders is installed on the upstream of a liquid supply opening 28 communicating in a liquid passage pipe 36. Alternatively, a plurality of fluid (liquid or powder) passage pipes (cf. symbols 53, 54 in Fig. 7) communicating in the liquid passage pipe 36 are installed allowing three or more fluids to be mixed and atomized by supplying the powders from the upstream of the liquid supply opening. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、噴霧する対象となる液体又は粉体を多種態様に選択して混合することにより、多種多様な微粒化噴霧を行う渦流式微粒化ノズルについての技術である。   The present invention relates to a vortex atomization nozzle that performs various atomization sprays by selecting and mixing various liquids or powders to be sprayed.

従来の微粒化ノズルには、下記特許文献1に示すように、2種類の液体を混合し微粒化する二流体ノズルがある(図8を参照)。   As a conventional atomizing nozzle, there is a two-fluid nozzle that mixes and atomizes two kinds of liquids as shown in Patent Document 1 (see FIG. 8).

即ち、前記二流体ノズルにおいては、ノズルボデー4の側面において、対向するように開口された二箇所の液体挿入口10より投入された二種類の液体は、一次気体通路9を介して圧縮気体挿入口8より送りこまれた一次気体により、内部混合室11において混合かつ一次破砕された一次混合流体となる(図8(a)を参照)。そして、前記一次混合流体は、圧縮気体の導入圧と二次気体が引き起こした負圧(圧縮気体挿入口8、二次気体通路12、旋回導孔14、渦流室15と通渦し、気体噴射口16から高速旋回渦流気体となって先細り円錐形に噴出した二次気体が引き起こした負圧)によって液体噴出口へと吸引されて噴出し、ノズル前方において前記二次気体と外部混合することで、二次破砕即ち微粒化され前方へと噴霧されていた(図8(b)を参照)。   That is, in the two-fluid nozzle, the two types of liquid introduced from the two liquid insertion ports 10 opened so as to face each other on the side surface of the nozzle body 4 are compressed gas insertion ports via the primary gas passage 9. 8 becomes a primary mixed fluid mixed and primarily crushed in the internal mixing chamber 11 by the primary gas fed from 8 (see FIG. 8A). The primary mixed fluid passes through the compressed gas introduction pressure and the negative pressure caused by the secondary gas (the compressed gas insertion port 8, the secondary gas passage 12, the swirl guide hole 14, and the vortex chamber 15 to vortex the gas. The suction gas is sucked and ejected to the liquid ejection port by the negative pressure caused by the secondary gas ejected into the tapered cone from the mouth 16 as a high-speed swirling vortex gas, and externally mixed with the secondary gas in front of the nozzle Secondary crushing, that is, atomization, was sprayed forward (see FIG. 8B).

特公昭62−201665号公報Japanese Patent Publication No.62-201665

従来より微粒化ノズルを使用した微粒化噴霧の作業には、粉体である粒子状物質等を液体に混入し、噴霧により対象物に塗布したり対象物をコーティングする作業があった。従って、前述した二流体ノズルにおいて、2つの液体挿入口のうち一つから液体の代わりに粉体を挿入し、液体と粉体の混合噴霧に使用することが考えられた。しかし、従来の二流体ノズル(図8を参照)は、あくまで液体同士の混合噴霧を想定したものであったため、粉体を液体に混入しながら微粒化噴霧の作業をしようとすると以下のような問題があった。   Conventionally, the atomization spraying operation using the atomization nozzle includes an operation of mixing a particulate matter or the like that is a powder into a liquid and applying it to the object by spraying or coating the object. Therefore, in the above-described two-fluid nozzle, it has been considered to insert powder instead of liquid from one of the two liquid insertion ports and use it for mixed spraying of liquid and powder. However, since the conventional two-fluid nozzle (see FIG. 8) is supposed to be a mixed spray of liquids, when the atomization spray is performed while mixing the powder into the liquid, the following is performed: There was a problem.

即ち、図8より従来の二流体ノズルを使用した場合、液体と粉体は、圧縮気体挿入口8からの圧縮気体の導入圧と二次気体が引き起こした負圧により、又は負圧に加え各液体挿入口10(本ケースでは片方が粉体挿入口となる)にかけられた導入圧によって内部混合室11へと送り込まれるが、いずれの場合においても、液体と粉体が内部混合室11へと噴出する際の噴出圧は、液体の方が強くなりやすくなっていた。   That is, when the conventional two-fluid nozzle is used as shown in FIG. 8, the liquid and the powder are each introduced by the pressure introduced from the compressed gas insertion port 8 and the negative pressure caused by the secondary gas, or in addition to the negative pressure. Although it is fed into the internal mixing chamber 11 by the introduction pressure applied to the liquid insertion port 10 (in this case, one is the powder insertion port), in any case, the liquid and the powder enter the internal mixing chamber 11. The jetting pressure at the time of jetting was easier for the liquid.

従って、液体は、噴出する勢いの強さから対向側の粉体供給口侵入してしまうことで、粉体が内部混合室11へと噴出出来なくなること、又は液体が、前記粉体供給口10をぬらした結果、粉体が粉体供給口内壁に付着して固まることから目詰まりを起こし、混入する粉体が内部混合室11へ導入されなくなる第1の問題が有った。   Accordingly, the liquid enters the powder supply port on the opposite side due to the strength of the jetting force, so that the powder cannot be ejected into the internal mixing chamber 11 or the liquid is supplied to the powder supply port 10. As a result, the powder adhered to the inner wall of the powder supply port and solidified, causing clogging, and there was a first problem that the mixed powder was not introduced into the internal mixing chamber 11.

更に、従来の二流体ノズルには液体挿入口が2箇所に限定していたため、3種類以上の流体を混合しながらの噴霧には使用できない第2の問題があった。   Furthermore, since the conventional two-fluid nozzle has only two liquid insertion ports, there is a second problem that cannot be used for spraying while mixing three or more kinds of fluids.

従って、特定の粉体を液体に混入し又は、3種類以上の粉体と液体とを混合して噴霧する場合には、噴霧前に予め混合液を作る手間が必要となり、各流体を混合しながら噴霧作業をすることが困難であるという問題があった。   Therefore, when mixing a specific powder into a liquid or mixing and spraying three or more types of powder and liquid, it is necessary to prepare a mixed solution in advance before spraying, and each fluid is mixed. However, there was a problem that it was difficult to perform the spraying operation.

以上に記載した問題に鑑み、本発明においては、1又は複数種の粉体を1又は複数種の液体に途切れること無く混入しながら、前記混入した液体を微粒化して噴霧することにより、多種多様な噴霧作業を可能とする渦流式微粒化ノズルを提供することにある。   In view of the problems described above, in the present invention, various kinds of powders are obtained by atomizing and spraying the mixed liquid while mixing one or more kinds of powders into one or more kinds of liquid without interruption. Another object of the present invention is to provide a vortex atomization nozzle that enables a simple spraying operation.

