JP2007085865A - Radiation-shielding sheet and x-ray apparatus using the same - Google Patents
Radiation-shielding sheet and x-ray apparatus using the same Download PDFInfo
- Publication number
- JP2007085865A JP2007085865A JP2005274495A JP2005274495A JP2007085865A JP 2007085865 A JP2007085865 A JP 2007085865A JP 2005274495 A JP2005274495 A JP 2005274495A JP 2005274495 A JP2005274495 A JP 2005274495A JP 2007085865 A JP2007085865 A JP 2007085865A
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- shielding
- shielding sheet
- radiation shielding
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、例えば原子力関係の放射線遮蔽や工業・医療用放射線装置、X線室、X線検
診車、X線防護衣などのX線を利用する分野において用いられる放射線遮蔽シート、およ
びそれを用いたX線装置に関する。
The present invention relates to a radiation shielding sheet used in the field of utilizing X-rays such as radiation shields related to nuclear power, industrial / medical radiation devices, X-ray rooms, X-ray examination vehicles, X-ray protective clothing, and the like. The present invention relates to an X-ray apparatus.
放射線遮蔽の分野として、特に人体を対象とする放射線治療および測定においては、目
的とする部位のみに放射線を照射し、放射線照射の必要の無い部位には照射を行わないよ
うにして被爆を防ぐことが必要である。しかし、放射線照射対象となる部位にのみ限定し
て放射線を照射するのは実質的に困難であるため、被検査部位以外の部位には放射線を遮
蔽するための遮蔽材が被覆されて被検体を放射線から防護する対策が講じられている。ま
た、X線を発生させる装置を設置しているX線室やX線検診車についても、その壁面から
室外や車外にX線が漏洩することを防止するために、遮蔽材料を壁面に装着する対策が講
じられている。また、X線撮影の際、医師や患者はX線被曝を避けるためにX線防護衣を
着用している。特に、面積を必要とする用途、遮蔽材として単独で使用する用途、狭い部
分に使用する用途、柔軟性を必要とする用途においては厚さの薄い遮蔽シートが求められ
ている。
In the field of radiation shielding, especially in radiotherapy and measurement targeting the human body, radiation should be applied only to the target area, and radiation should not be applied to areas that do not require irradiation. is required. However, since it is substantially difficult to irradiate the radiation only to the part to be irradiated, the part other than the part to be inspected is covered with a shielding material for shielding the radiation to cover the subject. Measures are taken to protect against radiation. In addition, for X-ray rooms and X-ray examination vehicles equipped with an apparatus that generates X-rays, in order to prevent leakage of X-rays from the wall surface to the outside or the vehicle, a shielding material is attached to the wall surface. Measures are taken. In addition, during X-ray photography, doctors and patients wear X-ray protective clothing to avoid X-ray exposure. In particular, thin shielding sheets are required for applications that require an area, applications that are used alone as a shielding material, applications that are used in a narrow area, and applications that require flexibility.
X線を遮蔽する材料としてはこれまで主として鉛、及び鉛を含む複合材料が使用されて
きた(非特許文献1、2参照)。しかし鉛は人体に吸収されると有害であり、その取扱い
や廃棄には特別の注意が必要である。すなわち取扱いには鉛中毒予防規則による厳格な規
制に準拠する必要があり、廃棄する場合には特定有害産業廃棄物として外界への溶出や侵
出を遮断した処置が必要である。
近年では、鉛に代わる放射線遮蔽材料としてタングステン、錫、アンチモン、ビスマス
、バリウム及びその化合物等が提案されている(特許文献1、2参照)。柔軟性を必要と
するX線防護衣等にはこれら材料を樹脂またはゴムに配合した材料が一般に使用されてい
る。その他、比較的弱い放射線の場合はアクリル板等が、比較的強い放射線の場合はタン
グステン板等の板状の放射線遮蔽材が用いられている。
As materials for shielding X-rays, lead and composite materials containing lead have been mainly used so far (see Non-Patent Documents 1 and 2). However, lead is harmful when absorbed by the human body, and special care must be taken in its handling and disposal. In other words, handling requires compliance with strict regulations under the lead poisoning prevention regulations, and disposal requires treatment that blocks elution and exudation to the outside environment as specific hazardous industrial waste.
In recent years, tungsten, tin, antimony, bismuth, barium and their compounds have been proposed as radiation shielding materials in place of lead (see Patent Documents 1 and 2). For X-ray protective clothing and the like that require flexibility, materials obtained by blending these materials with resin or rubber are generally used. In addition, an acrylic plate or the like is used for relatively weak radiation, and a plate-shaped radiation shielding material such as a tungsten plate is used for relatively strong radiation.
しかしながら、タングステンは放射線に対して高い遮蔽能力をもつが、Pbに替わる材
料としては高価な材料である。ビスマスはPbに対して同等の遮蔽能力を持つが、比較的
高価な材料である。一方、アンチモン、錫、バリウムは放射線遮蔽能力が十分ではないた
め遮蔽シートも厚くなる。また、アンチモンに関しては砒素と同じような毒性を持つこと
を示唆されている。
以上のことから、環境上の問題がなく、経済性に優れると共に厚さが薄くて高い放射線
遮蔽能力放射線遮蔽シートが求められていた。
However, tungsten has a high shielding ability against radiation, but is an expensive material as an alternative to Pb. Bismuth has the same shielding ability as Pb, but is a relatively expensive material. On the other hand, since antimony, tin, and barium do not have sufficient radiation shielding capability, the shielding sheet becomes thick. Antimony has been suggested to have the same toxicity as arsenic.
From the above, there has been a demand for a radiation shielding sheet that has no environmental problems, is economical and has a thin thickness and high radiation shielding ability.
従来の放射線遮蔽材においては、鉛、及び鉛を含む複合材料が使用されてきたが、人体
に吸収されると有害であり、その取扱いや廃棄には特別の注意が必要であった。
鉛に代わる放射線遮蔽材料としてタングステン、錫、アンチモン、ビスマス及びその化合
物が提案されているが、タングステン、ビスマス及びその化合物はPbに替わる材料とし
ては高価な材料であり、特にタングステンは、酸化しやすい材料でもある。錫、アンチモ
ン、バリウム及びその化合物は遮蔽能力が不十分でシート厚さを厚くしなければならなか
った。
そこで本発明は、環境上の問題がなく、経済性に優れていると共に厚さが薄くて高い放
射線遮蔽能力を有する放射線遮蔽シートを提供するものである。
In conventional radiation shielding materials, lead and composite materials containing lead have been used, but they are harmful when absorbed by the human body, and special care is required for their handling and disposal.
Tungsten, tin, antimony, bismuth and their compounds have been proposed as radiation shielding materials in place of lead, but tungsten, bismuth and their compounds are expensive materials as alternatives to Pb, and especially tungsten is easily oxidized. It is also a material. Tin, antimony, barium and their compounds had insufficient shielding ability, and the sheet thickness had to be increased.
Therefore, the present invention provides a radiation shielding sheet that is free from environmental problems, is economical, has a small thickness, and has a high radiation shielding ability.
本発明は上記の問題を解決するためのものであり、希土類系酸化物の遮蔽材料粉末から
なる放射線遮蔽シートにおいて、有機高分子材料が5〜20重量%であり、シート内の空
隙率が10〜30%であることを特徴とする放射線遮蔽シートである。
The present invention is for solving the above-mentioned problems. In the radiation shielding sheet made of a rare earth oxide shielding material powder, the organic polymer material is 5 to 20% by weight, and the porosity in the sheet is 10%. It is a radiation shielding sheet characterized by ˜30%.
また、遮蔽材料が酸化セリウム粉末からなることを特徴とする放射線遮蔽シートである
ことが好ましい。
Moreover, it is preferable that it is a radiation shielding sheet | seat characterized by the shielding material consisting of a cerium oxide powder.
また、有機高分子材料が熱可塑性樹脂であることを特徴とする放射線遮蔽シートである
ことが好ましい。
The organic polymer material is preferably a radiation shielding sheet characterized in that it is a thermoplastic resin.
また、X線室に使用することを特徴とする放射線遮蔽シートであることが好ましい。 Moreover, it is preferable that it is a radiation shielding sheet characterized by using for an X-ray room.
本発明は、環境上の問題がなく、経済性に優れていると共に厚さが薄くて高い放射線遮
蔽能力を有する放射線遮蔽シートを提供する。
The present invention provides a radiation shielding sheet that is free from environmental problems, is economical, is thin, and has a high radiation shielding ability.
本発明の放射線遮蔽シートは、有機高分子材料と放射線吸収率の十分な材料粉末からな
る放射線遮蔽層からなり、柔軟性も兼ね備えている。遮蔽層の片面あるいは両面を保護し
、かつシートの引張強度を向上させるための有機高分子フィルム層を設けてもよい。また
、高い遮蔽能力にするために、薄い膜厚シートを数枚重ねて積層構造の遮蔽シートとして
もよい。
The radiation shielding sheet of the present invention comprises a radiation shielding layer made of an organic polymer material and a material powder having a sufficient radiation absorption rate, and also has flexibility. An organic polymer film layer for protecting one side or both sides of the shielding layer and improving the tensile strength of the sheet may be provided. Moreover, in order to make it high shielding capability, it is good also as a shielding sheet of a laminated structure by laminating | stacking several thin film thickness sheets.
本発明の放射線遮蔽材料は、環境上の問題がなく、経済性に優れた希土類系酸化物粉末で
ある。特に遮蔽能力と経済性を総合的に判断すると、ランタン、セリウム、プラセオジム
、ネオジム、サマリウム、ユーロピウム、ガドリニウムの酸化物粉末が最も効果的であり
、少なくとも1種類が含有していることが好ましい。さらには酸化セリウム粉末が好まし
い。また、酸化物粉末はタングステンなどと比べて比較的比重が低いため、遮蔽シートを
製作する上で充填率が低くなる傾向にあり、その結果、放射線遮蔽能力も低下する。した
がって、充填率は40〜80%にすることが好ましい。
ここで、有機高分子材料と遮蔽材料からなる遮蔽層の遮蔽材料粉末の充填率Pは以下の
式に基づいて求めた値とする。
P=VP/V=W/V/ρP
(式中、VPは遮蔽材料の体積、Vは遮蔽層の体積、Wは遮蔽材料の質量、ρPは遮蔽材料
の密度である。)
The radiation shielding material of the present invention is a rare earth-based oxide powder that is free from environmental problems and excellent in economic efficiency. In particular, when comprehensively judging the shielding ability and economy, oxide powders of lanthanum, cerium, praseodymium, neodymium, samarium, europium, and gadolinium are most effective, and at least one kind is preferably contained. Furthermore, cerium oxide powder is preferable. In addition, since the oxide powder has a relatively low specific gravity compared to tungsten or the like, the filling rate tends to be low in manufacturing the shielding sheet, and as a result, the radiation shielding ability is also lowered. Therefore, the filling rate is preferably 40 to 80%.
Here, the filling rate P of the shielding material powder of the shielding layer made of the organic polymer material and the shielding material is a value obtained based on the following formula.
P = VP / V = W / V / ρP
(Where VP is the volume of the shielding material, V is the volume of the shielding layer, W is the mass of the shielding material, and ρP is the density of the shielding material.)
また、この他の遮蔽能力の高い材料を混合してもよい。例えば、タングステンとタング
ステン化合物及びビスマスとビスマス化合物を混合してもよいが、経済性を損なわない程
度の割合とするのがよく、30重量%までの混合が望ましい。また、錫も遮蔽能力を損な
わない程度に混合してもよく、40重量%までの混合が望ましい。
これら材料を使用すれば、経済性に優れ、高い放射線遮蔽能力を得ることが出来るうえ
、鉛や鉛合金を使用した場合と比較して、環境および人体への悪影響が殆ど無く、衛生的
かつ安全な製品を提供することができる
。
Further, other materials having a high shielding ability may be mixed. For example, tungsten and a tungsten compound, and bismuth and a bismuth compound may be mixed, but the ratio should not be impaired, and mixing up to 30% by weight is desirable. Further, tin may be mixed to such an extent that the shielding ability is not impaired, and mixing up to 40% by weight is desirable.
Use of these materials provides excellent economic efficiency, high radiation shielding ability, and almost no adverse effects on the environment and human body compared to the use of lead and lead alloys, and is hygienic and safe. Products can be provided.
放射線遮蔽材料は粉末として用いるが、遮蔽材料粉末の含有率は80重量%以上95重
量%以下とすることが好ましい。遮蔽材料粉末の含有率が80重量%より少ないと、放射
線遮蔽能力が低下し、実用的ではない。また、遮蔽材料粉末の含有率が95重量%を超え
る場合には、遮蔽材料粉末粒子が樹脂に完全に取り込まれなくなり、材料全体の強度が保
持できなくなる。
Although the radiation shielding material is used as a powder, the content of the shielding material powder is preferably 80% by weight or more and 95% by weight or less. When the content of the shielding material powder is less than 80% by weight, the radiation shielding ability is lowered, which is not practical. When the content of the shielding material powder exceeds 95% by weight, the shielding material powder particles are not completely taken into the resin, and the strength of the entire material cannot be maintained.
放射線遮蔽材料の酸化物粉末は、F.s.s.s.(フィッシャーサブシーブサイザー)平均
粒径(JIS H 2116による装置で測定した平均粒径のことである。)を1〜20
μmとすることが好ましい。この範囲の粒径にすることによって、粉末粒子が樹脂に取り
込まれ易くなり、材料全体の柔軟性を保持する事が容易となり、取り扱い上における亀裂
発生等の問題も無くなり、信頼性が一層向上する。また、充填率も上がり、遮蔽能力を向
上させることができる。
The oxide powder of the radiation shielding material is F.I. s. s. s. (Fischer sub-sieve sizer) Average particle size (mean particle size measured with an apparatus according to JIS H 2116) of 1 to 20
It is preferable to set it as micrometer. By setting the particle size within this range, the powder particles can be easily taken into the resin, and the flexibility of the whole material can be easily maintained. Problems such as cracks in handling are eliminated, and the reliability is further improved. . In addition, the filling rate is increased, and the shielding ability can be improved.
本発明で用いる有機高分子材料は特に種類を限定するものではなく、ゴム、熱可塑性エ
ラストマー、高分子樹脂などが使用できる。ゴムとしては天然ゴム、合成ゴムのいずれで
もよく、添加物として硫黄、カーボンブラック、老化防止剤等が添加できる。また樹脂と
してはビニル樹脂、ポリアミド樹脂、ポリオレフィン樹脂、ABS樹脂、EVA樹脂等の
熱可塑性樹脂やエポキシ樹脂やフェノール樹脂等の熱硬化性樹脂が使用される。樹脂に対
する添加物としてはカップリング剤、着色剤、帯電防止剤、可塑剤、安定剤、顔料等が必
要量添加できる。好ましいのは、老化現象のあるゴムやダイオキシンの原因となる塩素含
有樹脂を除く有機高分子材料がよく、熱可塑性樹脂が好ましい。特に好ましいのは強度、
弾性に優れているポリウレタン樹脂がよい。
The type of the organic polymer material used in the present invention is not particularly limited, and rubber, thermoplastic elastomer, polymer resin, and the like can be used. The rubber may be either natural rubber or synthetic rubber, and sulfur, carbon black, anti-aging agent, etc. can be added as additives. As the resin, a thermoplastic resin such as a vinyl resin, a polyamide resin, a polyolefin resin, an ABS resin, or an EVA resin, or a thermosetting resin such as an epoxy resin or a phenol resin is used. As additives to the resin, required amounts of coupling agents, colorants, antistatic agents, plasticizers, stabilizers, pigments and the like can be added. Preferred are organic polymer materials excluding aging rubber and chlorine-containing resins that cause dioxins, and thermoplastic resins are preferred. Particularly preferred is strength,
A polyurethane resin excellent in elasticity is preferable.
本発明の特徴的な遮蔽シートは、シート厚さが薄いことにある。一般に、有機高分子材
料と遮蔽材料を混合分散して塗布液を調製し、ドクターブレード、ロールコーター、ナイ
フコーターなどでシート成形する。通常の常圧下でのシート成形では空気が混入しやすく
空隙が生じやすい。この空隙は、特に遮蔽材料の回りに生じやすい。さらに、有機高分子
材料に対し遮蔽材料の含有量が増大するにつれて遮蔽材料が密になって遮蔽材料粒子間に
は空隙が多量に生じやすい。すなわち、シート厚さが厚くなる傾向にある。
そこで、シート成形で得られた遮蔽シートを、有機高分子材料のガラス転移点以上融点
以下の温度で加熱し、かつ50〜150kg/cm2の圧力で圧縮処理を行うことで、シ
ート内の空隙を減少させる。
このような遮蔽シートは、有機高分子材料の含有量として5〜20重量%であり、圧縮
処理後のシート内の空隙率が10〜30%であることが好ましい。有機高分子材料の含有
量が5重量%未満の場合、有機高分子材料の量が不十分で遮蔽材料粉末との接着が弱くな
り、粉末が容易に脱落する。20重量%を超える場合は、シート厚さを薄くする効果がな
くなるのと同時に、遮蔽シートの密度が低下し、遮蔽能力が落ちてくる。
The characteristic shielding sheet of the present invention is that the sheet thickness is thin. In general, an organic polymer material and a shielding material are mixed and dispersed to prepare a coating solution, and the sheet is formed with a doctor blade, a roll coater, a knife coater, or the like. In normal sheet forming under normal pressure, air is likely to be mixed and voids are likely to occur. This void is particularly likely to occur around the shielding material. Furthermore, as the content of the shielding material increases with respect to the organic polymer material, the shielding material becomes dense, and a large amount of voids are likely to occur between the shielding material particles. That is, the sheet thickness tends to increase.
Therefore, the shielding sheet obtained by sheet molding is heated at a temperature not lower than the glass transition point and not higher than the melting point of the organic polymer material, and is subjected to a compression treatment at a pressure of 50 to 150 kg / cm 2 , whereby voids in the sheet are obtained. Decrease.
In such a shielding sheet, the content of the organic polymer material is 5 to 20% by weight, and the porosity in the sheet after the compression treatment is preferably 10 to 30%. When the content of the organic polymer material is less than 5% by weight, the amount of the organic polymer material is insufficient, the adhesion with the shielding material powder becomes weak, and the powder easily falls off. When it exceeds 20% by weight, the effect of reducing the sheet thickness is lost, and at the same time, the density of the shielding sheet is lowered and the shielding ability is lowered.
上記のようにして形成された遮蔽シートの空隙率は(1)式により求めることができる
。
空隙率Vair/V=(Vρpρb−Wpρb−Wbρp)/Vρpρb … (1)
ただし、
V :遮蔽シートの体積 ρb :有機高分子材料の密度
Vair :遮蔽シート内の空気体積 Wp :遮蔽材料の重量
ρp :遮蔽材料の密度 Wb :有機高分子材料の重量
である。
上記のようにして形成された放射線遮蔽シートは、環境上の問題がなく、経済性に優れ
ていると共に、厚さが薄く、高い放射線遮蔽能力を有しており、X線を遮蔽する用途に適
している。また、本発明による放射線遮蔽シートは高い放射線遮蔽能力を有している上、
薄く柔軟性も兼ね備えているため、原子力関係や、工業、医療用に用いられる放射線を発
生させる装置、例えば、X線室、X線検診車等における壁面の放射線の漏洩を防止する用
途や、X線防護服等の放射線の被爆を防ぐ用途に好適であり、放射線遮蔽性能の高いX線
装置が得られる。
The porosity of the shielding sheet formed as described above can be obtained by the equation (1).
Void ratio Vair / V = (Vρpρb−Wpρb−Wbρp) / Vρpρb (1)
However,
V: Volume of shielding sheet ρb: Density of organic polymer material Vair: Volume of air in shielding sheet Wp: Weight of shielding material ρp: Density of shielding material Wb: Weight of organic polymer material
The radiation shielding sheet formed as described above has no environmental problems, is excellent in economic efficiency, is thin, has a high radiation shielding ability, and is used for shielding X-rays. Is suitable. The radiation shielding sheet according to the present invention has a high radiation shielding ability,
Because it is thin and flexible, it can be used to prevent radiation leakage on the walls of nuclear power generation, industrial and medical devices that generate radiation, such as X-ray rooms and X-ray examination vehicles, An X-ray apparatus having a high radiation shielding performance is obtained, which is suitable for use in preventing radiation exposure such as radiation protective clothing.
(実施例1)
平均粒径6μmの酸化セリウムを88重量部と有機高分子樹脂としてポリウレタン樹脂
を12重量部秤量し、溶剤としてメチルエチルケトン/トルエン=50/50で希釈し混
合した。混合溶液は磁性ポットでミリングを2hr行った。この塗布液をドクターブレー
ドで均一に塗布、乾燥させて圧縮処理前の遮蔽シートを作成した。この遮蔽シートを温度
85℃、圧力100kg/cm2のもとでプレスにて圧縮処理を行い、1mmPb相当の
放射線遮蔽シートを作成した。このときの空隙率は20%であった。
X線遮蔽能力を示す評価はX線発生装置(管電圧100kV)を用い、試料を透過した
X線量を測定し、鉛を透過した場合と比較することによって鉛当量を測定した(JIS
Z4501参照)。
また、環境評価は法律の規制等により環境を汚染するとされているものを×とし、規制
のないものを○とした。経済性についても相対的に評価を行った。結果は表1のとおりで
あった。
(実施例2)
遮蔽材料を平均粒径5μmの酸化ガドリニウムとした以外は実施例1と同じ条件で放射
線遮蔽シートを作成し、評価を行った。結果は表1のとおりであった。
(実施例3)
平均粒径5μmの酸化セリウムを95重量部と有機高分子樹脂としてポリウレタン樹脂
を5重量部とした以外は実施例1と同じ条件で放射線遮蔽シートを作成し、評価を行った
。結果は表1のとおりであった。
(実施例4)
平均粒径5μmの酸化セリウムを80重量部と有機高分子樹脂としてポリウレタン樹脂
を20重量部とした以外は実施例1と同じ条件で放射線遮蔽シートを作成し、評価を行っ
た。結果は表1のとおりであった。
(実施例5)
温度85℃、圧力100kg/cm2のもとでプレスにて圧縮処理を行い、空隙率10
%にした以外は実施例1と同じ条件で放射線遮蔽シートを作成し、評価を行った。結果は
表1のとおりであった。
(実施例6)
温度85℃、圧力50kg/cm2のもとでプレスにて圧縮処理を行い、空隙率30%
にした以外は実施例1と同じ条件で放射線遮蔽シートを作成し、評価を行った。結果は表
1のとおりであった。
(実施例7)
有機高分子樹脂としてクロロプレンゴムにした以外は実施例1と同じ条件で放射線遮蔽
シートを作成し、評価を行った。結果は表1のとおりであった。
Example 1
88 parts by weight of cerium oxide having an average particle size of 6 μm and 12 parts by weight of polyurethane resin as an organic polymer resin were weighed and diluted with methyl ethyl ketone / toluene = 50/50 as a solvent and mixed. The mixed solution was milled in a magnetic pot for 2 hours. This coating solution was uniformly applied with a doctor blade and dried to prepare a shielding sheet before compression treatment. This shielding sheet was compressed with a press at a temperature of 85 ° C. and a pressure of 100 kg / cm 2 to prepare a radiation shielding sheet corresponding to 1 mmPb. The porosity at this time was 20%.
The X-ray shielding ability was evaluated using an X-ray generator (tube voltage: 100 kV), measuring the X-ray dose transmitted through the sample, and measuring the lead equivalent by comparing with the case where lead was transmitted (JIS).
Z4501).
In addition, in the environmental assessment, “X” indicates that the environment is polluted by legal regulations, etc., and “◯” indicates that there is no regulation. A relative evaluation was also made on economics. The results are shown in Table 1.
(Example 2)
A radiation shielding sheet was prepared and evaluated under the same conditions as in Example 1 except that the shielding material was gadolinium oxide having an average particle diameter of 5 μm. The results are shown in Table 1.
(Example 3)
A radiation shielding sheet was prepared and evaluated under the same conditions as in Example 1 except that 95 parts by weight of cerium oxide having an average particle diameter of 5 μm, 5 parts by weight of an organic polymer resin and polyurethane resin were used. The results are shown in Table 1.
Example 4
A radiation shielding sheet was prepared and evaluated under the same conditions as in Example 1 except that 80 parts by weight of cerium oxide having an average particle diameter of 5 μm, 20 parts by weight of an organic polymer resin and polyurethane resin were used. The results are shown in Table 1.
(Example 5)
A compression treatment is performed with a press at a temperature of 85 ° C. and a pressure of 100 kg / cm 2.
A radiation shielding sheet was prepared and evaluated under the same conditions as in Example 1 except for%. The results are shown in Table 1.
(Example 6)
Compressed with a press at a temperature of 85 ° C. and a pressure of 50 kg / cm 2 , with a porosity of 30%
A radiation shielding sheet was prepared and evaluated under the same conditions as in Example 1 except that. The results are shown in Table 1.
(Example 7)
A radiation shielding sheet was prepared and evaluated under the same conditions as in Example 1 except that chloroprene rubber was used as the organic polymer resin. The results are shown in Table 1.
(比較例1)
厚さ1mmの鉛板について、実施例1と同様の評価を行った。結果は表1のとおりであ
った。
(比較例2)
平均粒径6μmのタングステン金属粉末を90重量部とした以外は実施例1と同じ条件
で放射線遮蔽シートを作成した。結果は表1のとおりであった。
(比較例3)
平均粒径5μmの酸化セリウムを70重量部と有機高分子樹脂としてポリウレタン樹脂
を30重量部とした以外は実施例1と同じ条件で放射線遮蔽シートを作成した。結果は表
1のとおりであった。
(比較例4)
温度60℃、圧力40kg/cm2のもとでプレスにて圧縮処理を行い、空隙率50%に
した以外は実施例1と同じ条件で放射線遮蔽シートを作成した。結果は表1のとおりであ
った。
(比較例5)
平均粒径0.5μmの酸化セリウムとした以外は実施例1と同じ条件で放射線遮蔽シー
トを作成し、評価を行った。結果は表1のとおりであった。
(比較例6)
平均粒径25μmの酸化セリウムとした以外は実施例1と同じ条件で放射線遮蔽シート
を作成し、評価を行った。結果は表1のとおりであった。
(Comparative Example 1)
The same evaluation as in Example 1 was performed on a lead plate having a thickness of 1 mm. The results are shown in Table 1.
(Comparative Example 2)
A radiation shielding sheet was prepared under the same conditions as in Example 1, except that 90 parts by weight of tungsten metal powder having an average particle size of 6 μm was used. The results are shown in Table 1.
(Comparative Example 3)
A radiation shielding sheet was prepared under the same conditions as in Example 1 except that 70 parts by weight of cerium oxide having an average particle size of 5 μm, 30 parts by weight of an organic polymer resin and 30 parts by weight of polyurethane resin were used. The results are shown in Table 1.
(Comparative Example 4)
A radiation shielding sheet was prepared under the same conditions as in Example 1 except that the compression treatment was performed with a press at a temperature of 60 ° C. and a pressure of 40 kg / cm 2 to obtain a porosity of 50%. The results are shown in Table 1.
(Comparative Example 5)
A radiation shielding sheet was prepared and evaluated under the same conditions as in Example 1 except that cerium oxide having an average particle size of 0.5 μm was used. The results are shown in Table 1.
(Comparative Example 6)
A radiation shielding sheet was prepared and evaluated under the same conditions as in Example 1 except that cerium oxide having an average particle size of 25 μm was used. The results are shown in Table 1.
かった。またこれらの放射線遮蔽シートは環境上の問題がなく、経済性に優れている。
Claims (6)
〜20重量%であり、放射線遮蔽シート内の空隙率が10〜30%であることを特徴とす
る放射線遮蔽シート。 In the radiation shielding sheet comprising the rare earth oxide shielding material powder, the organic polymer material is 5
A radiation shielding sheet, which is ˜20% by weight and has a porosity of 10 to 30% in the radiation shielding sheet.
載の放射線遮蔽シート。 2. The radiation shielding sheet according to claim 1, wherein the rare earth oxide shielding material powder has an average particle diameter of 1 to 20 [mu] m.
線遮蔽シート。 The radiation shielding sheet according to claim 1 or 2, wherein the shielding material powder is made of cerium oxide powder.
に記載の放射線遮蔽シート。 The radiation shielding sheet according to any one of claims 1 to 3, wherein the organic polymer material is a thermoplastic resin.
の放射線遮蔽シート。 The radiation shielding sheet according to claim 1, wherein the radiation shielding sheet is used for a purpose of shielding X-rays.
線装置。 X using the radiation shielding sheet according to any one of claims 1 to 5.
Wire device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005274495A JP2007085865A (en) | 2005-09-21 | 2005-09-21 | Radiation-shielding sheet and x-ray apparatus using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005274495A JP2007085865A (en) | 2005-09-21 | 2005-09-21 | Radiation-shielding sheet and x-ray apparatus using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007085865A true JP2007085865A (en) | 2007-04-05 |
Family
ID=37972988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005274495A Pending JP2007085865A (en) | 2005-09-21 | 2005-09-21 | Radiation-shielding sheet and x-ray apparatus using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007085865A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102516069A (en) * | 2011-11-03 | 2012-06-27 | 西北大学 | Tricarboxylic acid rare earth complex as well as preparation method and application thereof |
JP2013061287A (en) * | 2011-09-14 | 2013-04-04 | Kawahara Technical Research Inc | Method of producing paste, and paste |
JP2013076693A (en) * | 2011-09-14 | 2013-04-25 | Kawahara Technical Research Inc | Radiation shielding material, radiation protection suit, and spacesuit |
JP2013076695A (en) * | 2011-09-14 | 2013-04-25 | Kawahara Technical Research Inc | Life support device |
JP2013516631A (en) * | 2010-01-07 | 2013-05-13 | ブロエックスアール・コーポレーション | Radiation protection system |
JP2014224776A (en) * | 2013-05-17 | 2014-12-04 | アキレス株式会社 | X-ray shielding sheet |
CN104240782A (en) * | 2013-06-06 | 2014-12-24 | 日本华尔卡工业株式会社 | Radioactive ray shielding film and manufacturing method thereof |
JP2015504159A (en) * | 2011-12-30 | 2015-02-05 | アレヴァ・エヌセーAreva Nc | Use of mixtures comprising erbium and praseodymium as radiation attenuating compositions, radiation attenuating materials, and products providing protection against ionizing radiation comprising such compositions |
US9452115B2 (en) | 2010-01-07 | 2016-09-27 | Bloxr Solutions, Llc | Radiation protection system |
CN113004677A (en) * | 2021-01-29 | 2021-06-22 | 惠州市浩明科技股份有限公司 | High polymer material for protection and preparation method thereof |
-
2005
- 2005-09-21 JP JP2005274495A patent/JP2007085865A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013516631A (en) * | 2010-01-07 | 2013-05-13 | ブロエックスアール・コーポレーション | Radiation protection system |
US9452115B2 (en) | 2010-01-07 | 2016-09-27 | Bloxr Solutions, Llc | Radiation protection system |
JP2013061287A (en) * | 2011-09-14 | 2013-04-04 | Kawahara Technical Research Inc | Method of producing paste, and paste |
JP2013076693A (en) * | 2011-09-14 | 2013-04-25 | Kawahara Technical Research Inc | Radiation shielding material, radiation protection suit, and spacesuit |
JP2013076695A (en) * | 2011-09-14 | 2013-04-25 | Kawahara Technical Research Inc | Life support device |
CN102516069A (en) * | 2011-11-03 | 2012-06-27 | 西北大学 | Tricarboxylic acid rare earth complex as well as preparation method and application thereof |
CN102516069B (en) * | 2011-11-03 | 2015-02-18 | 西北大学 | Tricarboxylic acid rare earth complex as well as preparation method and application thereof |
JP2015504159A (en) * | 2011-12-30 | 2015-02-05 | アレヴァ・エヌセーAreva Nc | Use of mixtures comprising erbium and praseodymium as radiation attenuating compositions, radiation attenuating materials, and products providing protection against ionizing radiation comprising such compositions |
JP2014224776A (en) * | 2013-05-17 | 2014-12-04 | アキレス株式会社 | X-ray shielding sheet |
CN104240782A (en) * | 2013-06-06 | 2014-12-24 | 日本华尔卡工业株式会社 | Radioactive ray shielding film and manufacturing method thereof |
CN113004677A (en) * | 2021-01-29 | 2021-06-22 | 惠州市浩明科技股份有限公司 | High polymer material for protection and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007085865A (en) | Radiation-shielding sheet and x-ray apparatus using the same | |
JP4686538B2 (en) | Radiation shielding sheet | |
Mahmoud et al. | Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites | |
Huang et al. | Preparation and characterization of γ-ray radiation shielding PbWO 4/EPDM composite | |
Atashi et al. | Efficient, flexible and lead-free composite based on room temperature vulcanizing silicone rubber/W/Bi 2 O 3 for gamma ray shielding application | |
Azman et al. | Effect of particle size, filler loadings and x-ray tube voltage on the transmitted x-ray transmission in tungsten oxide—epoxy composites | |
Yu et al. | Lightweight bismuth titanate (Bi4Ti3O12) nanoparticle-epoxy composite for advanced lead-free X-ray radiation shielding | |
JP5323316B2 (en) | Low weight ultra thin flexible radiation attenuating composition | |
EP2977990B1 (en) | Coating type radiation-shielding material and radiation-shielding elastomeric material | |
Low et al. | Polymer composites and nanocomposites for X-rays shielding | |
Obeid et al. | Attenuation parameters of HDPE filled with different nano-size and bulk WO3 for X-ray shielding applications | |
Thumwong et al. | Enhanced X-ray shielding properties of NRL gloves with nano-Bi2O3 and their mechanical properties under aging conditions | |
KR102091344B1 (en) | Multilayer sheet for radiation shielding and adhesive special paper comprising the same | |
Oliver et al. | An empirical study on the X-ray attenuation capability of n-WO3/n-Bi2O3/PVA with added starch | |
US20090224184A1 (en) | Lightweight rigid structural compositions with integral radiation shielding including lead-free structural compositions | |
Salawu et al. | Assessment of radiation shielding properties of polymer-lead (II) oxide composites | |
RU2601874C2 (en) | Use of mixture comprising erbium and praseodymium as radiation attenuating composition, radiation attenuating material, and article providing protection against ionising radiation and comprising such composition | |
JP2011007510A (en) | Radiation shield, radiation shield storage employing the same, and molded product of radiation shield | |
JP5285173B2 (en) | Radiation protection suit and space suit | |
JP2020003371A (en) | Next-generation gamma-ray shield sheet | |
CA2003878A1 (en) | Method of attenuation of electromagnetic radiation | |
EP3667679A1 (en) | Radiation-shielding material | |
Nambiar et al. | Effects of particle size on X-ray transmission characteristics of PDMS/Ag nano-and microcomposites | |
US20220315740A1 (en) | A functional composite and a method for preparing thereof | |
Tuljittraporn et al. | Developing effective gamma and X‐ray shielding materials: Thermoplastic natural rubber composites with antimony oxide |