JP2007089580A - Method and apparatus for culturing photosynthetic microorganism - Google Patents

Method and apparatus for culturing photosynthetic microorganism Download PDF

Info

Publication number
JP2007089580A
JP2007089580A JP2006238729A JP2006238729A JP2007089580A JP 2007089580 A JP2007089580 A JP 2007089580A JP 2006238729 A JP2006238729 A JP 2006238729A JP 2006238729 A JP2006238729 A JP 2006238729A JP 2007089580 A JP2007089580 A JP 2007089580A
Authority
JP
Japan
Prior art keywords
iii
photosynthetic
medium
tank
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006238729A
Other languages
Japanese (ja)
Other versions
JP5027462B2 (en
Inventor
Shinichi Hirano
伸一 平野
Takao Matsumoto
伯夫 松本
Naoya Omura
直也 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2006238729A priority Critical patent/JP5027462B2/en
Publication of JP2007089580A publication Critical patent/JP2007089580A/en
Application granted granted Critical
Publication of JP5027462B2 publication Critical patent/JP5027462B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation

Abstract

<P>PROBLEM TO BE SOLVED: To expand a culturing technology to effectively utilize energy of light. <P>SOLUTION: Proliferation of the photosynthetic microorganisms is promoted by comprising a sample containing one or more kinds of the photosynthetic microorganisms using Fe(II) or Fe(III) for the photosynthesizing reaction in a culture medium and then electrochemically regulating the ratio Fe(II)/Fe(III) of the Fe(II) to Fe(III) contained in the medium while irradiating the medium with light. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光合成微生物の培養方法および培養装置に関する。さらに詳述すると、本発明は、エネルギー効率を向上させるための培養方法の改良に関する。   The present invention relates to a method and apparatus for culturing photosynthetic microorganisms. More specifically, the present invention relates to an improvement of a culture method for improving energy efficiency.

太陽から地表に降り注ぐ光エネルギー量は年間1.5×1018kWと非常に莫大である(図4参照)。このエネルギーを効率的に有用物質もしくは化学エネルギーに変換し省エネルギー・環境保全を図るため、生物の持つ光合成機能に関する様々な研究が行われている。一例を挙げると、クロレラなどの微細藻およびその培養方法に関する技術などが提案されている(例えば、特許文献1参照)。 The amount of light energy that falls from the sun onto the surface of the earth is very large at 1.5 × 10 18 kW per year (see Figure 4). In order to efficiently convert this energy into useful substances or chemical energy to save energy and preserve the environment, various studies on the photosynthetic functions of living organisms have been conducted. For example, a technique relating to a microalga such as chlorella and a culture method thereof has been proposed (see, for example, Patent Document 1).

特開2001−161347号公報JP 2001-161347 A

しかしながら、上記のような培養技術が提案される一方で、さらなる省エネルギー化と環境保全を図るため、光エネルギーを現状よりも一層効率的に利用できるような技術に対するニーズが常に存在している。例えば、これまでの培養技術をさらに拡張することができればこのようなニーズに十分に応えることが可能になるとも考えられる。   However, while the culture techniques as described above are proposed, there is always a need for a technique that can use light energy more efficiently than the current situation in order to further save energy and protect the environment. For example, it may be possible to sufficiently meet such needs if the conventional culture technique can be further expanded.

そこで、本発明は、培養技術を拡張することにより光エネルギーを一層効率的に利用できるようにした光合成微生物の培養方法および培養装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a culture method and a culture apparatus for photosynthetic microorganisms that can utilize light energy more efficiently by extending culture techniques.

かかる目的を達成するため、本発明者は種々の検討と実験を行った。現在、食品や医薬品業界において利用されている微生物は自然界に存在する全微生物の1%以下と考えられている。このため、環境中に残存する膨大な微生物資源を有効利用するため新規微生物単離技術の開発が必要とされている。このような状況の下において、発明者は、鉄呼吸 (酸素の代替としてFe(III)を最終電子受容体として利用する呼吸形式) を利用して環境中の未知微生物を増殖させることに着目し、Fe(III)を電気化学的に連続供給することを可能とした電気培養装置に種々の光合成微生物が含まれている環境試料を入れて光照射したところ、ある種の光合成微生物が選択的に増殖するという知見を得るに至った。   In order to achieve this object, the present inventor conducted various studies and experiments. Currently, microorganisms used in the food and pharmaceutical industries are considered to be 1% or less of all microorganisms existing in nature. For this reason, in order to effectively utilize the enormous amount of microbial resources remaining in the environment, development of a new microbial isolation technique is required. Under such circumstances, the inventor has focused on growing unknown microorganisms in the environment using iron respiration (a respiration form using Fe (III) as a final electron acceptor as an alternative to oxygen). When an environmental sample containing various photosynthetic microorganisms was placed in an electrocultivation apparatus that enabled continuous electrochemical supply of Fe (III) and irradiated with light, certain photosynthetic microorganisms were selectively It came to the knowledge that it proliferated.

本発明はかかる知見に基づくものであって、請求項1に記載の光合成微生物の培養方法は、Fe(II)もしくはFe(III)をその光合成反応に利用する一種もしくは複数種光合成微生物を含む試料を培地に含有させ、光を照射しながら培地に含有されるFe(II)とFe(III)の比Fe(II)/Fe(III)を電気化学的に制御して、光合成微生物の増殖を促進させるというものである。   The present invention is based on such knowledge, and the method for culturing photosynthetic microorganisms according to claim 1 is a sample containing one or more photosynthetic microorganisms using Fe (II) or Fe (III) in the photosynthetic reaction. The ratio of Fe (II) and Fe (III) contained in the medium is controlled electrochemically while irradiating light, and the growth of photosynthetic microorganisms is controlled. It is to promote.

Fe(II)をその光合成反応に利用する光合成微生物、即ち、光合成反応においてFe(II)を電子供与体として利用する光合成微生物は、その増殖時にFe(II)をFe(III)に酸化する。そこで、培地に含有されるFe(II)とFe(III)の比Fe(II)/Fe(III)を電気化学的に制御する、即ち、Fe(III)をFe(II)に電気化学的に再生(還元)することにより、光合成微生物にFe(II)を連続供給して、光合成を活性化させ、光合成微生物の増殖を促進することを可能としている。   A photosynthetic microorganism that uses Fe (II) in its photosynthetic reaction, that is, a photosynthetic microorganism that uses Fe (II) as an electron donor in the photosynthetic reaction oxidizes Fe (II) to Fe (III) during its growth. Therefore, the ratio Fe (II) / Fe (III) of Fe (II) and Fe (III) contained in the medium is controlled electrochemically, that is, Fe (III) is electrochemically converted to Fe (II) By regenerating (reducing), it is possible to continuously supply Fe (II) to the photosynthetic microorganism, to activate the photosynthesis, and to promote the growth of the photosynthetic microorganism.

