JP2007084413A - Method of manufacturing oxide sintered compact and raw material powder for oxide sintered compact - Google Patents

Method of manufacturing oxide sintered compact and raw material powder for oxide sintered compact Download PDF

Info

Publication number
JP2007084413A
JP2007084413A JP2005278658A JP2005278658A JP2007084413A JP 2007084413 A JP2007084413 A JP 2007084413A JP 2005278658 A JP2005278658 A JP 2005278658A JP 2005278658 A JP2005278658 A JP 2005278658A JP 2007084413 A JP2007084413 A JP 2007084413A
Authority
JP
Japan
Prior art keywords
cerium
mol
oxide
oxide sintered
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005278658A
Other languages
Japanese (ja)
Other versions
JP4936422B2 (en
Inventor
Eisaku Suda
栄作 須田
Masashi Mori
昌史 森
Toshihiro Moriga
俊広 森賀
Bernald Pacaud
ベルナール パコ
Keiichiro Murai
啓一郎 村井
Takashi Kunimoto
崇 國本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Solvay Special Chem Japan Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Anan Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Anan Kasei Co Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005278658A priority Critical patent/JP4936422B2/en
Publication of JP2007084413A publication Critical patent/JP2007084413A/en
Application granted granted Critical
Publication of JP4936422B2 publication Critical patent/JP4936422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a high density oxide sintered compact having a high density enough to be used for a material of SOFC (a solid oxide fuel cell) or the like even when a precursor of the oxide sintered compact is sintered at a temperature lower than the conventional sinterintg temperature and raw material powder for the oxide sintered compact. <P>SOLUTION: The oxide sintered compact containing cerium, Ln and T (where, Ln is at least one of rare earth metal elements except Ce and Pm, T is at least one of transition metal elements, the content of cerium is ≥50 mol% and ≤99.9 mol%, the content of Ln is ≥0.01 mol% and ≤50 mol%, and T is ≥0 and ≤5 mol% per 100 mol% in total of cerium, Ln and T) is manufactured by preparing a cerium-rare earth metal salt and calcining by heat-treating to manufacture a cerium-rare earth metal oxide, mixing the cerium-rare earth metal oxide with a transition metal compound to manufacture the precursor and sintering the precursor at a temperature of ≥800°C and ≤1,000°C for ≥0.5 hr and ≤24 hr. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、酸化物焼結体の製造方法及び酸化物焼結体の原料粉末に関し、特に、固体酸化物型燃料電池(Solid Oxide Fuel Cells, 以下「SOFC」と記す)の電極材料、電解質材料及びインターレイヤ材料等として用いることができる酸化物焼結体の製造方法及び酸化物焼結体の原料粉末に関する。   TECHNICAL FIELD The present invention relates to a method for producing an oxide sintered body and a raw material powder for the oxide sintered body, and in particular, an electrode material and an electrolyte material for a solid oxide fuel cell (hereinafter referred to as “SOFC”). Further, the present invention relates to a method for producing an oxide sintered body that can be used as an interlayer material and the like, and a raw material powder for the oxide sintered body.

セリウム元素を含有する酸化物焼結体は、最近ではSOFCの材料として、具体的には、電極材料、電解質材料やインターレイヤ材料等に期待されており、特許文献1から3などに記載されているように、高密度を有する酸化物焼結体の組成や製造方法の研究が進められている。   Oxide sintered bodies containing a cerium element have recently been expected as SOFC materials, specifically electrode materials, electrolyte materials, interlayer materials, and the like, and are described in Patent Documents 1 to 3, etc. As described above, research on the composition and manufacturing method of an oxide sintered body having a high density is underway.

特許文献1には、酸化セリウムと希土類元素の酸化物と遷移金属酸化物とを混合させて前駆体を製造し、その前駆体を1300〜1600℃で焼結させて酸化物イオン導電体を製造する方法が開示されている。また、特許文献2には、Gdがドープされた酸化セリウム粉末とスピネル型鉄複合酸化物とを混合させて前駆体を製造し、その前駆体を1100〜1300℃で焼結させて複合体型複合導電体を製造する方法が開示されている。また、特許文献3には、酸化セリウム粉末と希土類元素の酸化物と遷移金属酸化物とを混合させて前駆体を製造し、その前駆体を1300〜1500℃で1〜5時間焼結させてインターレイヤ(反応防止層)を製造する方法が開示されている。そして、いずれの特許文献にも、高密度を有する酸化物焼結体を得ることができるため得られた酸化物焼結体をSOFCの材料などに用いることができる、と記載されている。
特開2003−48778号公報 特開2005−53763号公報 特開2004−269275号公報
In Patent Document 1, a precursor is prepared by mixing cerium oxide, a rare earth element oxide and a transition metal oxide, and the precursor is sintered at 1300 to 1600 ° C. to produce an oxide ion conductor. A method is disclosed. In Patent Document 2, a precursor is prepared by mixing cerium oxide powder doped with Gd and spinel-type iron composite oxide, and the precursor is sintered at 1100 to 1300 ° C. to form a composite-type composite. A method of manufacturing a conductor is disclosed. In Patent Document 3, a precursor is prepared by mixing cerium oxide powder, rare earth element oxide and transition metal oxide, and the precursor is sintered at 1300-1500 ° C. for 1-5 hours. A method for producing an interlayer (anti-reaction layer) is disclosed. And in any patent document, since the oxide sintered compact which has a high density can be obtained, it describes that the obtained oxide sintered compact can be used for the material of SOFC, etc.
JP 2003-48778 A JP 2005-53763 A JP 2004-269275 A

本願の目的は、従来の焼結温度よりも低い温度で前駆体を焼結させても、SOFCの材料などに利用可能な程度の高密度な酸化物焼結体を製造する方法及び酸化物焼結体の原料粉末を提供することにある。   The purpose of the present application is to provide a method for producing a high-density oxide sintered body that can be used for SOFC materials and the like even when the precursor is sintered at a temperature lower than the conventional sintering temperature. The object is to provide a raw material powder for the ligation.

本発明の酸化物焼結体の製造方法は、セリウムイオンとセリウムイオン及びプロメチウムイオン以外の希土類イオンとを含有する原料溶液に沈殿剤を混合させて、セリウム-希土類系金属塩を製造する工程と、セリウム-希土類系金属塩を熱処理する熱処理工程と、熱処理工程の後のセリウム-希土類系金属塩を仮焼し、得られたセリウム-希土類系金属酸化物と遷移金属化合物とを混合して前駆体を製造する前駆体製造工程、または熱処理工程の後のセリウム-希土類系金属塩と遷移金属化合物とを混合し、仮焼して、前駆体を製造する前駆体製造工程と、前駆体を焼結させて、セリウムとLnとTとを含有する酸化物焼結体(但し、LnはCe及びPm以外の少なくとも一つの希土類金属元素であり、Tは少なくとも一つの遷移金属元素であり、セリウムとLnとTとの合計を100mol%とした場合に、セリウムは50mol%以上99.9mol%より小さく、Lnは0.01mol%以上50mol%より小さく、Tは0より大きく5mol%以下である)を製造する焼結工程とを備えている。   The method for producing an oxide sintered body according to the present invention includes a step of producing a cerium-rare earth metal salt by mixing a precipitant with a raw material solution containing cerium ions and rare earth ions other than cerium ions and promethium ions. A heat treatment step of heat-treating the cerium-rare earth metal salt, calcining the cerium-rare earth metal salt after the heat treatment step, and mixing the obtained cerium-rare earth metal oxide and transition metal compound to form a precursor The precursor manufacturing process for manufacturing the precursor, or the cerium-rare earth metal salt and the transition metal compound after the heat treatment process are mixed and calcined to prepare the precursor, and the precursor is sintered. An oxide sintered body containing cerium, Ln, and T (wherein Ln is at least one rare earth metal element other than Ce and Pm, T is at least one transition metal element, and cerium and Ln and T Cerium is 50 mol% or more and less than 99.9 mol%, Ln is 0.01 mol% or more and less than 50 mol%, and T is greater than 0 and 5 mol% or less). And.

本発明の酸化物焼結体の製造方法では、遷移金属化合物は、鉄塩、コバルト塩及び銅塩のうちの少なくとも一つであることが好ましく、また、遷移金属化合物は、鉄酸化物、コバルト酸化物及び銅酸化物のうちの少なくとも一つであることが好ましい。   In the method for producing an oxide sintered body of the present invention, the transition metal compound is preferably at least one of an iron salt, a cobalt salt, and a copper salt, and the transition metal compound is an iron oxide, a cobalt salt. It is preferably at least one of an oxide and a copper oxide.

また、本発明の酸化物焼結体の製造方法では、前駆体製造工程では、前駆体中のセリウムとLnとTとの合計を100mol%とした場合のTに相当する銅の含有量が0.5mol%以下となるように、セリウム-希土類系金属酸化物またはセリウム-希土類系金属塩に銅酸化物を混合させて前駆体を製造することが好ましい。   Further, in the method for producing an oxide sintered body of the present invention, in the precursor production step, the copper content corresponding to T when the total of cerium, Ln, and T in the precursor is 100 mol% is 0.5. It is preferable to produce a precursor by mixing copper oxide with cerium-rare earth metal oxide or cerium-rare earth metal salt so as to be less than mol%.

また、本発明の酸化物焼結体の製造方法では、焼結工程は、焼結温度が800℃以上1000℃以下であり、焼結時間が0.5時間以上24時間以下であることが好ましい。   In the method for producing an oxide sintered body according to the present invention, the sintering step preferably has a sintering temperature of 800 ° C. or higher and 1000 ° C. or lower and a sintering time of 0.5 hour or longer and 24 hours or shorter.

また、本発明の酸化物焼結体の製造方法では、熱処理工程は、熱処理温度が40℃以上100℃以下であり、熱処理時間が0.5時間以上10時間以下であり、大気圧下で行われることが好ましい。   Further, in the method for producing an oxide sintered body according to the present invention, the heat treatment step is performed at atmospheric pressure with a heat treatment temperature of 40 ° C. or more and 100 ° C. or less, a heat treatment time of 0.5 hour or more and 10 hours or less. Is preferred.

また、本発明の酸化物焼結体の製造方法では、セリウムイオン及びプロメチウムイオン以外の希土類イオンは、ガドリニウムイオン、サマリウムイオン及びイットリウムイオンのうちの少なくとも一つであることが好ましい。   In the method for producing an oxide sintered body of the present invention, the rare earth ions other than cerium ions and promethium ions are preferably at least one of gadolinium ions, samarium ions, and yttrium ions.

本発明の酸化物焼結体の原料粉末は、セリウムとLnとTとを含有し(但し、LnはCe及びPm以外の少なくとも一つの希土類金属元素であり、Tは少なくとも一つの遷移金属元素であり、セリウムとLnとTとの合計を100mol%とした場合に、セリウムは50mol%以上99.9mol%より小さく、Lnは0.01mol%以上50mol%より小さく、Tは0より大きく5mol%以下である)、1000℃で5時間焼結したときの相対密度が94%以上である。   The raw material powder of the oxide sintered body of the present invention contains cerium, Ln, and T (provided that Ln is at least one rare earth metal element other than Ce and Pm, and T is at least one transition metal element). Yes, when the total of cerium, Ln, and T is 100 mol%, cerium is 50 mol% or more and less than 99.9 mol%, Ln is 0.01 mol% or more and less than 50 mol%, and T is greater than 0 and less than 5 mol%. ), And the relative density when sintered at 1000 ° C. for 5 hours is 94% or more.

本発明の酸化物焼結体の原料粉末では、Tは、鉄、銅及びコバルトのうちの少なくとも一つであることが好ましい。   In the raw material powder for the oxide sintered body of the present invention, T is preferably at least one of iron, copper and cobalt.

本発明では、従来の焼結温度よりも低い焼結温度で前駆体を焼結させても、SOFCの材料などに利用可能な程度の高密度な酸化物焼結体を製造することができる。そのため、製造された酸化物焼結体をSOFCの電極材料、電解質材料及びインターレイヤ材料等として用いることができる。   In the present invention, even if the precursor is sintered at a sintering temperature lower than the conventional sintering temperature, a high-density oxide sintered body that can be used as an SOFC material can be produced. Therefore, the manufactured oxide sintered body can be used as an SOFC electrode material, electrolyte material, interlayer material, and the like.

以下、本発明の実施形態を詳細に説明する。
1.酸化物焼結体の原料粉末
本実施形態の酸化物焼結体の原料粉末は、セリウムとLnとTとを含有し(但し、LnはCe及びPm以外の少なくとも一つの希土類金属元素であり、Tは少なくとも一つの遷移金属元素であり、セリウムとLnとTとの合計を100mol%とした場合に、セリウムは50mol%以上99.9mol%より小さく、Lnは0.01mol%以上50mol%より小さく、Tは0より大きく5mol%以下である)、1000℃で5時間焼結したときの相対密度が94%以上である。これにより、この酸化物焼結体は、比較的低温での焼結により、SOFCの電極材料、電解質材料及びインターレイヤ材料等として用いることができる。
Hereinafter, embodiments of the present invention will be described in detail.
1. Raw material powder of oxide sintered body The raw material powder of oxide sintered body of the present embodiment contains cerium, Ln, and T (provided that Ln is at least one rare earth metal element other than Ce and Pm, T is at least one transition metal element, and when the total of cerium, Ln, and T is 100 mol%, cerium is 50 mol% or more and less than 99.9 mol%, Ln is 0.01 mol% or more and less than 50 mol%, T Is greater than 0 and 5 mol% or less), and the relative density when sintered at 1000 ° C. for 5 hours is 94% or more. Thus, the oxide sintered body can be used as an SOFC electrode material, electrolyte material, interlayer material, and the like by sintering at a relatively low temperature.

なお、Lnは、Gd、Sm及びYなどであることが好ましく、Tは、Fe、Co及びCuなどであることが好ましい。   Ln is preferably Gd, Sm, Y, and the like, and T is preferably Fe, Co, Cu, and the like.

また、相対密度(%)は、
(相対密度)=(実測密度)/(理論密度)*100
で表される。本発明における相対密度の測定は、後述の実施例に記載の条件による。そして、相対密度が高ければ高いほど、酸化物焼結体は、ガス透過性が低く、酸素イオン伝導性が高いため、SOFC材料等に好ましく用いられる。
2.酸化物焼結体の製造方法
本実施形態における酸化物焼結体の製造方法は2通りある。第1の方法では、まず、熱処理したセリウム-希土類系金属塩を仮焼してセリウム-希土類系金属酸化物を製造する。次に、そのセリウム-希土類系金属酸化物と遷移金属化合物とを混合させて前駆体を製造する。そして、その前駆体を焼結させる。第2の方法では、熱処理したセリウム-希土類系金属塩に遷移金属化合物を混合し、仮焼して前駆体を製造する。そして、その前駆体を焼結させる。そして、どちらの方法を用いて酸化物焼結体を製造した場合であっても、得られた酸化物焼結体は、SOFC材料として用いることができる。第1及び第2の方法を以下に詳細に示す。
The relative density (%) is
(Relative density) = (Measured density) / (Theoretical density) * 100
It is represented by The measurement of the relative density in the present invention is based on the conditions described in Examples described later. And the higher the relative density, the lower the gas permeability and the higher the oxygen ion conductivity, the oxide sintered body is preferably used for SOFC materials and the like.
2. Manufacturing Method of Oxide Sintered Body There are two methods for manufacturing an oxide sintered body in the present embodiment. In the first method, first, a heat-treated cerium-rare earth metal salt is calcined to produce a cerium-rare earth metal oxide. Next, the cerium-rare earth metal oxide and the transition metal compound are mixed to produce a precursor. Then, the precursor is sintered. In the second method, a transition metal compound is mixed with a heat-treated cerium-rare earth metal salt and calcined to produce a precursor. Then, the precursor is sintered. And even if it is a case where oxide sinter is manufactured using which method, the obtained oxide sinter can be used as SOFC material. The first and second methods are described in detail below.

