JP2007083242A - Joining method and joined body - Google Patents

Joining method and joined body Download PDF

Info

Publication number
JP2007083242A
JP2007083242A JP2005271152A JP2005271152A JP2007083242A JP 2007083242 A JP2007083242 A JP 2007083242A JP 2005271152 A JP2005271152 A JP 2005271152A JP 2005271152 A JP2005271152 A JP 2005271152A JP 2007083242 A JP2007083242 A JP 2007083242A
Authority
JP
Japan
Prior art keywords
metal
matrix composite
joining
metal matrix
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005271152A
Other languages
Japanese (ja)
Other versions
JP4412608B2 (en
Inventor
Toshiaki Yasui
利明 安井
Masahiro Fukumoto
昌宏 福本
Masami Tsubaki
正己 椿
Heishiro Takahashi
平四郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Taiheiyo Cement Corp
Original Assignee
Toyohashi University of Technology NUC
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC, Taiheiyo Cement Corp filed Critical Toyohashi University of Technology NUC
Priority to JP2005271152A priority Critical patent/JP4412608B2/en
Publication of JP2007083242A publication Critical patent/JP2007083242A/en
Application granted granted Critical
Publication of JP4412608B2 publication Critical patent/JP4412608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joining method which can reduce the waste of material and can reduce a tool cost due to the damage of a tool in cutting; and further to provide a joined body. <P>SOLUTION: In the method for joining a metallic composite material 10 and a soft metal 20, the metallic composite material and the soft metal are joined by a plastic flow caused by carrying out a friction stir operation to the soft metal. In this case, the joining is performed by causing the plastic flow on a boundary surface by carrying out the friction stir operation to the soft metal by inserting the pin of a joining tool into the metal side. By this method, a structure can be easily manufactured without cutting it out from a bulky material. As a result, a large casting mold becomes unnecessary, and the waste of material can be reduced. Further, the tool cost due to the damage of the tool in cutting can be reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、突合せ接合を摩擦攪拌によって行なう接合方法およびこれにより接合された接合体に関する。   The present invention relates to a joining method in which butt joining is performed by friction stirring and a joined body joined by the joining method.

金属基複合材料(MMC)は、ブレーキディスクやステージとして使用されている。一方、固相接合である摩擦攪拌接合(FSW)によりアルミMMC同士の接合が可能であることを示す文献が存在する(たとえば、特許文献1および特許文献2参照)。   Metal matrix composite materials (MMC) are used as brake disks and stages. On the other hand, there is a document indicating that aluminum MMCs can be bonded to each other by friction stir welding (FSW) which is solid phase bonding (see, for example, Patent Document 1 and Patent Document 2).

特許文献1等に記載される摩擦攪拌接合用工具は、非鉄合金と同じように、MMCs、鉄合金、非鉄合金および超合金を摩擦攪拌接合する工具である。この工具は、軸部、肩部および肩部を経て軸部に配置されたピンを含み、ピンおよび肩部は少なくとも高耐磨耗性材料により被覆され、ストレスライザーを減ずるように設計されている。また、摩擦攪拌接合用工具肩部は、軸部に対する運動を防ぐように肩部および軸部の一部分の周りにカラーを配置し、肩部と軸部との間およびカラーと工具との間に熱流障壁を設けて熱管理をする。このようにして、耐摩耗特性を向上させた摩擦攪拌接合用の工具を提供している。
特表2003−532542号公報 特表2003−532543号公報
The friction stir welding tool described in Patent Document 1 or the like is a tool for friction stir welding of MMCs, iron alloys, non-ferrous alloys, and superalloys in the same manner as non-ferrous alloys. The tool includes a shaft portion, a shoulder portion and a pin disposed on the shaft portion via the shoulder portion, the pin and the shoulder portion being coated with at least a high wear-resistant material and designed to reduce stress risers. . In addition, the friction stir welding tool shoulder has a collar disposed around the shoulder and a portion of the shaft so as to prevent movement relative to the shaft, and between the shoulder and the shaft and between the collar and the tool. Provide heat flow barrier to manage heat. In this way, a tool for friction stir welding with improved wear resistance is provided.
Special table 2003-532542 gazette Special Table 2003-532543

金属基複合材料(MMC)は、ブレーキディスクやステージとして使用されている。しかし、MMCはその組成の著しい変化のため溶融溶接が困難である。主に、ろう付けや鋳ぐるみ接合などで接合するか、バルク素材から切り出して利用することしかできなかった。固相接合である摩擦攪拌接合(FSW)によりアルミMMC同士接合が可能であることが示されている(特表2003−532542号公報、特表2003−532543号公報)が、接合ツールの損傷が激しく、また接合ツール材の接合部位への混入などの問題がある。このため、まだ実用化されている事例はない。   Metal matrix composite materials (MMC) are used as brake disks and stages. However, MMC is difficult to melt weld because of significant changes in its composition. Mainly, it could only be joined by brazing, cast-bowl joining, or cut out from a bulk material. It has been shown that aluminum MMCs can be joined by friction stir welding (FSW), which is solid phase joining (Japanese Patent Publication No. 2003-532542, Japanese Patent Publication No. 2003-532543), but the welding tool is damaged. There are serious problems such as mixing of the welding tool material into the bonding site. For this reason, there are no examples yet in practical use.

金属基複合材料(MMC)は、溶融溶接での接合が困難である。非溶融の摩擦攪拌接合により固相接合が可能であるが、金属基複合材料同士の接合界面に接合ツールの中心を挿入して回転させるため、特殊なツールを必要とするうえ、接合ツールの損傷が大きく、接合部への混入が見られるなど問題がある。   Metal matrix composite (MMC) is difficult to join by fusion welding. Solid-phase bonding is possible by non-melting friction stir welding, but the center of the welding tool is inserted and rotated at the bonding interface between metal matrix composites, which requires a special tool and damages the welding tool However, there is a problem that mixing into the joint is observed.

このように、MMCによる精密部品は近年、大型化が進んでいる。大型化に対応する方法として、製品を分割製造して接合する技術が必要となっている。MMCは、溶接が困難な材料であり、非溶融の固相接合である摩擦攪拌接合の適用が模索されているが、工具の磨耗が激しいなど問題が多い。   As described above, the size of precision parts by MMC has been increasing in recent years. As a method to cope with the increase in size, a technique for dividing and joining products is necessary. MMC is a material that is difficult to weld, and application of friction stir welding, which is a non-melting solid phase bonding, is being sought, but there are many problems such as severe tool wear.

本発明は、このような事情に鑑みてなされたものであり、材料の無駄を削減し、切削時の損傷に起因する工具コストを削減することができる接合方法および接合体を提供することを目的とする。   This invention is made in view of such a situation, and it aims at providing the joining method and joined body which can reduce the waste of a material and the tool cost resulting from the damage at the time of cutting. And

(1)上記の目的を達成するため、本発明に係る接合方法は、金属基複合材料と金属とを接合する方法において、軟質金属を摩擦攪拌することにより生じた塑性流動により、金属基複合材料と軟質金属とを接合する。   (1) In order to achieve the above object, the joining method according to the present invention is a method of joining a metal matrix composite material and a metal, and the metal matrix composite material is obtained by plastic flow generated by friction stirring of a soft metal. And soft metal.

このように、本発明の接合方法では、金属基複合材料(MMC)と軟質金属を接合するときは、金属側に接合ツールのピンを挿入し軟質金属を摩擦攪拌することにより、界面で塑性流動を引き起こし接合する。これにより、構造物の作製を容易にし、バルク材から切り出し成形する必要がなくなる。その結果、大型の鋳型が不要となり、材料の無駄を削減することができる。また、切削時の損傷に起因する工具コストを削減することができる。   Thus, in the joining method of the present invention, when joining a metal matrix composite material (MMC) and a soft metal, a plastic flow is caused at the interface by inserting a pin of a joining tool on the metal side and frictionally stirring the soft metal. Cause the joining. This facilitates the production of the structure and eliminates the need to cut out from the bulk material. As a result, a large mold is not necessary, and material waste can be reduced. Moreover, the tool cost resulting from the damage at the time of cutting can be reduced.

(2)また、本発明に係る接合方法は、金属基複合材料同士を連結する方法において、金属基複合材料の突合せ面間に軟質金属を中間材として介在させ、軟質金属を摩擦攪拌することにより、接合界面部分における塑性流動により接合することで金属基複合材料同士を連結することを特徴としている。   (2) Moreover, the joining method according to the present invention is a method of joining metal matrix composite materials by interposing a soft metal as an intermediate material between the butt surfaces of the metal matrix composite material, and friction-stirring the soft metal. It is characterized in that the metal matrix composite materials are connected to each other by bonding by plastic flow at the bonding interface portion.

このように、溶融溶接が困難な金属基複合材料を、軟質金属を介して接合することから、これまで、バルク素材から切り出さなければ作製できなかった製品に応用でき、材料コスト、製造コストを大きく削減できる。   In this way, metal matrix composites that are difficult to melt weld are joined via soft metals, so it can be applied to products that could not be produced without cutting them out from bulk materials, which increases material costs and manufacturing costs. Can be reduced.

(3)また、本発明に係る接合方法は、前記金属基複合材料がアルミ基複合材料であり、前記軟質金属がアルミニウムであることを特徴としている。   (3) Moreover, the joining method according to the present invention is characterized in that the metal matrix composite material is an aluminum matrix composite material and the soft metal is aluminum.

このように、アルミ基複合材料にアルミニウムを接合するため、酸化物層を除去する等の前処理を必要とせず、接合界面を残さず良好な接合を実現することができる。   As described above, since aluminum is bonded to the aluminum-based composite material, pretreatment such as removal of the oxide layer is not required, and good bonding can be realized without leaving a bonding interface.

(4)また、本発明に係る接合体は、金属母材および前記金属母材中に分散された強化材により形成される金属基複合材料部材と、軟質金属により形成され、前記金属基複合材料部材に接合される金属部材と、を備え、両部材の接合部では、塑性流動により前記強化材が金属部材側に拡散していることを特徴としている。   (4) Moreover, the joined body which concerns on this invention is formed with the metal matrix composite material member formed with the metal base material and the reinforcement material disperse | distributed in the said metal base material, and a soft metal, The said metal matrix composite material And a metal member to be joined to the member, wherein the reinforcing material is diffused to the metal member side by plastic flow at the joint portion of both members.

これにより、バルク材から切り出し成形した構造物に代えて、本発明の接合体を種々の構造物に用いることができる。その結果、大型の鋳型が不要となり、材料の無駄を削減し、切削時の損傷に起因する工具コストを削減することができる。また、溶接により接合されている接合体とは異なり、本発明の接合体は塑性流動により接合され、強化材が金属部材側に分散して接合を良好にしているため、接合部の強度が必要な部材に利用することができる。   Thereby, it can replace with the structure cut out and formed from the bulk material, and can use the joined body of this invention for various structures. As a result, a large mold is not required, waste of materials can be reduced, and tool costs resulting from damage during cutting can be reduced. Also, unlike the joined body joined by welding, the joined body of the present invention is joined by plastic flow, and the reinforcing material is dispersed on the metal member side to improve the joining, so the strength of the joint is necessary. It can be used for various members.

(5)また、本発明に係る接合体は、前記強化材が拡散する領域は、両部材の接合面から100μm以上にわたることを特徴としている。   (5) Further, the joined body according to the present invention is characterized in that the region where the reinforcing material diffuses extends over 100 μm from the joint surface of both members.

このように、本発明の接合体は塑性流動により接合され、強化材が金属部材側に100μm以上にわたって分散しているため、接合部の強度が必要な部材に利用することができる。   Thus, since the joined body of the present invention is joined by plastic flow and the reinforcing material is dispersed over 100 μm or more on the metal member side, it can be used for a member that requires strength of the joint.

(6)また、本発明に係る接合体は、前記金属部材は、前記金属基複合材料部材の金属母材と同種の金属材料であることを特徴としている。   (6) In the joined body according to the present invention, the metal member is a metal material of the same type as the metal base material of the metal matrix composite material member.

このように、金属基複合材料部材の金属母材と同種の材料の金属部材を用いて、金属基複合材料部材と金属部材とを接合するため、酸化物層を除去する等の前処理を必要とせず、接合界面を残さず良好な接合を実現することができる。   In this way, a metal member of the same type as the metal base material of the metal matrix composite material member is used to join the metal matrix composite material member and the metal member, so a pretreatment such as removing the oxide layer is required. Therefore, good bonding can be realized without leaving a bonding interface.

(7)また、本発明に係る接合体は、金属母材および前記金属母材中に分散された強化材により形成される複数の金属基複合材料部材と、軟質金属により形成され、前記複数の金属基複合材料部材に接合されることにより、前記複数の金属基複合材料部材を連結する金属部材と、を備え、各接合部では、塑性流動により前記強化材が金属部材側に拡散していることを特徴としている。   (7) Moreover, the joined body according to the present invention is formed of a metal base material and a plurality of metal matrix composite members formed of a reinforcing material dispersed in the metal base material, and a plurality of the soft metal. A metal member that joins the plurality of metal matrix composite members by being joined to the metal matrix composite material member, and the reinforcing material diffuses to the metal member side by plastic flow at each joint portion. It is characterized by that.

このように、溶融溶接が困難な金属基複合材料部材を、軟質金属を接合することにより、連結しているため、これまで、バルク素材から切り出さなければ作製できなかった製品に応用でき、材料コスト、製造コストを大きく削減できる。   In this way, metal matrix composite materials that are difficult to melt weld are connected by joining soft metals, so it can be applied to products that could not be produced unless they were cut out from bulk materials until now. Manufacturing costs can be greatly reduced.

(8)また、本発明に係る接合方法は、2つの部材を、ピン部を有する回転ツールを用いて摩擦攪拌接合する接合方法において、金属母材および前記金属母材中に分散された強化材により形成される金属基複合材料部材と、軟質金属により形成される金属部材とを突き合わせる突合せ工程と、前記金属部材側に前記ピン部の中心軸を合わせ、両部材の突合せ面から前記前記ピン部までのオフセットが±1mm以下となるように、前記ピン部を挿入するピン挿入工程と、前記オフセットを維持しながら、前記ピン部を回転移動させて摩擦攪拌を行なう摩擦攪拌工程と、を含むことを特徴としている。   (8) Moreover, the joining method according to the present invention is a joining method in which two members are friction stir welded using a rotary tool having a pin portion, and a metal base material and a reinforcing material dispersed in the metal base material. A butting step of abutting a metal matrix composite material member formed by a soft metal and a metal member formed by a soft metal, aligning the center axis of the pin portion to the metal member side, and the pin from the butting surface of both members A pin insertion step of inserting the pin portion such that the offset to the portion is ± 1 mm or less, and a friction agitation step of rotating the pin portion and performing friction agitation while maintaining the offset It is characterized by that.

このように、本発明の接合方法では、金属基複合材料と軟質金属を接合するときは、この金属側に接合ツールのピンを挿入し摩擦攪拌することにより、界面で塑性流動を引き起こし接合する。ほとんどピン部を金属基複合材料部材に挿入しないため、回転ツールの回転方向に依らず接合することができる。その結果、金属部材の両側で同時に金属基複合材料部材を接合することができ、金属基複合材料部材同士の連結が可能となる。   Thus, in the joining method of the present invention, when joining the metal matrix composite material and the soft metal, the pins of the joining tool are inserted on the metal side and friction stir is performed to cause plastic flow at the interface and join. Since most of the pin portions are not inserted into the metal matrix composite member, they can be joined regardless of the direction of rotation of the rotary tool. As a result, the metal matrix composite material members can be joined simultaneously on both sides of the metal member, and the metal matrix composite material members can be connected to each other.

上記のように、軟質金属に接合ツールのピンを挿入し摩擦攪拌することにより、金属基複合材料との接合界面で塑性流動を起こすことにより、接合を可能にする。接合ツールのピンを金属基複合材に挿入しない、もしくはわずかに挿入することにより、接合界面で塑性流動を引き起せるため、接合ツールの損傷を抑えることができる。MMCの摩擦攪拌接合では、超鋼やPCBNといった特殊な接合ツールが用いられるが、本法によればピンのオフセット量を調整すれば、通常の工具鋼でも実施が可能である。ただし、金属基複合材料側にオフセットして軟質金属への粒子分散を行う場合には、ツールの損傷が少なからずあるため、超鋼のような高い硬度を持つ材料を接合ツールとする必要がある。   As described above, a pin of a welding tool is inserted into a soft metal and friction stirs to cause plastic flow at the bonding interface with the metal matrix composite material, thereby enabling bonding. By not inserting or slightly inserting the pins of the joining tool into the metal matrix composite, plastic flow can be caused at the joining interface, so that damage to the joining tool can be suppressed. In the friction stir welding of MMC, a special welding tool such as super steel or PCBN is used. However, according to this method, it is possible to carry out using normal tool steel by adjusting the offset amount of the pin. However, when particles are dispersed to soft metal by offsetting to the metal matrix composite material side, there is a lot of damage to the tool, so it is necessary to use a material with high hardness such as super steel as the joining tool. .

本発明の接合方法によれば、構造物の作製を容易にし、バルク材から切り出し成形する必要がなくなる。その結果、大型の鋳型が不要となり、材料の無駄を削減することができる。また、切削時の損傷に起因する工具コストを削減することができる。   According to the joining method of the present invention, it is easy to produce a structure, and it is not necessary to cut out and form from a bulk material. As a result, a large mold is not necessary, and material waste can be reduced. Moreover, the tool cost resulting from the damage at the time of cutting can be reduced.

また、本発明の接合方法によれば、溶融溶接が困難な金属基複合材料を、軟質金属を介して接合することから、これまで、バルク素材から切り出さなければ作製できなかった製品に応用でき、材料コスト、製造コストを大きく削減できる。   In addition, according to the joining method of the present invention, since the metal matrix composite material that is difficult to be melt welded is joined through a soft metal, it can be applied to products that could not be produced unless cut from a bulk material until now. Material costs and manufacturing costs can be greatly reduced.

また、本発明の接合体によれば、バルク材から切り出し成形した構造物に代えて、本発明の接合体を種々の構造物に用いることができる。その結果、大型の鋳型が不要となり、材料の無駄を削減し、切削時の損傷に起因する工具コストを削減することができる。また、溶接により接合されている接合体とは異なり、本発明の接合体は塑性流動により接合され、強化材が金属部材側に分散して接合を良好にしているため、接合部の強度が必要な部材に利用することができる。   Further, according to the joined body of the present invention, the joined body of the present invention can be used for various structures in place of the structure cut out and formed from the bulk material. As a result, a large mold is not required, waste of materials can be reduced, and tool costs resulting from damage during cutting can be reduced. Also, unlike the joined body joined by welding, the joined body of the present invention is joined by plastic flow, and the reinforcing material is dispersed on the metal member side to improve the joining, so the strength of the joint is necessary. It can be used for various members.

また、本発明の接合方法によれば、金属基複合材料と軟質金属を接合するときは、この金属側に接合ツールのピンを挿入し摩擦攪拌することにより、界面で塑性流動を引き起こし接合する。ほとんどピン部を金属基複合材料部材に挿入しないため、回転ツールの回転方向に依らず接合することができる。その結果、金属部材の両側で同時に金属基複合材料部材を接合することができ、金属基複合材料部材同士の連結が可能となる。   Further, according to the joining method of the present invention, when joining the metal matrix composite material and the soft metal, the pins of the joining tool are inserted into the metal side and friction stirring is performed to cause plastic flow at the interface and join. Since most of the pin portions are not inserted into the metal matrix composite member, they can be joined regardless of the direction of rotation of the rotary tool. As a result, the metal matrix composite material members can be joined simultaneously on both sides of the metal member, and the metal matrix composite material members can be connected to each other.

上記のように、金属基複合材料は、溶融溶接が困難なため、構造物を作製する場合は、バルク材から切り出し成形することが多い。このため、大型の鋳型を必要とする上、材料の無駄が多く、また切削時に工具に損傷があるため工具コストかかるなどなど問題が多い。本発明は、アルミ材を介して、金属基複合材料同士の接合を可能にするため、それらの欠点を解消する。汎用の工作機械でも行えることから、波及効果は大きいものと考えられる。また、強化材を摩擦攪拌作用により軟質金属の攪拌領域に分散させることができることから、これまでにない新しい粒子分散法としても重要である。   As described above, since the metal matrix composite material is difficult to be melt-welded, when a structure is produced, the metal matrix composite material is often cut out from a bulk material. For this reason, there are many problems such as requiring a large mold, wasteful material, and damage to the tool at the time of cutting, resulting in increased tool cost. Since this invention enables joining of metal matrix composite materials through an aluminum material, those faults are eliminated. Since it can be performed with general-purpose machine tools, the ripple effect is considered to be large. Further, since the reinforcing material can be dispersed in the stirrer region of the soft metal by the friction stir action, it is also important as a new particle dispersion method that has never existed.

本発明方法では、金属基複合材料(MMC)と軟質金属を接合するときは、この金属側に接合ツールのピンを挿入し摩擦攪拌することにより、界面で塑性流動を引き起こし接合する。金属基複合材料にピンをわずかもしくはほとんど入れないため、ピンの損傷はほとんどない。複合材料同士を接合する場合は、両者の突合せ側の面間に軟質金属を介在させておき、この金属に接合ツールのピンを挿入し摩擦攪拌することにより、界面で塑性流動を引き起こし、金属基複合材料と接合をする。ピンを金属基複合材料側へオフセットし、接合速度、回転数を調整することにより、塑性流動状態を変化させ、金属基複合材料内の強化材を軟質金属内に塑性流動で分散させることが可能である。   In the method of the present invention, when joining a metal matrix composite material (MMC) and a soft metal, a pin of a joining tool is inserted on the metal side and friction stirring is performed to cause plastic flow at the interface and join. Because there are few or few pins in the metal matrix composite, there is little damage to the pins. When joining composite materials, a soft metal is interposed between the surfaces of the two butting surfaces, and a pin of a welding tool is inserted into this metal and frictionally stirred, thereby causing plastic flow at the interface and Join the composite material. By offsetting the pin to the metal matrix composite and adjusting the joining speed and rotation speed, it is possible to change the plastic flow state and disperse the reinforcing material in the metal matrix composite into the soft metal by plastic flow. It is.

溶融溶接が困難な金属基複合材料(MMC)を軟質金属を介して接合できることから、これまで、バルク素材から切り出してしか作製できなかった製品に応用でき、材料コスト、製造コストを大きく削減できるため、産業上大きな利用価値がある。   Because metal matrix composites (MMC) that are difficult to melt weld can be joined via soft metals, it can be applied to products that could only be produced by cutting out from bulk materials so far, and material costs and manufacturing costs can be greatly reduced. It has great industrial utility value.

以下に、本発明の実施形態を図面に基づいて説明する。また、説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, in order to facilitate understanding of the description, the same reference numerals are given to the same components in the respective drawings, and duplicate descriptions are omitted.

(実施形態1)
図1は、アルミニウム基MMC部材とアルミニウム部材とを摩擦攪拌接合により接合した接合体1の斜視図である。図1に示すように、接合体1は、MMC部材10(金属基複合材料部材)およびアルミニウム部材20(金属部材)が、接合部25において接合されることで構成されている。MMC部材10は、板形状であり、アルミニウムの母材および母材中に分散されたSiCセラミックスの強化材により形成されている。母材中の強化材の割合は30vf%である。MMC部材10は、強化材にSiCに代えてアルミナを用いたものであってもよい。その場合には、たとえば母材中の強化材の割合を37vf%とする。
(Embodiment 1)
FIG. 1 is a perspective view of a joined body 1 in which an aluminum-based MMC member and an aluminum member are joined by friction stir welding. As shown in FIG. 1, the joined body 1 is configured by joining an MMC member 10 (metal-based composite material member) and an aluminum member 20 (metal member) at a joint portion 25. The MMC member 10 has a plate shape and is formed of an aluminum base material and a SiC ceramic reinforcing material dispersed in the base material. The proportion of reinforcing material in the base material is 30 vf%. The MMC member 10 may be made of alumina instead of SiC as a reinforcing material. In that case, for example, the ratio of the reinforcing material in the base material is set to 37 vf%.

なお、母材および強化材の材料は、特に上記のものに限定されない。母材中の強化材の割合は、30vf%〜70vf%であることが好ましい。例えば30vf%〜50vf%のMMC部材10を用いれば、接合しやすさが求められる部材に応用できる。55vf%〜70vf%のMMC部材10を用いれば、強度が高い部材に応用できる。アルミニウム部材20は、アルミニウムにより板形状に形成されている。金属部材には、アルミニウム等の軟性金属を用いることが好ましい。軟性金属を用いて摩擦攪拌接合することで、塑性流動により接合が良好となる。軟性金属にはマグネシウムや銅も含まれ、特にアルミニウムに限定されない。   Note that the materials of the base material and the reinforcing material are not particularly limited to those described above. The ratio of the reinforcing material in the base material is preferably 30 vf% to 70 vf%. For example, if the MMC member 10 of 30 vf% to 50 vf% is used, it can be applied to a member that requires easy joining. If the MMC member 10 of 55 vf% to 70 vf% is used, it can be applied to a member having high strength. The aluminum member 20 is formed in a plate shape from aluminum. It is preferable to use a soft metal such as aluminum for the metal member. By performing friction stir welding using a soft metal, bonding is improved by plastic flow. Soft metals include magnesium and copper, and are not particularly limited to aluminum.

金属基複合材料部材の母材および金属部材を共に塑性流動させる必要があるため、母材および金属部材は同じ素材であることが望ましい。異種の材料を接合すると接合界面残りやすく、場合によっては表面の酸化物層を除去する必要がある。接合面30は、両部材が接合されることで形成された界面である。少なくとも、接合面30近傍で母材の塑性流動が発生すれば、材料に依らず接合は可能である。ただし、強化材の分散領域によって硬度分布は変わると考えられる。また、接合強度は、攪拌されたアルミ部の強度やツールによる攪拌領域の変化に依存する。   Since it is necessary to plastically flow both the base material and the metal member of the metal matrix composite material member, it is desirable that the base material and the metal member are the same material. When different types of materials are bonded, the bonding interface tends to remain, and in some cases, it is necessary to remove the oxide layer on the surface. The joint surface 30 is an interface formed by joining both members. If plastic flow of the base material occurs at least in the vicinity of the joining surface 30, joining is possible regardless of the material. However, it is considered that the hardness distribution varies depending on the dispersion region of the reinforcing material. Further, the bonding strength depends on the strength of the agitated aluminum part and the change of the agitating region by the tool.

図2は、接合部25付近を接合面30に垂直に切断した断面の電子顕微鏡(SEM)写真である。図2は、接合面30を界面として、MMC部材10とアルミニウム部材20とが接合されている様子を示している。アルミニウム部材20側に見える粒子は、MMC部材10から拡散した強化材31である。接合部25付近では、摩擦攪拌時の塑性流動によりアルミニウム部材20側へ100μmを超えて強化材31が拡散している。   FIG. 2 is an electron microscope (SEM) photograph of a cross section obtained by cutting the vicinity of the joint portion 25 perpendicularly to the joint surface 30. FIG. 2 shows a state in which the MMC member 10 and the aluminum member 20 are joined using the joining surface 30 as an interface. The particles visible on the aluminum member 20 side are the reinforcing material 31 diffused from the MMC member 10. In the vicinity of the joint portion 25, the reinforcing material 31 is diffused over 100 μm toward the aluminum member 20 due to plastic flow during frictional stirring.

次に、上記の接合体1の製造方法を説明する。接合体1は、ピン部を有する回転ツールを用いて摩擦攪拌接合する接合方法により製造されている。図3は、回転ツールのピン部を部材に挿入する様子を示す断面図である。また、図4は、ピン部を回転移動させて摩擦攪拌を行なう工程を示す平面図である。回転ツール40には、超鋼などの高硬度材料製のものを使う必要はなく、アルミの摩擦撹拌が可能な通常の工具鋼を用いればよい。金属基複合材料部材の母材と金属部材の材料が塑性流動すれば十分であるため、回転ツール40のピン部42の形状は、ストレートまたはねじきりのいずれも使用可能である。ピン部42の形状は、上下方向の塑性流動を促進するためストレートピンの中央部に窪みをつけた形状であってもよい。   Next, the manufacturing method of said joined body 1 is demonstrated. The joined body 1 is manufactured by a joining method in which friction stir welding is performed using a rotary tool having a pin portion. FIG. 3 is a cross-sectional view showing a state where the pin portion of the rotary tool is inserted into the member. FIG. 4 is a plan view showing a step of performing frictional stirring by rotating and moving the pin portion. The rotary tool 40 does not need to be made of a high hardness material such as super steel, and may be a normal tool steel capable of friction stirring of aluminum. Since it is sufficient that the base material of the metal matrix composite material and the material of the metal member plastically flow, the shape of the pin portion 42 of the rotary tool 40 can be either straight or threaded. The shape of the pin portion 42 may be a shape in which a depression is formed in the central portion of the straight pin in order to promote plastic flow in the vertical direction.

まず、MMC部材10の側面と、アルミニウム部材20の側面とを突き合わせる。次に、図3(a)に示すように、アルミニウム部材20側にピン部42の中心軸が入るように設定し、両部材の突合せ面35からピン部42までのオフセットDが±1mm以下となるようにA方向へ、ピン部42を挿入する。オフセットとは、突合せ面35からピン部42の外周面までの間隔をいい、突合せ面35からMMC部材10側へピン部42が入っているときには、プラス、アルミニウム部材20内にピン部42が収まっているときにはマイナスとなる。オフセットDは、±1mm以内であることが好ましい。   First, the side surface of the MMC member 10 and the side surface of the aluminum member 20 are butted together. Next, as shown in FIG. 3A, the center axis of the pin portion 42 is set on the aluminum member 20 side, and the offset D from the butting surface 35 of both members to the pin portion 42 is ± 1 mm or less. The pin part 42 is inserted in the A direction so as to be. The offset refers to the distance from the abutting surface 35 to the outer peripheral surface of the pin portion 42. When the pin portion 42 enters from the abutting surface 35 to the MMC member 10 side, the pin portion 42 is accommodated in the aluminum member 20. When it is, it becomes negative. The offset D is preferably within ± 1 mm.

本発明の製造方法では、回転ツール40のピン部42は部材の片側にしか挿入しない状態(−オフセット)でも、その片側での塑性流動により相手材の塑性流動を引き起こし、接合を可能にしている。+オフセット量が大きいとMMC部材10側での発熱量が大きくなり、大きな欠陥が発生しうる。このため、+オフセット量をなるべく小さくする、もしくは−オフセットとすることが好ましい。なお、金属部材の材料が金属基複合材料部材の母材の材料と異なる場合には、金属基複合材料部材側にオフセットした方が、接合が良好となる。図3(b)に示すように、ピン部42の挿入は、回転ツール40のショルダー部43がアルミニウム部材20に0.5mm以下の間隙を残すか、または接触するまで行なう。   In the manufacturing method of the present invention, even when the pin portion 42 of the rotary tool 40 is inserted only on one side of the member (−offset), the plastic flow of the counterpart material is caused by the plastic flow on the one side, thereby enabling the joining. . If the + offset amount is large, the amount of heat generated on the MMC member 10 side increases, and a large defect may occur. For this reason, it is preferable to reduce the + offset amount as much as possible or to set it to −offset. In addition, when the material of the metal member is different from the material of the base material of the metal matrix composite material member, the bonding is better when offset to the metal matrix composite material member side. As shown in FIG. 3B, the pin portion 42 is inserted until the shoulder portion 43 of the rotary tool 40 leaves a gap of 0.5 mm or less on the aluminum member 20 or comes into contact therewith.

ピン部42を挿入したら、図4に示すように、挿入したときのオフセットを維持し、ピン部42をB方向に回転させながらC方向に移動させて摩擦攪拌を行なう。摩擦攪拌された接合部25付近では塑性流動が生じ、両部材が接合される。なお、回転方向はMMC部材10側でC方向と同じになる向き(B方向)であることが好ましいが、逆向きであってもよい。   When the pin part 42 is inserted, as shown in FIG. 4, the offset when the pin part 42 is inserted is maintained, and the pin part 42 is moved in the C direction while rotating in the B direction to perform friction stirring. In the vicinity of the friction-stirred joint 25, plastic flow occurs, and both members are joined. The rotation direction is preferably the same direction (B direction) as the C direction on the MMC member 10 side, but it may be the reverse direction.

(実施形態2)
上記の実施形態では、接合体1は、MMC部材10とアルミニウム部材20との接合により形成されているが、アルミニウム部材を中間材として複数のMMC部材に接合し、MMC部材同士を連結してもよい。
(Embodiment 2)
In the above embodiment, the joined body 1 is formed by joining the MMC member 10 and the aluminum member 20. However, the joined body 1 may be joined to a plurality of MMC members using the aluminum member as an intermediate material, and the MMC members are connected to each other. Good.

図5は、アルミニウム部材を中間材として2つのMMC部材を連結した接合体51の斜視図である。図5に示すように、2つの板状のMMC部材61および62は、アルミニウム部材70と、それぞれ接合面81、接合面82で接合されている。   FIG. 5 is a perspective view of a joined body 51 in which two MMC members are connected using an aluminum member as an intermediate material. As shown in FIG. 5, the two plate-like MMC members 61 and 62 are joined to the aluminum member 70 by a joining surface 81 and a joining surface 82, respectively.

次に、上記の接合体51の製造方法を説明する。接合体51は、ピン部を有する回転ツールを用いて摩擦攪拌接合する接合方法により製造されている。図6は、回転ツールのピン部を部材に挿入している様子を示す断面図である。また、図7は、ピン部を回転移動させて摩擦攪拌を行なう工程を示す平面図である。   Next, a method for manufacturing the joined body 51 will be described. The joined body 51 is manufactured by a joining method in which friction stir welding is performed using a rotary tool having a pin portion. FIG. 6 is a cross-sectional view showing a state where the pin portion of the rotary tool is inserted into the member. FIG. 7 is a plan view showing a step of performing frictional stirring by rotating and moving the pin portion.

まず、アルミニウム部材70を挟んで、アルミニウム部材70の両側からそれぞれのMMC部材61および62の側面と、アルミニウム部材70の側面とを突き合わせる。次に、アルミニウム部材70にピン部42の中心軸が入るように設定し、両部材の突合せ面91および92からピン部42までのオフセットD1およびD2がそれぞれ±1mm以下となるように、ピン部42を挿入する。オフセットは、±1mm以内であることが好ましい。ピン部42の挿入は、回転ツール40のショルダー部43がアルミニウム部材70に0.5mm以下の間隙を残すか、または接触するまで行なう。   First, the side surfaces of the MMC members 61 and 62 and the side surface of the aluminum member 70 are abutted from both sides of the aluminum member 70 with the aluminum member 70 interposed therebetween. Next, the aluminum member 70 is set so that the central axis of the pin part 42 enters, and the offsets D1 and D2 from the butted surfaces 91 and 92 of both members to the pin part 42 are ± 1 mm or less, respectively. 42 is inserted. The offset is preferably within ± 1 mm. The pin portion 42 is inserted until the shoulder portion 43 of the rotary tool 40 leaves a gap of 0.5 mm or less in the aluminum member 70 or comes into contact therewith.

ピン部42を挿入したら、図7に示すように、挿入したときのオフセットを維持し、ピン部42をE方向に回転させながらF方向に移動させて摩擦攪拌を行なう。摩擦攪拌された接合部75付近では塑性流動が生じ、MMC部材とアルミニウム部材とが接合される。なお、回転方向はE方向でもその逆向きであってもよい。本発明の製造方法では、回転ツール40のピン部42はアルミニウム部材70にしか挿入しない状態(−オフセット)でも、その片側での塑性流動により相手材の塑性流動を引き起こし、接合を可能にしている。このため、回転ツール40の回転方向に依存しないで接合できる。従来の異材接合では、ピン部42を高硬度材側に挿入する(+オフセット)必要があったため、回転方向によっては接合できない場合があった。しかし、本発明の接合方法では、回転方向に依存せず、攪拌をしているアルミニウム部材70の両側で接合がなされる。これにより、アルミニウム部材70を挟んでMMC部材61および62の接合が可能となる。   When the pin portion 42 is inserted, as shown in FIG. 7, the offset when the pin portion 42 is inserted is maintained, and the pin portion 42 is moved in the F direction while rotating in the E direction to perform friction stirring. In the vicinity of the friction-stirred joint 75, plastic flow occurs, and the MMC member and the aluminum member are joined. The rotation direction may be the E direction or the opposite direction. In the manufacturing method of the present invention, even when the pin portion 42 of the rotary tool 40 is inserted only into the aluminum member 70 (-offset), the plastic flow of the counterpart material is caused by the plastic flow on one side thereof, thereby enabling the joining. . For this reason, it can join without depending on the rotation direction of the rotary tool 40. In the conventional dissimilar material joining, since it was necessary to insert the pin portion 42 to the high hardness material side (+ offset), there were cases where the joining could not be performed depending on the rotation direction. However, in the joining method of the present invention, the joining is performed on both sides of the aluminum member 70 that is being agitated without depending on the rotating direction. As a result, the MMC members 61 and 62 can be joined with the aluminum member 70 interposed therebetween.

なお、上記の実施形態では、部材に板形状のものを用いているが、その他の形状にも応用が可能である。   In addition, in said embodiment, although the plate-shaped thing is used for a member, application to other shapes is also possible.

マシニングセンタにアルミ(A6063)とアルミMMC(30%SiC+Al−10Si)の板材(ともに190×20×t5mm)を長尺方向をつき合わせた状態で設置し、その接合界面よりアルミ材側に接合ツール(ショルダー径20mm、ピン径4mm長さ4.5mm)を回転させながら挿入し、その接合界面に沿って移動させる(図8参照)。回転数3000rpm、接合速度500mm/min、アルミ側に0.1mmオフセットし(MMC内にピンを挿入しない状態)、正転および逆転の2種類を行った結果、両条件で接合していることが確認された。この結果、アルミを中間材として介在させてアルミMMC同士を接合できることが明らかになった。また、MMC側に0、0.1mmオフセットとした場合でも接合が確認され、その時アルミMMC内の強化材がアルミ内に分散することが確認された。   Aluminum (A6063) and aluminum MMC (30% SiC + Al-10Si) plate materials (both 190x20xt5mm) are installed in the machining center in the state where the long direction is put together, and the joining tool ( A shoulder diameter of 20 mm and a pin diameter of 4 mm and a length of 4.5 mm are inserted while being rotated and moved along the joining interface (see FIG. 8). Rotating speed 3000rpm, joining speed 500mm / min, offset 0.1mm on aluminum side (no pin inserted in MMC) confirmed. As a result, it has been clarified that aluminum MMCs can be joined together by interposing aluminum as an intermediate material. Further, even when the offset was 0, 0.1 mm on the MMC side, bonding was confirmed, and at that time, it was confirmed that the reinforcing material in the aluminum MMC was dispersed in the aluminum.

また、オフセットを−0.1mm〜+0.1mmの範囲に設定して接合した(+はMMC側にピンを挿入した場合)。正回転(MMC側でツールの回転方向と接合方向が一致する)では、どのオフセットでも接合可能であったが、逆回転(MMC側でツールの回転方向と接合方向が反対となる)では+オフセット時に接合界面で欠陥が発生し、良好な接合が得られなかった。オフセット−0.1mmでは、正転・逆転とも(1)回転数3000rpm,接合速度500mm/min、(2)回転数3000rpm,接合速度200mm/min、(3)回転数4000rpm,接合速度500mm/minの条件で接合が確認された。図9は、接合が確認されたときの接合部付近の断面を示す電子顕微鏡写真である。   Moreover, the offset was set in a range of −0.1 mm to +0.1 mm and bonding was performed (+ represents a case where a pin is inserted on the MMC side). In forward rotation (MMC side and tool direction coincide with the welding direction), any offset could be joined, but in reverse rotation (MMC side and tool direction and welding direction are opposite) + offset Occasionally, defects occurred at the bonding interface, and good bonding could not be obtained. When the offset is -0.1 mm, both forward rotation and reverse rotation are (1) rotational speed 3000 rpm, joining speed 500 mm / min, (2) rotational speed 3000 rpm, joining speed 200 mm / min, (3) rotational speed 4000 rpm, joining speed 500 mm / min. Bonding was confirmed under the conditions of FIG. 9 is an electron micrograph showing a cross section near the joint when the joint is confirmed.

図10のように、MMC部材同士の接合において、バイスによってMMC部材でアルミニウム部材を挟み込んで固定(MMC−Al−MMC)した実験では、接合中にアルミニウム部材がMMCの間を滑ることから、アルミニウム部材を治具で固定する必要があった。   As shown in FIG. 10, in the joining between MMC members, in the experiment in which the aluminum member was sandwiched between the MMC members by a vise and fixed (MMC-Al-MMC), the aluminum member slips between the MMCs during joining. It was necessary to fix the member with a jig.

両方のMMC部材に対し、オフセットは−1.0mm以下で(1)回転数3000rpm,接合速度200mm/min(2)回転数4000rpm,接合速度500mm/minの条件で接合実験を行い、接合が確認された。   For both MMC members, the offset was -1.0 mm or less (1) Rotating speed 3000 rpm, Joining speed 200 mm / min (2) Rotating speed 4000 rpm, Joining speed 500 mm / min. It was done.

本発明に係る接合体の斜視図である。(実施形態1)It is a perspective view of the joined body concerning the present invention. (Embodiment 1) 接合部付近を切断した断面の電子顕微鏡(SEM)写真である。It is an electron microscope (SEM) photograph of the section which cut the junction part neighborhood. ピン部を部材に挿入する工程を示す断面図である。(実施形態1)It is sectional drawing which shows the process of inserting a pin part in a member. (Embodiment 1) ピン部を回転移動させて摩擦攪拌を行なう工程を示す平面図である。(実施形態1)It is a top view which shows the process of rotating and moving a pin part and performing friction stirring. (Embodiment 1) 本発明に係る接合体の斜視図である。(実施形態2)It is a perspective view of the joined body concerning the present invention. (Embodiment 2) ピン部を部材に挿入している工程を示す断面図である。(実施形態2)It is sectional drawing which shows the process which has inserted the pin part in the member. (Embodiment 2) ピン部を回転移動させて摩擦攪拌を行なう工程を示す平面図である。(実施形態2)It is a top view which shows the process of rotating and moving a pin part and performing friction stirring. (Embodiment 2) 実施例1を示す図である。1 is a diagram illustrating Example 1. FIG. 実施例1を示す図である。1 is a diagram illustrating Example 1. FIG. 実施例2を示す図である。FIG. 6 is a diagram showing Example 2.

符号の説明Explanation of symbols

1、51 接合体
10、61、62 MMC部材(金属基複合材料部材)
20、70 アルミニウム部材(金属部材)
25、75 接合部
30、81、82 接合面
31 強化材
35、91、92 突合せ面
40 回転ツール
42 ピン部
43 ショルダー部
D、D1、D2 オフセット
1, 51 Joint 10, 61, 62 MMC member (metal-based composite material member)
20, 70 Aluminum member (metal member)
25, 75 Joint part 30, 81, 82 Joint surface 31 Reinforcement material 35, 91, 92 Butt face 40 Rotating tool 42 Pin part 43 Shoulder part D, D1, D2 Offset

Claims (8)

金属基複合材料と金属とを接合する方法において、軟質金属を摩擦攪拌することにより生じた塑性流動により、金属基複合材料と軟質金属とを接合する接合方法。   In the method for joining a metal matrix composite material and a metal, a joining method for joining the metal matrix composite material and the soft metal by plastic flow generated by friction stirring of the soft metal. 金属基複合材料同士を連結する方法において、金属基複合材料の突合せ面間に軟質金属を中間材として介在させ、軟質金属を摩擦攪拌することにより、接合界面部分における塑性流動により接合することで金属基複合材料同士を連結することを特徴とする金属基複合材料同士の接合方法。   In a method of connecting metal matrix composite materials, a metal is bonded by plastic flow at the joint interface by interposing a soft metal as an intermediate material between the butt surfaces of the metal matrix composite material and frictionally stirring the soft metal. A method for joining metal matrix composite materials, characterized in that the matrix composite materials are connected to each other. 前記金属基複合材料がアルミ基複合材料であり、前記軟質金属がアルミニウムであることを特徴とする請求項1または請求項2記載の接合方法。   The joining method according to claim 1, wherein the metal matrix composite material is an aluminum matrix composite material, and the soft metal is aluminum. 金属母材および前記金属母材中に分散された強化材により形成される金属基複合材料部材と、
軟質金属により形成され、前記金属基複合材料部材に接合される金属部材と、を備え、
両部材の接合部では、塑性流動により前記強化材が金属部材側に拡散していることを特徴とする接合体。
A metal matrix composite material member formed of a metal matrix and a reinforcing material dispersed in the metal matrix;
A metal member formed of a soft metal and bonded to the metal matrix composite material member,
In the joined portion of both members, the reinforcing material is diffused to the metal member side by plastic flow.
前記強化材が拡散する領域は、両部材の接合面から100μm以上にわたることを特徴とする請求項4記載の接合体。   5. The joined body according to claim 4, wherein the region where the reinforcing material diffuses extends over 100 [mu] m from the joint surface of both members. 前記金属部材は、前記金属基複合材料部材の金属母材と同種の金属材料であることを特徴とする請求項4または請求項5記載の接合体。   6. The joined body according to claim 4, wherein the metal member is a metal material of the same type as the metal base material of the metal matrix composite material member. 金属母材および前記金属母材中に分散された強化材により形成される複数の金属基複合材料部材と、
軟質金属により形成され、前記複数の金属基複合材料部材に接合されることにより、前記複数の金属基複合材料部材を連結する金属部材と、を備え、
各接合部では、塑性流動により前記強化材が金属部材側に拡散していることを特徴とする接合体。
A plurality of metal matrix composite members formed of a metal matrix and a reinforcing material dispersed in the metal matrix;
A metal member that is formed of a soft metal and is joined to the plurality of metal matrix composite members to connect the plurality of metal matrix composite members;
In each joined portion, the reinforcing material is diffused to the metal member side by plastic flow.
2つの部材を、ピン部を有する回転ツールを用いて摩擦攪拌接合する接合方法において、
金属母材および前記金属母材中に分散された強化材により形成される金属基複合材料部材と、軟質金属により形成される金属部材とを突き合わせる突合せ工程と、
前記金属部材側に前記ピン部の中心軸を合わせ、両部材の突合せ面から前記前記ピン部までのオフセットが±1mm以下となるように、前記ピン部を挿入するピン挿入工程と、
前記オフセットを維持しながら、前記ピン部を回転移動させて摩擦攪拌を行なう摩擦攪拌工程と、を含むことを特徴とする接合方法。
In a joining method in which two members are friction stir welded using a rotary tool having a pin portion,
A butting step of abutting a metal base material and a metal matrix composite material member formed of a reinforcing material dispersed in the metal base material and a metal member formed of a soft metal;
A pin insertion step of inserting the pin portion so that the center axis of the pin portion is aligned with the metal member side, and the offset from the butting surface of both members to the pin portion is ± 1 mm or less,
And a friction stir step in which the pin portion is rotationally moved to perform friction stir while maintaining the offset.
JP2005271152A 2005-09-16 2005-09-16 Joining method and joined body Active JP4412608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005271152A JP4412608B2 (en) 2005-09-16 2005-09-16 Joining method and joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005271152A JP4412608B2 (en) 2005-09-16 2005-09-16 Joining method and joined body

Publications (2)

Publication Number Publication Date
JP2007083242A true JP2007083242A (en) 2007-04-05
JP4412608B2 JP4412608B2 (en) 2010-02-10

Family

ID=37970756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005271152A Active JP4412608B2 (en) 2005-09-16 2005-09-16 Joining method and joined body

Country Status (1)

Country Link
JP (1) JP4412608B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000606A (en) * 2009-06-17 2011-01-06 Nippon Sharyo Seizo Kaisha Ltd Friction stir welding method, and friction-stir-welded body
US20180050420A1 (en) * 2016-08-17 2018-02-22 The Boeing Company Apparatuses and methods for fabricating metal matrix composite structures
WO2019038969A1 (en) * 2017-08-24 2019-02-28 日本軽金属株式会社 Liquid cooling jacket manufacturing method
JP2019076949A (en) * 2017-10-27 2019-05-23 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket
JP2019076948A (en) * 2017-10-27 2019-05-23 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket
JP2019141886A (en) * 2018-02-21 2019-08-29 日本軽金属株式会社 Liquid-cooled jacket manufacturing method
JP2019147180A (en) * 2018-02-28 2019-09-05 日本軽金属株式会社 Manufacturing method of liquid-cooled jacket
JP2020138203A (en) * 2019-02-26 2020-09-03 冨士端子工業株式会社 Manufacturing method of dissimilar metal bonded body
WO2020208879A1 (en) 2019-04-12 2020-10-15 日本軽金属株式会社 Bonding method
WO2020235149A1 (en) 2019-05-17 2020-11-26 日本軽金属株式会社 Method for producing hollow container

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000606A (en) * 2009-06-17 2011-01-06 Nippon Sharyo Seizo Kaisha Ltd Friction stir welding method, and friction-stir-welded body
US20180050420A1 (en) * 2016-08-17 2018-02-22 The Boeing Company Apparatuses and methods for fabricating metal matrix composite structures
US10279423B2 (en) * 2016-08-17 2019-05-07 The Boeing Company Apparatuses and methods for fabricating metal matrix composite structures
WO2019038969A1 (en) * 2017-08-24 2019-02-28 日本軽金属株式会社 Liquid cooling jacket manufacturing method
JP2019038008A (en) * 2017-08-24 2019-03-14 日本軽金属株式会社 Manufacturing method of liquid-cooled jacket
JP2019076949A (en) * 2017-10-27 2019-05-23 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket
JP2019076948A (en) * 2017-10-27 2019-05-23 日本軽金属株式会社 Method for manufacturing liquid-cooled jacket
JP2019141886A (en) * 2018-02-21 2019-08-29 日本軽金属株式会社 Liquid-cooled jacket manufacturing method
JP2019147180A (en) * 2018-02-28 2019-09-05 日本軽金属株式会社 Manufacturing method of liquid-cooled jacket
JP2020138203A (en) * 2019-02-26 2020-09-03 冨士端子工業株式会社 Manufacturing method of dissimilar metal bonded body
JP7270149B2 (en) 2019-02-26 2023-05-10 冨士端子工業株式会社 Dissimilar metal bonded body manufacturing method
WO2020208879A1 (en) 2019-04-12 2020-10-15 日本軽金属株式会社 Bonding method
KR20210090708A (en) 2019-04-12 2021-07-20 니폰게이긴조쿠가부시키가이샤 bonding method
CN113508001A (en) * 2019-04-12 2021-10-15 日本轻金属株式会社 Bonding method
WO2020235149A1 (en) 2019-05-17 2020-11-26 日本軽金属株式会社 Method for producing hollow container
KR20210138092A (en) 2019-05-17 2021-11-18 니폰게이긴조쿠가부시키가이샤 Method for manufacturing hollow containers
CN113727803A (en) * 2019-05-17 2021-11-30 日本轻金属株式会社 Method for manufacturing hollow container
KR102631734B1 (en) * 2019-05-17 2024-02-01 니폰게이긴조쿠가부시키가이샤 Method for manufacturing hollow containers

Also Published As

Publication number Publication date
JP4412608B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP4412608B2 (en) Joining method and joined body
WO2019054400A1 (en) Double-sided friction stir welding method for metal plate and double-sided friction stir welding device
JP5862813B2 (en) Joining method
WO2020095483A1 (en) Liquid-cooled jacket manufacturing method and friction stir welding method
JP2000246465A (en) Tool for friction agitation joining
WO2010140428A1 (en) Welding method
JP5092333B2 (en) Joining method
JP2019217514A (en) Joining method and manufacturing method of composite rolled material
WO2019026864A1 (en) Double-side friction stir joining method and double-side friction stir joining device for metal plates
JP4196158B2 (en) Friction stir welding method
JP2002283070A (en) Friction stir welding method for different kinds of metallic materials
WO2018216248A1 (en) Welding method
JP6756105B2 (en) Joining method
JP6688755B2 (en) Metal thin plate joining method and metal thin plate joining structure
JP2017170495A (en) Dissimilar material frictional agitation joining method
JP2008194732A (en) Jointing method
JP6897024B2 (en) Joining method
JP5518816B2 (en) Friction stir welding method
JP5082364B2 (en) Joining method
KR20160060450A (en) Friction stir welding tool
JP4844329B2 (en) Joining method
JP2003245783A (en) Spot jointing tool
JP2011240398A (en) Butt joined member of sheet without causing thickness reduction
JP2009208121A (en) Friction stir welding method
JP4957161B2 (en) Friction stirring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350