以下に各請求項に係る課題解決手段と生ずる作用を説明する。   The problem-solving means according to each claim and the resulting action will be described below.

請求項1の発明は、外部から液体を導入する液体供給口と、該液体供給口からノズル先端へ向かって液体を通渦させる液体通路管と、該液体通路管の先端に開口し、前記液体を外部へ噴出される液体噴出口と、前記液体通路管の外周を囲みつつ軸方向へ伸長したリング状の気体通路管に対して垂直方向から連通する気体供給口と、前記気体通路管を通渦した気体を高速旋回気流とするスパイラル溝と、ノズル先端部内側に設けられ、前記高速旋回気流を高速旋回渦流化する渦流室と、前記高速旋回渦流を先細り円錐状に焦点を結ぶようにノズル前方へ噴出させ、外部混合により前記液体を微粒化する気体噴出口と、を備えた渦流式微粒化ノズルにおいて、外部から粉体を導入する粉体供給口が設けられ、前記液体通路管は、前記液体供給口に連通し、かつ前記液体供給口よりも上流において前記粉体供給口に連通することにより、前記液体通路管内部にて前記液体に前記粉体を混入しつつ、混入された液体を微粒化することを特徴としている。   According to the first aspect of the present invention, there is provided a liquid supply port for introducing a liquid from the outside, a liquid passage tube for causing the liquid to vortex from the liquid supply port toward a nozzle tip, and an opening at the tip of the liquid passage tube. A liquid jet port that is ejected to the outside, a gas supply port that communicates from the vertical direction with respect to the ring-shaped gas passage tube that extends in the axial direction and surrounds the outer periphery of the liquid passage tube, and the gas passage tube A spiral groove that makes swirled gas a high-speed swirling airflow, a vortex chamber that is provided inside the nozzle tip, converts the high-speed swirling airflow into a high-speed swirling vortex, and a nozzle that focuses the high-speed swirling vortex in a conical shape. In a vortex atomization nozzle provided with a gas jet nozzle for jetting forward and atomizing the liquid by external mixing, a powder supply port for introducing powder from the outside is provided, and the liquid passage tube is To the liquid supply port And by communicating with the powder supply port upstream of the liquid supply port, the mixed liquid is atomized while mixing the powder into the liquid inside the liquid passage tube. It is a feature.

従ってこの場合には、ノズル前方で発生する高速旋回渦流気体が引き起こした強い負圧により、液体供給口から導入された液体は、液体通路管の上流へ向かって逆流することがない。一方、粉体供給口は、液体供給口より上流で連通しているため、液体と同様に液体通路管上に導入された粉体は、導入された液体に混入され、混入後の液体は上流へ逆襲すること無く、即ち、上流に設けられた気体供給口へ侵入すること無く液体噴出口へと吸引される。   Therefore, in this case, the liquid introduced from the liquid supply port does not flow backward toward the upstream side of the liquid passage pipe due to the strong negative pressure caused by the high-speed swirling vortex gas generated in front of the nozzle. On the other hand, since the powder supply port communicates upstream from the liquid supply port, the powder introduced onto the liquid passage tube as well as the liquid is mixed into the introduced liquid, and the liquid after mixing is upstream. Without sucking back into the gas supply port, that is, without entering the gas supply port provided upstream.

請求項2の発明は、請求項1記載の渦流式微粒化ノズルにおいて、前記粉体供給口は、外部から1又は複数種の粉体を導入するために設けられた1又複数の粉体供給口であり、前記液体供給口は、外部から1又は複数種の液体を導入するために設けられた1又は複数の液体供給口であって、前記液体通路管は、前記1又は複数の液体供給口全てに連通し、かつ連通する前記全ての液体供給口より上流において、前記全ての粉体供給口に連通することにより、前記液体通路管の内部で1又は複数種の液体に1又は複数種の粉体を混入すること、を特徴としている。   According to a second aspect of the present invention, in the vortex atomization nozzle according to the first aspect, the powder supply port is provided with one or a plurality of powders provided to introduce one or more kinds of powders from the outside. The liquid supply port is one or a plurality of liquid supply ports provided for introducing one or more kinds of liquids from the outside, and the liquid passage pipe is the one or more liquid supply ports One or a plurality of liquids are communicated with one or a plurality of liquids inside the liquid passage pipe by communicating with all the powder supply ports upstream of all the liquid supply ports communicating with all the ports. It is characterized by mixing the powder.

従ってこの場合には、各液体供給口より液体通路管へ導入された液体は、いずれも上流に設けられた各粉体供給口へ侵入することがない。更に、噴霧作業時には、ノズルに設けた液体供給口及び粉体供給口の数に応じ、液体通路管内部において1又は複数種の粉体が一又は複数種の液体へと混入されることとなる。   Therefore, in this case, any liquid introduced into the liquid passage pipe from each liquid supply port does not enter each powder supply port provided upstream. Furthermore, at the time of the spraying operation, one or more kinds of powders are mixed into one or more kinds of liquids in the liquid passage pipe according to the number of liquid supply ports and powder supply ports provided in the nozzle. .

請求項3の発明は、請求項1記載の渦流式微粒化ノズルであって、前記粉体供給口は、ノズルの後端部に開口し、かつノズルの後端部より前記液体通路管に連通することと、前記液体供給口は、ノズルの外周側面に開口し、該液体通路管の外周面より連通していることとを特徴としている。   A third aspect of the present invention is the vortex atomization nozzle according to the first aspect, wherein the powder supply port opens at a rear end portion of the nozzle and communicates with the liquid passage pipe from the rear end portion of the nozzle. And the liquid supply port opens on the outer peripheral surface of the nozzle and communicates with the outer peripheral surface of the liquid passage tube.

従ってこの場合には、導入された液体が逆流し、液体通路管最上流にある粉体供給口へ侵入することが無く、強い負圧により液体噴出口へ吸引される。   Therefore, in this case, the introduced liquid flows backward and does not enter the powder supply port at the uppermost stream of the liquid passage pipe, and is sucked into the liquid jet port by a strong negative pressure.

請求項1に係る発明においては、前記導入された液体は、前記粉体供給口へ侵入したり、ぬらしたりすることが無い。従って、液体が粉体の供給を阻害したり、粉体が固化して目詰まりを起こし、粉体が液体通路管へ導入されなくなるという第1の問題が解決される。従って、噴霧前に予め粉体を混入した液体を作っておかなくても、液体を粉体に混入しながら微粒化噴霧の作業をすることが出来るようになる。   In the invention according to claim 1, the introduced liquid does not enter or wet the powder supply port. Therefore, the first problem that the liquid hinders the supply of the powder or the powder is solidified to cause clogging and the powder is not introduced into the liquid passage tube is solved. Therefore, even if the liquid in which the powder is mixed in advance is not prepared before the spraying, the atomization spraying operation can be performed while the liquid is mixed in the powder.

請求項2に係る発明においては、液体通路管上において各粉体供給口は、全ての液体供給口より上流に設けられているため、液体が逆流し、各粉体供給口へ侵入することが無い。従って、粉体供給口の目詰まりによる第1の問題が解決される。また、3種類以上の流体を混合しながら噴霧作業することが可能となり、第2の問題が解決される。即ち、1種類の液体に複数種の粉体を混入することや、複数種の液体を混合しつつ更に当該混合液体に1又は複数種の粉体を混入することを行いつつ、混合された液体を微粒化して噴霧することが出来る。   In the invention according to claim 2, since each powder supply port is provided upstream of all the liquid supply ports on the liquid passage pipe, the liquid may flow backward and enter each powder supply port. No. Therefore, the first problem due to clogging of the powder supply port is solved. Moreover, it becomes possible to perform the spraying operation while mixing three or more kinds of fluids, and the second problem is solved. That is, a mixed liquid while mixing a plurality of types of powders in one type of liquid or mixing a plurality of types of liquids and further mixing one or more types of powders into the mixed liquid. Can be atomized and sprayed.

請求項3に係る発明においては、液体供給口から液体通路管の最上流に設けられたノズル後端部へ向かって液体が逆流し、粉体供給口へ侵入することがないため、混入する粉体が従来の内部混合室11へ導入されなくなる第1の問題が解決し、液体を粉体に混入しながら微粒化噴霧の作業をすることが出来るようになる。   In the invention according to claim 3, since the liquid does not flow backward from the liquid supply port toward the nozzle rear end portion provided at the uppermost stream of the liquid passage pipe and does not enter the powder supply port, the mixed powder The first problem that the body is not introduced into the conventional internal mixing chamber 11 is solved, and the operation of atomization spraying can be performed while mixing the liquid into the powder.

また、請求項1から請求項3に記載した発明にかかる微粒化ノズルは、渦流式であるため、ノズル先端部に発生する高速旋回渦流気体による液体の微粒化効果が大きいことから、液体噴出口の内径が大きくとも液体の微粒化をすることが可能である。従って、液体通路管と、該液体通路管に連通する粉体供給口の内径を調整すれば、粒径の大きな粉体を混入しても、目詰まりなく微粒化して噴霧することが可能となっている。更に、液体供給口又は粉体供給口のいずれかを閉鎖すれば、液体のみ又は粉体のみを単体で噴霧することや複数の液体を混合又は複数の粉体を混合して噴霧することも可能となる。   In addition, since the atomization nozzle according to the invention described in claims 1 to 3 is a vortex type, the liquid atomization effect by the high-speed swirling vortex gas generated at the tip of the nozzle is great. Even if the inner diameter of the liquid is large, it is possible to atomize the liquid. Therefore, by adjusting the inner diameter of the liquid passage tube and the powder supply port communicating with the liquid passage tube, even if powder having a large particle size is mixed, it becomes possible to atomize and spray without clogging. ing. Furthermore, if either the liquid supply port or the powder supply port is closed, it is possible to spray only the liquid or the powder alone, or mix a plurality of liquids or mix and spray a plurality of powders. It becomes.

以下、図面1〜8を参照して本願発明の好適な実施形態(以降は単に実施例という)について説明する。   Hereinafter, preferred embodiments of the present invention (hereinafter simply referred to as examples) will be described with reference to FIGS.

図1は、実施例1に係る渦流式微粒化ノズルの外観を表す斜視図、図2は、実施例1に係る微粒化ノズルの分解斜視図、図3は、実施例1に係る微粒化ノズルのA−A’断面図、図4は、実施例1に係るノズル先端の構成が異なる場合のA−A’断面図。図5(a)は、実施例1に係る微粒化ノズルのB−B’断面図、同図(b)は、実施例1に係る微粒化ノズルのC−C’断面図、同図(c)は実施例1に係る微粒化ノズルのリング部近傍を表す斜視図、図6は、微粒化ノズルによる噴霧状況を表す軸方向断面図、図7は、実施例2に係る渦流式微粒化ノズルの軸方向断面図、図8は、従来技術に係る微粒化ノズルの軸方向断面図である。   1 is a perspective view showing the appearance of a vortex atomization nozzle according to a first embodiment, FIG. 2 is an exploded perspective view of the atomization nozzle according to the first embodiment, and FIG. 3 is an atomization nozzle according to the first embodiment. FIG. 4 is a cross-sectional view taken along the line AA ′ when the configuration of the nozzle tip according to the first embodiment is different. FIG. 5A is a cross-sectional view taken along the line BB ′ of the atomizing nozzle according to the first embodiment, and FIG. 5B is a cross-sectional view taken along the line CC ′ of the atomizing nozzle according to the first embodiment. ) Is a perspective view showing the vicinity of the ring portion of the atomization nozzle according to the first embodiment, FIG. 6 is an axial sectional view showing a spraying state by the atomization nozzle, and FIG. 7 is an eddy current atomization nozzle according to the second embodiment. FIG. 8 is an axial sectional view of a conventional atomizing nozzle.

まず、図1を参照しながら、実施例1に係る渦流式微粒化ノズルの外観構成について説明する。図1に示す符号20は、本発明に係る微粒化ノズル本体を示している。外観構成上において渦流式微粒化ノズル本体20は、先端に開口部を有する噴板キャップ30が締付リング40によって、ノズルボディ21に固定(図2を参照)されて形成されている。またノズルボディ21の先端には、液体噴出口22が開口し、かつ該液体噴出口22の開口周縁部22a及び前記噴板キャップ30の開口部31により協働して形成される円環状の気体噴出口23が、前記液体噴出口22を取り囲むように開口している。   First, the external configuration of the vortex atomization nozzle according to the first embodiment will be described with reference to FIG. The code | symbol 20 shown in FIG. 1 has shown the atomization nozzle main body which concerns on this invention. In the appearance configuration, the vortex atomizing nozzle body 20 is formed by fixing a nozzle plate 30 having an opening at the tip to a nozzle body 21 by a fastening ring 40 (see FIG. 2). An annular gas is formed at the tip of the nozzle body 21 by a liquid jet 22 and is formed in cooperation with the opening peripheral portion 22 a of the liquid jet 22 and the opening 31 of the jet plate cap 30. A jet port 23 opens so as to surround the liquid jet port 22.

次に図2においてこの微粒化ノズル20を構成する部材を説明する。まずノズルボディ21の構成は、先端部に液体噴出口22が設けられると共に、ノズル先頭に向かって先細りのテーパー形状を備えかつスパイラル溝25が形成されたリング部24が前記液体噴出口22を取り囲むように設けられている。また、ノズルボディ21の中間部には雄ネジ部27が設けられた細筒部26が形成されている。   Next, members constituting the atomizing nozzle 20 will be described with reference to FIG. First, the nozzle body 21 is configured such that a liquid jet port 22 is provided at the tip, and a ring portion 24 having a taper shape tapered toward the nozzle head and having a spiral groove 25 surrounds the liquid jet port 22. It is provided as follows. In addition, a thin tube portion 26 provided with a male screw portion 27 is formed at an intermediate portion of the nozzle body 21.

ここで、噴板キャップ30は、図2より先端部に前記液体噴出口22と協働した気体噴出口23の形成に必要な大きさの内径を有する開口部31を備え、後端部にフランジ部32を備えている。また噴板キャップ30は、内部を中空状に、かつ前記リング部24の形状に対応した先細りのテーパー状に形成することにより、前記リング部24の上から被せるものとする。そして、内側に雌ネジ部41が形成された締付リング40を噴板キャップ30の上から被せて、前記フランジ部32を押さえつつノズルボディ21の雄ネジ部27へ螺合して固定する。   Here, the jet plate cap 30 is provided with an opening 31 having an inner diameter of a size necessary for forming the gas jet port 23 in cooperation with the liquid jet port 22 at the front end portion from FIG. The unit 32 is provided. Further, the spray plate cap 30 is formed so as to cover the ring portion 24 by forming the inside thereof into a hollow shape and a tapered shape corresponding to the shape of the ring portion 24. Then, a fastening ring 40 having an internal thread portion 41 formed on the inner side is put on the spray plate cap 30 and is screwed and fixed to the external thread portion 27 of the nozzle body 21 while pressing the flange portion 32.

更にノズルボディ21の中間部から後端部へかけての外周側壁には、外部からノズル内部へ液体Rを供給するための液体供給口28及び気体Tを供給するための気体供給口29(後ほど図3にて説明)が形成され、後端部には、外部から粉体Pを混入するための粉体供給口34が形成されている(後ほど図3にて説明)。またノズルボディ21の後端部の外周側壁には、ノズルの組み立て時にスパナ等の工具を当てるためのナット部35が形成されている。尚、各供給口28,29,34の開口部内側には、液体等供給用チューブ等の先端を取り付けるため、例えば、チューブ先端部に設けた継手等を螺合出来るように、雌ネジ部等を形成しておくことが望ましい。   Further, a liquid supply port 28 for supplying the liquid R from the outside to the inside of the nozzle and a gas supply port 29 for supplying the gas T (described later) are provided on the outer peripheral side wall from the intermediate portion to the rear end portion of the nozzle body 21. 3 is formed, and a powder supply port 34 for mixing the powder P from the outside is formed at the rear end portion (described later in FIG. 3). A nut portion 35 is formed on the outer peripheral side wall of the rear end portion of the nozzle body 21 for applying a tool such as a spanner when the nozzle is assembled. In addition, in order to attach the tip of a liquid supply tube or the like to the inside of the opening of each of the supply ports 28, 29, and 34, for example, a female screw portion or the like so that a joint provided at the tube tip can be screwed It is desirable to form.

次に図3によって微粒化ノズル20の内部構造について説明する。ノズルボディ21の内部には、先端部に液体噴出口22を設けた液体通路管36が形成され、該液体通路管36には、後端部から粉体供給口34が連通し、更に後述する液体Rを供給する液体供給口28がノズルボディ21の外周側面より連通している(図5(b)を参照)。   Next, the internal structure of the atomizing nozzle 20 will be described with reference to FIG. Inside the nozzle body 21 is formed a liquid passage pipe 36 having a liquid jet port 22 at the tip, and a powder supply port 34 communicates with the liquid passage pipe 36 from the rear end, which will be described later. A liquid supply port 28 for supplying the liquid R communicates from the outer peripheral side surface of the nozzle body 21 (see FIG. 5B).

尚、図3よりノズルボディ21は、先端にリング部24が形成され、かつリング部24の中心に中空状の筒部211を備えたボディ先端部材21aと、液体供給口28等が設けられ、中心が中空状のボディ基礎部材21bとの組み合わせから構成されている。また、ボディ先端部材21aにおける筒部211の外周には、位置決め用のフランジ部212が設けられ、ボディ基礎部材21bの先端部中心には、嵌合孔213が設けられ、筒部211の後端部は、嵌合孔213に対してフランジ部212がボディ基礎部材21bの先端面に当接するまで挿入し、嵌合することで固定されている。このとき、ボディ先端部材21a及びボディ基礎部材21bの双方の中空部分が協働して液体通路管36が形成されている。   3, the nozzle body 21 is provided with a body tip member 21a having a ring portion 24 formed at the tip and a hollow cylindrical portion 211 at the center of the ring portion 24, a liquid supply port 28, and the like. The center is comprised from the combination with the hollow body base member 21b. Further, a positioning flange portion 212 is provided on the outer periphery of the cylindrical portion 211 in the body front end member 21a, and a fitting hole 213 is provided in the center of the front end portion of the body base member 21b. The part is fixed by being inserted into and fitted into the fitting hole 213 until the flange part 212 comes into contact with the front end surface of the body base member 21b. At this time, the liquid passage tube 36 is formed by cooperation of the hollow portions of both the body tip member 21a and the body base member 21b.

また、ボディ先端部材21aは、図3におけるリング部24と中空状の筒部211を別部材としたボディ先端部材21a’として構成することも考えられる。即ち、図4に示すように外周に位置決め用のフランジ部214を備えた中空筒材215の先端部からコイルばね216と、中心に貫通孔を備えた別体のリング部材240を順に通すことによりボディ先端部材21a’を構成することも出来る。尚、ノズル本体20の組み立てにおいて、リング部材240は、噴板キャップ30により上から押し付けられる力と、圧縮されたコイルばね216により下から押し戻される反力により、噴板キャップ30の上部内壁に押し付けられるように保持されている。   The body tip member 21a may be configured as a body tip member 21a 'in which the ring portion 24 and the hollow cylindrical portion 211 in FIG. 3 are separate members. That is, as shown in FIG. 4, the coil spring 216 and the separate ring member 240 having a through-hole at the center are sequentially passed from the tip of the hollow cylindrical member 215 having the positioning flange 214 on the outer periphery. The body tip member 21a 'can also be configured. In the assembly of the nozzle body 20, the ring member 240 is pressed against the upper inner wall of the jet plate cap 30 by the force pressed from above by the jet plate cap 30 and the reaction force pushed back from below by the compressed coil spring 216. To be held.