第1の方法では、まず、セリウムイオンとセリウムイオン及びプロメチウムイオン以外の希土類イオンとを含む原料溶液に沈殿剤を混合させて、セリウム-希土類系金属塩を製造する。このとき、セリウムイオン及びプロメチウムイオン以外の希土類イオンは、例えば、Gd、Sm及びYなどである。また、金属イオンを含有する原料溶液は、通常、金属塩を酸水溶液に溶解して調製され、金属塩は、例えば、水酸化物、硫酸塩、硝酸塩、炭酸塩、塩化物及びフッ化物等であり、酸は、例えば、硫酸、硝酸、塩酸及びフッ酸等である。沈殿剤としては、アンモニア、炭酸アンモニウム、炭酸水素アンモニウム、炭酸ナトリウム及び炭酸水素ナトリウム等のアルカリが好ましく用いられ、通常、水溶液として混合される。   In the first method, first, a cerium-rare earth metal salt is produced by mixing a precipitant with a raw material solution containing cerium ions and rare earth ions other than cerium ions and promethium ions. At this time, rare earth ions other than cerium ions and promethium ions are, for example, Gd, Sm, and Y. In addition, a raw material solution containing metal ions is usually prepared by dissolving a metal salt in an acid aqueous solution, and the metal salt is, for example, a hydroxide, sulfate, nitrate, carbonate, chloride, fluoride, or the like. Examples of the acid include sulfuric acid, nitric acid, hydrochloric acid, and hydrofluoric acid. As the precipitating agent, alkalis such as ammonia, ammonium carbonate, ammonium hydrogen carbonate, sodium carbonate and sodium hydrogen carbonate are preferably used, and usually mixed as an aqueous solution.

次に、セリウム-希土類系金属塩が水系溶媒中に分散されたスラリーを、大気圧下にて40℃以上100℃以下で0.5時間以上24時間以下で還流させながら熱処理する(熱処理工程)。なお、スラリーの組成などに応じて、熱処理温度や熱処理時間などを適宜設定する。そして、その後、ろ過する。   Next, the slurry in which the cerium-rare earth metal salt is dispersed in the aqueous solvent is subjected to a heat treatment while being refluxed at 40 ° C. to 100 ° C. for 0.5 hours to 24 hours at atmospheric pressure (heat treatment step). Note that the heat treatment temperature, the heat treatment time, and the like are appropriately set according to the composition of the slurry. Then, it is filtered.

続いて、セリウム-希土類系金属塩を洗浄し、セリウム-希土類系金属塩における陰イオンの濃度を例えば1wt%以下にする。なお、残留陰イオン濃度は、低ければ低いほど好ましい。   Subsequently, the cerium-rare earth metal salt is washed so that the anion concentration in the cerium-rare earth metal salt is, for example, 1 wt% or less. The residual anion concentration is preferably as low as possible.

続いて、洗浄されたセリウム-希土類系金属塩を仮焼して、セリウム-希土類系金属酸化物を製造する。通常、200℃以上1000℃以下で、0.5時間以上24時間以下焼成する。このとき、第1焼成工程として、セリウム-希土類系金属塩を200℃以上500℃以下の温度で0.5時間以上24時間以下保ち、第2焼成工程として、セリウム-希土類系金属塩を500℃以上1000℃以下の温度で0.5時間以上24時間以下保つ2段階の焼成を好ましく行うことができる。なお、セリウム-希土類系金属塩の組成などに応じて、第1及び第2焼成工程における焼成温度や焼成時間などを各々適宜設定する。   Subsequently, the washed cerium-rare earth metal salt is calcined to produce a cerium-rare earth metal oxide. Usually, firing is performed at 200 ° C. or more and 1000 ° C. or less for 0.5 hours or more and 24 hours or less. At this time, as the first firing step, the cerium-rare earth metal salt is maintained at a temperature of 200 ° C. to 500 ° C. for 0.5 hours to 24 hours, and as the second firing step, the cerium-rare earth metal salt is 500 ° C. to 1000 ° C. Two-stage calcination can be preferably performed at a temperature of ℃ or less and maintained for 0.5 hours or more and 24 hours or less. The firing temperature and firing time in the first and second firing steps are appropriately set according to the composition of the cerium-rare earth metal salt.

続いて、セリウム-希土類系金属酸化物と遷移金属化合物とを混合して前駆体を製造する(前駆体製造工程)。このとき、遷移金属化合物は、例えば、Fe、Co、Cu、Zn、Al、Ga、In、Sn、Bi、Cr及びMn等の遷移金属の酸化物、あるいは、それらの遷移金属の水酸化物、硫酸塩、硝酸塩、炭酸塩、塩化物及びフッ化物等の遷移金属塩が挙げられ、鉄酸化物、コバルト酸化物及び銅酸化物などが好ましく用いられる。また、遷移金属化合物は、前駆体中のセリウムとLnとTとの合計を100mol%とした場合にTが5.0mol%以下となるように添加し、遷移金属種に応じて適宜選択される。例えば、遷移金属としてCuを選択する場合、0.5mol%以下となるよう銅酸化物を添加するとよい。前駆体中のセリウムとLnとTの合計を100mol%とした場合、セリウムの含有量は50mol%以上99.9mol%より小さく、Lnの含有量は0.01 mol%以上50 mol%より小さい。好ましくはセリウムが60mol%以上95mol%以下、Lnが5mol%以上40mol%以下である。セリウム-希土類系金属酸化物と遷移金属化合物は、均一に分散するように混合を行う。混合方法は、公知の手段により行うことができ、例えばミキサーやミルを用いることができる。遷移金属化合物は、溶液の形態でセリウム-希土類系金属酸化物と混合することもできる。混合と同時に造粒を行うと、次工程の焼結が容易に行うことができる場合がある。   Subsequently, a cerium-rare earth metal oxide and a transition metal compound are mixed to produce a precursor (precursor manufacturing step). At this time, the transition metal compound is, for example, an oxide of a transition metal such as Fe, Co, Cu, Zn, Al, Ga, In, Sn, Bi, Cr and Mn, or a hydroxide of the transition metal, Examples thereof include transition metal salts such as sulfate, nitrate, carbonate, chloride and fluoride, and iron oxide, cobalt oxide and copper oxide are preferably used. The transition metal compound is added so that T is 5.0 mol% or less when the total of cerium, Ln, and T in the precursor is 100 mol%, and is appropriately selected according to the transition metal species. For example, when Cu is selected as the transition metal, copper oxide may be added so as to be 0.5 mol% or less. When the total of cerium, Ln, and T in the precursor is 100 mol%, the cerium content is 50 mol% or more and less than 99.9 mol%, and the Ln content is 0.01 mol% or more and less than 50 mol%. Preferably, cerium is 60 mol% or more and 95 mol% or less, and Ln is 5 mol% or more and 40 mol% or less. The cerium-rare earth metal oxide and the transition metal compound are mixed so that they are uniformly dispersed. The mixing method can be performed by a known means, and for example, a mixer or a mill can be used. The transition metal compound can also be mixed with the cerium-rare earth metal oxide in the form of a solution. When granulation is performed at the same time as mixing, there is a case where the sintering in the next step can be easily performed.

そして、前駆体を、800℃以上1000℃以下の温度で0.5時間以上24時間以下保持して焼結させる(焼結工程)。このとき、前駆体の組成、特に、遷移金属種及び遷移金属の添加量に応じて、焼結工程における焼結条件を適宜選択するが、仮焼温度よりも高い温度で焼結を行うことが好ましい。焼結に先立ち、所望する酸化物焼結体の形態により、前駆体を成形する。成形は公知の手段により行うことができ、例えば射出成形、圧縮成形、押出成形、圧延、キャスティング法、ドクターブレード法等を用いることができる。必要により、バインダー等の成形用添加剤を加えて行うこともできる。なお、好適な焼結条件については、後述の実施例に記載している。これにより、酸化物焼結体を製造できる。   Then, the precursor is sintered at a temperature of 800 ° C. or higher and 1000 ° C. or lower for 0.5 to 24 hours (sintering step). At this time, depending on the composition of the precursor, in particular, the transition metal species and the amount of transition metal added, the sintering conditions in the sintering process are appropriately selected, but sintering can be performed at a temperature higher than the calcining temperature. preferable. Prior to sintering, a precursor is formed according to the form of the desired oxide sintered body. The molding can be performed by a known means, and for example, injection molding, compression molding, extrusion molding, rolling, casting method, doctor blade method and the like can be used. If necessary, a molding additive such as a binder may be added. In addition, about suitable sintering conditions, it describes in the below-mentioned Example. Thereby, an oxide sintered compact can be manufactured.

第2の方法では、まず、上述の方法に従って、セリウム-希土類系金属塩を製造して、熱処理を行う。   In the second method, first, a cerium-rare earth metal salt is produced and heat-treated according to the method described above.

次に、熱処理されたセリウム-希土類系金属塩と遷移金属化合物とを混合し、仮焼して前駆体を製造し(前駆体製造工程)、前駆体を焼結させる(焼結工程)。このとき、用いる遷移金属化合物の種類、添加量及び混合方法や仮焼の条件や焼結条件などは上述の通りである。これにより、酸化物焼結体を製造することができる。   Next, the heat-treated cerium-rare earth metal salt and the transition metal compound are mixed and calcined to produce a precursor (precursor production process), and the precursor is sintered (sintering process). At this time, the kind of transition metal compound to be used, the addition amount, the mixing method, the conditions of calcination, the sintering conditions, and the like are as described above. Thereby, an oxide sintered compact can be manufactured.

本実施形態における酸化物焼結体の製造方法では、どちらの方法であっても、共沈法によりセリウム-希土類系金属塩を製造し、セリウム-希土類系金属塩に対して熱処理を行う。そのため、熱処理を行うことなく酸化物焼結体を製造する場合よりも、前駆体を低い温度で焼結させることができる。   In either method, the cerium-rare earth metal salt is produced by the coprecipitation method, and the cerium-rare earth metal salt is heat-treated. Therefore, the precursor can be sintered at a lower temperature than when an oxide sintered body is produced without performing heat treatment.

また、本実施形態における酸化物焼結体の製造方法では、どちらの方法であっても、熱処理を施したセリウム-希土類系金属酸化物やセリウム-希土類系金属塩に微量の遷移金属化合物を添加することにより焼結性がさらに向上し、得られる酸化物焼結体は相対密度が大きくなる。   In addition, in the method of manufacturing an oxide sintered body according to the present embodiment, a trace amount of a transition metal compound is added to the heat-treated cerium-rare earth metal oxide or cerium-rare earth metal salt, regardless of which method is used. By doing so, the sinterability is further improved, and the obtained oxide sintered body has a higher relative density.

以上より、本実施形態における酸化物焼結体の製造方法では、従来の方法における焼結温度よりも低い温度で焼結を行っても、SOFCの電極材料、電解質材料及びインターレイヤ材料等として利用可能な程度に高密度な酸化物焼結体を得ることができる。   As described above, in the method for manufacturing an oxide sintered body according to the present embodiment, even if sintering is performed at a temperature lower than the sintering temperature in the conventional method, it is used as an SOFC electrode material, electrolyte material, and interlayer material. An oxide sintered body as dense as possible can be obtained.

実施例1から3では、上記実施形態における第1の方法を用いて酸化物焼結体を製造した。そして、前駆体の焼結時間と酸化物焼結体の相対密度変化との関係を調べた。また、電子顕微鏡を用いて、酸化物焼結体の表面及び断面を観察した。   In Examples 1 to 3, oxide sintered bodies were manufactured using the first method in the above embodiment. Then, the relationship between the sintering time of the precursor and the relative density change of the oxide sintered body was examined. Moreover, the surface and the cross section of the oxide sintered compact were observed using the electron microscope.

また、比較例として、熱処理を行わずに酸化物焼結体を製造し、前駆体の焼結時間と酸化物焼結体の相対密度変化との関係を調べた。
<実施例1>
実施例1では、遷移金属化合物として鉄酸化物を用いた。
−実験方法−
a)酸化物焼結体の製造方法
まず、硝酸セリウム水溶液(Rhodia Electronics and Catalysis社製、セリウムを2.5mol/L含有)と、硝酸ガドリニウム水溶液(Rhodia Electronics and Catalysis社製、ガドリニウムを2.0mol/L含有)とを、Ce:Gd=90:10(mol比)となるように混合させて原料溶液を調製した。Ce0.9Gd0.1O1.95に換算して100gに相当する原料溶液を純水で希釈して、セリウムとガドリニウムとを合わせて0.3mol/L原料溶液を調製した。
Further, as a comparative example, an oxide sintered body was manufactured without performing heat treatment, and the relationship between the sintering time of the precursor and the relative density change of the oxide sintered body was examined.
<Example 1>
In Example 1, iron oxide was used as the transition metal compound.
-Experimental method-
a) Manufacturing method of oxide sintered body First, an aqueous solution of cerium nitrate (manufactured by Rhodia Electronics and Catalysis, containing 2.5 mol / L of cerium) and an aqueous solution of gadolinium nitrate (manufactured by Rhodia Electronics and Catalysis, 2.0 mol / L of gadolinium) Containing) was mixed so as to be Ce: Gd = 90: 10 (mol ratio) to prepare a raw material solution. A raw material solution corresponding to 100 g in terms of Ce 0.9 Gd 0.1 O 1.95 was diluted with pure water, and cerium and gadolinium were combined to prepare a 0.3 mol / L raw material solution.

次に、原料溶液に、100g/L炭酸水素アンモニウム水溶液1.4Lを攪拌しながら25℃で混合させ、Ce-Gd系金属塩を得た。そして、このCe-Gd系金属塩に100g/Lの炭酸水素アンモニウム水溶液0.4Lを加えて大気圧下、80℃、3時間の熱処理を行い、Ce0.9Gd0.1O1.95に換算して100gに相当するCe-Gd系金属塩が分散されたスラリーを得た。 Next, 1.4 g of a 100 g / L ammonium bicarbonate aqueous solution was mixed with the raw material solution at 25 ° C. with stirring to obtain a Ce—Gd metal salt. Then, 0.4 g of 100 g / L ammonium hydrogen carbonate aqueous solution was added to this Ce-Gd metal salt and heat treatment was performed at 80 ° C. for 3 hours under atmospheric pressure, which corresponds to 100 g in terms of Ce 0.9 Gd 0.1 O 1.95. A slurry in which the Ce-Gd metal salt was dispersed was obtained.

続いて、直径18.5cmのブフナーロートを用いて、Ce0.9Gd0.1O1.95に換算して100gのCe-Gd系金属塩につき純水1Lを用いて洗浄した。 Subsequently, using a Buchner funnel with a diameter of 18.5 cm, 100 g of Ce—Gd metal salt was washed with 1 L of pure water in terms of Ce 0.9 Gd 0.1 O 1.95 .

続いて、焼成炉を用いて、Ce-Gd系金属塩を15時間かけて300℃にまで昇温させて300℃で10時間保ち、その後、10時間かけて700℃にまで昇温させて700℃で5時間保った。このようにして、Ce-Gd系酸化物を得た。   Subsequently, using a firing furnace, the Ce-Gd-based metal salt was heated to 300 ° C. over 15 hours and maintained at 300 ° C. for 10 hours, and then heated to 700 ° C. over 10 hours. Hold at ℃ for 5 hours. In this way, a Ce—Gd-based oxide was obtained.

続いて、セリウムとガドリニウムと鉄との合計を100mol%とした場合の鉄の含有量が0.5mol%、1.0mol%及び2.0mol%となるように、Ce-Gd系酸化物とFe2O3(高純度化学社製)とを混合させ、3種類の前駆体を製造した。そして、加圧面14mm×7mmの加圧器を用いて、前駆体1gを100MPaで加圧成形した。3種類の前駆体それぞれにつき、2個ずつ成形体を作成した。その後、焼成炉を用いて、各種の前駆体のうち一方の前駆体を45時間かけて900℃にまで昇温させて900℃で20時間保持させ、各種の前駆体のうち他方の前駆体を50時間かけて1000℃にまで昇温させて1000℃で20時間保持させた。
b)相対密度変化の測定方法
相対密度は、理論密度及び実測密度を用いて算出した。理論密度は、1400℃で2時間焼結後の酸化物焼結体のX線回折測定法から得られた格子定数の値を用いて算出した。実測密度は、酸化物焼結体の体積及び重量から求めた。
c)酸化物焼結体の表面及び断面の観察
電子顕微鏡(日立製4000S SEM)を用いて、2.0mol%の鉄が含有された前駆体を1000℃で20時間焼結させた場合の酸化物焼結体の表面及び断面を観察した。
−結果−
a)相対密度変化の測定
図1に、焼結時間に対する相対密度変化(%)を示す。なお、図1(a)が前駆体を900℃で焼結させた場合、図1(b)が前駆体を1000℃で焼結させた場合である。また、グラフ中の塗りつぶされたポイントは、相対密度値が94%以上であることを示す。また、本願発明者らは、X線回折測定により、鉄の含有量が2.0mol%以下ならば、添加された鉄はCe-Gd系酸化物に固溶されていることを確認している。
Subsequently, Ce-Gd-based oxide and Fe 2 O 3 so that the iron content is 0.5 mol%, 1.0 mol% and 2.0 mol% when the total of cerium, gadolinium and iron is 100 mol%. (Manufactured by Koyo Chemical Co., Ltd.) was mixed to produce three types of precursors. Then, 1 g of the precursor was pressure-molded at 100 MPa using a pressurizer having a pressurization surface of 14 mm × 7 mm. Two molded bodies were prepared for each of the three types of precursors. Then, using a firing furnace, one precursor of various precursors was heated to 900 ° C. over 45 hours and held at 900 ° C. for 20 hours, and the other precursor of the various precursors was The temperature was raised to 1000 ° C. over 50 hours and held at 1000 ° C. for 20 hours.
b) Measuring method of relative density change Relative density was calculated using theoretical density and measured density. The theoretical density was calculated using the value of the lattice constant obtained from the X-ray diffraction measurement method of the oxide sintered body after being sintered at 1400 ° C. for 2 hours. The actual density was determined from the volume and weight of the oxide sintered body.
c) Observation of the surface and cross section of the oxide sintered body Oxide obtained by sintering a precursor containing 2.0 mol% iron at 1000 ° C for 20 hours using an electron microscope (Hitachi 4000S SEM) The surface and cross section of the sintered body were observed.
-Result-
a) Measurement of relative density change FIG. 1 shows the relative density change (%) with respect to the sintering time. 1A shows the case where the precursor is sintered at 900 ° C., and FIG. 1B shows the case where the precursor is sintered at 1000 ° C. In addition, the filled points in the graph indicate that the relative density value is 94% or more. In addition, the present inventors have confirmed by X-ray diffraction measurement that, if the iron content is 2.0 mol% or less, the added iron is dissolved in the Ce—Gd-based oxide.

図1(b)に示すように、2.0mol%の鉄を添加させて前駆体を製造し、その前駆体を1000℃で0.5時間以上保持させると、得られる酸化物焼結体の相対密度が94%以上となった。これにより、2.0mol%の鉄を添加させて前駆体を製造し、その前駆体を1000℃で0.5時間以上保持させれば、SOFC材料等として利用可能な程度の高密度な酸化物焼結体を製造することができる。
b)酸化物焼結体の表面及び断面観察
図2(a)に、2.0mol%の鉄が含有された前駆体を1000℃で20時間焼結させた場合の酸化物焼結体の断面SEM写真を示し、図2(b)に、この酸化物焼結体の表面SEM写真を示す。
As shown in FIG. 1 (b), when 2.0 mol% iron is added to produce a precursor and the precursor is held at 1000 ° C. for 0.5 hours or more, the relative density of the resulting oxide sintered body is More than 94%. As a result, 2.0 mol% iron is added to produce a precursor, and if the precursor is held at 1000 ° C. for 0.5 hours or more, the oxide sintered body has a high density enough to be used as an SOFC material or the like. Can be manufactured.
b) Surface and cross-sectional observation of oxide sintered body FIG. 2 (a) shows a cross-sectional SEM of the oxide sintered body when a precursor containing 2.0 mol% of iron is sintered at 1000 ° C. for 20 hours. A photograph is shown, and FIG. 2 (b) shows a surface SEM photograph of this oxide sintered body.

図2(a)及び図2(b)に示すように、この酸化物焼結体は、粒径が非常に小さいため(約0.5μm〜1μm)、強い強度を有しており、その結果、割れにくいと予想される。よって、この酸化物焼結体をSOFCの電極材料、電解質材料及びインターレイヤ材料等として用いることにより、SOFCの性能の向上を図ることができる。
<実施例2>
実施例2では、遷移金属化合物としてコバルト酸化物を用いた。
−実験方法−
a)酸化物焼結体の製造方法
まず、実施例1と同様の方法を用いてCe-Gd系酸化物を製造した。
As shown in FIG. 2 (a) and FIG. 2 (b), this oxide sintered body has a strong strength because its particle size is very small (about 0.5 μm to 1 μm). Expected to be difficult to break. Therefore, by using this oxide sintered body as an SOFC electrode material, electrolyte material, interlayer material, and the like, the performance of the SOFC can be improved.
<Example 2>
In Example 2, cobalt oxide was used as the transition metal compound.
-Experimental method-
a) Manufacturing Method of Oxide Sintered Body First, a Ce-Gd-based oxide was manufactured using the same method as in Example 1.

次に、セリウムとガドリニウムとコバルトとの合計を100mol%とした場合のコバルトの含有量が0.5mol%、1.0mol%及び2.0mol%となるように、Ce-Gd系酸化物とCo3O4(高純度化学社製)とを混合させ、3種類の前駆体を製造した。そして、加圧面14mm×7mmの加圧器を用いて、前駆体1gを100MPaで加圧成形した。3種類の前駆体それぞれにつき、2個ずつ成形体を作成した。その後、焼成炉を用いて、各種の前駆体のうち一方の前駆体を45時間かけて900℃にまで昇温させて900℃で20時間保持させ、各種の前駆体のうち他方の前駆体を50時間かけて1000℃にまで昇温させて1000℃で20時間保持させた。
b)酸化物焼結体の表面及び断面の観察
電子顕微鏡(日立製4000S SEM)を用いて、2.0mol%のコバルトが含有された前駆体を1000℃で20時間焼結させた場合の酸化物焼結体の表面及び断面を観察した。
−結果−
a)相対密度変化の測定
図3に、焼結時間に対する相対密度変化(%)を示す。なお、図3(a)が前駆体を900℃で焼結させた場合、図3(b)が前駆体を1000℃で焼結させた場合である。また、グラフ中の塗りつぶされたポイントは、相対密度値が94%以上であることを示す。また、本願発明者らは、X線回折測定により、コバルトの含有量が2.0mol%以下ならば、添加されたコバルトはCe-Gd系酸化物に固溶されていることを確認している。
Next, Ce-Gd-based oxide and Co 3 O 4 so that the content of cobalt is 0.5 mol%, 1.0 mol%, and 2.0 mol% when the total of cerium, gadolinium, and cobalt is 100 mol%. (Manufactured by Koyo Chemical Co., Ltd.) was mixed to produce three types of precursors. Then, 1 g of the precursor was pressure-molded at 100 MPa using a pressurizer having a pressurization surface of 14 mm × 7 mm. Two molded bodies were prepared for each of the three types of precursors. Then, using a firing furnace, one precursor of various precursors was heated to 900 ° C. over 45 hours and held at 900 ° C. for 20 hours, and the other precursor of the various precursors was The temperature was raised to 1000 ° C. over 50 hours and held at 1000 ° C. for 20 hours.
b) Observation of surface and cross section of oxide sintered body Oxide when precursor containing 2.0 mol% cobalt was sintered at 1000 ° C for 20 hours using electron microscope (Hitachi 4000S SEM) The surface and cross section of the sintered body were observed.
-Result-
a) Measurement of relative density change FIG. 3 shows the relative density change (%) with respect to the sintering time. 3A shows a case where the precursor is sintered at 900 ° C., and FIG. 3B shows a case where the precursor is sintered at 1000 ° C. In addition, the filled points in the graph indicate that the relative density value is 94% or more. The inventors of the present application have confirmed by X-ray diffraction measurement that, if the cobalt content is 2.0 mol% or less, the added cobalt is dissolved in the Ce—Gd-based oxide.

図3(b)に示すように、0.5mol%,1.0mol%及び2.0mol%のコバルトを添加させて前駆体を製造し、その前駆体を1000℃で5時間以上保持させると、得られる酸化物焼結体の相対密度が94%以上となった。これにより、0.5〜2.0mol%のコバルトを添加させて前駆体を製造し、その前駆体を1000℃で5時間以上保持させれば、SOFC材料等として利用可能な程度の高密度な酸化物焼結体を製造することができる。
b)酸化物焼結体の表面及び断面観察
図4(a)に、2.0mol%の鉄が含有された前駆体を1000℃で20時間焼結させた場合の酸化物焼結体の断面SEM写真を示し、図4(b)に、この酸化物焼結体の表面SEM写真を示す。
As shown in FIG. 3 (b), when 0.5 mol%, 1.0 mol% and 2.0 mol% of cobalt are added to produce a precursor, and the precursor is held at 1000 ° C. for 5 hours or more, the resulting oxidation The relative density of the sintered product was 94% or more. Thus, 0.5 to 2.0 mol% of cobalt is added to produce a precursor, and if the precursor is kept at 1000 ° C. for 5 hours or more, high-density oxide firing that can be used as an SOFC material or the like. A knot can be produced.
b) Surface and cross-sectional observation of oxide sintered body Fig. 4 (a) shows a cross-sectional SEM of the oxide sintered body when a precursor containing 2.0 mol% of iron was sintered at 1000 ° C for 20 hours. A photograph is shown, and FIG. 4B shows a surface SEM photograph of this oxide sintered body.

図4(a)及び図4(b)に示すように、この酸化物焼結体は、鉄を添加させた場合と同様、粒径が小さいため(約1μm)、強い強度を有しており、その結果、割れにくいと予想される。 よって、この酸化物焼結体をSOFCの電極材料、電解質材料及びインターレイヤ材料として用いることにより、SOFCの性能の向上を図ることができる。
<実施例3>
実施例3では、遷移金属化合物として銅酸化物を用いた。
−酸化物焼結体の製造方法−
まず、実施例1と同様の方法を用いてCe-Gd系酸化物を製造した。
As shown in FIGS. 4 (a) and 4 (b), this oxide sintered body has a high strength because it has a small particle size (about 1 μm) as in the case of adding iron. As a result, it is expected to be hard to break. Therefore, by using this oxide sintered body as the SOFC electrode material, electrolyte material, and interlayer material, the performance of the SOFC can be improved.
<Example 3>
In Example 3, copper oxide was used as the transition metal compound.
-Oxide sintered body manufacturing method-
First, a Ce—Gd-based oxide was produced using the same method as in Example 1.

次に、セリウムとガドリニウムと銅との合計を100mol%とした場合の銅の含有量が0.5mol%、1.0mol%及び2.0mol%となるように、Ce-Gd系酸化物とCuO(高純度化学社製)とを混合させ、3種類の前駆体を製造した。そして、加圧面14mm×7mmの加圧器を用いて、前駆体1gを100MPaで加圧成形した。3種類の前駆体それぞれにつき、2個ずつ成形体を作成した。その後、焼成炉を用いて、各種の前駆体のうち一方の前駆体を45時間かけて900℃にまで昇温させて900℃で20時間保持させ、各種の前駆体のうち他方の前駆体を50時間かけて1000℃にまで昇温させて1000℃で20時間保持させた。
−結果−
図5に、焼結時間に対する相対密度変化(%)を示す。なお、図5(a)が前駆体を900℃で焼結させた場合、図5(b)が前駆体を1000℃で焼結させた場合である。また、グラフ中の塗りつぶされたポイントは、相対密度値が94%以上であることを示す。また、本願発明者らは、X線回折測定により、銅の含有量が2.0mol%以下ならば、添加された銅はCe-Gd系酸化物に固溶されていることを確認している。
Next, Ce-Gd-based oxide and CuO (high purity) so that the copper content is 0.5 mol%, 1.0 mol% and 2.0 mol% when the total of cerium, gadolinium and copper is 100 mol%. 3 types of precursors were manufactured. Then, 1 g of the precursor was pressure-molded at 100 MPa using a pressurizer having a pressurization surface of 14 mm × 7 mm. Two molded bodies were prepared for each of the three types of precursors. Then, using a firing furnace, one precursor of various precursors was heated to 900 ° C. over 45 hours and held at 900 ° C. for 20 hours, and the other precursor of the various precursors was The temperature was raised to 1000 ° C. over 50 hours and held at 1000 ° C. for 20 hours.
-Result-
FIG. 5 shows the relative density change (%) with respect to the sintering time. 5A shows the case where the precursor is sintered at 900 ° C., and FIG. 5B shows the case where the precursor is sintered at 1000 ° C. In addition, the filled points in the graph indicate that the relative density value is 94% or more. The inventors of the present application have confirmed by X-ray diffraction measurement that, if the copper content is 2.0 mol% or less, the added copper is dissolved in the Ce—Gd-based oxide.

図5(a)に示すように、0.5mol%,1.0mol%及び2.0mol%の銅を添加させて前駆体を製造し、その前駆体を900℃で20時間保持させると、得られる酸化物焼結体の相対密度が94%以上となった。   As shown in FIG. 5 (a), when 0.5 mol%, 1.0 mol% and 2.0 mol% of copper are added to produce a precursor and the precursor is held at 900 ° C. for 20 hours, the resulting oxide is obtained. The relative density of the sintered body was 94% or more.

また、図5(b)に示すように、0.5mol%の銅を添加させて前駆体を製造し、その前駆体を1000℃で5時間以上保持させると、得られる酸化物焼結体の相対密度が94%以上となった。さらに、1.0mol%及び2.0mol%の銅を添加させて前駆体を製造してその前駆体を1000℃で0.5時間程度保持させると、得られる酸化物焼結体の相対密度が94%以上となり、そのまま1000℃で20時間保持していても相対密度は94%以上であった。これにより、0.5〜2.0mol%の銅を添加させて前駆体を製造し、その前駆体を900℃で20時間保持させれば、0.5mol%の銅を添加させて前駆体を製造し、その前駆体を1000℃で5時間以上保持させれば、及び1.0〜2.0mol%の銅を添加させて前駆体を製造し、その前駆体を1000℃で0.5時間以上20時間以下保持させれば、SOFC材料等として利用可能な程度の高密度な酸化物焼結体を製造することができる。
<比較例>
−酸化物焼結体の製造方法−
まず、熱処理を行わなかった以外は、実施例1と同様の方法を用いてCe-Gd系酸化物を得た。
Further, as shown in FIG. 5 (b), when 0.5 mol% of copper is added to produce a precursor, and the precursor is held at 1000 ° C. for 5 hours or more, the relative oxide sintered body obtained The density was 94% or more. Furthermore, when 1.0 mol% and 2.0 mol% of copper are added to produce a precursor and the precursor is held at 1000 ° C. for about 0.5 hour, the relative density of the resulting oxide sintered body becomes 94% or more. The relative density was 94% or more even when kept at 1000 ° C. for 20 hours. Thus, 0.5 to 2.0 mol% of copper was added to produce a precursor, and if the precursor was held at 900 ° C. for 20 hours, 0.5 mol% of copper was added to produce a precursor, If the precursor is held at 1000 ° C for 5 hours or more, and 1.0 to 2.0 mol% of copper is added to produce a precursor, and the precursor is held at 1000 ° C for 0.5 hours or more and 20 hours or less, A high-density oxide sintered body that can be used as an SOFC material or the like can be manufactured.
<Comparative example>
-Oxide sintered body manufacturing method-
First, a Ce—Gd-based oxide was obtained using the same method as in Example 1 except that no heat treatment was performed.

続いて、セリウムとガドリニウムと鉄との合計を100mol%とした場合の鉄の含有量が0.5mol%、1.0mol%及び2.0mol%となるように、Ce-Gd系酸化物とFe2O3(高純度化学社製)とを混合させ、3種類の前駆体を製造した。そして、加圧面14mm×7mmの加圧器を用いて、前駆体1gを100MPaで加圧成形した。3種類の前駆体それぞれにつき、2個ずつ成形体を作成した。その後、焼成炉を用いて、各種の前駆体のうち一方の前駆体を45時間かけて900℃にまで昇温させて900℃で20時間保持させ、各種の前駆体のうち他方の前駆体を50時間かけて1000℃にまで昇温させて1000℃で20時間保持させた。そして、同様の手法を用いて、コバルトを含有する酸化物焼結体及び銅を含有する酸化物焼結体を製造した。
−結果−
図6に、900℃で焼結させた場合の焼結時間に対する相対密度(%)を示し、図7に、1000℃で焼結させた場合の焼結時間に対する相対密度(%)を示す。
Subsequently, Ce-Gd-based oxide and Fe 2 O 3 so that the iron content is 0.5 mol%, 1.0 mol% and 2.0 mol% when the total of cerium, gadolinium and iron is 100 mol%. (Manufactured by Koyo Chemical Co., Ltd.) was mixed to produce three types of precursors. Then, 1 g of the precursor was pressure-molded at 100 MPa using a pressurizer having a pressurization surface of 14 mm × 7 mm. Two molded bodies were prepared for each of the three types of precursors. Then, using a firing furnace, one precursor of various precursors was heated to 900 ° C. over 45 hours and held at 900 ° C. for 20 hours, and the other precursor of the various precursors was The temperature was raised to 1000 ° C. over 50 hours and held at 1000 ° C. for 20 hours. And the oxide sintered compact containing cobalt and the oxide sintered compact containing copper were manufactured using the same method.
-Result-
FIG. 6 shows the relative density (%) with respect to the sintering time when sintered at 900 ° C., and FIG. 7 shows the relative density (%) with respect to the sintering time when sintered at 1000 ° C.

図6及び図7に示すように、熱処理を行うことなくCe-Gd系酸化物を製造した場合には、1000℃で20時間焼結させても酸化物焼結体の相対密度は94%に達しなかった。これにより、1000℃以下の温度で低温焼結させて酸化物焼結体の相対密度を94%以上にするためには、上記実施例1から3に記載の製造方法を用いることが好ましいといえる。   As shown in FIGS. 6 and 7, when the Ce-Gd-based oxide is manufactured without performing heat treatment, the relative density of the oxide sintered body is 94% even when sintered at 1000 ° C. for 20 hours. Did not reach. Thereby, it can be said that it is preferable to use the manufacturing methods described in Examples 1 to 3 above in order to perform low-temperature sintering at a temperature of 1000 ° C. or lower and make the oxide sintered body have a relative density of 94% or more. .

以上説明したように、本発明は、SOFCの電極材料、電解質材料及びインターレイヤ材料などとして有用である。   As described above, the present invention is useful as an SOFC electrode material, electrolyte material, and interlayer material.

実施例1の実験結果を示すグラフ図である。FIG. 4 is a graph showing the experimental results of Example 1. 実施例1のSEMの測定結果を示すグラフ図である。FIG. 3 is a graph showing the SEM measurement results of Example 1. 実施例2の実験結果を示すグラフ図である。FIG. 6 is a graph showing experimental results of Example 2. 実施例2のSEMの測定結果を示すグラフ図である。6 is a graph showing the SEM measurement results of Example 2. FIG. 実施例3の実験結果を示すグラフ図である。FIG. 6 is a graph showing the experimental results of Example 3. 比較例の1つの実験結果を示すグラフ図である。It is a graph which shows one experimental result of a comparative example. 比較例の別の実験結果を示すグラフ図である。It is a graph which shows another experimental result of a comparative example.

Claims (9)

