JP2007088061A - Exposure apparatus - Google Patents

Exposure apparatus Download PDF

Info

Publication number
JP2007088061A
JP2007088061A JP2005272621A JP2005272621A JP2007088061A JP 2007088061 A JP2007088061 A JP 2007088061A JP 2005272621 A JP2005272621 A JP 2005272621A JP 2005272621 A JP2005272621 A JP 2005272621A JP 2007088061 A JP2007088061 A JP 2007088061A
Authority
JP
Japan
Prior art keywords
container
exposure apparatus
optical system
light
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005272621A
Other languages
Japanese (ja)
Inventor
Jun Ito
潤 伊藤
Masahito Shinohara
正仁 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005272621A priority Critical patent/JP2007088061A/en
Publication of JP2007088061A publication Critical patent/JP2007088061A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70991Connection with other apparatus, e.g. multiple exposure stations, particular arrangement of exposure apparatus and pre-exposure and/or post-exposure apparatus; Shared apparatus, e.g. having shared radiation source, shared mask or workpiece stage, shared base-plate; Utilities, e.g. cable, pipe or wireless arrangements for data, power, fluids or vacuum

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exposure apparatus which is not easily influenced by noise from a light source and assures excellent exposure performance. <P>SOLUTION: The exposure apparatus for transferring a pattern on a reticle to a substrate comprises an EUV light source 110 including a plasma generating mechanism, a light collecting mirror 113 for collecting the light radiated from the plasma, a first vessel 10 accommodating the plasma generating mechanism, and the light collecting mirror and having a first aperture 116 which is almost matched with the collecting point of lights collected by the light collecting mirror; a lighting optical system 130 for guiding the light 120 from the EUV light source to a reticle 170; a projection optical system 180 for projecting the light reflected from the reticle to the substrate based on the scale-down system; and second vessels 11, 12 having a second aperture for guiding the light to the lighting optical system from the EUV light source. In this exposure apparatus, the first vessel and the second vessel are spatially coupled via an insulting material 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等の微細パターンを有する各種デバイスやマイクロメカニクスで用いる微細パターンの製造に用いられる露光装置に関する。特に、極端紫外(EUV:extreme ultraviolet)光を光源として利用する露光装置のノイズ対策に関する。   The present invention relates to various devices having fine patterns such as semiconductor chips such as IC and LSI, liquid crystal panels, CCDs, thin film magnetic heads, micromachines, and the like and exposure apparatuses used for producing fine patterns used in micromechanics. In particular, the present invention relates to noise countermeasures for an exposure apparatus that uses extreme ultraviolet (EUV) light as a light source.

フォトリソグラフィ(焼き付け)技術を用いて半導体メモリや論理回路などの微細な半導体素子を製造する際に、縮小投影露光装置が従来から使用されている。縮小投影露光装置は、レチクル(またはマスク)に描画された回路パターンを投影光学系によってウエハ等に投影して回路パターンを転写する。
縮小投影露光装置で転写できる最小の寸法(解像度)は、露光に用いる光の波長に比例し、投影光学系の開口数(NA)に反比例する。従って、波長を短くすればするほど解像度はよくなる。このため、近年の半導体素子の微細化への要求に伴い露光光の短波長化が進められている。用いられる紫外線光の波長は、超高圧水銀ランプ(i線(波長約365nm))、KrFエキシマレーザー(波長約248nm)、ArFエキシマレーザー(波長約193nm)と短くなってきた。
2. Description of the Related Art A reduction projection exposure apparatus has been conventionally used when a fine semiconductor element such as a semiconductor memory or a logic circuit is manufactured by using a photolithography technique. The reduction projection exposure apparatus projects a circuit pattern drawn on a reticle (or mask) onto a wafer or the like by a projection optical system and transfers the circuit pattern.
The minimum dimension (resolution) that can be transferred by the reduction projection exposure apparatus is proportional to the wavelength of light used for exposure and inversely proportional to the numerical aperture (NA) of the projection optical system. Therefore, the shorter the wavelength, the better the resolution. For this reason, the wavelength of exposure light has been shortened in accordance with the recent demand for miniaturization of semiconductor elements. The wavelength of ultraviolet light used has been shortened to ultra-high pressure mercury lamp (i-line (wavelength: about 365 nm)), KrF excimer laser (wavelength: about 248 nm), and ArF excimer laser (wavelength: about 193 nm).

しかし、半導体素子は急速に微細化しており、紫外線光を用いたリソグラフィでは限界がある。そこで、0.1μm以下の非常に微細な回路パターンを効率よく転写するために、紫外線光よりも更に波長が短い、波長10nm乃至15nm程度の極端紫外線(EUV)光を用いた縮小投影露光装置が開発されている。以下、この露光装置を「EUV露光装置」と称する。EUV露光装置は、光源として、レーザープラズマ(LPP)方式の光源(LPP光源)や、ディスチャージ(DPP)方式の光源(DPP光源)を典型的に使用する。   However, semiconductor elements are rapidly miniaturized, and there is a limit in lithography using ultraviolet light. Therefore, in order to efficiently transfer a very fine circuit pattern of 0.1 μm or less, there is a reduction projection exposure apparatus using extreme ultraviolet (EUV) light having a wavelength shorter than that of ultraviolet light and having a wavelength of about 10 nm to 15 nm. Has been developed. Hereinafter, this exposure apparatus is referred to as an “EUV exposure apparatus”. An EUV exposure apparatus typically uses a laser plasma (LPP) light source (LPP light source) or a discharge (DPP) light source (DPP light source) as a light source.

LLP光源は、ガスジェット等で真空容器内に供給されるターゲット材(金属薄膜、不活性ガス、液滴など)に高強度のパルスレーザーを照射し、高温のプラズマを発生させる。かかるプラズマから放射される、例えば、波長13nm程度のEUV光を利用する。一方、DPP光源は、電極間に高電圧を印加すると共に、キセノン等のガスを流して放電させることでプラズマを生成し、EUV光を発生させる。これらのEUV光源には、EUV光を効率よく利用するために、プラズマからのEUV光を集光する集光ミラーが設けられている。   The LLP light source irradiates a target material (metal thin film, inert gas, droplets, etc.) supplied into the vacuum vessel with a gas jet or the like with a high-intensity pulse laser to generate high-temperature plasma. For example, EUV light having a wavelength of about 13 nm, which is emitted from such plasma, is used. On the other hand, the DPP light source applies a high voltage between the electrodes and generates a plasma by flowing a gas such as xenon and discharging it to generate EUV light. These EUV light sources are provided with a condensing mirror that condenses EUV light from plasma in order to efficiently use EUV light.

EUV光は空気や窒素等に吸収され易く,また、ミラー表面が高分子有機ガスにより汚染され、あるいはミラー表面が酸化されて反射率が低下する。このため、EUV露光装置は、照明光学系、投影光学系、レチクル及び被露光体を真空容器に収納し、その内部を真空又は減圧環境に維持した状態で露光を行っている。   EUV light is easily absorbed by air, nitrogen, etc., and the mirror surface is contaminated with a polymer organic gas, or the mirror surface is oxidized and the reflectivity is lowered. Therefore, the EUV exposure apparatus performs exposure in a state where an illumination optical system, a projection optical system, a reticle, and an object to be exposed are housed in a vacuum container and the inside thereof is maintained in a vacuum or a reduced pressure environment.

LPP光源は、圧電素子などを駆動源として用いて高い周波数でターゲットを供給するターゲット供給機構を用いることから、振動ノイズ、高周波ノイズを発生させる。またDPP光源においては、プラズマを発生させるためにアノード、カソード電極間に数kVの高電圧を印加し、スイッチングさせることにより高周波ノイズを発生する。この高周波ノイズにより、またプラズマ自体が空間電位を持つことから、光源の真空容器は、それらの影響を受けて光源の接地(アース)電位が変動を起こす。また、その金属の真空容器に接続されている照明光学系、投影光学系、レチクル及び被露光体の真空容器も同様に影響を受ける。このことはすなわち、真空容器内に配置されている回路、検出器類、例えば光量を検出する光量モニターなどへ悪影響を及ぼすこととなる。   Since the LPP light source uses a target supply mechanism that supplies a target at a high frequency using a piezoelectric element or the like as a driving source, vibration noise and high frequency noise are generated. In the DPP light source, high voltage noise is generated by applying a high voltage of several kV between the anode and the cathode electrodes and switching them in order to generate plasma. Due to the high-frequency noise and the plasma itself has a spatial potential, the vacuum vessel of the light source is affected by the influence and the ground potential of the light source fluctuates. Also, the illumination optical system, projection optical system, reticle, and vacuum container of the object to be exposed connected to the metal vacuum container are similarly affected. In other words, this adversely affects circuits and detectors arranged in the vacuum vessel, for example, a light amount monitor for detecting the light amount.

そこで、真空容器内のノイズの低減方法についての提案が従来からなされている(例えば、特許文献1参照)。特許文献1に開示されているEUV露光装置は、複数圧力ゾーンをPO、RS、WS空間で分け、それぞれ異なる圧力による複数ゾーンにし、ゾーニング部材の指示トレイと真空容器から振動絶縁され、第1の圧力ゾーンと第2の圧力ゾーン間に振動絶縁かつ圧力差を維持するコンダクタンス制限部材を設けることで、振動ノイズの低減を行っている。
米国特許第6333775号公報
In view of this, a proposal for a method of reducing noise in a vacuum vessel has been made conventionally (see, for example, Patent Document 1). The EUV exposure apparatus disclosed in Patent Document 1 divides a plurality of pressure zones into PO, RS, and WS spaces, forms a plurality of zones with different pressures, and is vibration-insulated from the indication tray of the zoning member and the vacuum container, Vibration noise is reduced by providing a conductance limiting member that isolates vibration and maintains a pressure difference between the pressure zone and the second pressure zone.
US Pat. No. 6,333,775

上述のようにEUV光源においては、プラズマの生成される空間電位と圧電素子などを用いて高速な周波数でターゲットを供給するターゲット供給機構から高周波ノイズが発生する。また、DPP光源においては、電極間に印加した数kVの高電圧をスイッチングすることにより高周波ノイズが発生する。しかしながら、特許文献1は、EUV露光装置内の振動に関するノイズを低減するものである。上記高周波ノイズの除去は行っていない。そのため、EUV露光装置の真空容器内に配置して使用している検出器から正確な情報が得られなくなってしまう。換言すれば、光源から発生したノイズが、光源の真空容器を伝わり、照明光学系、投影光学系、レチクル及び被露光体の真空容器へも影響を及ぼしている。従って、露光装置内に配置されている検出器の検出結果に誤差が含まれてしまうため、EUV露光装置の正確な情報を得ることができない。その結果、結像性能や、重ね合わせ精度の低下及びスループットなどの露光性能の低下を招くことになり、精度の高い露光を行うことができなくなる。また、結果としてコストの上昇の原因ともなる。
そこで、本発明は、光源からのノイズの影響を受けにくい、優れた露光性能を発揮することができる露光装置を提供することを目的とする。
As described above, in an EUV light source, high-frequency noise is generated from a target supply mechanism that supplies a target at a high speed using a space potential generated by plasma and a piezoelectric element. In the DPP light source, high-frequency noise is generated by switching a high voltage of several kV applied between the electrodes. However, Patent Document 1 is intended to reduce noise related to vibration in the EUV exposure apparatus. The high frequency noise is not removed. For this reason, accurate information cannot be obtained from the detector used by being disposed in the vacuum container of the EUV exposure apparatus. In other words, noise generated from the light source travels through the vacuum container of the light source, and also affects the illumination optical system, the projection optical system, the reticle, and the vacuum container of the object to be exposed. Therefore, an error is included in the detection result of the detector arranged in the exposure apparatus, and thus accurate information of the EUV exposure apparatus cannot be obtained. As a result, the imaging performance, the overlay accuracy, and the exposure performance such as the throughput are deteriorated, so that the exposure with high accuracy cannot be performed. As a result, it also causes an increase in cost.
Therefore, an object of the present invention is to provide an exposure apparatus that can exhibit excellent exposure performance that is not easily affected by noise from a light source.

上記の課題を解決するための露光装置は、プラズマを用いて露光光を発光する発光装置と、前記発光装置の少なくとも一部が内部に配置される第1の容器と、前記発光装置からの露光光をレチクルへ導くための照明光学系の少なくとも一部が内部に配置される第2の容器とを備え、前記第1の容器内の空間と前記第2の容器内の空間がそれぞれの容器に設けられた開口を介して接続され、各容器の間には絶縁体が配置されることを特徴としている。   An exposure apparatus for solving the above problems includes a light emitting apparatus that emits exposure light using plasma, a first container in which at least a part of the light emitting apparatus is disposed, and exposure from the light emitting apparatus. A second container in which at least a part of an illumination optical system for guiding light to the reticle is disposed, and the space in the first container and the space in the second container are in each container It is connected through the provided opening, and an insulator is arrange | positioned between each container, It is characterized by the above-mentioned.

本発明によれば、光源からのノイズの影響を受けにくい、優れた露光性能を発揮することができる露光装置を提供することできる。   ADVANTAGE OF THE INVENTION According to this invention, the exposure apparatus which can exhibit the outstanding exposure performance which is hard to receive to the influence of the noise from a light source can be provided.

本実施形態では、EUV光源部、照明光学系部、及び投影光学系部が各々別の真空容器に配置され、各々の真空容器間は絶縁体を介して結合される。真空容器間は、筒状の金属ハウジングで接続してもよい。その場合、真空容器と金属ハウジング間に絶縁体を配し真空容器と金属ハウジングを絶縁体で締結するとよい。
本発明の更なる目的またはその他の特徴は、以下、添付図面を参照して説明される好ましい実施例によって明らかにされるであろう。
In the present embodiment, the EUV light source unit, the illumination optical system unit, and the projection optical system unit are disposed in separate vacuum containers, and the vacuum containers are coupled via an insulator. You may connect between vacuum vessels with a cylindrical metal housing. In that case, an insulator may be disposed between the vacuum vessel and the metal housing, and the vacuum vessel and the metal housing may be fastened with the insulator.
Further objects and other features of the present invention will become apparent from the preferred embodiments described below with reference to the accompanying drawings.

以下、添付図面を参照して、本発明の一実施例に係る露光装置について説明する。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。ここで、図1は、本実施例に係る露光装置の構成を示す概略断面図である。図1の露光装置は、EUV光源真空容器10、照明光学系真空容器11、12、及び投影光学系真空容器13を有し、これらを接続している接続部1を有する。接続部1の詳細は、図2に示す。この接続部1は絶縁体2を間に挟み込み、真空容器間が導通しないよう、それぞれ真空容器が絶縁されている。ここには図示していないがそれぞれの真空容器にはターボポンプ、ドライポンプが接続されていて、真空排気が行えるようになっている。   An exposure apparatus according to an embodiment of the present invention will be described below with reference to the accompanying drawings. In addition, in each figure, the same reference number is attached | subjected about the same member and the overlapping description is abbreviate | omitted. Here, FIG. 1 is a schematic sectional view showing the arrangement of the exposure apparatus according to the present embodiment. The exposure apparatus of FIG. 1 has an EUV light source vacuum container 10, illumination optical system vacuum containers 11, 12, and a projection optical system vacuum container 13, and has a connecting portion 1 that connects them. Details of the connecting portion 1 are shown in FIG. The connection portion 1 sandwiches the insulator 2 therebetween, and the vacuum vessels are insulated so that the vacuum vessels are not electrically connected. Although not shown here, a turbo pump and a dry pump are connected to each vacuum vessel so that evacuation can be performed.

図1の露光装置は、露光用の照明光としてEUV光(例えば、波長13.5nm)を用いる。そして、例えば、ステップ・アンド・リピート方式やステップ・アンド・スキャン方式でレチクル170に形成された回路パターンを半導体ウエハ等の被処理体190に投影露光する。かかる露光装置は、サブミクロンやクオーターミクロン以下のリソグラフィ工程に好適である。以下、本実施形態ではステップ・アンド・スキャン方式の露光装置(「スキャナ」とも呼ばれる)を例に説明する。「ステップ・アンド・スキャン方式」とは、レチクルに対してウエハを連続的にスキャン(走査)してレチクルパターンをウエハに露光し、1ショットの露光終了後ウエハをステップ移動して、次の露光領域に移動する露光方法である。なお、「ステップ・アンド・リピート方式」は、ウエハの一括露光ごとにウエハをステップ移動して次のショットの露光領域に移動する露光方法である。   The exposure apparatus of FIG. 1 uses EUV light (for example, wavelength 13.5 nm) as illumination light for exposure. Then, for example, the circuit pattern formed on the reticle 170 is projected and exposed to the object 190 such as a semiconductor wafer by the step-and-repeat method or the step-and-scan method. Such an exposure apparatus is suitable for a lithography process of submicron or quarter micron or less. Hereinafter, in this embodiment, a step-and-scan exposure apparatus (also referred to as a “scanner”) will be described as an example. In the “step and scan method”, the wafer is continuously scanned (scanned) with respect to the reticle to expose the reticle pattern onto the wafer. After one shot of exposure is completed, the wafer is stepped to the next exposure. This is an exposure method for moving to an area. The “step-and-repeat method” is an exposure method in which the wafer is stepped and moved to the exposure area of the next shot for every batch exposure of the wafer.

図1の露光装置は、EUV光源(発光装置)110と、照明光学系130と、レチクル170を載置するレチクルステージ174と、投影光学系180と、被処理体190を載置するウエハステージとを有する。
また、EUV光は、大気に対する透過率が低く、残留ガス(高分子有機ガス)成分との反応によりコンタミを生成してしまう。そのため、図1に示すように、少なくとも、EUV光が通る光路中(すなわち、光学系全体)は真空環境(VC)となっている。
The exposure apparatus in FIG. 1 includes an EUV light source (light emitting device) 110, an illumination optical system 130, a reticle stage 174 on which a reticle 170 is placed, a projection optical system 180, and a wafer stage on which an object 190 is placed. Have
Further, EUV light has a low transmittance with respect to the atmosphere and generates contamination due to a reaction with a residual gas (polymer organic gas) component. Therefore, as shown in FIG. 1, at least in the optical path through which EUV light passes (that is, the entire optical system) is a vacuum environment (VC).

EUV光源部110はレーザープラズマ光源を使用するもので、不図示の励起レーザー光源及び集光光学系を含む励起レーザー部を有する。また、ノズル111、回収部112、集光ミラー113、デブリ除去部材114、波長フィルタ115、アパーチャ116を有する。なお、図1に示すEUV光源110は、DPP光源に置換することも可能である。ターゲット供給機構から供給されるターゲット材にレーザー光LBを照射し、プラズマEPを生成する。かかるプラズマEPからEUV光120が放射される。このターゲット供給機構はたとえば圧電素子などが用いられ、数kHzくらいの発光パルスに同期した、またはそれらの逓倍化した周波数が駆動に用いられることから、ノイズを発生させ、それが光源真空容器に影響を及ぼす。また従来例の真空容器は金属同士が接続されていたことから、その影響は照明光学系真空容器、投影光学系真空容器へと影響を及ぼし、真空容器内部へ設置されている回路への影響を与えていた。   The EUV light source unit 110 uses a laser plasma light source, and has an excitation laser unit (not shown) including an excitation laser light source and a condensing optical system. Further, the nozzle 111, the collection unit 112, the condensing mirror 113, the debris removal member 114, the wavelength filter 115, and the aperture 116 are included. Note that the EUV light source 110 shown in FIG. 1 can be replaced with a DPP light source. The target material supplied from the target supply mechanism is irradiated with laser light LB to generate plasma EP. EUV light 120 is emitted from the plasma EP. This target supply mechanism uses, for example, a piezoelectric element, etc. Since the frequency synchronized with a light emission pulse of about several kHz or a multiplied frequency thereof is used for driving, noise is generated, which affects the light source vacuum vessel. Effect. In addition, since the conventional vacuum vessels were connected to each other, the effect on the illumination optical system vacuum vessel and the projection optical system vacuum vessel affected the circuit installed inside the vacuum vessel. Was giving.

本実施例ではこれらノイズが他の真空容器内の検出器等に影響を及ぼすことを軽減するために、次のように構成する。すなわち、図1のようにEUV光源真空容器10と照明光学系真空容器11、12と投影光学系真空容器13をそれぞれ独立した真空容器として配置した。真空容器10と真空容器11はそれぞれ開口を有し、開口を介して各容器内の空間は結合されている。また真空容器12と真空容器13はそれぞれ開口を有し、開口を介して各容器内の空間は結合されている。また真空容器10と11間及び真空容器12と13間の接続部1は、図2に示すように絶縁体2、3を配置することにより、それぞれの真空容器自体では電気的接続をなくすように配置した。ここで、真空容器11と真空容器12は、同一の容器にしてもよいが、コンタミの影響を軽減するために個別に構成している。照明光学系130のミラー155は投影光学系真空容器13内に配置されており、必ずしも照明光学系真空容器11、12に照明光学系の構成要素がすべて配置される必要はない。このことは、光源真空容器および投影光学系真空容器についても同様であり、構成要素の一部が別の容器に配置されていてもよい。EUV光源真空容器10と照明光学系真空容器11とは金属ハウジング104を介して結合した。その際、絶縁部1は照明光学系真空容器11と金属ハウジング104との間に配した。   In the present embodiment, in order to reduce the influence of these noises on detectors and the like in other vacuum vessels, the following configuration is adopted. That is, as shown in FIG. 1, the EUV light source vacuum container 10, the illumination optical system vacuum containers 11 and 12, and the projection optical system vacuum container 13 are arranged as independent vacuum containers. Each of the vacuum vessel 10 and the vacuum vessel 11 has an opening, and the spaces in each vessel are coupled through the opening. Each of the vacuum container 12 and the vacuum container 13 has an opening, and the spaces in each container are coupled through the opening. Further, the connection part 1 between the vacuum vessels 10 and 11 and between the vacuum vessels 12 and 13 is arranged such that the insulators 2 and 3 are arranged as shown in FIG. Arranged. Here, the vacuum vessel 11 and the vacuum vessel 12 may be the same vessel, but are individually configured to reduce the influence of contamination. The mirror 155 of the illumination optical system 130 is disposed in the projection optical system vacuum container 13, and it is not always necessary that all the components of the illumination optical system are disposed in the illumination optical system vacuum containers 11 and 12. The same applies to the light source vacuum container and the projection optical system vacuum container, and some of the components may be arranged in another container. The EUV light source vacuum vessel 10 and the illumination optical system vacuum vessel 11 were coupled via a metal housing 104. At that time, the insulating portion 1 was disposed between the illumination optical system vacuum vessel 11 and the metal housing 104.

図2は図1の真空容器の接続部1を詳細の示した図である。2つの金属フランジ4を絶縁体2(例えば、セラミック板)で挟み込み、絶縁体3を介してボルト5により締めこんでいる。このようにすることにより、電気的接続はない状態となっている。絶縁体としては、導電性がなく、真空に影響を与えない、脱ガスの少ない材料であることが条件として挙げられる。   FIG. 2 is a view showing the details of the connecting portion 1 of the vacuum vessel of FIG. Two metal flanges 4 are sandwiched between insulators 2 (for example, ceramic plates) and tightened with bolts 5 via the insulators 3. By doing so, there is no electrical connection. The insulator may be a material that is not electrically conductive, does not affect the vacuum, and is less degassed.

図3は図1、2のような形でそれぞれ電気的に独立した真空容器の電気的接続図を示したものである。ここでは回路内でのノイズ対策の実施例をあげている。EUV光源真空容器10、照明光学系真空容器11、12、及び投影光学系真空容器13の、それぞれの容器内には駆動回路6、及び検出用回路7、8が配置されている。このEUV光源真空容器10、照明光学系真空容器11、12、投影光学系真空容器13は図示していないが、それぞれ電線が接続され、接地(アース)27へ接続されている。EUV光源真空容器10は光源回路BOX17へ接続され、内部電源回路18のGND部(G)はフレーム24(フレームグランド)から接地27(アース)へと接続されている。もう一方の電源Vはフェライトビーズ25及びセラミックコンデンサ26を介してフレームグランド24へ接続されている。照明光学系真空容器11、12、及び投影光学系真空容器13は検出器用回路BOX16へ接続される。検出器用回路BOX16の内部は電源回路19、アナログ回路20、デジタル回路21と分けられて、それぞれ異なる経路でフレームグランド23から接地27(アース)へと接続されている。この実施例においては、各回路のGND点の電位を一定にするため、各回路のGND点を一点に集め接続するようにしている。   FIG. 3 shows an electrical connection diagram of the vacuum vessels that are electrically independent of each other as shown in FIGS. Here, an example of noise countermeasures in the circuit is given. A drive circuit 6 and detection circuits 7 and 8 are arranged in each of the EUV light source vacuum container 10, the illumination optical system vacuum containers 11 and 12, and the projection optical system vacuum container 13. The EUV light source vacuum container 10, the illumination optical system vacuum containers 11 and 12, and the projection optical system vacuum container 13 are not shown, but are each connected to an electric wire and connected to a ground (earth) 27. The EUV light source vacuum container 10 is connected to the light source circuit BOX 17, and the GND part (G) of the internal power supply circuit 18 is connected from the frame 24 (frame ground) to the ground 27 (earth). The other power source V is connected to the frame ground 24 via the ferrite bead 25 and the ceramic capacitor 26. The illumination optical system vacuum containers 11 and 12 and the projection optical system vacuum container 13 are connected to a detector circuit BOX 16. The inside of the detector circuit BOX 16 is divided into a power supply circuit 19, an analog circuit 20, and a digital circuit 21, which are connected from a frame ground 23 to a ground 27 (earth) through different paths. In this embodiment, in order to make the potential of the GND point of each circuit constant, the GND points of each circuit are collected and connected to one point.

このように真空容器間における電気接続を切断し、それぞれ独立した配線で接地(アース)接続し、真空容器内に配置されている回路もそれぞれ独立した経路で接続する。これにより光源からのノイズの影響を受けにくい、優れた露光性能を発揮することができる露光装置を提供することできる。
以上、本発明の好ましい実施例について説明したが、本発明はこれらの実施例に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。
In this way, the electrical connection between the vacuum containers is cut, and grounding (earth) connection is made with independent wirings, and circuits arranged in the vacuum containers are also connected with independent paths. Accordingly, it is possible to provide an exposure apparatus that can exhibit excellent exposure performance that is not easily affected by noise from the light source.
The preferred embodiments of the present invention have been described above, but the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist.

[デバイス製造の実施例]
次に、この露光装置を利用した微小デバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造プロセスを説明する。
図4は半導体デバイスの製造のフローを示す。
ステップ1(回路設計)では半導体デバイスの回路設計を行う。ステップ2(マスク製作)では設計したパターンを形成したマスクを製作する。
一方、ステップ3(ウエハ製造)ではシリコン等の材料を用いてウエハを製造する。ステップ4(ウエハプロセス)は前工程と呼ばれ、上記用意したマスクを設置した露光装置とウエハを用いて、リソグラフィ技術によってウエハ上に実際の回路を形成する。
次のステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作製されたウエハを用いて半導体チップ化する工程である。後工程は、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の組み立て工程を含む。ステップ6(検査)ではステップ5で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、ステップ7でこれを出荷する。
[Example of device manufacturing]
Next, a manufacturing process of a micro device (a semiconductor chip such as an IC or LSI, a liquid crystal panel, a CCD, a thin film magnetic head, a micromachine, etc.) using this exposure apparatus will be described.
FIG. 4 shows a flow of manufacturing a semiconductor device.
In step 1 (circuit design), a semiconductor device circuit is designed. In step 2 (mask production), a mask on which the designed pattern is formed is produced.
On the other hand, in step 3 (wafer manufacture), a wafer is manufactured using a material such as silicon. Step 4 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by lithography using the wafer and the exposure apparatus provided with the prepared mask.
The next step 5 (assembly) is called a post-process, and is a process for forming a semiconductor chip using the wafer manufactured in step 4. The post-process includes assembly processes such as an assembly process (dicing and bonding) and a packaging process (chip encapsulation). In step 6 (inspection), the semiconductor device manufactured in step 5 undergoes inspections such as an operation confirmation test and a durability test. A semiconductor device is completed through these processes, and is shipped in Step 7.

上記ステップ4のウエハプロセスは、ウエハの表面を酸化させる酸化ステップ、ウエハ表面に絶縁膜を成膜するCVDステップ、ウエハ上に電極を蒸着によって形成する電極形成ステップステップを有する。また、ウエハにイオンを打ち込むイオン打ち込みステップ、ウエハに感光剤を塗布するレジスト処理ステップ、上記の露光装置によって回路パターンをレジスト処理ステップ後のウエハに焼付露光する露光ステップを有する。さらに、露光ステップで露光したウエハを現像する現像ステップ、現像ステップで現像したレジスト像以外の部分を削り取るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト剥離ステップを有する。これらのステップを繰り返し行うことによって、ウエハ上に多重に回路パターンを形成する。   The wafer process in step 4 includes an oxidation step for oxidizing the surface of the wafer, a CVD step for forming an insulating film on the wafer surface, and an electrode formation step for forming electrodes on the wafer by vapor deposition. Also, an ion implantation step for implanting ions into the wafer, a resist processing step for applying a photosensitive agent to the wafer, and an exposure step for printing and exposing the circuit pattern on the wafer after the resist processing step by the exposure apparatus described above. Further, there are a development step for developing the wafer exposed in the exposure step, an etching step for removing portions other than the resist image developed in the development step, and a resist stripping step for removing the resist that has become unnecessary after the etching. By repeating these steps, multiple circuit patterns are formed on the wafer.

本発明の一実施例に係る露光装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the exposure apparatus which concerns on one Example of this invention. 図1に示す露光装置の接続部の概略断面図である。It is a schematic sectional drawing of the connection part of the exposure apparatus shown in FIG. 図1に示す露光装置の電気的接続の一例を示す図である。It is a figure which shows an example of the electrical connection of the exposure apparatus shown in FIG. デバイスの製造プロセスのフローを説明する図である。It is a figure explaining the flow of the manufacturing process of a device.

符号の説明Explanation of symbols

1:接続部
2、3:絶縁体
4:金属フランジ
5:ボルト
6:駆動回路
7、8:検出回路
10:EUV光源真空容器
11、12:照明光学系真空容器
13:投影光学系真空容器
16:検出器用回路BOX
17:光源回路BOX
18、19:電源回路
20:アナログ回路
21:デジタル回路
23、24:フレーム(フレームグランド)
25:フェライトビーズ
26:コンデンサ(容量)
27:接地(アース)
104:金属ハウジング
110:EUV光源
120:EUV光束
130:照明光学系
170:レチクル
190:被処理体(ウエハ)
1: Connection part 2, 3: Insulator 4: Metal flange 5: Bolt 6: Drive circuit 7, 8: Detection circuit 10: EUV light source vacuum container 11, 12: Illumination optical system vacuum container 13: Projection optical system vacuum container 16 : Detector circuit BOX
17: Light source circuit BOX
18, 19: Power supply circuit 20: Analog circuit 21: Digital circuit 23, 24: Frame (frame ground)
25: Ferrite beads 26: Capacitor (capacitance)
27: Grounding
104: Metal housing 110: EUV light source 120: EUV light flux 130: Illumination optical system 170: Reticle 190: Object to be processed (wafer)

Claims (8)

プラズマを用いて露光光を発光する発光装置と、
前記発光装置の少なくとも一部が内部に配置される第1の容器と、
前記発光装置からの露光光をレチクルへ導くための照明光学系の少なくとも一部が内部に配置される第2の容器とを備え、
前記第1の容器内の空間と前記第2の容器内の空間がそれぞれの容器に設けられた開口を介して結合され、各容器の間には絶縁体が配置されることを特徴とする露光装置。
A light emitting device that emits exposure light using plasma;
A first container in which at least a part of the light emitting device is disposed;
A second container in which at least a part of an illumination optical system for guiding exposure light from the light emitting device to a reticle is disposed,
The exposure in which the space in the first container and the space in the second container are coupled through an opening provided in each container, and an insulator is disposed between the containers. apparatus.
前記第1および第2の容器の内部を真空にするための排気装置を備えることを特徴とする請求項1に記載の露光装置。   The exposure apparatus according to claim 1, further comprising an exhaust device for evacuating the inside of the first and second containers. 前記レチクルによって反射された露光光をウエハに投影するための投影光学系の少なくとも一部が内部に配置される第3の容器を備え、
前記第2の容器内の空間と前記第3の容器内の空間がそれぞれの容器に設けられた開口を介して結合され、各容器の間には絶縁体が配置されることを特徴とする請求項1または2に記載の露光装置。
A third container in which at least a part of a projection optical system for projecting exposure light reflected by the reticle onto a wafer is disposed;
The space in the second container and the space in the third container are coupled through an opening provided in each container, and an insulator is disposed between the containers. Item 3. The exposure apparatus according to Item 1 or 2.
前記第3の容器の内部を真空にするための排気装置を備えることを特徴とする請求項3に記載の露光装置。   The exposure apparatus according to claim 3, further comprising an exhaust device for evacuating the inside of the third container. 前記発光装置は、プラズマを生成するためのプラズマ生成装置と、生成されたプラズマから照射される光を集光するための集光ミラーを備えることを特徴とする請求項1〜4の少なくともいずれかに記載の露光装置。   The light emitting device includes at least one of a plasma generating device for generating plasma and a condensing mirror for condensing light emitted from the generated plasma. The exposure apparatus described in 1. 前記第1の容器内に配置された第1の電気回路に電源を供給する第1の電源供給手段と、前記第1の電源供給手段とは独立し、前記第2の容器内に配置された第2の電気回路に電源を供給する第2の電源供給手段とを有し、前記第1の容器は第1の電源のフレームグランドへ、前記第2の容器は第2の電源のフレームグランドへ接続されていることを特徴とする請求項1〜5の少なくともいずれかに記載の露光装置。   The first power supply means for supplying power to the first electric circuit disposed in the first container and the first power supply means are independent of each other and are disposed in the second container. Second power supply means for supplying power to the second electric circuit, the first container to the frame ground of the first power supply, and the second container to the frame ground of the second power supply. The exposure apparatus according to claim 1, wherein the exposure apparatus is connected. 各容器が、互いに独立した配線経路で接地されていることを特徴とする請求項1〜6の少なくともいずれかに記載の露光装置。   The exposure apparatus according to claim 1, wherein each container is grounded through an independent wiring path. 請求項1〜7のいずれか1つに記載の露光装置を用いて基板を露光する工程と、露光した前記基板を現像する工程とを有することを特徴とするデバイス製造方法。
A device manufacturing method comprising: exposing a substrate using the exposure apparatus according to claim 1; and developing the exposed substrate.
JP2005272621A 2005-09-20 2005-09-20 Exposure apparatus Withdrawn JP2007088061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005272621A JP2007088061A (en) 2005-09-20 2005-09-20 Exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005272621A JP2007088061A (en) 2005-09-20 2005-09-20 Exposure apparatus

Publications (1)

Publication Number Publication Date
JP2007088061A true JP2007088061A (en) 2007-04-05

Family

ID=37974774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005272621A Withdrawn JP2007088061A (en) 2005-09-20 2005-09-20 Exposure apparatus

Country Status (1)

Country Link
JP (1) JP2007088061A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120989A1 (en) * 2007-04-03 2008-10-09 Asml Netherlands B.V. Illumination system for illuminating a patterning device and method for manufacturing an illumination system
JP2012160565A (en) * 2011-01-31 2012-08-23 Komatsu Ltd Chamber device and extreme ultraviolet light generation device including the same
WO2013007407A1 (en) * 2011-07-13 2013-01-17 Asml Netherlands B.V. Power supply for a discharge produced plasma euv source
JP2013101840A (en) * 2011-11-09 2013-05-23 Canon Inc Charged particle beam device and article manufacturing method using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120989A1 (en) * 2007-04-03 2008-10-09 Asml Netherlands B.V. Illumination system for illuminating a patterning device and method for manufacturing an illumination system
JP2012160565A (en) * 2011-01-31 2012-08-23 Komatsu Ltd Chamber device and extreme ultraviolet light generation device including the same
WO2013007407A1 (en) * 2011-07-13 2013-01-17 Asml Netherlands B.V. Power supply for a discharge produced plasma euv source
JP2014525126A (en) * 2011-07-13 2014-09-25 エーエスエムエル ネザーランズ ビー.ブイ. Power supply for discharge generated plasma EUV source
US9516731B2 (en) 2011-07-13 2016-12-06 Asml Netherlands B.V. Power supply for a discharge produced plasma EUV source
JP2013101840A (en) * 2011-11-09 2013-05-23 Canon Inc Charged particle beam device and article manufacturing method using the same

Similar Documents

Publication Publication Date Title
US7894037B2 (en) Lithographic apparatus and device manufacturing method
JP4369217B2 (en) Lithographic apparatus and device manufacturing method
US7362416B2 (en) Exposure apparatus, evaluation method and device fabrication method
JP4445438B2 (en) Lithographic apparatus and device manufacturing method
US6897456B2 (en) Differential pumping system and exposure apparatus
US7084982B2 (en) Optical apparatus, measurement method, and semiconductor device manufacturing method
US6589354B2 (en) Method and apparatus for in-situ lithography mask cleaning
JP5453778B2 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2003022950A (en) Debris remover for x-ray light source and aligner comprising it
US20150241797A1 (en) Reticle Cleaning by Means of Sticky Surface
JP2004214656A (en) Contamination barrier equipped with extendable thin film
EP1429189B1 (en) Lithographic apparatus and device manufacturing method
US9136151B2 (en) Actuator
KR20140023927A (en) Electrostatic clamp apparatus and lithographic apparatus
JP4429201B2 (en) Lithographic apparatus and device manufacturing method
JP2014507070A (en) Lithographic apparatus and device manufacturing method
US20100151394A1 (en) System for Contactless Cleaning, Lithographic Apparatus and Device Manufacturing Method
JP2007088061A (en) Exposure apparatus
WO2020177971A1 (en) Object holder comprising an electrostatic clamp
JP2006303462A (en) Exposure device and method for manufacturing device
JP2011077480A (en) Reflection type mask, exposure apparatus, exposure method, and device manufacturing method
JP2008041391A (en) Light source device, exposure system, and device manufacturing method
JP2007329288A (en) Exposure apparatus, and device manufacturing method
JP2011204864A (en) Reflection type mask, aligner, exposure method, and device manufacturing method
JP2007027237A (en) Exposure apparatus, light source device, and device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090406

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100806