また、Fe(III)をその光合成反応に利用する光合成微生物、即ち、光合成反応においてFe(III)を電子受容体として利用する光合成微生物は、その増殖時にFe(III)をFe(II)に還元する。そこで、培地に含有されるFe(II)とFe(III)の比Fe(II)/Fe(III)を電気化学的に制御する、即ち、Fe(II)をFe(III)に電気化学的に再生(酸化)することにより、光合成微生物にFe(III)を連続供給して、光合成を活性化させ、光合成微生物の増殖を促進することを可能としている。   In addition, photosynthetic microorganisms that use Fe (III) in their photosynthetic reactions, that is, photosynthetic microorganisms that use Fe (III) as an electron acceptor in the photosynthetic reaction, reduce Fe (III) to Fe (II) during their growth. To do. Therefore, the ratio Fe (II) / Fe (III) of Fe (II) and Fe (III) contained in the medium is controlled electrochemically, that is, Fe (II) is converted to Fe (III) electrochemically. By regenerating (oxidizing), it is possible to continuously supply Fe (III) to the photosynthetic microorganism, to activate the photosynthesis, and to promote the growth of the photosynthetic microorganism.

ここで、Fe(II)もしくはFe(III)をその光合成反応に利用する一種もしくは複数種の光合成微生物を含む試料とは、環境試料、複数種の光合成微生物が混在する試料、Fe(II)をその光合成反応に利用する一種もしくは複数種の光合成微生物を含む試料、Fe(III)をその光合成反応に利用する一種もしくは複数種の光合成微生物を含む試料、Fe(II)をその光合成反応に利用する一種もしくは複数種の光合成微生物とFe(III)をその光合成反応に利用する一種もしくは複数種の光合成微生物が混在した試料を意味している。   Here, the sample containing one or more kinds of photosynthetic microorganisms using Fe (II) or Fe (III) in the photosynthetic reaction means an environmental sample, a sample containing a plurality of kinds of photosynthetic microorganisms, and Fe (II). Samples containing one or more photosynthetic microorganisms used for the photosynthetic reaction, samples containing one or more photosynthetic microorganisms using Fe (III) for the photosynthetic reaction, Fe (II) used for the photosynthetic reaction It means a sample in which one or more photosynthetic microorganisms and one or more photosynthetic microorganisms using Fe (III) in their photosynthetic reaction are mixed.

上記発明においては、請求項2に記載のように嫌気状態下で光合成微生物の培養を行うことが好ましい。この場合には、光合成反応においてFe(II)を電子供与体として利用する光合成微生物、またはFe(III)を電子受容体として利用する光合成微生物の光合成をさらに活性化することができる。したがって、光合成微生物の増殖をさらに促進することが可能となる。   In the said invention, it is preferable to culture | cultivate a photosynthetic microorganism under anaerobic conditions as described in Claim 2. In this case, the photosynthesis of a photosynthetic microorganism using Fe (II) as an electron donor or a photosynthetic microorganism using Fe (III) as an electron acceptor in the photosynthesis reaction can be further activated. Therefore, it is possible to further promote the growth of photosynthetic microorganisms.

尚、請求項3に記載のように光合成微生物として独立行政法人産業技術総合研究所特許生物寄託センターに平成18年8月8日付けで受託番号FERM P−20984として受託されたクロレラの培養を行うことができる。このクロレラは、Fe(III)をその光合成反応に利用する光合成微生物であり、最終電子受容体として機能するFe(III)を電気化学的に連続供給することで、光合成をさらに活性化することができる。以降、本明細書においては、このクロレラを「クロレラH-1株」と呼ぶこととする。   In addition, as described in claim 3, chlorella as a photosynthetic microorganism is cultivated as a photosynthetic microorganism at the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center on August 8, 2006, under the accession number FERM P-20984. be able to. This chlorella is a photosynthetic microorganism that uses Fe (III) for its photosynthetic reaction, and it can further activate photosynthesis by electrochemically supplying Fe (III) that functions as the final electron acceptor. it can. Hereinafter, in the present specification, this chlorella will be referred to as “chlorella H-1 strain”.

また、請求項4に記載のように、Rhodovulum iodosum、Rhodovulum robiginosum(Int J Syst Bacteriol. 1999 Apr;49 Pt 2:729-35. )、Rhodopseudomonas palustris strain TIE-1(Appl Environ Microbiol. 2005 Aug;71(8):4487-96)の培養を行うことができる。Rhodovulum iodosum、Rhodovulum robiginosum、Rhodopseudomonas palustris strain TIE-1は、Fe(II)をその光合成反応に利用する光合成微生物であり、電子供与体として機能するFe(II)を電気化学的に連続供給することで、光合成をさらに活性化することができる。   Further, as described in claim 4, Rhodovulum iodosum, Rhodovulum robiginosum (Int J Syst Bacteriol. 1999 Apr; 49 Pt 2: 729-35.), Rhodopseudomonas palustris strain TIE-1 (Appl Environ Microbiol. 2005 Aug; 71 (8): 4487-96) can be cultured. Rhodovulum iodosum, Rhodovulum robiginosum, Rhodopseudomonas palustris strain TIE-1 is a photosynthetic microorganism that uses Fe (II) for its photosynthetic reaction, and by continuously supplying Fe (II) that functions as an electron donor electrochemically , Photosynthesis can be further activated.

次に、請求項5に記載の光合成微生物の培養装置は、光透過性材料によって形成された電気培養槽と、電気培養槽を培養槽と対極槽の二層に仕切るイオン交換膜と、電気培養槽内に設けられた陽極と、対極槽内に設けられた陰極と、陽極および陰極を介して電気培養槽中の培地の電位を制御する電位制御装置と、光を透過させつつ電気培養槽の周囲を嫌気状態に保つ嫌気ボックスとからなり、Fe(II)及び/又はFe(III)を含む培地中に、Fe(II)もしくはFe(III)をその光合成反応に利用する一種もしくは複数種の光合成微生物を含む試料を含有させ、嫌気状態下、前記培地に光を照射しながら前記培地中のFe(II)とFe(III)の比Fe(II)/Fe(III)を電気化学的に制御して光合成微生物の増殖を促進させることを特徴とするものである。   Next, an apparatus for culturing photosynthetic microorganisms according to claim 5 comprises: an electroculture tank formed of a light transmissive material; an ion exchange membrane that divides the electroculture tank into two layers of a culture tank and a counter electrode tank; An anode provided in the tank, a cathode provided in the counter electrode tank, a potential control device for controlling the potential of the medium in the electric culture tank via the anode and the cathode, and the electric culture tank while transmitting light It consists of an anaerobic box that keeps the surroundings in an anaerobic state, and in a medium containing Fe (II) and / or Fe (III) A sample containing a photosynthetic microorganism is contained, and the ratio of Fe (II) and Fe (III) in the medium is electrochemically determined while irradiating the medium with light under anaerobic conditions. It is characterized by controlling the growth of photosynthetic microorganisms.

このように構成することで、嫌気状態下において、培地に光を照射しながら培地中のFe(II)とFe(III)の比Fe(II)/Fe(III)を電気化学的に制御して光合成微生物の増殖を促進させることができる。   With this configuration, the ratio of Fe (II) and Fe (III) in the medium, Fe (II) / Fe (III), is controlled electrochemically while irradiating the medium with light under anaerobic conditions. Thus, the growth of photosynthetic microorganisms can be promoted.