セリウムイオンとセリウムイオン及びプロメチウムイオン以外の希土類イオンとを含有する原料溶液に沈殿剤を混合させて、セリウム-希土類系金属塩を製造する工程と、
前記セリウム-希土類系金属塩を熱処理する熱処理工程と、
前記熱処理工程の後の前記セリウム-希土類系金属塩を仮焼し、得られた該セリウム-希土類系金属酸化物と遷移金属化合物とを混合して前駆体を製造する前駆体製造工程、または該熱処理工程の後の前記セリウム-希土類系金属塩と遷移金属化合物とを混合し、仮焼して、前駆体を製造する前駆体製造工程と、
前記前駆体を焼結させて、セリウムとLnとTとを含有する酸化物焼結体(但し、LnはCe及びPm以外の少なくとも一つの希土類金属元素であり、Tは少なくとも一つの遷移金属元素であり、セリウムとLnとTとの合計を100mol%とした場合に、セリウムは50mol%以上99.9mol%より小さく、Lnは0.01mol%以上50mol%より小さく、Tは0より大きく5mol%以下である)を製造する焼結工程と
を備えている酸化物焼結体の製造方法。
A step of producing a cerium-rare earth metal salt by mixing a precipitant with a raw material solution containing cerium ions and rare earth ions other than cerium ions and promethium ions;
A heat treatment step of heat treating the cerium-rare earth metal salt;
A precursor production step of calcining the cerium-rare earth metal salt after the heat treatment step and mixing the obtained cerium-rare earth metal oxide and a transition metal compound to produce a precursor; or The cerium-rare earth metal salt and the transition metal compound after the heat treatment step are mixed and calcined to produce a precursor, and a precursor production step,
Sintered precursor, oxide sintered body containing cerium, Ln, and T (where Ln is at least one rare earth metal element other than Ce and Pm, and T is at least one transition metal element) When the total of cerium, Ln, and T is 100 mol%, cerium is 50 mol% or more and less than 99.9 mol%, Ln is 0.01 mol% or more and less than 50 mol%, and T is greater than 0 and less than 5 mol%. And a sintering process for manufacturing the oxide sintered body.
請求項1に記載の酸化物焼結体の製造方法において、
前記遷移金属化合物は、鉄塩、コバルト塩及び銅塩のうちの少なくとも一つである酸化物焼結体の製造方法。
In the manufacturing method of the oxide sintered compact according to claim 1,
The said transition metal compound is a manufacturing method of the oxide sintered compact which is at least one of iron salt, cobalt salt, and copper salt.
請求項1に記載の酸化物焼結体の製造方法において、
前記遷移金属化合物は、鉄酸化物、コバルト酸化物及び銅酸化物のうちの少なくとも一つである酸化物焼結体の製造方法。
In the manufacturing method of the oxide sintered compact according to claim 1,
The said transition metal compound is a manufacturing method of the oxide sintered compact which is at least one of iron oxide, cobalt oxide, and copper oxide.
請求項3に記載の酸化物焼結体の製造方法において、
前記前駆体製造工程では、前記前駆体中のセリウムとLnとTとの合計を100mol%とした場合のTに相当する銅の含有量が0.5mol%以下となるように、前記セリウム-希土類系金属酸化物または前記セリウム-希土類系金属塩に銅酸化物を混合させて該前駆体を製造する酸化物焼結体の製造方法。
In the manufacturing method of the oxide sintered compact according to claim 3,
In the precursor production step, the cerium-rare earth system is used so that the content of copper corresponding to T is 0.5 mol% or less when the total of cerium, Ln, and T in the precursor is 100 mol%. A method for producing an oxide sintered body, wherein a metal oxide or a copper oxide is mixed with the cerium-rare earth metal salt to produce the precursor.
請求項1に記載の酸化物焼結体の製造方法において、
前記焼結工程は、焼結温度が800℃以上1000℃以下であり、焼結時間が0.5時間以上24時間以下である酸化物焼結体の製造方法。
In the manufacturing method of the oxide sintered compact according to claim 1,
The sintering step is a method for producing an oxide sintered body having a sintering temperature of 800 ° C. or higher and 1000 ° C. or lower and a sintering time of 0.5 hour or longer and 24 hours or shorter.
請求項1に記載の酸化物焼結体の製造方法において、
前記熱処理工程は、熱処理温度が40℃以上100℃以下であり、熱処理時間が0.5時間以上10時間以下であり、大気圧下で行われる酸化物焼結体の製造方法。
In the manufacturing method of the oxide sintered compact according to claim 1,
The heat treatment step is a method for producing an oxide sintered body, wherein the heat treatment temperature is 40 ° C. or more and 100 ° C. or less, the heat treatment time is 0.5 hours or more and 10 hours or less, and the treatment is performed under atmospheric pressure.
請求項1に記載の酸化物焼結体の製造方法において、
前記セリウムイオン及びプロメチウムイオン以外の希土類イオンは、ガドリニウムイオン、サマリウムイオン及びイットリウムイオンのうちの少なくとも一つである酸化物焼結体の製造方法。
In the manufacturing method of the oxide sintered compact according to claim 1,
The method for producing an oxide sintered body, wherein the rare earth ion other than the cerium ion and the promethium ion is at least one of gadolinium ion, samarium ion, and yttrium ion.
セリウムとLnとTとを含有し(但し、LnはCe及びPm以外の少なくとも一つの希土類金属元素であり、Tは少なくとも一つの遷移金属元素であり、セリウムとLnとTとの合計を100mol%とした場合に、セリウムは50mol%以上99.9mol%より小さく、Lnは0.01mol%以上50mol%より小さく、Tは0より大きく5mol%以下である)、1000℃で5時間焼結したときの相対密度が94%以上である酸化物焼結体の原料粉末。   Contains cerium, Ln, and T (wherein Ln is at least one rare earth metal element other than Ce and Pm, T is at least one transition metal element, and the total of cerium, Ln, and T is 100 mol%) Cerium is 50 mol% or more and less than 99.9 mol%, Ln is 0.01 mol% or more and less than 50 mol%, T is greater than 0 and less than 5 mol%), and relative when sintered at 1000 ° C for 5 hours Raw material powder of sintered oxide with a density of 94% or more. 請求項8に記載の酸化物焼結体の原料粉末において、
前記Tは、鉄、銅及びコバルトのうちの少なくとも一つである酸化物焼結体の原料粉末。
In the raw material powder of the oxide sintered body according to claim 8,
T is a raw material powder of an oxide sintered body which is at least one of iron, copper and cobalt.
JP2005278658A 2005-09-26 2005-09-26 Manufacturing method of oxide sintered body and raw material powder of oxide sintered body Active JP4936422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005278658A JP4936422B2 (en) 2005-09-26 2005-09-26 Manufacturing method of oxide sintered body and raw material powder of oxide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005278658A JP4936422B2 (en) 2005-09-26 2005-09-26 Manufacturing method of oxide sintered body and raw material powder of oxide sintered body

Publications (2)

Publication Number Publication Date
JP2007084413A true JP2007084413A (en) 2007-04-05
JP4936422B2 JP4936422B2 (en) 2012-05-23

Family

ID=37971793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005278658A Active JP4936422B2 (en) 2005-09-26 2005-09-26 Manufacturing method of oxide sintered body and raw material powder of oxide sintered body

Country Status (1)

Country Link
JP (1) JP4936422B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505884A (en) * 2009-09-10 2013-02-21 中国砿業大学(北京) Composite sintering aid and method for producing nanocrystalline ceramic at low temperature using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269275A (en) * 2003-03-05 2004-09-30 Ngk Spark Plug Co Ltd Ceramic, electrochemical element, method for manufacturing the electrochemical element, fuel cell, and apparatus for concentrating oxygen
JP2005247673A (en) * 2004-03-08 2005-09-15 National Institute For Materials Science Dy-DOPED NANO CERIA SINTERED COMPACT AND ITS MANUFACTURING METHOD

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269275A (en) * 2003-03-05 2004-09-30 Ngk Spark Plug Co Ltd Ceramic, electrochemical element, method for manufacturing the electrochemical element, fuel cell, and apparatus for concentrating oxygen
JP2005247673A (en) * 2004-03-08 2005-09-15 National Institute For Materials Science Dy-DOPED NANO CERIA SINTERED COMPACT AND ITS MANUFACTURING METHOD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505884A (en) * 2009-09-10 2013-02-21 中国砿業大学(北京) Composite sintering aid and method for producing nanocrystalline ceramic at low temperature using the same

Also Published As

Publication number Publication date
JP4936422B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
Accardo et al. Improved microstructure and sintering temperature of bismuth nano-doped GDC powders synthesized by direct sol-gel combustion
Huang et al. Precipitation synthesis and sintering of yttria nanopowders
Rioja-Monllor et al. Processing of high performance composite cathodes for protonic ceramic fuel cells by exsolution
JP7308814B2 (en) Ceramic powders, sintered bodies and batteries
Spiridigliozzi et al. Electro-morphological, structural, thermal and ionic conduction properties of Gd/Pr co-doped ceria electrolytes exhibiting mixed Pr3+/Pr4+ cations
Wang et al. Low‐temperature synthesis of praseodymium‐doped ceria nanopowders
JP6399657B2 (en) Oxide sintered body, manufacturing method thereof, solid electrolyte using the same, and lithium ion battery using the same
Li et al. 10‐mol%‐Gd2O3‐Doped CeO2 solid solutions via carbonate coprecipitation: a comparative study
Li et al. Reactive 10 mol% RE2O3 (RE= Gd and Sm) doped CeO2 nanopowders: Synthesis, characterization, and low-temperature sintering into dense ceramics
JP4869647B2 (en) Method for producing rare earth element-added cerium oxide powder
Akbari-Fakhrabadi et al. Effect of Sr2+ and Ba2+ doping on structural stability and mechanical properties of La2NiO4+ δ
CN108046217B (en) Method for preparing nano composite metal oxide
EP1484282B1 (en) Cerium based composite oxide, sintered product thereof and method for preparation thereof
JP4936422B2 (en) Manufacturing method of oxide sintered body and raw material powder of oxide sintered body
JP4955142B2 (en) Rare earth / aluminum / garnet fine powder and sintered body using the powder
CN104193323B (en) SrTiO 3/ TiO 2the preparation method of compound thermal electroceramics material
JP5140909B2 (en) Rare earth element-containing cerium oxide powder containing aluminum oxide
JP4729700B2 (en) Dy-doped nano ceria-based sintered body
KR102016916B1 (en) Method for producing LLZO oxide solid electrolyte powder
Wang et al. Low-temperature preparation of dense 10 mol%-Y 2 O 3-doped CeO 2 ceramics using powders synthesized via carbonate coprecipitation
Wang et al. Synthesis, characterization and sinterablity of 10 mol% Sm2O3-doped CeO2 nanopowders via carbonate precipitation
KR101188788B1 (en) Method for manufacturing ceramic interconnector powder for solid oxide fuel cell and interconnector thereof
Kamat et al. Preparation of high grade YBCO powders and pellets through the glycerol route
Augustin et al. Combustion synthesis of ABO3 and AB2O4 compounds-an overview
WO2022230686A1 (en) Oxide ion-conducting solid electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4936422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250