更に図3より、後述する気体Tを供給する気体供給口29は、ノズルボディ21の外周側面に開口し、円周方向断面がリング状に形成(図5(a)を参照)され、前記液体通路管36を囲むように形成された、気体通路管37に連通している。更に気体通路管37は、順番に、空洞部38、前記リング部24に形成されたスパイラル溝25、渦流発生室W及び気体噴出口23へと連通している。   Further, as shown in FIG. 3, a gas supply port 29 for supplying a gas T, which will be described later, opens to the outer peripheral side surface of the nozzle body 21 and has a circumferential cross section formed in a ring shape (see FIG. 5A). It communicates with a gas passage tube 37 formed so as to surround the passage tube 36. Further, the gas passage pipe 37 communicates with the cavity portion 38, the spiral groove 25 formed in the ring portion 24, the vortex generation chamber W, and the gas outlet 23 in order.

尚、前記空洞部38は、リング部24の下面とボディ先端部材21aにおける筒部211の外周壁面及び噴板キャップ30の内周壁面に囲まれるように形成された領域である。一方、前記渦流発生室W(図3、図5(c)を参照)は、液体噴出口22の開口周縁部外壁面22a、スパイラル溝25に連通するリング状溝部39並びに噴板キャップの上部内壁面33によって囲まれるように形成された領域である。   The cavity portion 38 is a region formed so as to be surrounded by the lower surface of the ring portion 24 and the outer peripheral wall surface of the cylindrical portion 211 and the inner peripheral wall surface of the injection plate cap 30 in the body tip member 21a. On the other hand, the eddy current generating chamber W (see FIGS. 3 and 5C) includes an opening peripheral edge outer wall surface 22a of the liquid jet port 22, a ring-shaped groove 39 communicating with the spiral groove 25, and an upper portion of the injection plate cap. This is a region formed so as to be surrounded by the wall surface 33.

次に図6により、実施例1の微粒化ノズル20を使用した際の気体Tの流れについて説明する。気体供給口29より導入された気体Tは、円周方向断面が円環状に形成された(図5(a)を参照)気体通路管37の内壁面に衝突しながら、気体噴出口23へ向かってらせん状に進行することにより、リング部下面の空洞部38において整流された状態を保ちつつ各スパイラル溝25へ等しく侵入する。スパイラル溝25に侵入した気体Tは、高速旋回気流となり前記渦流発生室Wにおいて渦流化され、高速旋回渦流気体T’となって環状の気体噴出口23より噴出する。   Next, the flow of the gas T when the atomizing nozzle 20 of Example 1 is used will be described with reference to FIG. The gas T introduced from the gas supply port 29 is directed to the gas outlet 23 while colliding with the inner wall surface of the gas passage pipe 37 having a circular cross section in the circumferential direction (see FIG. 5A). By proceeding in a spiral shape, the spiral groove 25 is equally penetrated while maintaining a rectified state in the cavity 38 on the lower surface of the ring portion. The gas T that has entered the spiral groove 25 becomes a high-speed swirl airflow, is swirled in the vortex generating chamber W, and becomes a high-speed swirl vortex gas T ′ and is ejected from the annular gas outlet 23.

このとき、前記高速旋回渦流気体T’は、ノズル前方に焦点Fを結ぶ先細り円錐形状に噴出し、かつ液体通路管36の内部に対して、後述する液体PRを液体噴出口22へ向かって吸引する強力な負圧を発生させる。   At this time, the high-speed swirling vortex gas T ′ is ejected in a tapered conical shape connecting the focal point F in front of the nozzle, and the liquid PR, which will be described later, is sucked toward the liquid ejection port 22 toward the inside of the liquid passage tube 36. Generate strong negative pressure.

更に図6により、実施例1の微粒化ノズルを使用した際の粉体P及び液体Rの流れについて説明する。液体に混入する粉体Pは、前記高速旋回渦流気体T’の負圧により液体通路管22の最上流に設けられた粉体供給口34から液体通路管36内へと供給され、液体通路管36内を液体噴出口に向かって吸引される。一方液体Rは、粉体Pと同様に前記負圧により、液体供給口28から液体通路管36内に供給(図5(b)を参照)される。このとき、液体は、液体通路管36の内壁面に衝突する際に一次破砕され、かつ粉体Pが混入される。このとき粉体Pと液体Rは液体通路管内においてよく混和された一次液体PRとなって液体噴出口22へ向かって吸引され、液体噴出口22からノズル前方へと噴出する。尚、粉体P及び液体Rの流れは、粉体供給口34と液体供給口28に負圧とは別の導入圧をそれぞれ加えた場合であっても変わらない。   Furthermore, the flow of the powder P and the liquid R when the atomization nozzle of Example 1 is used will be described with reference to FIG. The powder P mixed in the liquid is supplied into the liquid passage tube 36 from the powder supply port 34 provided in the uppermost stream of the liquid passage tube 22 by the negative pressure of the high-speed swirling vortex gas T ′. The inside of 36 is sucked toward the liquid jet port. On the other hand, the liquid R is supplied into the liquid passage pipe 36 from the liquid supply port 28 by the negative pressure as in the case of the powder P (see FIG. 5B). At this time, the liquid is primarily crushed when it collides with the inner wall surface of the liquid passage tube 36 and the powder P is mixed therein. At this time, the powder P and the liquid R become a primary liquid PR well mixed in the liquid passage pipe, and are sucked toward the liquid jet port 22 and ejected from the liquid jet port 22 to the front of the nozzle. The flow of the powder P and the liquid R does not change even when an introduction pressure different from the negative pressure is applied to the powder supply port 34 and the liquid supply port 28, respectively.

更に図6により、実施例1の微粒化ノズル20における一次液体PRの微粒化について説明する。液体噴出口22より噴出した一次液体PRは、気体噴出口23より先細り円錐形状に噴出した高速旋回渦流気体T’と、ノズル前方に生じる焦点Fにおいて衝突することにより二次破砕され、微粒化された液体PRT’となって前方へ噴霧される。   Furthermore, atomization of the primary liquid PR in the atomization nozzle 20 of Example 1 will be described with reference to FIG. The primary liquid PR ejected from the liquid ejection port 22 is secondarily crushed and atomized by colliding with a high-speed swirling vortex gas T ′ ejected in a tapered conical shape from the gas ejection port 23 at a focal point F generated in front of the nozzle. The liquid PRT ′ is sprayed forward.

次に図7により、実施例2に係る渦流式微粒化ノズルについて説明する。実施例2に係る微粒化ノズルは、実施例1の微粒化ノズルにおいて、1箇所しか設けられていなかった、液体通路管の中間部において連通する流体供給口(実施例1では液体供給口28)を複数(図6では2ヶ所)設けたものである。   Next, the vortex atomization nozzle according to the second embodiment will be described with reference to FIG. The atomization nozzle according to the second embodiment is a fluid supply port that is provided at only one place in the atomization nozzle of the first embodiment and communicates with an intermediate portion of the liquid passage pipe (the liquid supply port 28 in the first embodiment). Are provided (two in FIG. 6).

即ち、実施例2の渦流式微粒化ノズル50は、液体通路管52の中間部において連通する流体供給口(液体又は粉体用)を複数設けることにより、例えば、流体供給口1(符号53)を粉体供給口とし、流体供給口2(符号54)を液体供給口とした場合には、液体通路管52内において、噴霧する特定の液体に2種類の粉体を混入しながら微粒化噴霧の作業をすることが出来る。また、流体供給口1、2を共に液体供給口とすることで、2種類の液体を混合しながら更に特定の粉体を混入しつつ微粒化噴霧の作業をすることが出来る。   That is, the vortex atomization nozzle 50 of the second embodiment is provided with a plurality of fluid supply ports (for liquid or powder) communicating with each other in the middle portion of the liquid passage tube 52, for example, the fluid supply port 1 (reference numeral 53). Is a powder supply port and the fluid supply port 2 (reference numeral 54) is a liquid supply port. In the liquid passage tube 52, two types of powder are mixed into the specific liquid to be atomized and atomized. Can work. Further, by using both the fluid supply ports 1 and 2 as liquid supply ports, it is possible to perform atomization spraying work while mixing two kinds of liquids and further mixing a specific powder.

尚、図7に示すとおり、実施例2の渦流式微粒化ノズル50は、流体供給口(53,54)は2つしか設けていない。しかし、ノズルボディ51の長さLについては、流体供給口(53,54)が気体供給口55及び気体通路管56に干渉しないように長目に形成すること、及び目詰まり防止の観点から粉体供給口より上流から液体を供給しないことを条件として、流体供給口の数は、混合したい液体及び混入したい粉体の種類の数に応じて3つ以上設けることが出来る。
その場合、1種類の液体に3種類以上の粉体を混入すること、3種類以上の液体を混合しつつ1種類の粉体を混入すること又は複数の液体を混合しながら複数の粉体を混入すること等の作業を行いながら微粒化噴霧をすることが出来る。
As shown in FIG. 7, the vortex atomization nozzle 50 of Example 2 has only two fluid supply ports (53, 54). However, the length L of the nozzle body 51 is formed so that the fluid supply port (53, 54) does not interfere with the gas supply port 55 and the gas passage pipe 56, and from the viewpoint of preventing clogging. Three or more fluid supply ports can be provided depending on the number of types of liquid to be mixed and powder to be mixed, provided that no liquid is supplied from the upstream side of the body supply port.
In that case, mix three or more types of powder into one type of liquid, mix one or more types of powder while mixing three or more types of liquid, or mix multiple types of powder while mixing multiple types of liquid. Atomization spray can be performed while performing operations such as mixing.

また、実施例2の微粒化ノズルでは、従来技術(図8(a)を参照)のように、ノズルボディ51における複数(2以上)の流体供給口を同一の円周方向断面上に設けることも考えられる。しかし、同一の円周方向断面上から粉体と液体を供給すれば、従来技術と同様に粉体供給口に目詰まりが発生すると考えられる。従って、流体供給口を同一の円周断面上に設ける場合は、各供給口から供給する流体を液体又は粉体のいずれかに一方に統一するか、図7に示すように、各流体供給口を軸方向にずらして配置することが望ましい。尚、ボディ先端部材21aは、実施例1と同様に後端部をボディ基礎部材51bの先端部に設けられた嵌合孔513へ挿入し、勘合することで固定されている。また、図4と同様にボディ先端部材21aの代わりに、ボディ先端部材21a’を使用することも出来る。   Further, in the atomization nozzle of the second embodiment, a plurality (two or more) of fluid supply ports in the nozzle body 51 are provided on the same circumferential section as in the conventional technique (see FIG. 8A). Is also possible. However, if the powder and the liquid are supplied from the same circumferential cross section, it is considered that the powder supply port is clogged as in the prior art. Therefore, when the fluid supply ports are provided on the same circumferential cross section, the fluid supplied from each supply port is unified with either the liquid or the powder, or as shown in FIG. It is desirable to dispose these in the axial direction. The body front end member 21a is fixed by inserting and fitting the rear end portion into the fitting hole 513 provided at the front end portion of the body base member 51b as in the first embodiment. Further, similarly to FIG. 4, a body tip member 21a 'can be used instead of the body tip member 21a.

以上の点から、本発明にかかる微粒化ノズルは、例えば粉体である粒子状物質等(研磨剤その他粉状の複数薬剤等)を噴霧液(1種類又は複数の液体を混合しつつ)に混入しながら対象物に吹き付けることが出来るため、塗布具、コーティング用器具として使用でき、又は単に液体と粉体の混合装置として使用できる点で意義がある。また、実施例1では使用しない流体供給口を閉鎖することで、粉体のみの噴霧又は液体を微粒化した噴霧作業が可能であり、実施例2においても、使用しない流体供給口を閉鎖することにより、混合する薬剤の種類を減らして微粒化噴霧すること、複数の液体のみを混合して微粒化噴霧すること又は複数の粉体のみを混合して噴霧することが可能である。従って、本願発明に係るノズルは、液体、粉体の別を問わずに多種多様な混合態様又は噴霧態様を形成できる微粒化ノズルとして意義のあるものと言える。   In view of the above, the atomization nozzle according to the present invention is, for example, a powdery particulate substance or the like (abrasive or other powdery multiple drugs) in a spray liquid (mixing one or more liquids). Since it can be sprayed onto an object while being mixed, it can be used as an applicator, a coating device, or simply as a mixing device for liquid and powder. Further, by closing the fluid supply port that is not used in the first embodiment, it is possible to perform spraying only with powder or atomizing the liquid, and also in the second embodiment, closing the fluid supply port that is not used. Thus, it is possible to reduce the kind of medicine to be mixed and atomize and spray, to mix only a plurality of liquids and to atomize and spray, or to mix and spray only a plurality of powders. Therefore, it can be said that the nozzle according to the present invention is meaningful as a atomizing nozzle capable of forming a wide variety of mixing modes or spraying modes regardless of whether the liquid or powder is used.

実施例1に係る渦流式微粒化ノズルの外観を表す斜視図。FIG. 3 is a perspective view illustrating an appearance of the vortex atomization nozzle according to the first embodiment. 実施例1に係る微粒化ノズルの分解斜視図。FIG. 3 is an exploded perspective view of the atomization nozzle according to the first embodiment. 実施例1に係る微粒化ノズルのA−A’断面図。FIG. 3 is a cross-sectional view of the atomizing nozzle according to the first embodiment, taken along line A-A ′. 実施例1に係るノズル先端の構成が異なる場合のA−A’断面図。FIG. 6 is a cross-sectional view taken along line A-A ′ when the nozzle tip configuration according to the first embodiment is different. 実施例1に係る微粒化ノズルの円周方向断面図。 (a) 実施例1に係る微粒化ノズルのB−B’断面図。 (b) 実施例1に係る微粒化ノズルのC−C’断面図。 (c) 実施例1に係る微粒化ノズルのリング部近傍を表す斜視図。FIG. 4 is a circumferential cross-sectional view of the atomization nozzle according to the first embodiment. (A) B-B 'sectional drawing of the atomization nozzle which concerns on Example 1. FIG. (B) C-C 'sectional drawing of the atomization nozzle which concerns on Example 1. FIG. (C) The perspective view showing the ring part vicinity of the atomization nozzle which concerns on Example 1. FIG. 実施例1の微粒化ノズルによる噴霧状況を表す軸方向断面図。FIG. 3 is an axial cross-sectional view showing the state of spraying by the atomization nozzle according to the first embodiment. 実施例2に係る渦流式微粒化ノズルの軸方向断面図。FIG. 6 is an axial sectional view of a vortex atomization nozzle according to a second embodiment. 従来技術に係る微粒化ノズルの軸方向断面図。 (a) 液体通路を表す断面図。 (b) 気体通路を表す断面図。The axial direction sectional drawing of the atomization nozzle which concerns on a prior art. (A) Sectional drawing showing a liquid channel | path. (B) Sectional drawing showing a gas passage.

符号の説明Explanation of symbols

20 渦流式微粒化ノズル本体
22 液体噴出口
23 気体噴出口
25 スパイラル溝
28 液体供給口
29 気体供給口
34 粉体供給口
36 液体通路管
50 渦流式微粒化ノズル本体
52 液体通路管
53 流体供給口1(粉体供給口)
54 流体供給口2(液体供給口)
F 焦点
P 粉体
R 液体
T 気体
T’ 高速旋回渦流気体
W 渦流室
DESCRIPTION OF SYMBOLS 20 Eddy current type atomization nozzle main body 22 Liquid ejection port 23 Gas ejection port 25 Spiral groove 28 Liquid supply port 29 Gas supply port 34 Powder supply port 36 Liquid passage pipe 50 Eddy current type atomization nozzle main body 52 Liquid passage tube 53 Fluid supply port 1 (powder supply port)
54 Fluid supply port 2 (liquid supply port)
F Focus P Powder R Liquid T Gas T 'High-speed swirling vortex gas W Vortex chamber

Claims (3)

外部から液体を導入する液体供給口と、該液体供給口からノズル先端へ向かって液体を通渦させる液体通路管と、該液体通路管の先端に開口し、前記液体を外部へ噴出される液体噴出口と、前記液体通路管の外周を囲みつつ軸方向へ伸長したリング状の気体通路管に対して垂直方向から連通する気体供給口と、前記気体通路管を通渦した気体を高速旋回気流とするスパイラル溝と、ノズル先端部内側に設けられ、前記高速旋回気流を渦流化する渦流室と、前記高速旋回渦流を先細り円錐状に焦点を結ぶようにノズル前方へ噴出させ、外部混合により前記液体を微粒化する気体噴出口と、を備えた渦流式微粒化ノズルにおいて、
外部から粉体を導入する粉体供給口が設けられ、前記液体通路管は、前記液体供給口に連通し、かつ前記液体供給口よりも上流において前記粉体供給口に連通することにより、前記液体通路管内部にて前記液体に前記粉体を混入しつつ、混入された液体を微粒化することを特徴とした渦流式微粒化ノズル。
A liquid supply port for introducing liquid from the outside, a liquid passage tube for vortexing the liquid from the liquid supply port toward the nozzle tip, and a liquid that opens at the tip of the liquid passage tube and ejects the liquid to the outside A jet outlet, a gas supply port communicating from the vertical direction with respect to the ring-shaped gas passage tube extending in the axial direction surrounding the outer periphery of the liquid passage tube, and a gas swirling through the gas passage tube is a high-speed swirling airflow And a spiral groove provided inside the tip of the nozzle, which vortexes the high-speed swirling airflow, and the high-speed swirling vortex is ejected forward of the nozzle so as to focus in a conical shape. In a vortex atomization nozzle provided with a gas outlet for atomizing a liquid,
A powder supply port for introducing powder from the outside is provided, and the liquid passage tube communicates with the liquid supply port and communicates with the powder supply port upstream of the liquid supply port, A vortex atomization nozzle characterized by atomizing the mixed liquid while mixing the powder into the liquid inside a liquid passage pipe.
前記粉体供給口は、外部から1又は複数種の粉体を導入するために設けられた1又複数の粉体供給口であり、前記液体供給口は、外部から1又は複数種の液体を導入するために設けられた1又は複数の液体供給口であって、前記液体通路管は、前記1又は複数の液体供給口全てに連通し、かつ連通する前記全ての液体供給口より上流において、前記全ての粉体供給口に連通することにより、前記液体通路管の内部で1又は複数種の液体に1又は複数種の粉体を混入すること、を特徴とした請求項1記載の渦流式微粒化ノズル。   The powder supply port is one or a plurality of powder supply ports provided for introducing one or more types of powder from the outside, and the liquid supply port receives one or more types of liquid from the outside. One or more liquid supply ports provided for introduction, wherein the liquid passage tube communicates with all of the one or more liquid supply ports and upstream of all the liquid supply ports communicating with each other; The eddy current type according to claim 1, wherein one or more kinds of powder are mixed in one or more kinds of liquids inside the liquid passage pipe by communicating with all of the powder supply ports. Atomization nozzle. 前記粉体供給口は、ノズルの後端部に開口し、かつノズルの後端部より前記液体通路管に連通することと、前記液体供給口は、ノズルの外周側面に開口し、かつ該液体通路管の外周面により連通していることとを特徴とした、請求項1記載の渦流式微粒化ノズル。   The powder supply port opens at a rear end portion of the nozzle and communicates with the liquid passage pipe from the rear end portion of the nozzle; the liquid supply port opens at an outer peripheral side surface of the nozzle; and the liquid 2. The vortex atomizing nozzle according to claim 1, wherein the nozzle is in communication with the outer peripheral surface of the passage pipe.
JP2005284126A 2005-09-29 2005-09-29 Vortex atomization nozzle capable of various mixed atomization of powder and liquid Active JP5021925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005284126A JP5021925B2 (en) 2005-09-29 2005-09-29 Vortex atomization nozzle capable of various mixed atomization of powder and liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005284126A JP5021925B2 (en) 2005-09-29 2005-09-29 Vortex atomization nozzle capable of various mixed atomization of powder and liquid

Publications (2)

Publication Number Publication Date
JP2007090253A true JP2007090253A (en) 2007-04-12
JP5021925B2 JP5021925B2 (en) 2012-09-12

Family

ID=37976544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005284126A Active JP5021925B2 (en) 2005-09-29 2005-09-29 Vortex atomization nozzle capable of various mixed atomization of powder and liquid

Country Status (1)

Country Link
JP (1) JP5021925B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009284768A (en) * 2008-05-27 2009-12-10 Kanariya:Kk Nozzle device, atomizer, and temperature- and moisture-controlling system for barn
CN102527539A (en) * 2011-10-13 2012-07-04 天津职业技术师范大学 Nozzle mechanism of multiphase medium electric spark machining method
KR101218747B1 (en) * 2011-07-18 2013-01-21 (주)에이치시티 Apparatus for spraying aerosol of nano-particles with air spray unit
WO2013162171A1 (en) * 2012-04-25 2013-10-31 한국항공대학교 산학협력단 Shear coaxial atomization injector of the type which can separately inject three fluids
CN103522118A (en) * 2013-09-26 2014-01-22 上海金兆节能科技有限公司 Nested type three-phase mixing nozzle of water, oil and gas and nozzle system with same
JP2018065097A (en) * 2016-10-20 2018-04-26 株式会社アトマックス A plurality of fluids mixture nozzle and mixture nozzle spray method for a plurality of fluids

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101446081B1 (en) * 2013-11-26 2014-10-01 주식회사 진영뉴웍스 Spray nozzle structure for silver mirror coating and spray apparatus comprising the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5369913A (en) * 1976-12-03 1978-06-21 Mitsubishi Precision Co Ltd Device for atomizing and diffusing fluids
JPS58137466U (en) * 1982-03-09 1983-09-16 東和耐火工業株式会社 Spraying nozzle for monolithic refractories, etc.
JPS5944557U (en) * 1982-09-10 1984-03-24 アイコ−株式会社 spray nozzle
JPS59216652A (en) * 1983-05-23 1984-12-06 Tadashi Ii Method and apparatus for mixing and injecting liquid and liquid or particle
JPS61204667U (en) * 1985-06-13 1986-12-23
JPS62201665A (en) * 1986-03-01 1987-09-05 Kimitoshi Mato Two-liquid nozzle
JPS6410870A (en) * 1987-07-01 1989-01-13 Kelbin Co Ltd Mortar spray nozzle
JP2000325896A (en) * 1999-03-18 2000-11-28 Shibuya Kogyo Co Ltd Formation of washing and peeling medium flow and device therefor
JP2001012867A (en) * 1999-06-29 2001-01-19 Toshiba Ceramics Co Ltd Method of spraying lightweight castable material
JP2002079145A (en) * 2000-06-30 2002-03-19 Shibuya Kogyo Co Ltd Cleaning nozzle and cleaning device
JP2003062493A (en) * 2001-08-29 2003-03-04 Tomohiko Hashiba Mixer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5369913A (en) * 1976-12-03 1978-06-21 Mitsubishi Precision Co Ltd Device for atomizing and diffusing fluids
JPS58137466U (en) * 1982-03-09 1983-09-16 東和耐火工業株式会社 Spraying nozzle for monolithic refractories, etc.
JPS5944557U (en) * 1982-09-10 1984-03-24 アイコ−株式会社 spray nozzle
JPS59216652A (en) * 1983-05-23 1984-12-06 Tadashi Ii Method and apparatus for mixing and injecting liquid and liquid or particle
JPS61204667U (en) * 1985-06-13 1986-12-23
JPS62201665A (en) * 1986-03-01 1987-09-05 Kimitoshi Mato Two-liquid nozzle
JPS6410870A (en) * 1987-07-01 1989-01-13 Kelbin Co Ltd Mortar spray nozzle
JP2000325896A (en) * 1999-03-18 2000-11-28 Shibuya Kogyo Co Ltd Formation of washing and peeling medium flow and device therefor
JP2001012867A (en) * 1999-06-29 2001-01-19 Toshiba Ceramics Co Ltd Method of spraying lightweight castable material
JP2002079145A (en) * 2000-06-30 2002-03-19 Shibuya Kogyo Co Ltd Cleaning nozzle and cleaning device
JP2003062493A (en) * 2001-08-29 2003-03-04 Tomohiko Hashiba Mixer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009284768A (en) * 2008-05-27 2009-12-10 Kanariya:Kk Nozzle device, atomizer, and temperature- and moisture-controlling system for barn
KR101218747B1 (en) * 2011-07-18 2013-01-21 (주)에이치시티 Apparatus for spraying aerosol of nano-particles with air spray unit
CN102527539A (en) * 2011-10-13 2012-07-04 天津职业技术师范大学 Nozzle mechanism of multiphase medium electric spark machining method
WO2013162171A1 (en) * 2012-04-25 2013-10-31 한국항공대학교 산학협력단 Shear coaxial atomization injector of the type which can separately inject three fluids
KR101347262B1 (en) * 2012-04-25 2014-01-06 한국항공대학교산학협력단 Shear coaxial injector with 3-phase separated spray
CN103522118A (en) * 2013-09-26 2014-01-22 上海金兆节能科技有限公司 Nested type three-phase mixing nozzle of water, oil and gas and nozzle system with same
JP2018065097A (en) * 2016-10-20 2018-04-26 株式会社アトマックス A plurality of fluids mixture nozzle and mixture nozzle spray method for a plurality of fluids

Also Published As

Publication number Publication date
JP5021925B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5021925B2 (en) Vortex atomization nozzle capable of various mixed atomization of powder and liquid
US8960571B2 (en) Full cone air-assisted spray nozzle assembly
JP4865765B2 (en) Spray gun
JP6908215B2 (en) Pressurized air assisted full cone spray nozzle assembly
JP6487041B2 (en) Atomizer nozzle
US20050284957A1 (en) External mix air atomizing spray nozzle assembly
US20110253806A1 (en) Spray head and spraying device having pressurized gas line
JP2002096003A (en) Improved air type spray nozzle
JPH0994494A (en) Atomizer nozzle for internal mixed gas
JPH02504007A (en) Manually operated ejector for media
JP2000254554A (en) Atomizing nozzle
JP4754785B2 (en) 2-component spray nozzle
JP3401267B2 (en) Media discharge nozzle
JP2007130514A (en) Liquid atomizer
JP4778212B2 (en) Three fluid nozzle
JP5283068B2 (en) Injection button
JP2006035081A (en) Nozzle for spraying chemical and spray
JP2011177634A (en) Atomizer
JP3410972B2 (en) Spray nozzle
KR102446313B1 (en) Nozzle for sprayer
JP6663336B2 (en) Multi-fluid mixed ignition nozzle for producing atomized mixed emulsion fuel and method for producing spray ignition of atomized mixed emulsion fuel
JP2004344689A (en) Two-fluid nozzle
JPH0220302B2 (en)
JPS6219271A (en) Method and apparatus for air-liquid atomization
JP2009061362A (en) Nozzle for coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120615

R150 Certificate of patent or registration of utility model

Ref document number: 5021925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250