請求項1に記載の発明によれば、培養系を複合化することによって光合成を活性化するという、いわば新たな光合成系の培養技術を提案できる。つまり、培地に含有されるFe(II)とFe(III)の比Fe(II)/Fe(III)を電気化学的に制御することにより光合成を制御するという、従来の電気培養技術をさらに拡張した培養技術が確立することになるから、光エネルギーをより一層効率的・有効的に利用することが可能な光合成微生物の培養技術を提供することができる。   According to the first aspect of the present invention, it is possible to propose a new photosynthesis system culture technique that activates photosynthesis by compositing culture systems. In other words, the conventional electroculture technology that controls the photosynthesis by electrochemically controlling the Fe (II) / Fe (III) ratio Fe (II) / Fe (III) contained in the medium is further expanded. Therefore, it is possible to provide a culture technique for photosynthetic microorganisms that can use light energy more efficiently and effectively.

さらに、環境試料や複数種の光合成微生物が混在する試料から、Fe(II)もしくはFe(III)をその光合成反応に利用する光合成微生物を選択的に増殖させることが可能となる。また、Fe(II)をその光合成反応に利用する光合成微生物を一種のみならず、複数種同時に増殖させる、Fe(III)をその光合成反応に利用する光合成微生物を一種のみならず、複数種同時に増殖させることも可能である。さらには、Fe(II)をその光合成反応に利用する光合成微生物とFe(III)をその光合成反応に利用する光合成微生物が混在した試料から、一方の光合成微生物のみを選択的に増殖させるということも可能である。   Furthermore, it is possible to selectively propagate photosynthetic microorganisms that use Fe (II) or Fe (III) in the photosynthetic reaction from environmental samples and samples in which a plurality of types of photosynthetic microorganisms coexist. Also, not only one type of photosynthetic microorganism that uses Fe (II) for its photosynthetic reaction, but also multiple types of organisms that proliferate simultaneously. It is also possible to make it. Furthermore, it is also possible to selectively propagate only one photosynthetic microorganism from a sample containing photosynthetic microorganisms that use Fe (II) in their photosynthetic reaction and photosynthetic microorganisms that use Fe (III) in their photosynthetic reaction. Is possible.

次に、請求項2に記載の発明によると、嫌気状態下で培養を行うから、光合成反応においてFe(II)を電子供与体として利用する光合成微生物、またはFe(III)を電子受容体として利用する光合成微生物の光合成をさらに活性化することができ、光合成微生物の増殖を一層促進させることが可能となる。   Next, according to the invention described in claim 2, since the culture is performed in an anaerobic state, a photosynthetic microorganism using Fe (II) as an electron donor in a photosynthesis reaction, or Fe (III) as an electron acceptor. It is possible to further activate the photosynthesis of the photosynthetic microorganism, and to further promote the growth of the photosynthetic microorganism.

また、請求項3に記載の発明によると、クロレラH-1株の増殖を促進させることができる。   In addition, according to the invention described in claim 3, the growth of the chlorella H-1 strain can be promoted.

請求項4に記載の発明によると、Rhodovulum iodosum、Rhodovulum robiginosum、Rhodopseudomonas palustris strain TIE-1の増殖を促進させることができる。   According to the invention described in claim 4, it is possible to promote the growth of Rhodovulum iodosum, Rhodovulum robiginosum, Rhodopseudomonas palustris strain TIE-1.

次に、請求項5に記載の培養装置によると、嫌気状態下において、培地に光を照射しながら培地中のFe(II)とFe(III)の比Fe(II)/Fe(III)を電気化学的に制御して光合成微生物の増殖を促進させることができる。したがって、培地に含有されるFe(II)とFe(III)の比Fe(II)/Fe(III)を電気化学的に制御することにより光合成を制御するという、従来の電気培養技術をさらに拡張した培養技術を確立することができ、光エネルギーをより一層効率的・有効的に利用することが可能な光合成微生物の培養装置を提供することができる。   Next, according to the culture apparatus of claim 5, the ratio Fe (II) / Fe (III) of Fe (II) and Fe (III) in the medium is changed while irradiating the medium with light under anaerobic conditions. It can be controlled electrochemically to promote the growth of photosynthetic microorganisms. Therefore, the conventional electroculture technology that controls the photosynthesis by electrochemically controlling the Fe (II) / Fe (III) ratio Fe (II) / Fe (III) contained in the medium is further expanded. Thus, it is possible to provide a culture apparatus for photosynthetic microorganisms that can establish the established culture technique and can use light energy more efficiently and effectively.

以下、本発明の構成を図面に示す実施の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on embodiments shown in the drawings.

図1に本発明にかかる光合成微生物の培養装置を示す。培養装置1は、光透過性材料によって形成された電気培養槽2と、電気培養槽2を培養槽2aと対極槽2bの二層に仕切るイオン交換膜3と、電気培養槽2内に設けられた陽極4と、対極槽内に設けられた陰極5と、陽極4および陰極5を介して電気培養槽2中の培地(培養基)8の電位を制御する電位制御装置6と、光を透過させつつ電気培養槽2の周囲を嫌気状態に保つ嫌気ボックス7とからなる。   FIG. 1 shows an apparatus for culturing photosynthetic microorganisms according to the present invention. The culture apparatus 1 is provided in an electric culture tank 2, an electric culture tank 2 formed of a light-transmitting material, an ion exchange membrane 3 that partitions the electric culture tank 2 into two layers, a culture tank 2a and a counter electrode tank 2b. The anode 4, the cathode 5 provided in the counter electrode tank, the potential control device 6 for controlling the potential of the medium (culture medium) 8 in the electric culture tank 2 through the anode 4 and the cathode 5, and transmitting light. The anaerobic box 7 keeps the periphery of the electric culture tank 2 in an anaerobic state.

電気培養槽2は、例えばアクリル板やガラス板といった光透過性材料によって形成された槽である。例えば本実施形態では図1に示すような底面が丸い槽としているがこれは一例に過ぎず、光量が十分な程度に光を透過させるものであれば材質や形状は特に限定されることはない。この電気培養槽2には培養のために用いられる培地(培養基)8が注ぎ込まれている。   The electric culture tank 2 is a tank formed of a light transmissive material such as an acrylic plate or a glass plate. For example, in this embodiment, a tank having a round bottom as shown in FIG. 1 is used as an example. However, this is merely an example, and the material and shape are not particularly limited as long as the amount of light is sufficient to transmit light. . A medium (culture medium) 8 used for culture is poured into the electric culture tank 2.

培地8は、光合成微生物の光合成反応において、電子供与体となるFe(II)と電子受容体となるFe(III)のうち少なくとも一方を含有させる。また、Fe(II)やFe(III)の再生(酸化・還元)を阻害するなどの悪影響を与えない成分であれば含有し得る。尚、培地の形態はFe(II)やFe(III)の自由な移動が妨げられないならば、液体以外にも固体状態、液体−固体共存状態であってもよいが、製造性や使用性の観点からは液体状態で使用することが好ましい。尚、下記実施例ではFe(III)をFe(III)−EDTAのように錯体として培地中に含有させるようにしているが、Fe(II)もしくはFe(III)を培地中に安定に存在させることができるのであれば、これに限られるものではない。   The medium 8 contains at least one of Fe (II) serving as an electron donor and Fe (III) serving as an electron acceptor in the photosynthetic reaction of the photosynthetic microorganism. Further, any component that does not adversely affect the regeneration (oxidation / reduction) of Fe (II) or Fe (III) may be contained. In addition, the form of the medium may be in a solid state or a liquid-solid coexisting state other than liquid, as long as free movement of Fe (II) or Fe (III) is not hindered. From this point of view, it is preferably used in a liquid state. In the following examples, Fe (III) is included in the medium as a complex such as Fe (III) -EDTA, but Fe (II) or Fe (III) is stably present in the medium. If it is possible, it is not limited to this.

イオン交換膜3は、この電気培養槽2を培養槽2aと対極槽2bの二層に仕切るために設けられているものであり、培養対象は培養槽2aの中に入れて培養する。さらに、イオン交換膜3は、培地8中のイオンは通過させるが培養対象たる光合成微生物を対極槽2b側に通過させないフィルタ、つまり培養槽2aに含まれる培養対象である光合成微生物の対極槽2bへの移動を阻止するフィルタとして機能する。   The ion exchange membrane 3 is provided to divide the electric culture tank 2 into two layers of a culture tank 2a and a counter electrode tank 2b, and the culture target is placed in the culture tank 2a and cultured. Furthermore, the ion exchange membrane 3 is a filter that allows the ions in the medium 8 to pass but does not allow the photosynthetic microorganisms to be cultured to pass to the counter electrode 2b side, that is, to the counter electrode 2b of the photosynthetic microorganisms to be cultured included in the culture vessel 2a. It functions as a filter that prevents the movement of.

陽極4および陰極5は、電気培養槽2に電圧を印加してFe(II)やFe(III)の再生(酸化・還元)を行うために電気培養槽2に設けられている板状の一対の電極であり、その材質として例えば、炭素板などを採用することができるがこれに限られるものではない。これら陽極4と陰極5はともに電位制御装置6に接続されている。この電位制御装置6は陽極4と陰極5の両電極間に電圧を印加して電位を調整する。また、電位制御装置6には電気培養槽2内における電位を参照するための参照電極9も接続されている。この参照電極9は、培養対象である光合成微生物が存在する培養槽2a内に設置されている。   The anode 4 and the cathode 5 are a pair of plate-like plates provided in the electric culture tank 2 for applying a voltage to the electric culture tank 2 to regenerate (oxidize and reduce) Fe (II) and Fe (III). For example, a carbon plate can be used as the material of the electrode, but the material is not limited to this. Both the anode 4 and the cathode 5 are connected to a potential control device 6. The potential control device 6 adjusts the potential by applying a voltage between the anode 4 and the cathode 5. In addition, a reference electrode 9 for referring to a potential in the electric culture tank 2 is also connected to the potential control device 6. This reference electrode 9 is installed in the culture tank 2a where the photosynthetic microorganisms to be cultured are present.

培養対象を、光合成反応においてFe(II)を電子供与体として利用する光合成微生物とする場合、この光合成微生物が増殖する際には、Fe(II)がFe(III)に酸化される。そこで、Fe(III)をFe(II)に再生(還元)して、光合成微生物にFe(II)を連続供給する。具体的には、培養槽2a内の電位、即ち、参照電極9により検出される電位がFe(III)をFe(II)に還元する電位である−0.4V〜−0.8V程度となるように陽極4と陰極5に電圧を印加する。これにより、Fe(III)をFe(II)に再生(還元)して、光合成微生物にFe(II)を連続供給することが可能となる。   When the subject of culture is a photosynthetic microorganism that uses Fe (II) as an electron donor in a photosynthetic reaction, Fe (II) is oxidized to Fe (III) when the photosynthetic microorganism grows. Therefore, Fe (III) is regenerated (reduced) to Fe (II), and Fe (II) is continuously supplied to the photosynthetic microorganism. Specifically, the potential in the culture tank 2a, that is, the potential detected by the reference electrode 9 is about −0.4V to −0.8V, which is a potential for reducing Fe (III) to Fe (II). In this manner, a voltage is applied to the anode 4 and the cathode 5. As a result, Fe (III) can be regenerated (reduced) to Fe (II), and Fe (II) can be continuously supplied to the photosynthetic microorganism.

また、培養対象を、光合成反応においてFe(III)を電子受容体として利用する光合成微生物とする場合、この光合成微生物が増殖する際には、Fe(III)がFe(II)に還元される。そこで、Fe(II)をFe(III)に再生(酸化)して、光合成微生物にFe(III)を連続供給する。具体的には、培養槽2a内の電位、即ち、参照電極9により検出される電位がFe(II)をFe(III)に酸化する電位である0.1V〜1.0V程度となるように陽極4と陰極5に電圧を印加する。これにより、Fe(II)をFe(III)に再生(酸化)して、光合成微生物にFe(III)を連続供給することが可能となる。   In addition, when the subject of culture is a photosynthetic microorganism that uses Fe (III) as an electron acceptor in a photosynthetic reaction, Fe (III) is reduced to Fe (II) when the photosynthetic microorganism grows. Therefore, Fe (II) is regenerated (oxidized) to Fe (III), and Fe (III) is continuously supplied to photosynthetic microorganisms. Specifically, the potential in the culture tank 2a, that is, the potential detected by the reference electrode 9 is about 0.1V to 1.0V, which is a potential for oxidizing Fe (II) to Fe (III). A voltage is applied to the anode 4 and the cathode 5. This makes it possible to regenerate (oxidize) Fe (II) to Fe (III) and continuously supply Fe (III) to the photosynthetic microorganism.

ここで、図2に示した鉄と光合成系の関係について説明する。培養対象がFe(III)を電子受容体として利用する光合成微生物である場合、培地8中の水分子(H2O)が図中左下に示すように電子を提供することになり、当該電子は図中の流れを経てからFe(III)に供給されてFe(II)へと還元する。これに対し、培養対象がFe(II)を電子供与体として利用する光合成微生物の場合には、これとは逆にFe(II)を酸化剤として光合成反応初期段階(図中左下)において電子を供給し続けることになる。 Here, the relationship between the iron shown in FIG. 2 and the photosynthetic system will be described. When the culture target is a photosynthetic microorganism using Fe (III) as an electron acceptor, water molecules (H 2 O) in the medium 8 will provide electrons as shown in the lower left of the figure, After passing through the flow in the figure, it is supplied to Fe (III) and reduced to Fe (II). On the other hand, if the subject of culture is a photosynthetic microorganism that uses Fe (II) as an electron donor, conversely, Fe (II) is used as an oxidizing agent, and electrons are emitted at the initial stage of photosynthesis reaction (lower left in the figure). Will continue to supply.

嫌気ボックス7は電気培養槽2の周囲を嫌気状態に保つためのもので、光を透過させることができる例えばアクリル板などによって形成されている。また、嫌気ボックス7は嫌気状態を形成する気体の流入口10と流出口11とを備えている。例えば本実施形態の場合には、直方体形状に形成された嫌気ボックスの一側面に気体流入口10、これと対向する側面に気体流出口11をそれぞれ設けている。また、電気培養槽2の周囲を嫌気状態とするための気体として窒素(N2)ガスや希ガス等の不活性ガスを用い、これを流入口10から供給し続けることとしている。 The anaerobic box 7 is for keeping the periphery of the electric culture tank 2 in an anaerobic state, and is formed of, for example, an acrylic plate that can transmit light. The anaerobic box 7 includes a gas inlet 10 and an outlet 11 that form an anaerobic state. For example, in the case of this embodiment, the gas inflow port 10 is provided on one side surface of the anaerobic box formed in a rectangular parallelepiped shape, and the gas outflow port 11 is provided on the side surface facing this. Further, an inert gas such as nitrogen (N 2 ) gas or a rare gas is used as a gas for making the periphery of the electric culture tank 2 anaerobic, and this gas is continuously supplied from the inlet 10.

なお、本実施形態においては電気培養槽2と嫌気ボックス7の両方ともアクリル材料等により光透過性としているが、この場合に照射される光は自然光と人工光のいずれをも含む。つまり、本明細書でいう光照射とは、照光装置などを使って光を積極的に照射するのみならず、自然光が差し込むような環境を形成して照射する場合までも含むものである。   In this embodiment, both the electric culture tank 2 and the anaerobic box 7 are made light transmissive by an acrylic material or the like, but the light irradiated in this case includes both natural light and artificial light. That is, the term “light irradiation” as used in this specification includes not only active irradiation of light using an illuminating device or the like, but also includes the case where irradiation is performed in an environment where natural light is inserted.

以上のような培養装置1は、嫌気ボックス7内に嫌気状態を作り出すこと、培地に含有されるFe(II)とFe(III)の比Fe(II)/Fe(III)を電気化学的に制御すること、そしてFe(II)もしくはFe(III)をその光合成反応に利用する光合成微生物に光を照射することが可能である。したがって、この培養装置1によれば、嫌気状態下、培地に含有されるFe(II)とFe(III)の比Fe(II)/Fe(III)を電気化学的に制御しながら光合成微生物に光を照射するという各手法を複合化した培養を行うことが可能となる。こうした場合、光合成微生物の光合成の効率が向上し、その増殖を促進させることができる。   The culture apparatus 1 as described above creates an anaerobic state in the anaerobic box 7, and electrochemically calculates the ratio Fe (II) / Fe (III) of Fe (II) and Fe (III) contained in the medium. It is possible to control and to irradiate light to a photosynthetic microorganism that uses Fe (II) or Fe (III) for its photosynthetic reaction. Therefore, according to this culturing apparatus 1, under anaerobic conditions, the ratio Fe (II) / Fe (III) of Fe (II) and Fe (III) contained in the medium is controlled electrochemically to the photosynthetic microorganism. It is possible to perform culture in which each method of irradiating light is combined. In such a case, the efficiency of photosynthesis of the photosynthetic microorganism can be improved and the growth thereof can be promoted.

したがって、培養装置1により、培養対象(試料)を環境試料や複数種の光合成微生物が混在する試料として培養した場合には、Fe(II)もしくはFe(III)をその光合成反応に利用する光合成微生物を選択的に増殖させることが可能となる。また、Fe(II)を光合成反応に利用する光合成微生物を一種のみならず、複数種同時に増殖させる、Fe(III)を光合成反応に利用する光合成微生物を一種のみならず、複数種同時に増殖させることも可能である。さらには、Fe(II)をその光合成反応に利用する光合成微生物とFe(III)をその光合成反応に利用する光合成微生物が混在した試料から、一方の光合成微生物のみを選択的に増殖させるということも可能である。   Therefore, when the culture object (sample) is cultured as an environmental sample or a sample in which a plurality of types of photosynthetic microorganisms are mixed by the culture apparatus 1, photosynthetic microorganisms using Fe (II) or Fe (III) for the photosynthetic reaction. Can be selectively propagated. Also, not only one kind of photosynthetic microorganism that uses Fe (II) for the photosynthetic reaction, but also a plurality of kinds can be propagated simultaneously. Is also possible. Furthermore, it is also possible to selectively propagate only one photosynthetic microorganism from a sample containing photosynthetic microorganisms that use Fe (II) in their photosynthetic reaction and photosynthetic microorganisms that use Fe (III) in their photosynthetic reaction. Is possible.

なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、本実施形態では、培養対象を光合成微生物としたが、これに限られるものではなく、Fe(II)もしくはFe(III)をその光合成反応に利用する光合成細菌を培養対象としてもよい。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in this embodiment, the culture target is a photosynthetic microorganism, but the present invention is not limited to this, and a photosynthetic bacterium that uses Fe (II) or Fe (III) for the photosynthesis reaction may be the culture target.

また、培養槽2a内に電圧を印加するためのエネルギーを発生させるために太陽光発電を利用して、光エネルギーをさらに効率的・有効的に利用して、省エネルギー化を図ることも可能である。   It is also possible to use solar power generation to generate energy for applying a voltage in the culture tank 2a, and to save energy by using light energy more efficiently and effectively. .

さらに、本発明の培養装置1は、光合成微生物を培養・増殖するための装置としてだけでなく、光合成微生物の光合成反応の結果として生じるエネルギーを供給する装置として用いることも可能である。   Furthermore, the culture apparatus 1 of the present invention can be used not only as an apparatus for culturing and growing photosynthetic microorganisms, but also as an apparatus for supplying energy generated as a result of the photosynthetic reaction of the photosynthetic microorganisms.

また、光照射強度の増減、Fe(II)とFe(III)の比Fe(II)/Fe(III)の電気化学的制御により、光合成微生物が光合成反応を行うのに最適な環境を作り出して、光合成反応が活性化された光合成微生物の割合を増加させることが可能である。さらに、CO固定、H製造、有用物質製造、排水処理、排ガス処理等の設備において、その反応槽中にFe(II)もしくはFe(III)をその光合成反応に利用する光合成微生物を直接投入したり、もしくはこの微生物を担体等に固定化して投入し、Fe(II)とFe(III)の比Fe(II)/Fe(III)を電気化学的に制御しながら光照射することにより、照射された光エネルギーを高効率に利用して光合成反応を制御し、CO固定、H製造、有用物質製造、排水処理、排ガス処理等を効率よく行うことが可能である。つまり、本発明により、太陽光等の光エネルギーのみを利用した場合と比較して、より高効率に太陽光等の光エネルギーを利用して光合成反応によるエネルギー生産や有害物質処理等を行うことが可能である。 In addition, by optimizing the light irradiation intensity and electrochemically controlling the ratio of Fe (II) and Fe (III) Fe (II) / Fe (III), an optimal environment for the photosynthetic microorganisms to perform the photosynthetic reaction is created. It is possible to increase the proportion of photosynthetic microorganisms in which the photosynthetic reaction is activated. Furthermore, in facilities such as CO 2 fixation, H 2 production, useful substance production, wastewater treatment, exhaust gas treatment, etc., photosynthetic microorganisms that use Fe (II) or Fe (III) for their photosynthetic reaction are directly put into the reaction tank. Or by immobilizing this microorganism on a carrier or the like, and irradiating light while controlling the ratio Fe (II) / Fe (III) of Fe (II) and Fe (III) electrochemically, It is possible to efficiently control CO 2 fixation, H 2 production, useful substance production, wastewater treatment, exhaust gas treatment, etc. by controlling the photosynthesis reaction with high efficiency using the irradiated light energy. In other words, according to the present invention, it is possible to perform energy production or treatment of harmful substances by a photosynthesis reaction using light energy such as sunlight more efficiently than when only light energy such as sunlight is used. Is possible.

実験・検討の結果を以下に実施例として説明するが、本発明は以下の実施例に限られるものではない。   Although the result of experiment and examination is demonstrated as an Example below, this invention is not limited to a following example.

[実施例1]
[1.培地の調整]
まず、培地(培養基)8の調製を以下のように行った。すなわち、蒸留水1Lに(NH4)2SO4;1.0g、KNO3;0.5g、K2HPO4;0.5g、KH2PO4;0.6g、MgSO4・7H2O;0.2g、CaCl2・2H2O;0.01g、FeSO4・7H2O;0.01gを溶解した無機基本培地8に2mlの微量金属溶液(蒸留水1LにCuSO4・5H2O;5mg、CoCl2・6H2O;5mg、NiCl2・6H2O;5mg、NaMoO4・2H2O;5mg、ZnSO4;30mg、MnCl2・6H2O;5mgを溶解)を加えた。また鉄添加培地8にはFe(III)-EDTA (Fe(III)をエチレンジアミン四酢酸でキレートした錯体状態の鉄) を0.84g/Lとなるようにさらに加えた。いずれの場合も培地8のpHは希塩酸水溶液を用いて7.0に調整した。
[Example 1]
[1. Medium adjustment]
First, the medium (culture medium) 8 was prepared as follows. That is, in 1 L of distilled water, (NH 4 ) 2 SO 4 ; 1.0 g, KNO 3 ; 0.5 g, K 2 HPO 4 ; 0.5 g, KH 2 PO 4 ; 0.6 g, MgSO 4 · 7H 2 O; 0.2 g, CaCl 2 · 2H 2 O: 0.01 g, FeSO 4 · 7H 2 O; 0.01 ml of inorganic basic medium 8 dissolved in 2 ml of trace metal solution (CuSO 4 · 5H 2 O in 1 L of distilled water; 5 mg, CoCl 2 · 6H 2 O; 5 mg, NiCl 2 · 6H 2 O; 5 mg, NaMoO 4 · 2H 2 O; 5 mg, ZnSO 4 ; 30 mg, MnCl 2 · 6H 2 O; Further, Fe (III) -EDTA (iron in a complex state in which Fe (III) was chelated with ethylenediaminetetraacetic acid) was further added to the iron-added medium 8 at 0.84 g / L. In either case, the pH of the medium 8 was adjusted to 7.0 using a dilute hydrochloric acid aqueous solution.

[2.培養方法]
図1に示した培養装置1により培養を実施した。培養槽2は、外径75mm、高さ90mmのガラス製深底シャーレの内側を一価の陽イオン透過性のイオン交換膜(旭化成、K-192)3で仕切った二層式とし、一方を培養槽2a、他方を対極槽2bとした(図1参照)。培養槽2a、対極槽2bにはそれぞれ陽極4、陰極5として炭素板(40mm×40mm、4mm厚)を設置し、また培養槽2aには銀・塩化銀参照電極(HS-205C、東亜DKK社)9を設置した。これら3本の電極(陽極4、陰極5、参照電極9)を電位制御装置(POTENTIO/GALVANOSTAT model 110、扶桑製作所)6に結線することで電気培養槽2内の陽極4の電位を厳密に設定可能とした。培養に関しては培養槽2をアクリル製の嫌気ボックス7内に封入し、さらに嫌気ボックス7の全体を30℃に設定した陽光実験定温器(明文館器械興業株式会社)内部に設置した。嫌気ボックス7には常時窒素ガスを注入し(0.2L/min)、常時60-70μmol/m2・sの光を照射し、光嫌気条件を設定した。
[2. Culture method]
Cultivation was carried out using the culture apparatus 1 shown in FIG. The culture tank 2 is a two-layer system in which the inside of a glass petri dish with an outer diameter of 75 mm and a height of 90 mm is partitioned by a monovalent cation-permeable ion exchange membrane (Asahi Kasei, K-192) 3. The culture tank 2a was used as the counter electrode tank 2b (see FIG. 1). A carbon plate (40 mm x 40 mm, 4 mm thickness) is installed as an anode 4 and a cathode 5 in the culture tank 2a and the counter electrode tank 2b, respectively, and a silver / silver chloride reference electrode (HS-205C, Toa DKK) is installed in the culture tank 2a. ) 9 was installed. By connecting these three electrodes (anode 4, cathode 5 and reference electrode 9) to a potential control device (POTENTIO / GALVANOSTAT model 110, Fuso Seisakusho) 6, the potential of the anode 4 in the electric culture tank 2 is set strictly. It was possible. Regarding the culture, the culture tank 2 was enclosed in an acrylic anaerobic box 7, and the entire anaerobic box 7 was installed inside a positive sunlight incubator (Meibakukan Kikai Kogyo Co., Ltd.) set at 30 ° C. Nitrogen gas was always injected into the anaerobic box 7 (0.2 L / min), and 60-70 μmol / m 2 · s of light was constantly radiated to set anaerobic conditions.

[3.環境試料を用いた培養]
培養装置1により、環境試料に光照射、窒素ガス雰囲気下でFe(III)を連続的に供給して培養を行い、選択的に増殖した光合成微生物を単離したところ、その光合成微生物が18S rRNA gene の配列相同性からChlorella sorkiniana C212株と最近縁と推定される新規なクロレラであることが確認され、これをChlorella sp. H-1株(クロレラH-1株)とした。尚、クロレラH-1株は従属栄養的な生育において通常のクロレラと異なり、好気・嫌気に関わらず暗条件下では生育することができず、完全に光依存的であった。
[3. Culture using environmental samples]
The culture apparatus 1 was irradiated with light to an environmental sample, and Fe (III) was continuously supplied in a nitrogen gas atmosphere to culture and selectively propagated photosynthetic microorganisms were isolated. From the sequence homology of gene, it was confirmed that it was a new chlorella presumed to be closely related to Chlorella sorkiniana C212 strain, and this was designated as Chlorella sp. H-1 strain (Chlorella H-1 strain). The chlorella H-1 strain was different from normal chlorella in heterotrophic growth and could not grow under dark conditions regardless of aerobic or anaerobic, and was completely light-dependent.

[4.FeとクロレラH-1株の生育との関係]
次にFeとクロレラH-1株の生育との関係を解析するため、電気培養によりFe(II)/Fe(III) 量を制御しながら培養することを試みた。参照試料としてChlorella sorkiniana C212株を用いた。Chlorella sorkiniana C212株ではFe量制御による増殖は見られなかったが、クロレラH-1株ではFe(III)を連続供給することで、即ち、電気化学的な還元反応によりFe(III)から生成されたFe(II)を再生(酸化)することで増殖が促進された。
[4. Relationship between Fe and the growth of Chlorella H-1 strain]
Next, in order to analyze the relationship between Fe and the growth of Chlorella H-1 strain, an attempt was made to culture while controlling the amount of Fe (II) / Fe (III) by electroculture. Chlorella sorkiniana C212 strain was used as a reference sample. In Chlorella sorkiniana C212 strain, growth by controlling the amount of Fe was not observed, but in Chlorella H-1 strain, it was produced from Fe (III) by continuously supplying Fe (III), that is, by electrochemical reduction reaction. Regeneration (oxidation) of Fe (II) promoted proliferation.

以上より、本発明の培養方法を用いることで、環境試料中から、Fe(III)により光合成が活性化される光合成微生物を選択的に増殖させることが可能であることが確認された。   From the above, it was confirmed that by using the culture method of the present invention, it is possible to selectively grow photosynthetic microorganisms whose photosynthesis is activated by Fe (III) from environmental samples.

[実施例2]
培地8に含有されるFe(II)とFe(III)の比Fe(II)/Fe(III)量を電気化学的に制御し、クロレラH-1株の増殖への影響を解析することを試みた。鉄の酸化反応が生じる電位領域をもとにFe(II)をFe(III)に再生(酸化)する培養槽2aでは0.2V、鉄の還元反応が生じる電位領域をもとにFe(III)をFe(II)に再生(還元)する培養槽2aでは−0.5Vに電位を設定し、光嫌気電気培養装置1を用いて電気培養を実施した。図3に鉄酸化電位、鉄還元電位を設定した培養槽2aおよび対照実験として再生しない(電解しない)培養槽2aにおけるH-1株の生育を示す。図中の−■−は、Fe(II)をFe(III)に再生(酸化)しながら行ったもの、−▲−はFe(III)をFe(II)に再生(還元)しながら行ったもの、−◆−は再生を全く行っていないもの(電解していないもの)である。尚、図3の縦軸は分光光度計を用いて培地の660nmにおける吸光度を測定した値である。この測定値は、培地中に存在するクロレラH-1株の濃度を示す値であり、吸光度が大きくなるにつれてクロレラH-1株が増加していることになる。−■−だとH-1株の成育が促進されることが確認できた。つまり、クロレラH-1株ではFe(II)をFe(III)に再生(酸化)したサンプルにおいて再生しない(電解しない)場合と比較して増殖の促進がみられた。この結果より、クロレラH-1株が光合成の電子受容体として利用するFe(III)を連続供給することにより光合成が活性化され、クロレラH-1株の増殖が促進されることが確認された。
[Example 2]
The ratio Fe (II) / Fe (III) ratio of Fe (II) and Fe (III) contained in the medium 8 is controlled electrochemically, and the influence on the growth of Chlorella H-1 strain is analyzed. Tried. In the culture tank 2a that regenerates (oxidizes) Fe (II) to Fe (III) based on the potential region where iron oxidation occurs, Fe (III) is based on the potential region where iron reduction occurs. In the culture tank 2a that regenerates (reduces) to Fe (II), the potential was set to −0.5 V, and electroculturing was performed using the photo-anaerobic electroculturing apparatus 1. FIG. 3 shows the growth of the H-1 strain in the culture tank 2a in which the iron oxidation potential and iron reduction potential are set and in the culture tank 2a that is not regenerated (not electrolyzed) as a control experiment. In the figure,-■-is performed while regenerating (oxidizing) Fe (II) to Fe (III), and-▲-is performed while regenerating (reducing) Fe (III) to Fe (II). And-♦-are those which are not regenerated at all (not electrolyzed). In addition, the vertical axis | shaft of FIG. 3 is the value which measured the light absorbency in 660 nm of the culture medium using the spectrophotometer. This measured value is a value indicating the concentration of the chlorella H-1 strain present in the medium, and the chlorella H-1 strain increases as the absorbance increases. It was confirmed that the growth of the H-1 strain was promoted. In other words, in the Chlorella H-1 strain, growth was promoted as compared with the case where Fe (II) was regenerated (oxidized) to Fe (III) and not regenerated (no electrolysis). From this result, it was confirmed that the chlorella H-1 strain was activated by continuously supplying Fe (III) used as an electron acceptor of photosynthesis, and the growth of the chlorella H-1 strain was promoted. .

本発明にかかる光合成微生物の培養装置の構成例を示す図である。It is a figure which shows the structural example of the culture apparatus of the photosynthetic microorganisms concerning this invention. 鉄と光合成系の関係を示す図である。It is a figure which shows the relationship between iron and a photosynthetic system. 再生なし(電解なし)(◆)、鉄の再生(酸化)(■)、鉄の再生(還元)(▲)の各状況下におけるクロレラH-1株の増殖活性の様子を示すグラフである。It is a graph which shows the mode of the growth activity of Chlorella H-1 stock | strain under each condition of no regeneration (no electrolysis) (♦), iron regeneration (oxidation) (■), and iron regeneration (reduction) (▲). 太陽エネルギーの有効利用の概念を示す図である。It is a figure which shows the concept of the effective utilization of solar energy.

符号の説明Explanation of symbols

1 培養装置
2 電気培養槽
2a 培養槽
2b 対極槽
3 イオン交換膜
4 陽極
5 陰極
6 電位制御装置
7 嫌気ボックス
8 培地
DESCRIPTION OF SYMBOLS 1 Culture apparatus 2 Electric culture tank 2a Culture tank 2b Counter electrode tank 3 Ion exchange membrane 4 Anode 5 Cathode 6 Potential control apparatus 7 Anaerobic box 8 Medium

Claims (5)

Fe(II)もしくはFe(III)をその光合成反応に利用する一種もしくは複数種の光合成微生物を含む試料を培地に含有させ、前記培地に光を照射しながら前記培地に含有されるFe(II)とFe(III)の比Fe(II)/Fe(III)を電気化学的に制御して、前記光合成微生物の増殖を促進させることを特徴とする光合成微生物の培養方法。   A sample containing one or more types of photosynthetic microorganisms using Fe (II) or Fe (III) in the photosynthetic reaction is contained in the medium, and Fe (II) contained in the medium while irradiating the medium with light. A method for cultivating a photosynthetic microorganism, wherein the ratio of Fe (II) / Fe (III) to Fe (III) is electrochemically controlled to promote the growth of the photosynthetic microorganism. 嫌気状態下で行うことを特徴とする請求項1に記載の光合成微生物の培養方法。   The method for culturing photosynthetic microorganisms according to claim 1, wherein the method is carried out under anaerobic conditions. 前記光合成微生物は受託番号FERM P−20984のクロレラであることを特徴とする請求項1または2に記載の光合成微生物の培養方法。   The method for culturing a photosynthetic microorganism according to claim 1 or 2, wherein the photosynthetic microorganism is a chlorella having an accession number of FERM P-20984. 前記光合成微生物はRhodovulum iodosum、Rhodovulum robiginosum、Rhodopseudomonas palustris strain TIE-1であることを特徴とする請求項1または2に記載の光合成微生物の培養方法。   The method for culturing a photosynthetic microorganism according to claim 1 or 2, wherein the photosynthetic microorganism is Rhodovulum iodosum, Rhodovulum robiginosum, or Rhodopseudomonas palustris strain TIE-1. 光透過性材料によって形成された電気培養槽と、前記電気培養槽を培養槽と対極槽の二層に仕切るイオン交換膜と、前記電気培養槽内に設けられた陽極と、前記対極槽内に設けられた陰極と、前記陽極および前記陰極を介して前記電気培養槽中の培地の電位を制御する電位制御装置と、光を透過させつつ前記電気培養槽の周囲を嫌気状態に保つ嫌気ボックスとからなり、Fe(II)とFe(III)のうち少なくとも一方を含む前記培地中に、Fe(II)もしくはFe(III)をその光合成反応に利用する一種もしくは複数種の光合成微生物を含む試料を含有させ、嫌気状態下、前記培地に光を照射しながら前記培地中のFe(II)とFe(III)の比Fe(II)/Fe(III)を電気化学的に制御して前記光合成微生物の増殖を促進させることを特徴とする光合成微生物の培養装置。   An electroculture tank formed of a light transmissive material, an ion exchange membrane that divides the electroculture tank into two layers of a culture tank and a counter electrode tank, an anode provided in the electroculture tank, and a counter electrode tank A cathode provided; a potential control device that controls the potential of the medium in the electric culture tank through the anode and the cathode; and an anaerobic box that keeps the periphery of the electric culture tank in an anaerobic state while transmitting light. A sample containing one or more kinds of photosynthetic microorganisms using Fe (II) or Fe (III) in the photosynthetic reaction in the medium containing at least one of Fe (II) and Fe (III). The ratio of Fe (II) and Fe (III) in the medium is controlled electrochemically while irradiating the medium with light under anaerobic conditions, and the photosynthetic microorganism An apparatus for cultivating photosynthetic microorganisms, characterized by promoting the growth of potato.
JP2006238729A 2005-09-05 2006-09-04 Method for culturing photosynthetic microorganisms Expired - Fee Related JP5027462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006238729A JP5027462B2 (en) 2005-09-05 2006-09-04 Method for culturing photosynthetic microorganisms

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005256838 2005-09-05
JP2005256838 2005-09-05
JP2006238729A JP5027462B2 (en) 2005-09-05 2006-09-04 Method for culturing photosynthetic microorganisms

Publications (2)

Publication Number Publication Date
JP2007089580A true JP2007089580A (en) 2007-04-12
JP5027462B2 JP5027462B2 (en) 2012-09-19

Family

ID=37975949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006238729A Expired - Fee Related JP5027462B2 (en) 2005-09-05 2006-09-04 Method for culturing photosynthetic microorganisms

Country Status (1)

Country Link
JP (1) JP5027462B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207192A (en) * 2009-03-12 2010-09-24 Central Res Inst Of Electric Power Ind Method and apparatus for electric culture
JP2010207193A (en) * 2009-03-12 2010-09-24 Central Res Inst Of Electric Power Ind Electric culture method and electric culture apparatus
JP2014500031A (en) * 2010-12-21 2014-01-09 サンボ インターナショナル エスタブリッシュメント Method for increasing the content of CoQ10 and CoQH2 in photosynthetic microorganisms
KR101402133B1 (en) * 2012-05-31 2014-06-03 명지대학교 산학협력단 Removing method of the h2s and co2 using photosynthetic microalgae
CN110357273A (en) * 2019-07-24 2019-10-22 中国科学院重庆绿色智能技术研究院 A kind of fuel-cell device and ammonia nitrogen removal and ferric iron regeneration method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001103960A (en) * 1999-10-07 2001-04-17 Central Res Inst Of Electric Power Ind Electric culture of bacteria in the anaerobic environment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001103960A (en) * 1999-10-07 2001-04-17 Central Res Inst Of Electric Power Ind Electric culture of bacteria in the anaerobic environment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207192A (en) * 2009-03-12 2010-09-24 Central Res Inst Of Electric Power Ind Method and apparatus for electric culture
JP2010207193A (en) * 2009-03-12 2010-09-24 Central Res Inst Of Electric Power Ind Electric culture method and electric culture apparatus
JP2014500031A (en) * 2010-12-21 2014-01-09 サンボ インターナショナル エスタブリッシュメント Method for increasing the content of CoQ10 and CoQH2 in photosynthetic microorganisms
US9376660B2 (en) 2010-12-21 2016-06-28 Sanbo International Establishment Method for increasing the CoQ10 and CoQH2 content in phototrophic microorganisms
KR101402133B1 (en) * 2012-05-31 2014-06-03 명지대학교 산학협력단 Removing method of the h2s and co2 using photosynthetic microalgae
CN110357273A (en) * 2019-07-24 2019-10-22 中国科学院重庆绿色智能技术研究院 A kind of fuel-cell device and ammonia nitrogen removal and ferric iron regeneration method
CN110357273B (en) * 2019-07-24 2023-08-04 中国科学院重庆绿色智能技术研究院 Fuel cell device and ammonia nitrogen removal and ferric iron regeneration method

Also Published As

Publication number Publication date
JP5027462B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
Elshobary et al. Recent insights into microalgae-assisted microbial fuel cells for generating sustainable bioelectricity
Xiao et al. Applications and perspectives of phototrophic microorganisms for electricity generation from organic compounds in microbial fuel cells
Schröder et al. Microbial electrochemistry and technology: terminology and classification
US10522861B2 (en) Electroactive cultures and apparatuses therefor
Lovley Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination
Strik et al. Solar energy powered microbial fuel cell with a reversible bioelectrode
Gude et al. Beneficial bioelectrochemical systems for energy, water, and biomass production
NL1031147C2 (en) Device comprising a new cathode system and method for generating electrical energy with the aid of this.
JP5027462B2 (en) Method for culturing photosynthetic microorganisms
Al-Sahari et al. Green approach and strategies for wastewater treatment using bioelectrochemical systems: A critical review of fundamental concepts, applications, mechanism, and future trends
Ahirwar et al. Photosynthetic microbial fuel cell for bioenergy and valuable production: A review of circular bio-economy approach
Rathinavel et al. Algal microbial fuel cells—nature’s perpetual energy resource
Adlercreutz et al. Oxygen supply to immobilized cells: 1. Oxygen production by immobilized Chlorella pyrenoidosa
Zhou et al. Electron transfer of Pseudomonas aeruginosa CP1 in electrochemical reduction of nitric oxide
CN106904728B (en) Light-driven wastewater denitrification method
WO2016207338A1 (en) Solargas system operated in multiple modes
EP3075884A1 (en) System and method for bio-electrochemical water oxidation
Mona et al. Prolonged hydrogen production by Nostoc in photobioreactor and multi-stage use of the biological waste for column biosorption of some dyes and metals
Chatzitakis et al. Hydrogen production using a photoelectrocatalytic–enzymatic hybrid system
JP3777534B2 (en) Bacterial electroculture method in anaerobic environment
Lojou et al. Electrocatalytic Reactions at Hydrogenase‐Modified Electrodes and Their Applications to Biosensors: From the Isolated Enzymes to the Whole Cells
CN109516557B (en) Large-area electrode microorganism double-fluidized bed reactor and wastewater treatment method
Syed et al. Electroactive biofilm and electron transfer in microbial electrochemical systems
Pavithra et al. Bioelectrochemical Systems for Remediation and Recovery of Nutrients From Industrial Wastewater
Parambath et al. The Multifaceted Microalgal Approach to Wastewater Treatment to Generate Energy and Essential Chemicals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5027462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees