JP2007085306A - Ignition device equipped with ion current detector - Google Patents

Ignition device equipped with ion current detector Download PDF

Info

Publication number
JP2007085306A
JP2007085306A JP2005278265A JP2005278265A JP2007085306A JP 2007085306 A JP2007085306 A JP 2007085306A JP 2005278265 A JP2005278265 A JP 2005278265A JP 2005278265 A JP2005278265 A JP 2005278265A JP 2007085306 A JP2007085306 A JP 2007085306A
Authority
JP
Japan
Prior art keywords
ignition
ion current
switching element
ignition device
current detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005278265A
Other languages
Japanese (ja)
Other versions
JP4575264B2 (en
Inventor
Yoshio Ishida
良夫 石田
Manabu Takeuchi
学 竹内
Gonosuke Inamura
豪之助 稲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamond Electric Manufacturing Co Ltd
Original Assignee
Diamond Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamond Electric Manufacturing Co Ltd filed Critical Diamond Electric Manufacturing Co Ltd
Priority to JP2005278265A priority Critical patent/JP4575264B2/en
Publication of JP2007085306A publication Critical patent/JP2007085306A/en
Application granted granted Critical
Publication of JP4575264B2 publication Critical patent/JP4575264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ignition device equipped with an ion current detector capable of minimizing a loss of ignition energy, even when an ion detecting power supply voltage is increased. <P>SOLUTION: The ignition device is equipped with a drive power on a primary side, and a spark plug and an ion current detector on a secondary side. The ignition device minimizes the loss of ignition energy even when the detecting power supply voltage is increased, with a configuration in which a capacitor as a power source of the ion current detector is provided with a switching element for shunting the capacitor, and the switching element has a control unit for keeping an on-state at least during the first half of a discharge duration at the spark plug. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は主として内燃機関に用いられるイオン電流検出装置を備える点火装置に関し、点火栓での放電点火後に発生する燃焼イオン電流を検出し、点火時期などの燃焼制御を行うものである。   The present invention relates to an ignition device including an ion current detection device mainly used for an internal combustion engine, and detects combustion ion current generated after discharge ignition at a spark plug to control combustion such as ignition timing.

従来より、内燃機関の点火装置においては、点火時に燃焼室内で発生するイオン電流を検出することで点火制御を行うものが幾つか提案されている(例えば、特開平10−141197など)。   Conventionally, several ignition devices for internal combustion engines have been proposed that perform ignition control by detecting an ionic current generated in the combustion chamber at the time of ignition (for example, JP-A-10-141197).

しかし、近年の排気ガス対策や燃費向上のための高圧縮リーン混合気での燃料直噴内燃機関などに対応するために、通常の高電流遮断方式の点火装置に加え、ダブルスパーク点火装置やマルチスパーク点火装置あるいは交流スパーク点火装置など様々な高エネルギー点火装置が提案される一方、内燃機関の失火やノックなどの燃焼状態を検出するイオン電流検出装置は、点火エネルギーの一部をキャパシタに一次的に蓄積して放電終了後のイオン検出電流源として利用しており、その充電電圧は、一般的に70V〜300V程度の範囲で使用されることが多く、電圧が高いほどイオン検出のSN比が高くなり設計自由度が上がるが、当該電圧を上げると本来放電に必要な点火装置のエネルギーが損なわれること、さらには当該損失に耐える放熱設計が必要となると云う欠点が有った。   However, in order to deal with recent direct-injection internal combustion engines with high-compressed lean air-fuel mixture for measures against exhaust gas and improving fuel efficiency, in addition to ordinary high-current cutoff type ignition devices, double spark ignition devices and While various high energy ignition devices such as a spark ignition device or an alternating spark ignition device have been proposed, an ion current detection device that detects the combustion state of an internal combustion engine such as misfire or knock is primarily used as a capacitor for a capacitor. The charging voltage is generally used in the range of about 70V to 300V, and the higher the voltage, the higher the S / N ratio for ion detection. This increases the degree of design freedom. Design there has been a drawback that referred to as needed.

さらに近年の排気ガス対策では、内燃機関の始動時から高回転域に至るまでイオン電流の変化情報をきめ細かく収集して、空燃比をEGRと組み合わせて制御するシステムが望まれているために、上記のイオン電流での燃焼悪化状態やノッキングを検出するには上死点を過ぎてから15度程度以後がイオン電流判別の重要な時間帯であることが確かめられてきたが、当該判別時間を確保する一方では、リーン燃料での燃料直噴内燃機関などに対応するために、イオン電流による制御以前の問題として高出力エネルギーの点火装置が望まれているが、汎用の高出力エネルギーの点火装置を用いた場合は、機関回転数の高い時にも放電持続時間が長いために、イオン電流検出に必要な十分な時間が取れないと云う問題があった。   Furthermore, in recent exhaust gas countermeasures, there is a demand for a system that finely collects information on changes in ion current from the start of the internal combustion engine to the high speed range and controls the air-fuel ratio in combination with EGR. It has been confirmed that about 15 degrees after the top dead center is detected as an important time zone for ionic current discrimination in order to detect the combustion deterioration state and knocking at the ionic current. On the other hand, in order to deal with a direct fuel injection internal combustion engine with lean fuel, etc., a high output energy ignition device is desired as a problem before control by ion current. When used, the discharge duration is long even when the engine speed is high, so that there is a problem that sufficient time required for ion current detection cannot be obtained.

上述の課題を解決するために、この発明では次のような構成とする。請求項1においては、点火装置を構成する点火コイルの一次側に駆動電源と、上記点火コイルの二次側に点火栓とイオン電流検出装置を備える点火装置において、当該イオン電流検出装置の電流源を構成するキャパシタに、上記キャパシタを分路するスイッチング素子を構成し、上記スイッチング素子は少なくとも点火栓での放電持続時間の前半はオン状態とする制御手段を有することによって、イオン検出電源電圧を上げても点火エネルギーの損失を最小限に抑えるイオン電流検出装置を備える点火装置を得る。   In order to solve the above-described problems, the present invention has the following configuration. According to claim 1, in an ignition device including a drive power source on a primary side of an ignition coil constituting the ignition device and an ignition plug and an ion current detection device on a secondary side of the ignition coil, a current source of the ion current detection device A switching element that shunts the capacitor, and the switching element has a control means for turning on at least the first half of the discharge duration of the spark plug, thereby increasing the ion detection power supply voltage. Even so, an ignition device having an ion current detection device that minimizes the loss of ignition energy is obtained.

この発明の請求項2に係るイオン電流検出装置を備える点火装置では、上記点火装置は、多重放電型点火装置とすることにより、上記点火装置の放電回数制御と組み合わせてイオン電流検出時間を比較的自由に制御することが可能になることから、点火エネルギーを損なわない制御の特徴が最大限発揮される。   In the ignition device provided with the ion current detection device according to claim 2 of the present invention, the ignition device is a multiple discharge ignition device, so that the ion current detection time is relatively reduced in combination with the discharge frequency control of the ignition device. Since it becomes possible to control freely, the characteristic of the control which does not impair ignition energy is exhibited to the maximum extent.

この発明の請求項3に係るイオン電流検出装置を備える点火装置では、点火装置の放電持続時間が内燃機関の回転数1000rpmの時0.7ms〜1.5ms、8000rpmの時0.5ms以内の勾配をもって変化する構成とすることにより、機関の回転数に拘わらず燃焼状態のきめ細かな情報を、イオン電流検出によって得ることができる。   In the ignition device including the ion current detection device according to claim 3 of the present invention, the gradient of the discharge duration of the ignition device is 0.7 ms to 1.5 ms when the internal combustion engine speed is 1000 rpm, and within 0.5 ms when the engine speed is 8000 rpm. With this configuration, detailed information on the combustion state can be obtained by detecting the ion current regardless of the engine speed.

この発明の請求項4に係るイオン電流検出装置を備える点火装置では、上記スイッチング素子がオン状態からオフに移行する時間を、少なくとも内燃機関実用回転域においてATDC(圧縮上死点後)15度以前とすることにより、点火エネルギー損失を最小限にして、上記同様に燃焼状態のきめ細かな情報を、イオン電流検出によって得ることができる。   In the ignition device including the ion current detection device according to claim 4 of the present invention, at least 15 degrees before ATDC (after compression top dead center) in the practical engine internal rotation range, the time for the switching element to shift from the on state to the off state. By doing so, detailed information on the combustion state can be obtained by detecting the ionic current in the same manner as described above while minimizing the ignition energy loss.

この発明の請求項5に係るイオン電流検出装置を備える点火装置では、前記多重放電型点火装置の多重放電の最後の一サイクルを残して、上記スイッチング素子をオフ設定することにより、制御の簡略化を図ることができる。   In the ignition device including the ion current detection device according to claim 5 of the present invention, the switching element is turned off while leaving the last cycle of the multiple discharge of the multiple discharge ignition device, thereby simplifying the control. Can be achieved.

この発明によれば、近年の燃費と排気ガス対策で要求されている高圧縮リーン混合気での燃料直噴内燃機関などに対応するための高出力エネルギーの点火装置と、内燃機関の始動時から高回転域に至るまで燃焼イオン電流の変化情報をきめ細かく収集して、空燃比をEGRと併用して点火時期制御などをするイオン電流検出装置の組み合わせに対して、通常は点火エネルギーの損失源となるイオン電流検出装置の主回路を分路するスイッチング素子を構成して、当該スイッチング素子のスイッチング時間を適宜制御する制御手段を付加することによって、イオン検出電源電圧を上げても点火エネルギーの損失を最小限に抑えるイオン電流検出装置を備える点火装置を得る。   According to the present invention, a high output energy ignition device for dealing with a fuel direct injection internal combustion engine or the like with a highly compressed lean air-fuel mixture, which has been required in recent years for fuel efficiency and exhaust gas countermeasures, and from the start of the internal combustion engine For a combination of ion current detection devices that finely collect information on changes in combustion ion current up to the high engine speed range and use the air-fuel ratio in combination with EGR to control ignition timing, etc. By constructing a switching element that shunts the main circuit of the ion current detection device, and adding a control means that appropriately controls the switching time of the switching element, a loss of ignition energy can be achieved even if the ion detection power supply voltage is increased. An igniter with an ion current detector that is minimized is obtained.

また、多重放電周期や回数を機関の回転数や負荷条件および前記電源電圧により適宜変更することのできる自由度の高い多重放電型点火装置と組み合わせて、イオン電流での燃焼悪化状態やノッキングをきめ細かく検出するために必要なATDC15度程度からの判別時間を、機関の回転数によって放電持続時間を変化させるなどによって確保し、点火エネルギーの損失を最小限に抑えるイオン電流検出装置を備える点火装置を得ることが出来るものである。   Also, in combination with a multiple discharge type ignition device with a high degree of freedom in which the multiple discharge cycle and frequency can be changed as appropriate according to the engine speed, load conditions and the power supply voltage, the combustion deterioration state and knocking with ionic current are meticulously determined. An ignition device having an ion current detection device that secures a discrimination time from about 15 degrees ATDC necessary for detection, for example, by changing the discharge duration according to the engine speed and minimizes the loss of ignition energy is obtained. It can be done.

図1は点火装置に多重放電型点火装置を用いたこの発明の実施例である。図2は当該実施例の作動を説明するための各部波形図であり、図3と図4は各々この発明の他の実施例であり、図中同一記号は機能が同一または同等のものである。   FIG. 1 shows an embodiment of the present invention in which a multiple discharge ignition device is used as an ignition device. FIG. 2 is a waveform diagram of each part for explaining the operation of the embodiment. FIGS. 3 and 4 are other embodiments of the present invention. In FIG. 2, the same symbols are the same or equivalent in function. .

図1において、直流電源1と点火スイッチ2とエネルギー蓄積コイル3と逆流防止手段4およびスイッチング素子5の直列回路と、上記スイッチング素子5はキャパシタ6と点火コイル7の一次線輪71による直列回路と定電圧ダイオードからなる上記スイッチング素子5の保護素子8のそれぞれによって分路されている。上記点火コイル7の二次線輪72の出力の高電圧側には点火栓9、低電圧側にはイオン電流検出装置100の端子10が接続されている。また、スイッチング素子5の制御端子は駆動回路11に接続され、さらに上記駆動回路11の入力端子はECU12の出力端子に接続されている。上記イオン電流検出装置100は、上記端子10とキャパシタ15とダイオード16の直列回路を構成し、この直列回路は定電圧ダイオード17と第二のスイッチング素子18の各々によって分路されている。さらに上記キャパシタ15とダイオード16の接続点からイオン電流検出用のレジスタ19を経てイオン検出回路20に接続され、当該検出回路20の出力端子13は、上記ECU12の入力端子に接続されている。そして、上記第二のスイッチング素子18の制御端子14は上記ECU12の出力端子に接続されている。   In FIG. 1, a DC power source 1, an ignition switch 2, an energy storage coil 3, a backflow prevention means 4, and a switching element 5 are connected in series, and the switching element 5 is a series circuit including a capacitor 6 and a primary wire 71 of the ignition coil 7. Each of the protection elements 8 of the switching element 5 made of a constant voltage diode is shunted. A spark plug 9 is connected to the high voltage side of the output of the secondary wire ring 72 of the ignition coil 7, and a terminal 10 of the ion current detector 100 is connected to the low voltage side. The control terminal of the switching element 5 is connected to the drive circuit 11, and the input terminal of the drive circuit 11 is connected to the output terminal of the ECU 12. The ion current detection device 100 constitutes a series circuit of the terminal 10, the capacitor 15, and the diode 16, and the series circuit is shunted by the constant voltage diode 17 and the second switching element 18. Further, the connection point between the capacitor 15 and the diode 16 is connected to the ion detection circuit 20 via the ion current detection register 19, and the output terminal 13 of the detection circuit 20 is connected to the input terminal of the ECU 12. The control terminal 14 of the second switching element 18 is connected to the output terminal of the ECU 12.

上記逆流防止手段4、スイッチング素子5、キャパシタ6、点火コイル7、保護素子8,点火栓9および駆動回路11およびイオン電流検出装置100からなる構成は、内燃機関の一気筒当たりのユニットであり、通常はエネルギー蓄積コイル3とECU12を共用した多気筒で構成されるが、当該実施例では他の気筒のユニットを省略している。   The configuration comprising the backflow prevention means 4, the switching element 5, the capacitor 6, the ignition coil 7, the protection element 8, the spark plug 9, the drive circuit 11 and the ion current detection device 100 is a unit per cylinder of the internal combustion engine. Usually, it is composed of multiple cylinders that share the energy storage coil 3 and the ECU 12, but the units of other cylinders are omitted in this embodiment.

点火スイッチ2が投入されるとエネルギー蓄積コイル3と逆流防止手段4とキャパシタ6および点火コイル7の一次線輪71を電流が流れ、キャパシタ6には直流電源電圧までの電荷が蓄積される。次に、駆動回路11と第二のスイッチング素子18がECU12から時間t0で各々が異なる信号を受け、スイッチング素子5がオンとなって上記キャパシタ6の充電電荷が一次線輪71に放電すると同時に、エネルギー蓄積コイル3に電流が流れることにより誘導性エネルギーの蓄積が開始される一方、第二のスイッチング素子18もまたオンとなる。   When the ignition switch 2 is turned on, a current flows through the energy storage coil 3, the backflow prevention means 4, the capacitor 6, and the primary wire 71 of the ignition coil 7, and charges up to the DC power supply voltage are stored in the capacitor 6. Next, the drive circuit 11 and the second switching element 18 receive different signals from the ECU 12 at time t0, the switching element 5 is turned on, and the charge of the capacitor 6 is discharged to the primary wire ring 71 simultaneously. Inductive energy storage is started by the current flowing through the energy storage coil 3, while the second switching element 18 is also turned on.

上記キャパシタ6の一次線輪71への放電により、二次線輪72に第二のスイッチング素子18を介して1.6kV程度の電圧を誘起するが、点火栓9に放電するには至らず上記放電電荷はキャパシタ6のキャパシタンスと一次線輪71のインダクタンスからなる自由振動、当該実施例の場合の振動周期0.4mSにより、電流方向はスイッチング素子5への通電から保護素子8への通電に反転し終了してさらに0.2mS経過後、時間t1でスイッチング素子5がオフとなって、エネルギー蓄積コイル3の蓄積エネルギーの誘起電圧350V程度により、上記キャパシタ6に充電すると同時に、当該充電初期の大電流が一次線輪71に印加されることによって、二次線輪72に低電圧ダイオード17を介して40kV程度の電圧を誘起して点火栓9に放電を開始する。   Due to the discharge of the capacitor 6 to the primary wire 71, a voltage of about 1.6 kV is induced in the secondary wire 72 via the second switching element 18. The discharge charge is a free vibration consisting of the capacitance of the capacitor 6 and the inductance of the primary ring 71, and the current direction is reversed from the energization to the switching element 5 to the energization to the protection element 8 due to the vibration period of 0.4 mS in this embodiment. Then, after a further 0.2 mS has elapsed, the switching element 5 is turned off at time t1, and the capacitor 6 is charged with an induced voltage of about 350 V stored energy in the energy storage coil 3, and at the same time the initial charge is large. When a current is applied to the primary wire 71, a voltage of about 40 kV is induced on the secondary wire 72 via the low voltage diode 17. The discharge is started in the fire hydrant 9.

当該機関クランキングの最初の0.6mSの放電遅れは、クランキング回転数の遅延角にして0.5度程度であるために問題にはならないが、当該時間は短く設定できる。   The first 0.6 mS discharge delay of the engine cranking is not a problem because the delay angle of the cranking rotational speed is about 0.5 degrees, but the time can be set short.

上記スイッチング素子5がオフ状態に移行しても、この間上記第二のスイッチング素子18は、後述の時間tnまでオンを保持しているために、電流源であるキャパシタ15に充電がされずイオン電流検出装置は静止している。   Even if the switching element 5 shifts to the off state, the second switching element 18 remains on until the time tn described later, so that the capacitor 15 as the current source is not charged and the ionic current is not charged. The detection device is stationary.

次に、上記放電終了する前の時間例えば0.3mSの後に、時間t2に改めてスイッチング素子5がオンとなることにより、キャパシタ6の高電荷が一次線輪71に印加されて、二次線輪72には第二のスイッチング素子18を介し、前記放電電圧とは逆方向の電圧を誘起して、点火栓9に反転電流が流れると同時に、エネルギー蓄積コイル3に再度誘導エネルギーの蓄積が始まる。   Next, after the time before the end of the discharge, for example, 0.3 mS, the switching element 5 is turned on again at time t2, so that the high charge of the capacitor 6 is applied to the primary wire 71, and the secondary wire A voltage in the direction opposite to the discharge voltage is induced in 72 via the second switching element 18, and at the same time as an inversion current flows through the spark plug 9, accumulation of induction energy starts again in the energy storage coil 3.

次に、上記スイッチング素子5は、0.3mS後の時間t3に再度オフと成ることにより、エネルギー蓄積コイル3の蓄積エネルギーの誘起電圧300V程度により、上記キャパシタ6を充電を開始すると同時に、一次線輪71を介して二次線輪72に34kV程度の電圧を誘起して、点火栓9の放電電流が反転する。   Next, the switching element 5 is turned off again at time t3 after 0.3 mS, so that the capacitor 6 starts to be charged with the induced voltage of the stored energy of the energy storage coil 3 by about 300 V, and at the same time, the primary line. A voltage of about 34 kV is induced on the secondary wire 72 via the wheel 71, and the discharge current of the spark plug 9 is reversed.

以下、スイッチング素子5は、0.3mSの等間隔でオン・オフを繰り返すことにより、点火栓9ではキャパシタ6の放電による容量性放電と、エネルギー蓄積コイル3によるキャパシタ6充電による誘導性放電を交互に繰り返し、例えば5回繰り返しの後の時間tnにスイッチング素子5がオフとなると、点火栓9の放電は終了するがキャパシタ6にはエネルギー蓄積コイル3の誘導エネルギーによる充電される電荷を十分に蓄えて、次の点火タイミングまで待機する。   Thereafter, the switching element 5 is repeatedly turned on and off at equal intervals of 0.3 mS, so that the spark plug 9 alternately performs capacitive discharge due to discharge of the capacitor 6 and inductive discharge due to charge of the capacitor 6 by the energy storage coil 3. For example, when the switching element 5 is turned off at a time tn after 5 repetitions, the discharge of the spark plug 9 is completed, but the capacitor 6 sufficiently stores the charge charged by the induction energy of the energy storage coil 3. And wait until the next ignition timing.

上記時間tnではECU12から第二のスイッチング素子18にもオフ信号が加わることによりオンからオフに移行し、上記スイッチング素子5が最終のオフになって点火栓9での火花放電が終了すると同時に、点火コイル7の二次線輪72と点火栓までの間のインダクタンスと漏洩キャパシタンスによる数kVの自由振動電圧によって、低電圧ダイオード17によってほぼ制限される電圧までキャパシタ15が充電される。   At the time tn, an off signal is applied to the second switching element 18 from the ECU 12 to shift from on to off, the switching element 5 is finally turned off, and the spark discharge at the spark plug 9 is completed. The capacitor 15 is charged to a voltage substantially limited by the low voltage diode 17 by a free oscillation voltage of several kV due to the inductance and leakage capacitance between the secondary wire 72 of the ignition coil 7 and the spark plug.

上記キャパシタ15の充電電圧が二次線輪72を介して点火栓9に印可されることにより、上述の多重放電火花により点火されて発生した燃焼イオン電流をレジスタ19により検出してイオン検出回路20にて増幅や波形処理をした後、端子13を経てECU12に送信する。   When the charging voltage of the capacitor 15 is applied to the spark plug 9 through the secondary wire ring 72, the combustion ion current generated by the ignition by the multiple discharge spark is detected by the register 19, and the ion detection circuit 20 is detected. Then, after amplification and waveform processing, the signal is transmitted to the ECU 12 via the terminal 13.

再度点火タイミングが来ると、時間t0でスイッチング素子5と第二のスイッチング素子18がほぼ同時にオンとなり、キャパシタ6に前述した十分な充電電荷が一次線輪71に印加されることにより、二次線輪72に誘起された40kV程度の電圧によって第二のスイッチング素子18を介して点火栓9に火花放電を開始すると同時に、エネルギー蓄積コイル3に誘導エネルギーの蓄積が始まる。続いて0.3mS後の時間t1にスイッチング素子5がオフとなると、上記誘導エネルギーがキャパシタ6の充電電流となると同時に、一次線輪71を介して二次線輪72に誘起された電圧により、定電圧ダイオード8を介して点火栓9には反転放電電流が流れ、当該放電が終了する前の0.3mS後の時間t2に再度スイッチング素子5をオンとして、キャパシタ6の放電による容量性放電が点火栓9に再反転放電として行われ、以下、ECU12の制御信号に基づく駆動回路11からの出力が継続する間、繰り返し多重放電が行われ、放電が終了すると同時にキャパシタ15に定電圧ダイオード17の制限電圧まで充電され、これにより燃焼イオン電流が検出されてイオン検出回路20を経てECU12に送られる。   When the ignition timing comes again, at time t0, the switching element 5 and the second switching element 18 are turned on almost simultaneously, and the above-described sufficient charging charge is applied to the capacitor 6 to the primary wire 71, whereby the secondary line. A spark discharge is started in the spark plug 9 via the second switching element 18 by a voltage of about 40 kV induced in the ring 72, and at the same time, the accumulation of inductive energy starts in the energy storage coil 3. Subsequently, when the switching element 5 is turned off at time t1 after 0.3 mS, the induced energy becomes the charging current of the capacitor 6 and at the same time, due to the voltage induced in the secondary wire 72 via the primary wire 71, A reverse discharge current flows through the spark plug 9 via the constant voltage diode 8, and the switching element 5 is turned on again at time t2 after 0.3 mS before the discharge ends, and capacitive discharge due to the discharge of the capacitor 6 occurs. This is performed as re-inversion discharge on the spark plug 9, and thereafter, multiple discharges are repeatedly performed while the output from the drive circuit 11 based on the control signal of the ECU 12 continues. The battery is charged up to the limit voltage, whereby the combustion ion current is detected and sent to the ECU 12 via the ion detection circuit 20.

上述の作動は図2に示され、Sは機関の回転数や負荷条件および電源電圧により適宜制御判断されECU12が決定する点火動作範囲であり、イオン電流検出装置100の不作動時間をも決めている。Vsは上記同様に上記ECU12の決定する駆動回路11へのスイッチング出力信号、Vcはキャパシタ6の両端電圧、i2は点火栓9の放電電流である。   The above-described operation is shown in FIG. 2, where S is an ignition operation range determined by the ECU 12 as appropriate determined by the engine speed, load conditions and power supply voltage, and also determines the non-operation time of the ion current detection device 100. Yes. Vs is a switching output signal to the drive circuit 11 determined by the ECU 12 as described above, Vc is a voltage across the capacitor 6, and i2 is a discharge current of the spark plug 9.

図2に示されるように、点火栓9の放電の最初は40kV程度の高い電圧を要求されるが、一度放電が行われると、点火栓9の近傍のイオン化により25kV程度の低い電圧でも放電を継続することができるために、スイッチング素子5のスイッチング周期を上げて出力電圧を低下させている。   As shown in FIG. 2, a high voltage of about 40 kV is required at the beginning of discharge of the spark plug 9, but once the discharge is performed, discharge is performed even at a low voltage of about 25 kV due to ionization in the vicinity of the spark plug 9. In order to be able to continue, the switching period of the switching element 5 is raised and the output voltage is lowered.

図2のi2で示される出力電流の最後の斜線部分i0は放電終了後の自由振動電圧によってキャパシタ15へされる充電電流を示しており、時間tiからが実質的なイオン電流検出装置のイオン検出開始時間となる。   The last hatched portion i0 of the output current indicated by i2 in FIG. 2 indicates the charging current applied to the capacitor 15 by the free oscillation voltage after the end of the discharge, and the substantial ion detection of the ion current detector from time ti. Start time.

機関回転数が高くなると、これに反比例して放電持続時間Sを短く設定する必要があり、上記スイッチング素子5のオン・オフ周期を短くすることも行われるが、負荷条件によっては、まれに高い放電電圧が要求されることもあり、スイッチング素子5のスイッチング回数を減少させることが好ましく、点火装置の放電持続時間が内燃機関の回転数1000rpmの時0.7ms〜1.5ms、8000rpmの時0.5ms以内の勾配をもって変化する構成とすることにより、機関の回転数に拘わらず燃焼状態のきめ細かな情報を、イオン電流検出によって得ることができる。   When the engine speed increases, the discharge duration S needs to be set to be inversely proportional to this, and the ON / OFF cycle of the switching element 5 is also shortened. However, depending on the load condition, it is rarely high. Since the discharge voltage may be required, it is preferable to reduce the switching frequency of the switching element 5, and the discharge duration of the ignition device is 0.7 ms to 1.5 ms when the internal combustion engine speed is 1000 rpm, and 0 when the engine speed is 8000 rpm. By adopting a configuration that changes with a gradient within 5 ms, fine information on the combustion state can be obtained by detecting the ion current regardless of the engine speed.

上述の放電持続時間を回転数に連動して制御する手段と、イオン電流検出装置100の第二のスイッチング素子18がオン状態からオフに移行する時間を同時制御することにより、少なくとも内燃機関実用回転域においてATDC(圧縮上死点後)15度以前とすることにより、点火エネルギー損失を最小限にして、上記同様に燃焼状態のきめ細かな情報を、イオン電流検出によって得ることができる。   By simultaneously controlling the above-described means for controlling the discharge duration in conjunction with the rotational speed and the time during which the second switching element 18 of the ion current detection device 100 shifts from the on state to the off state, at least the practical rotation of the internal combustion engine. By setting the ATDC (after compression top dead center) to 15 degrees or less in the region, ignition energy loss can be minimized, and detailed information on the combustion state can be obtained by ion current detection as described above.

当該実施例の出力電圧の高低制御は、エネルギー蓄積コイル3へのエネルギー蓄積通電時間、言い換えればスイッチング素子5のオン時間で決まり、特に、前述した点火スイッチ投入時の機関クランキング時の一発目以外は、時間tnの直前のオン時間がエネルギー蓄積コイル3の蓄積エネルギーを決め、キャパシタ6の充電電荷量を左右することになるために、ことのほか重要である。特に、当該オン時間は、機関クランキング時とそれに続くアイドル回転時などの直流電源1の電圧が低い時に、長く設定される。   The level control of the output voltage in this embodiment is determined by the energy storage energization time to the energy storage coil 3, in other words, the on-time of the switching element 5. In particular, the first operation at the time of engine cranking when the ignition switch is turned on. Other than the above, the on-time immediately before the time tn determines the stored energy of the energy storage coil 3 and determines the charge amount of the capacitor 6. In particular, the on-time is set longer when the voltage of the DC power source 1 is low, such as during engine cranking and subsequent idle rotation.

上記29段落の安価な実現の方法は、通常時の時間tnの直前のスイッチング素子5のオン時間は、それ以前のオン時間に対して比較的長く固定設定される。   In the method for realizing the low cost in the above 29th paragraph, the on-time of the switching element 5 immediately before the normal time tn is fixed to be relatively long with respect to the previous on-time.

この場合、イオン電流検出装置の第二のスイッチング素子18のオンからオフに制御するタイミングを、上記固定設定に連動して上記多重放電型点火装置の最後の一サイクルを残してオフ設定することにより、制御の簡略化ができる。   In this case, the timing for controlling the second switching element 18 of the ion current detection device from on to off is set off while leaving the last one cycle of the multiple discharge ignition device in conjunction with the fixed setting. Control can be simplified.

上記エネルギー蓄積コイル3は最大通電時間設定に対して、通常は磁気飽和しないように設計されている。   The energy storage coil 3 is normally designed not to be magnetically saturated with respect to the maximum energization time setting.

図3は、この発明の第二の実施例であり、図1の実施例のイオン電流検出装置100の部分のみ変更したものである。図1からの変更点はキャパシタ15とダイオード16の直列回路を分路していた定電圧ダイオード17と第二のスイッチング素子18の各々を上記キャパシタ15のみを分路する回路とし、さらに上記ダイオード16に逆向きに他のダイオード21を追加したもので、キャパシタ15への充電電荷電圧をより正確に設定することができる。   FIG. 3 shows a second embodiment of the present invention, in which only the portion of the ion current detection device 100 of the embodiment of FIG. 1 is changed. The change from FIG. 1 is that each of the constant voltage diode 17 and the second switching element 18 that shunts the series circuit of the capacitor 15 and the diode 16 is a circuit that shunts only the capacitor 15, and further the diode 16 In addition, another diode 21 is added in the opposite direction, and the charge voltage to the capacitor 15 can be set more accurately.

図4は、この発明の第三の実施例であり、図3と同様に図1の実施例のイオン電流検出装置100の部分のみ変更したものである。図1からの変更点はキャパシタ15とダイオード16の直列回路を分路していた定電圧ダイオード17のアノードを第二のスイッチング素子18の制御端子に接続し、さらに別のダイオード21を上記第二のスイッチング素子18の制御端子に上記低電圧ダイオード17と通電方向を揃えて接続したもので、キャパシタ15への充電時の定電圧ダイオード17の電流負担を第二のスイッチング素子18で肩代わりしており、定電圧ダイオード17には、多重放電型点火装置のスイッチング素子5のオフ時に流れる比較的ピーク電流の小さい反転放電電流のみが、ダイオード21を介してスイッチング素子18と分担して流れるために、定電圧ダイオード17の少容量化が図れる。   FIG. 4 shows a third embodiment of the present invention, in which only the portion of the ion current detector 100 of the embodiment of FIG. 1 is changed as in FIG. The change from FIG. 1 is that the anode of the constant voltage diode 17 that shunts the series circuit of the capacitor 15 and the diode 16 is connected to the control terminal of the second switching element 18, and another diode 21 is connected to the second diode 21. The control terminal of the switching element 18 is connected to the low voltage diode 17 in the same energizing direction, and the second switching element 18 takes over the current burden of the constant voltage diode 17 when charging the capacitor 15. In the constant voltage diode 17, only the reversal discharge current having a relatively small peak current that flows when the switching element 5 of the multiple discharge ignition device is turned off is shared with the switching element 18 via the diode 21. The capacity of the voltage diode 17 can be reduced.

何れの実施例に於いても当該定電圧ダイオード17は、低い電圧設定の時でも多重点火エネルギーをそのまま印加すると大きな消費電力となるが、この発明では最小限の消費電力に設定できる。従って、定電圧ダイオード17は通常のツェナーダイオードは勿論、アバランシェダイオードの使用も可能である。   In any of the embodiments, the constant voltage diode 17 consumes a large amount of power when the multiple ignition energy is applied as it is even when a low voltage is set, but can be set to a minimum power consumption in the present invention. Therefore, the constant voltage diode 17 can be an avalanche diode as well as a normal Zener diode.

また、多重放電型点火装置のスイッチング素子5や第二のスイッチング素子18は、通常のトランジスタやIGBTおよびFETなど適宜選択することができる。   The switching element 5 and the second switching element 18 of the multiple discharge ignition device can be appropriately selected from a normal transistor, IGBT, and FET.

そして、実施例ではスイッチング素子5の保護素子8には定電圧ダイオードを用いたが、通常のダイオードでも良く、スイッチング素子5の制御端子に低抵抗器やダイオードを付加することにより、省略することも可能である。   In the embodiment, a constant voltage diode is used as the protective element 8 of the switching element 5. However, a normal diode may be used, and may be omitted by adding a low resistor or a diode to the control terminal of the switching element 5. Is possible.

同様に、実施例では放電持続時間を決める波形Sで示される信号や多重放電型点火装置のVsで示される多重放電周期波形の制御は、ECU12の制御ソフトウェアによるものとしたが、他のICなどによっても構成できる。   Similarly, in the embodiment, the control of the signal indicated by the waveform S that determines the discharge duration and the multiple discharge period waveform indicated by Vs of the multiple discharge ignition device is performed by the control software of the ECU 12, but other ICs, etc. Can also be configured.

さらに実施例では、容量性放電と誘導性放電を交互に繰り返す多重放電型点火装置をのみ示したが、他の点火装置で有っても点火エネルギーの一部をイオン電流検出装置の電流源を構成するキャパシタに充電する方式の点火装置である限り、この発明に係るイオン電流検出装置を備える点火装置の機能は何ら失われない。   Further, in the embodiment, only the multiple discharge type ignition device that alternately repeats the capacitive discharge and the inductive discharge is shown. However, even with other ignition devices, a part of the ignition energy is supplied to the current source of the ion current detection device. As long as it is an ignition device that charges a capacitor that constitutes the device, the function of the ignition device including the ion current detection device according to the present invention is not lost.

発明の第一の実施例を示す図。The figure which shows the 1st Example of invention. 発明の第一の実施例の各部作動波形。The operation | movement waveform of each part of 1st Example of invention. 発明の第二の実施例の主要部分を示す図。The figure which shows the principal part of the 2nd Example of invention. 発明の第三の実施例の主要部分を示す図。The figure which shows the principal part of the 3rd Example of invention.

符号の説明Explanation of symbols

3:エネルギー蓄積コイル
4:逆流防止手段
5:スイッチング素子
6:キャパシタ
7:点火コイル
71:一次線輪
72:二次線輪
8:保護素子
9:点火栓
100:イオン電流検出装置
10,13,14:イオン電流検出装置の端子
11:駆動回路
12:ECU
15:キャパシタ
16,21:ダイオード
17:定電圧ダイオード
18:第二のスイッチング素子
19:レジスタ
20:イオン検出回路
3: Energy storage coil 4: Backflow prevention means 5: Switching element 6: Capacitor 7: Ignition coil 71: Primary wire ring 72: Secondary wire ring 8: Protection element 9: Spark plug 100: Ion current detectors 10, 13, 14: Terminal of ion current detection device 11: Drive circuit 12: ECU
15: Capacitors 16, 21: Diode 17: Constant voltage diode 18: Second switching element 19: Register 20: Ion detection circuit

Claims (5)

点火装置を構成する点火コイルの一次側に駆動電源と、上記点火コイルの二次側に点火栓とイオン電流検出装置を備える点火装置において、当該イオン電流検出装置の電流源を構成するキャパシタに、上記キャパシタを分路するスイッチング素子を構成し、上記スイッチング素子は少なくとも点火栓での放電持続時間の前半はオン状態とする制御手段を有することを特徴とするイオン電流検出装置を備える点火装置。 In an ignition device including a drive power source on the primary side of an ignition coil constituting the ignition device, and an ignition plug and an ion current detection device on the secondary side of the ignition coil, a capacitor constituting a current source of the ion current detection device, An ignition device comprising an ion current detection device comprising a switching element for shunting the capacitor, the switching element having a control means for turning on at least the first half of the discharge duration of the spark plug. 上記点火装置は、多重放電型点火装置とした請求項1に記載のイオン電流検出装置を備える点火装置。 The ignition device comprising the ion current detection device according to claim 1, wherein the ignition device is a multiple discharge ignition device. 点火栓での放電持続時間が内燃機関の回転数1000rpmの時0.7ms〜1.5ms、8000rpmの時0.5ms以内の勾配をもって変化する構成とした請求項1と2に記載のイオン電流検出装置を備える点火装置。 The ion current detection according to claim 1 or 2, wherein the discharge duration at the spark plug changes with a gradient of 0.7 ms to 1.5 ms when the engine speed is 1000 rpm and within 0.5 ms when the engine speed is 8000 rpm. Ignition device comprising the device. 上記スイッチング素子がオン状態からオフに移行する時間を、少なくとも内燃機関実用回転域においてATDC(圧縮上死点後)15度以前とした請求項1乃至3に記載のイオン電流検出装置を備える点火装置。 The ignition device comprising the ion current detection device according to any one of claims 1 to 3, wherein a time for the switching element to shift from an on state to an off state is at least 15 degrees before ATDC (after compression top dead center) in a practical rotational range of the internal combustion engine. . 前記多重放電型点火装置の多重放電の最後の一サイクルを残して、上記スイッチング素子をオフ設定した請求項1乃至4に記載のイオン電流検出装置を備える点火装置。 An ignition device comprising the ion current detection device according to any one of claims 1 to 4, wherein the switching element is turned off with the last cycle of multiple discharge of the multiple discharge ignition device remaining.
JP2005278265A 2005-09-26 2005-09-26 Ignition device having an ion current detection device Expired - Fee Related JP4575264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005278265A JP4575264B2 (en) 2005-09-26 2005-09-26 Ignition device having an ion current detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005278265A JP4575264B2 (en) 2005-09-26 2005-09-26 Ignition device having an ion current detection device

Publications (2)

Publication Number Publication Date
JP2007085306A true JP2007085306A (en) 2007-04-05
JP4575264B2 JP4575264B2 (en) 2010-11-04

Family

ID=37972525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005278265A Expired - Fee Related JP4575264B2 (en) 2005-09-26 2005-09-26 Ignition device having an ion current detection device

Country Status (1)

Country Link
JP (1) JP4575264B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174471A (en) * 2011-05-10 2011-09-08 Mitsubishi Electric Corp Ignition device for internal combustion engine
JP2017190683A (en) * 2016-04-12 2017-10-19 三菱電機株式会社 Ignition control device and ignition control method for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054547A (en) * 2000-08-08 2002-02-20 Hanshin Electric Co Ltd Misfire detector of internal combustion engine
JP2002070712A (en) * 2000-08-28 2002-03-08 Hitachi Ltd Ignition system of internal combustion engine
JP2003222066A (en) * 2002-01-31 2003-08-08 Ngk Spark Plug Co Ltd Accidental fire detecting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054547A (en) * 2000-08-08 2002-02-20 Hanshin Electric Co Ltd Misfire detector of internal combustion engine
JP2002070712A (en) * 2000-08-28 2002-03-08 Hitachi Ltd Ignition system of internal combustion engine
JP2003222066A (en) * 2002-01-31 2003-08-08 Ngk Spark Plug Co Ltd Accidental fire detecting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174471A (en) * 2011-05-10 2011-09-08 Mitsubishi Electric Corp Ignition device for internal combustion engine
JP2017190683A (en) * 2016-04-12 2017-10-19 三菱電機株式会社 Ignition control device and ignition control method for internal combustion engine
US10167839B2 (en) 2016-04-12 2019-01-01 Mitsubishi Electric Corporation Ignition control device and ignition control method for internal combustion engine

Also Published As

Publication number Publication date
JP4575264B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP2002168170A (en) Ionic current detection device for internal combustion engine
EP1316723A2 (en) Ignition device for internal combustion engine
JP4577031B2 (en) Ignition device for internal combustion engine
JP2009085166A (en) Ignition coil apparatus for internal combustion engine
US6298823B1 (en) Knock control apparatus for internal combustion engine
JP2007009890A (en) Ignitor provided with ion current detection device
US5429103A (en) High performance ignition system
JP4575264B2 (en) Ignition device having an ion current detection device
US9382852B2 (en) Control device for internal combustion engine having cylinder resting mechanism
JP4494264B2 (en) Internal combustion engine ignition device
JP2007032352A (en) Ignition device equipped with ion current detection device
JP2007154829A (en) Multiple point ignition device provided with ion current detection device
JP5047247B2 (en) Ignition control device for internal combustion engine
US20200358263A1 (en) Ignition apparatus
JP2009203864A (en) Combustion state detection device and ignition control system
JP4494297B2 (en) Internal combustion engine ignition device
JP3584664B2 (en) Capacitor discharge type internal combustion engine ignition device
WO2003078830A1 (en) Processor controlled discharge ignition with fixed firing angle at startup
JP3480588B2 (en) Capacity discharge type ignition device
JP2003286933A (en) Ignition device for internal combustion engine
JPS59103967A (en) Igniter for internal-combustion engine
US7827959B2 (en) Ignition device for internal combustion engine
JP3619073B2 (en) Combustion state detection device for internal combustion engine
JPS61241466A (en) Ignitor for internal-combustion engine
JPH0612760U (en) Internal combustion engine ignition device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100819

R150 Certificate of patent or registration of utility model

Ref document number: 4575264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160827

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees