JP2007082663A - Multi-color x-ray measuring apparatus and method - Google Patents

Multi-color x-ray measuring apparatus and method Download PDF

Info

Publication number
JP2007082663A
JP2007082663A JP2005273485A JP2005273485A JP2007082663A JP 2007082663 A JP2007082663 A JP 2007082663A JP 2005273485 A JP2005273485 A JP 2005273485A JP 2005273485 A JP2005273485 A JP 2005273485A JP 2007082663 A JP2007082663 A JP 2007082663A
Authority
JP
Japan
Prior art keywords
ray
rays
ray detector
monochromatic
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005273485A
Other languages
Japanese (ja)
Other versions
JP4839050B2 (en
Inventor
Katsuhiro Dobashi
克広 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Radiological Sciences
Original Assignee
National Institute of Radiological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Radiological Sciences filed Critical National Institute of Radiological Sciences
Priority to JP2005273485A priority Critical patent/JP4839050B2/en
Publication of JP2007082663A publication Critical patent/JP2007082663A/en
Application granted granted Critical
Publication of JP4839050B2 publication Critical patent/JP4839050B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-color X-ray measuring apparatus and method which are capable of simultaneously detecting a plurality of monochromatic X-rays of different wavelengths included in multi-color X-rays and obtaining the intensity or the ratio of the plurality of detected monochromatic X-rays included in the multi-color X-rays in a state where a plurality of photons are made incident simultaneously in time. <P>SOLUTION: The multi-color X-ray measuring apparatus is provided with a first X-ray detector 12 on the upstream side, a second X-ray detector 14 on the downstream side and an arithmetic device 20. The two X-ray detectors 12 and 14 are laminated with each other so that multi-color X-rays (two kinds of monochromatic X-rays 1a and 2a) successively and simultaneously pass therethrough. By the arithmetic device 20, from the detection efficiencies G<SB>11</SB>, G<SB>21</SB>, G<SB>12</SB>and G<SB>22</SB>of the respective X-ray detectors for the monochromatic X-rays of the respective wavelengths λ<SB>1</SB>and λ<SB>2</SB>, transmission efficiencies A<SB>12</SB>and A<SB>22</SB>until the monochromatic X-rays of the respective wavelengths λ<SB>1</SB>and λ<SB>2</SB>are made incident on the second X-ray detector 14 and the detection strengths V<SB>1</SB>and V<SB>2</SB>of the respective X-ray detectors, the respective intensities I<SB>1</SB>and I<SB>2</SB>or the ratio of the two kinds of monochromatic X-rays 1a and 2a made incident on the first X-ray detector 12 is computed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、波長の異なる複数の単色X線を含む多色X線を同時に受信して測定する装置及び方法に関する。   The present invention relates to an apparatus and method for simultaneously receiving and measuring polychromatic X-rays including a plurality of monochromatic X-rays having different wavelengths.

X線は波長が約0.01〜100Å(10-12〜10-m)程度の電磁波であり、このうち波長の短いX線(λ=0.01〜1Å)を硬X線、波長の長いX線(λ=1〜100Å)を軟X線という。また、本出願において、「単色X線」とは波長がほぼ一定のX線をいう。 X-ray is an electromagnetic wave having a wavelength of about of about 0.01~100Å (10- 12 ~10- 8 m) , these X-rays shorter in wavelength (λ = 0.01~1Å) hard X-rays, the wavelength Long X-rays (λ = 1 to 100Å) are called soft X-rays. In the present application, “monochromatic X-ray” means X-ray having a substantially constant wavelength.

X線の発生源としては、X線管とシンクロトロン放射光が広く知られている。
X線管は、真空中でフィラメントを加熱して得られる熱電子を高電圧で加速して金属陽極(ターゲット)に衝突させて、X線を発生させる装置である。
X線管から発生するX線は、電子の制動放射による連続X線と、輝線スペクトルである特性X線とからなる。特性X線は、単色X線であり、特定の波長のX線を必要とする用途に用いられる。
X-ray tubes and synchrotron radiation are widely known as X-ray generation sources.
An X-ray tube is an apparatus that generates X-rays by accelerating thermoelectrons obtained by heating a filament in a vacuum at a high voltage to collide with a metal anode (target).
X-rays generated from the X-ray tube are composed of continuous X-rays due to bremsstrahlung of electrons and characteristic X-rays that are emission line spectra. Characteristic X-rays are monochromatic X-rays and are used for applications that require X-rays of a specific wavelength.

シンクロトロン放射光(SR光)は、環状加速器(シンクロトロン)において、光速に近い速度まで加速した電子ビームの軌道を強力な磁石で変化させ、その軌道変化の際に発生するX線である。
SR光は、X線管に比べて桁違い(10倍以上)に強力なX線源であり、高いX線強度を必要とする分野で用いられる。
また、小型の線形加速器を用いた小型X線発生装置も既に提案されている(例えば非特許文献1)。
Synchrotron radiation (SR light) is X-rays generated when the orbit of an electron beam accelerated to a speed close to the speed of light is changed by a powerful magnet in a ring accelerator (synchrotron) and the orbit is changed.
SR light is an extremely powerful X-ray source (by 10 3 times or more) as compared with an X-ray tube, and is used in a field that requires high X-ray intensity.
A small X-ray generator using a small linear accelerator has already been proposed (for example, Non-Patent Document 1).

一方、単色X線を用いる装置として、X線CT装置が広く知られている。X線CT装置は、測定する物体に異なる方向からX線を照射してその吸収を測定し、コンピュータによって画像を再構築して物体の二次元断面画像を得る装置である。
X線CT装置では、放射光から単色X線を得る手段として通常、2枚の結晶板からなるモノクロメータを用いている。
On the other hand, X-ray CT apparatuses are widely known as apparatuses using monochromatic X-rays. The X-ray CT apparatus is an apparatus that obtains a two-dimensional cross-sectional image of an object by irradiating the object to be measured with X-rays from different directions, measuring the absorption thereof, and reconstructing the image by a computer.
In an X-ray CT apparatus, a monochromator composed of two crystal plates is usually used as means for obtaining monochromatic X-rays from radiated light.

また、電子密度の測定精度を高めるために、主波と高調波の混合比が異なる2種類の単色X線を用いる混合2色X線CT装置が提案されている(例えば非特許文献2)。   Further, in order to increase the measurement accuracy of electron density, a mixed two-color X-ray CT apparatus using two types of monochromatic X-rays having different mixing ratios of the main wave and the harmonic has been proposed (for example, Non-Patent Document 2).

一方、X線の強度や画像を検出するX線検出器は、気体の電離作用を利用した比例計数管、固体の蛍光作用を利用したシンチレーション計数管、固体半導体のイオン化作用を利用した半導体検出器、等が従来から知られている。
また、その他にもX線検出器として、非特許文献3、4や特許文献1、2が既に開示されている。
On the other hand, X-ray detectors for detecting X-ray intensity and images are proportional counters using gas ionization, scintillation counters using solid fluorescence, and semiconductor detectors using solid semiconductor ionization. , Etc. are conventionally known.
In addition, Non-Patent Documents 3 and 4 and Patent Documents 1 and 2 have already been disclosed as X-ray detectors.

非特許文献1の「小型X線発生装置」は、図7に示すように、小型の加速器51(Xバンド加速管)で加速された電子ビーム52をレーザー53と衝突させてX線54を発生させるものである。RF電子銃55(熱RFガン)で生成されたマルチバンチ電子ビーム52はXバンド加速管51で加速され、パルスレーザー光53と衝突し、コンプトン散乱により、時間幅10nsの硬X線54が生成される。
この装置は、一般に線形加速器で用いられるSバンド(2.856GHz)の4倍の周波数にあたるXバンド(11.424GHz)をRFとして用いることにより小型化を図っており、例えばX線強度(光子数):約1×10photons/s、パルス幅:約10psの強力な硬X線の発生が予測されている。
As shown in FIG. 7, the “small X-ray generator” of Non-Patent Document 1 generates an X-ray 54 by colliding an electron beam 52 accelerated by a small accelerator 51 (X-band accelerator tube) with a laser 53. It is something to be made. The multi-bunch electron beam 52 generated by the RF electron gun 55 (thermal RF gun) is accelerated by the X-band accelerator tube 51, collides with the pulse laser beam 53, and generates hard X-rays 54 having a time width of 10 ns by Compton scattering. Is done.
This apparatus is miniaturized by using, as RF, an X band (11.424 GHz) that is four times the frequency of the S band (2.856 GHz) generally used in linear accelerators. For example, the X-ray intensity (number of photons) ): About 1 × 10 9 photons / s, pulse width: generation of intense hard X-rays of about 10 ps is predicted.

非特許文献2の「混合2色X線CT装置」は、図8に示すように、回転フィルター61、モノクロメータ62、コリメータ63、透過型イオンチェンバー64、散乱体65、スライド・回転テーブル66、NaI検出器67、及びプラスチックシンチレーションカウンター68を備え、シンクロトロン放射光69aからモノクロメータ62により40keVの主波X線と80keVの2倍高調波X線を抽出し、回転フィルター61により40keVX線と80keVX線の混合比を調整し、散乱体65からの散乱X線スペクトルをNaI検出器67で観察して混合比を測定し、コリメータ63で混合2色X線69bのサイズを整形し、透過型イオンチェンバー64および被写体60を透過させ、プラスチックシンチレーションカウンター68で強度を測定するものである。
この装置により、電子密度の測定精度を高めるとともに、電子密度および実効原子番号のイメージ像の作成に成功している。
As shown in FIG. 8, the “mixed two-color X-ray CT apparatus” of Non-Patent Document 2 includes a rotary filter 61, a monochromator 62, a collimator 63, a transmission ion chamber 64, a scatterer 65, a slide / rotary table 66, A NaI detector 67 and a plastic scintillation counter 68 are provided. A 40 keV main wave X-ray and an 80 keV double harmonic X-ray are extracted from the synchrotron radiation 69 a by the monochromator 62, and the 40 keV X ray and 80 keVX are extracted by the rotary filter 61. The mixing ratio of the rays is adjusted, the scattered X-ray spectrum from the scatterer 65 is observed with the NaI detector 67, the mixing ratio is measured, the size of the mixed two-color X-ray 69b is shaped with the collimator 63, and the transmission ion A plastic scintillation counter 68 that passes through the chamber 64 and the subject 60. Strength is to measure the.
With this device, the measurement accuracy of the electron density is improved, and an image image of the electron density and effective atomic number has been successfully created.

非特許文献3のフラットパネルディテクタは、ノートPCなどのフラットパネルと同様な構造のものであり、薄いCsIの膜でX線を光の強弱に変え、これをフォトダイオードで電気信号の強弱に変えるものである。このフラットパネルディテクタは検出器の有効領域が例えば43cm×43cm程度の大型のものが可能であり、かつ全体が非常に薄くX線を透過させやすい特徴がある。   The flat panel detector of Non-Patent Document 3 has a structure similar to that of a flat panel such as a notebook PC, and changes X-rays into light intensity with a thin CsI film, and changes it into an electric signal intensity with a photodiode. Is. This flat panel detector has a feature that the effective area of the detector can be large, for example, about 43 cm × 43 cm, and the whole is very thin and easily transmits X-rays.

非特許文献4のX線イメージングデバイスは、吸収波長の違いを利用し、異なる金属材料の材料強調カラー撮像や厚みのある物体の微小段差をクリアに描き出すことができ、このダバイスをX線CTのX線検出器に適用し、クリアなCT再構成画像の構築を可能にするものである。   The X-ray imaging device of Non-Patent Document 4 can make use of the difference in absorption wavelength to clearly draw material-emphasized color imaging of different metal materials and minute steps of thick objects. It is applied to an X-ray detector and enables construction of a clear CT reconstruction image.

特許文献1の放射線検出器は、シンチレータとシンチレータの発光を検出するための光検出器とを備えた放射線検出器において、シンチレータが、発光中心イオンがCeで、Gd,Al,Ga,Oを主要元素としたガーネット構造の酸化物蛍光体であるものである。   The radiation detector of Patent Document 1 is a radiation detector including a scintillator and a light detector for detecting light emission of the scintillator. The scintillator is mainly composed of Ce, an emission center ion, and Gd, Al, Ga, O. It is an oxide phosphor having a garnet structure as an element.

特許文献2のX線検出器交換システムは、遠隔操作により複数のX線検出器を切り替えることを目的とし、複数台の感度の異なるX線検出器が取り外し自在に配置されたX線検出器用交換機、交換機を回転させるモータドライバ、測定されるX線の強度に応じて交換機のモータを回転させてX線検出器を取り替えるモータコントローラ、及び無人でX線検出器を交換可能にするプログラミングを実行する制御コンピュータから構成されるものである。   The X-ray detector exchange system of Patent Document 2 aims at switching a plurality of X-ray detectors by remote control, and a plurality of X-ray detectors having different sensitivities are detachably arranged. A motor driver that rotates the switch, a motor controller that replaces the X-ray detector by rotating the motor of the switch according to the measured X-ray intensity, and programming that allows the X-ray detector to be replaced unattended It consists of a control computer.

土橋克広、他、「Xバンドリニアックを用いた小型硬X線源の開発」、2002Katsuhiro Dobashi, et al., “Development of small hard X-ray source using X-band linac”, 2002 佐々木誠、他、「混合2色X線CTシステムの開発」、医学物理 Vol.23 Supplement No.2 April 2003Makoto Sasaki, et al., “Development of mixed two-color X-ray CT system”, Medical Physics Vol. 23 Supplement No. 2 April 2003 PHILIPS フラットパネルディテクタ、インターネット<URL:http://www.medical.philips.com/jp/products/xray/products/radiography/flat_panel/>PHILIPS flat panel detector, Internet <URL: http: // www. medical. philips. com / jp / products / xray / products / radiography / flat_panel >> 青木徹、他、「E−40 波長識別機能を持つ室温動作CdTe X線イメージングデバイス」、第11回画像センシングシンポジウム、インターネット<URL:http://www.ssii.jp/SSII05_recommend.pdf>Toru Aoki, et al., “E-40, room temperature CdTe X-ray imaging device with wavelength discrimination function”, 11th Image Sensing Symposium, Internet <URL: http: // www. ssii. jp / SSII05_recommend. pdf>

特開2005−095514号公報、「放射線検出器及びそれを用いたX線CT装置」JP 2005-095514 A, “Radiation detector and X-ray CT apparatus using the same” 特開2005−140611号公報、「X線検出器交換システム」JP-A-2005-140611, “X-ray detector replacement system”

従来の差分法による血管造影や2色X線CTでは、例えば波長の異なる2種の単色X線を用い、これを短時間に切り換えて使用していた。
この場合、例えば、動的血管造影においては血管が動いていないとみなせる程度の短い時間に単色X線を切換えて像を得る必要があった。また、2色X線CTの場合でも、被写体の状態が変化して再構成画像の画質が落ちるのを防ぐために、できるかぎり短時間に2種の単色X線を切り換える必要があった。
In the conventional angiography and two-color X-ray CT using the difference method, for example, two types of monochromatic X-rays having different wavelengths are used and switched in a short time.
In this case, for example, in dynamic angiography, it is necessary to obtain an image by switching monochromatic X-rays in such a short time that it can be considered that the blood vessel is not moving. Even in the case of two-color X-ray CT, it is necessary to switch between the two types of single-color X-rays in the shortest possible time in order to prevent the quality of the reconstructed image from being deteriorated due to the change in the state of the subject.

しかし、複数の単色X線を高速で切換えることは非常に困難であり、実質的には、画像のズレを回避することは不可能に近かった。
そこで、波長の異なる複数の単色X線を含む多色X線を同時に用いることが検討されている。この場合、複数の単色X線で被写体の画像を同時に取得できるため、画像のズレが全くなく鮮明な画像が得られる利点がある。
However, it is very difficult to switch a plurality of monochromatic X-rays at a high speed, and it is practically impossible to avoid image misalignment.
Therefore, it has been studied to simultaneously use polychromatic X-rays including a plurality of monochromatic X-rays having different wavelengths. In this case, since the image of the subject can be acquired simultaneously with a plurality of single color X-rays, there is an advantage that a clear image can be obtained without any image misalignment.

この場合、被写体の各部分を透過したX線の強度から被写体部分の透過係数や電子密度および実効原子番号のイメージ像を作成するには、透過した多色X線に含まれる複数の単色X線の各強度又はその比率が必要となる。
しかし、一般にX線検出器は、X線が検出器に落とした全エネルギーを電荷量として測定するものであり、入射光子が単独である場合に限り、そのエネルギーを測定できる。複数の光子が時間的に同時に入射した場合、入射したX線光子の全エネルギーは検知できるが、波長毎のエネルギーは、原理的に検知できない問題点があった。
In this case, in order to create an image image of the transmission coefficient, electron density, and effective atomic number of the subject portion from the intensity of the X-ray transmitted through each portion of the subject, a plurality of monochromatic X-rays included in the transmitted multicolor X-rays Each strength or ratio is required.
However, in general, the X-ray detector measures the total energy dropped by the X-rays on the detector as a charge amount, and can measure the energy only when the incident photon is single. When a plurality of photons are incident at the same time, the total energy of the incident X-ray photons can be detected, but the energy for each wavelength cannot be detected in principle.

本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、複数の光子が時間的に同時に入射する状況において、多色X線に含まれる波長の異なる複数の単色X線を同時に検出し、かつ検出した多色X線に含まれる複数の単色X線の各強度又はその比率を求めることができる多色X線測定装置及び方法を提供することにある。   The present invention has been developed to solve the above-described problems. That is, an object of the present invention is to simultaneously detect a plurality of monochromatic X-rays having different wavelengths included in a polychromatic X-ray and to include the detected polychromatic X-ray in a situation where a plurality of photons are incident simultaneously. Another object of the present invention is to provide a multicolor X-ray measuring apparatus and method that can determine each intensity or ratio of a plurality of monochromatic X-rays.

本発明によれば、互いに異なる波長λ(i=1,2,…n;nは2以上の整数)の複数の単色X線を含む多色X線を測定する多色X線測定装置であって、
前記多色X線が順次同時に通過するように積層され、通過する多色X線の各強度V(j=1,2,…m;mは2以上の整数)をそれぞれ検出する複数のX線検出器と、
前記各X線検出器の検出強度Vから最上流側のX線検出器に入射する複数の単色X線の各強度又はその比率を演算する演算装置と、を備えることを特徴とする多色X線測定装置が提供される。
According to the present invention, a multicolor X-ray measurement apparatus that measures multicolor X-rays including a plurality of monochromatic X-rays having different wavelengths λ i (i = 1, 2,... N; n is an integer of 2 or more). There,
The multicolor X-rays are stacked so as to pass through sequentially, and a plurality of Xs for detecting each intensity V j (j = 1, 2,... M; m is an integer of 2 or more) of the passing multicolor X-rays. A line detector;
A multicolor, comprising: an arithmetic unit that calculates each intensity or a ratio of a plurality of monochromatic X-rays incident on the most upstream X-ray detector from the detection intensity V j of each X-ray detector. An X-ray measurement apparatus is provided.

本発明の好ましい実施形態によれば、前記演算装置は、
前記各波長λに対する前記複数のX線検出器の検出効率Gijと、
前記各波長λの単色X線が前記複数のX線検出器に入射するまでの透過効率Aijと、
各X線検出器の検出強度Vとから、最上流側のX線検出器に入射する複数の単色X線の各強度I(i=1,2,…n)又はその比率を演算する。
According to a preferred embodiment of the present invention, the arithmetic device comprises:
Detection efficiencies G ij of the plurality of X-ray detectors for each wavelength λ i ;
Transmission efficiency A ij until the monochromatic X-rays of the respective wavelengths λ i are incident on the plurality of X-ray detectors,
Each intensity I i (i = 1, 2,... N) of a plurality of monochromatic X-rays incident on the most upstream X-ray detector or a ratio thereof is calculated from the detection intensity V j of each X-ray detector. .

また、本発明の好ましい実施形態によれば、前記多色X線は、互いに異なる波長λ,λを有する2種の単色X線を含み、
前記複数のX線検出器は、互いに積層された上流側の第1X線検出器と下流側の第2X線検出器からなり、
前記演算装置は、
前記各波長λ,λに対する、第1X線検出器の検出効率G11,G21と、第2X線検出器の検出効率G12,G22と、
前記各波長λ,λの単色X線が第2X線検出器に入射するまでの透過効率A12,A22と、
第1X線検出器と第2X線検出器の検出強度V,Vとから、下記の式(1)(2)により、第1X線検出器に入射する2種の単色X線の各強度I,Iを演算する。
=I×G11+I×G21・・・(1)
=I×A12×G12+I×A22×G22・・・(2)
According to a preferred embodiment of the present invention, the polychromatic X-ray includes two types of monochromatic X-rays having different wavelengths λ 1 and λ 2 ,
The plurality of X-ray detectors includes an upstream first X-ray detector and a downstream second X-ray detector stacked on each other,
The arithmetic unit is
Detection efficiencies G 11 and G 21 of the first X-ray detector and detection efficiencies G 12 and G 22 of the second X-ray detector for the wavelengths λ 1 and λ 2 ,
Transmission efficiencies A 12 and A 22 until the monochromatic X-rays of the wavelengths λ 1 and λ 2 enter the second X-ray detector;
From the detected intensities V 1 and V 2 of the first X-ray detector and the second X-ray detector, the respective intensities of the two types of monochromatic X-rays incident on the first X-ray detector according to the following formulas (1) and (2) I 1 and I 2 are calculated.
V 1 = I 1 × G 11 + I 2 × G 21 (1)
V 2 = I 1 × A 12 × G 12 + I 2 × A 22 × G 22 (2)

また、本発明の好ましい別の実施形態によれば、前記多色X線は、互いに異なる波長λ,λ,λを有する3種の単色X線を含み、
前記複数のX線検出器は、互いに積層された上流側の第1X線検出器、中間の第2X線検出器、及び下流側の第3X線検出器からなり、
前記演算装置は、
前記各波長λ,λ,λに対する、第1X線検出器の検出効率G11,G21,G31と、第2X線検出器の検出効率G12,G22,G32と、第3X線検出器の検出効率G13, G23,G33と、
前記各波長λ,λ,λの単色X線が、第2X線検出器に入射するまでの透過効率A12,A22,A32と、第3X線検出器に入射するまでの透過効率A13,A23,A33と、
第1X線検出器、第2X線検出器および第3X線検出器の検出強度V,V,Vとから、下記の式(3)(4)(5)により、第1X線検出器に入射する3種の単色X線の各強度I,I,Iを演算する。
=I×G11+I×G21+I×G31・・・(3)
=I×A12×G12+I×A22×G22+I×A32×G32・・・(4)
=I×A13×G13+I×A23×G23+I×A33×G33・・・(5)
According to another preferred embodiment of the present invention, the polychromatic X-ray includes three types of monochromatic X-rays having different wavelengths λ 1 , λ 2 , and λ 3 ,
The plurality of X-ray detectors includes an upstream first X-ray detector, an intermediate second X-ray detector, and a downstream third X-ray detector stacked on each other,
The arithmetic unit is
For each of the wavelengths λ 1 , λ 2 , λ 3 , the detection efficiency G 11 , G 21 , G 31 of the first X-ray detector, the detection efficiency G 12 , G 22 , G 32 of the second X-ray detector, Detection efficiency G 13 , G 23 , G 33 of the 3X-ray detector,
Transmission efficiency A 12 , A 22 , A 32 until the monochromatic X-rays of the respective wavelengths λ 1 , λ 2 , λ 3 are incident on the second X-ray detector, and transmission until they are incident on the third X-ray detector Efficiency A 13 , A 23 , A 33 ,
From the detection intensities V 1 , V 2 , and V 3 of the first X-ray detector, the second X-ray detector, and the third X-ray detector, the first X-ray detector is expressed by the following equations (3), (4), and (5). Intensities I 1 , I 2 , and I 3 of the three types of monochromatic X-rays incident on the light are calculated.
V 1 = I 1 × G 11 + I 2 × G 21 + I 3 × G 31 (3)
V 2 = I 1 × A 12 × G 12 + I 2 × A 22 × G 22 + I 3 × A 32 × G 32 ··· (4)
V 3 = I 1 × A 13 × G 13 + I 2 × A 23 × G 23 + I 3 × A 33 × G 33 (5)

また、前記積層された複数のX線検出器の間に、前記各波長λiの単色X線に対する透過効率の異なる吸収体を備える。前記吸収体は、差分イメージングの対象となる特定元素を含有する、ことが好ましい。   Further, an absorber having different transmission efficiency for the monochromatic X-rays having the respective wavelengths λi is provided between the plurality of stacked X-ray detectors. The absorber preferably contains a specific element to be subjected to differential imaging.

また本発明によれば、互いに異なる波長λ(i=1,2,…n;nは2以上の整数)の複数の単色X線を含む多色X線を測定する多色X線測定方法であって、
前記多色X線が順次同時に通過するように複数のX線検出器を積層して配置し、
各X線検出器を通過する前記多色X線の各強度V(j=1,2,…m;mは2以上の整数)をそれぞれ検出し、
検出された各検出強度Vjから最上流側のX線検出器に入射する複数の単色X線の各強度又はその比率を演算する、ことを特徴とする多色X線測定方法が提供される。
Further, according to the present invention, a multicolor X-ray measurement method for measuring multicolor X-rays including a plurality of monochromatic X-rays having different wavelengths λ i (i = 1, 2,... N; n is an integer of 2 or more). Because
A plurality of X-ray detectors are stacked and arranged so that the polychromatic X-rays pass through sequentially at the same time,
Detecting each intensity V j (j = 1, 2,... M; m is an integer of 2 or more) of the polychromatic X-rays passing through each X-ray detector;
A multicolor X-ray measurement method is provided, wherein each intensity or ratio of a plurality of monochromatic X-rays incident on the most upstream X-ray detector is calculated from each detected intensity Vj.

上記本発明の装置及び方法によれば、多色X線が順次同時に通過するように積層された複数のX線検出器と、各X線検出器の検出強度Vから最上流側のX線検出器に入射する前記複数の単色X線の各強度又はその比率を演算する演算装置とを備えるので、複数の光子が時間的に同時に入射する状況において、各X線検出器を通過する多色X線の各強度V(j=1,2,…n)をそれぞれ検出し、これから複数の単色X線の各強度又はその比率を演算することができる。 According to the apparatus and method of the present invention, a plurality of X-ray detectors stacked so that multicolor X-rays pass through at the same time, and the X-ray on the most upstream side from the detection intensity V j of each X-ray detector. A multi-color that passes through each X-ray detector in a situation where a plurality of photons are incident simultaneously in time. Each intensity V j (j = 1, 2,... N) of X-rays is detected, and from this, each intensity of a plurality of monochromatic X-rays or a ratio thereof can be calculated.

すなわち、複数の光子が時間的に同時に入射する状況において、各波長λの単色X線に対する複数のX線検出器の検出効率Gijと、各波長λの単色X線が複数のX線検出器に入射するまでの透過効率Aijはそれぞれ相違しており、これらは予め検定等で求めることができるので、これらの値を用いて各X線検出器の検出強度Vは上述した式(1)(2)、又は式(3)〜(5)、等で表すことができる。
従って、演算装置を用いてこれらの式から、複数の単色X線の各強度又はその比率を演算することができる。
That is, in a situation where a plurality of photons are incident simultaneously in time, the detection efficiency G ij of the plurality of X-ray detector for a monochromatic X-ray of each wavelength lambda i, a plurality of X-ray is monochromatic X-rays of each wavelength lambda i The transmission efficiencies A ij until they are incident on the detector are different from each other, and these can be obtained in advance by a test or the like. Therefore, using these values, the detection intensity V j of each X-ray detector is calculated by the above-described equation. (1) It can be represented by (2), or formulas (3) to (5).
Therefore, each intensity | strength of several monochrome X-rays or its ratio can be calculated from these formula | equation using an arithmetic unit.

従って、本発明の装置及び方法を放射光施設のアンジュレーターやコンプトン散乱X線源などの混合(多波長)単色X線源と組み合わせ、2色(多色)X線CTや動的差分イメージング等に利用することにより、2色X線CT等での画像取得が高速化されるだけでなく、完全なる動的差分イメージングを実現可能となる。
また、その他の多色X線の応用においてもX線波長の切り替えや検出器の波長切り替えなどを考慮する必要がなくなり、利便性が向上する。
Therefore, the apparatus and method of the present invention is combined with a mixed (multi-wavelength) monochromatic X-ray source such as an undulator of a synchrotron radiation facility or a Compton scattered X-ray source, two-color (multi-color) X-ray CT, dynamic difference imaging, etc. In addition to speeding up image acquisition with two-color X-ray CT, it is possible to realize complete dynamic difference imaging.
Further, in other polychromatic X-ray applications, it is not necessary to consider X-ray wavelength switching, detector wavelength switching, and the like, and convenience is improved.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

はじめに本発明の原理について説明する。
上述したように、X線は波長が約0.01〜100Å(10-12〜10-m)程度の電磁波であり、波長がほぼ一定の単色X線の場合、波長λ[Å]と光量子エネルギーE[keV]との間には、式(6)の関係がある。
E=12.4/λ・・・(6)
従って、単色X線では、波長λ[Å]と光量子エネルギーE[keV]は1対1で対応しており、例えば、後述する実施例において、光量子エネルギーが15keV,30keVの単色X線の波長λはそれぞれ0.83Å、0.41Åである。
First, the principle of the present invention will be described.
As described above, an X-ray is an electromagnetic wave having a wavelength of about of about 0.01~100Å (10- 12 ~10- 8 m) , if the wavelength is substantially constant monochromatic X-rays, the wavelength lambda [Å] and photons There is a relationship of the formula (6) between the energy E [keV].
E = 12.4 / λ (6)
Therefore, in the monochromatic X-ray, the wavelength λ [Å] and the photon energy E [keV] have a one-to-one correspondence. For example, in the examples described later, the wavelength λ of monochromatic X-rays having photon energies of 15 keV and 30 keV. Are 0.83 and 0.41, respectively.

またX線がある物質中をxの距離透過する際の、X線強度Iは、式(7)で表される。
I=Iexp(-μx)・・・(7)
ここで、Iは物質に入射する前のX線強度、μは線吸収係数である。
線吸収係数は、一般的に物質と波長により異なることが知られている。例えば、同一の物質の場合、波長が長くなるほど線吸収係数は増大するため透過しにくくなり、逆に波長が短くなるほど線吸収係数は減少し透過しやすくなる。
Further, the X-ray intensity I when X-rays pass through a substance with a distance of x is expressed by Expression (7).
I = I 0 exp (−μx) (7)
Here, I 0 is the X-ray intensity before entering the material, and μ is the linear absorption coefficient.
It is known that the linear absorption coefficient generally varies depending on the substance and wavelength. For example, in the case of the same substance, the longer the wavelength is, the more the line absorption coefficient is increased, so that the transmission becomes difficult. On the contrary, the shorter the wavelength is, the more the line absorption coefficient is decreased and the light is easily transmitted.

密度をρとすると、式(7)は式(8)のように書き換えることができる。
I=Iexp(-μ/ρ)(ρx)・・・(8)
このμ/ρは、質量吸収係数と呼ばれ、物質固有の値をもつことが知られている。この質量吸収係数は、X線の波長が短いと小さく、X線の波長が長いと大きい値となるが、連続した変化ではなく途中で不連続な吸収端を一般に有する。
If the density is ρ, equation (7) can be rewritten as equation (8).
I = I 0 exp (−μ / ρ) (ρx) (8)
This μ / ρ is called a mass absorption coefficient and is known to have a value specific to a substance. This mass absorption coefficient is small when the X-ray wavelength is short and is large when the X-ray wavelength is long, but it generally has a discontinuous absorption edge in the middle rather than a continuous change.

しかし、各吸収端の中間では近似的に式(9)が成り立つ。
μ/ρ=k×λ×Z・・・(9)
ここでkは定数、Zは実効原子番号である。この式から一定の波長に対しては吸収端を無視すれば一般に重元素になるほど吸収係数は増加し、X線は通りにくくなることがわかる。
However, equation (9) is approximately established between the respective absorption edges.
μ / ρ = k × λ 3 × Z 3 (9)
Here, k is a constant and Z is an effective atomic number. From this equation, it can be seen that if the absorption edge is ignored for a certain wavelength, the absorption coefficient generally increases as the element becomes heavier, and X-rays are difficult to pass.

図1は、本発明の多色X線測定装置を適用する装置(例えばX線CT装置)の原理図である。この図において、ある被写体に異なる波長λ,λの2種の単色X線を透過させ、通過後の各X線強度I,Iを計測する場合を想定する。
この場合、入射X線強度I10,I20が既知であれば、式(7)からμ、μが決まり、上記(9)を満たす次式(9a)(9b)が得られる。
μ/ρ=k×λ ×Z・・・(9a)
μ/ρ=k×λ ×Z・・・(9b)
式(9a)(9b)における未知数は物質のρとZのみであり、この2式を解くことにより物質のρとZを求めることができる。
なお、上述した式(9)は近似式であり、実際には更に精度の高い式が用いられる。
FIG. 1 is a principle diagram of an apparatus (for example, an X-ray CT apparatus) to which the multicolor X-ray measuring apparatus of the present invention is applied. In this figure, it is assumed that two types of monochromatic X-rays having different wavelengths λ 1 and λ 2 are transmitted through a subject and the X-ray intensities I 1 and I 2 after passing are measured.
In this case, if the incident X-ray intensities I 10 and I 20 are known, μ 1 and μ 2 are determined from the equation (7), and the following equations (9a) and (9b) satisfying the above (9) are obtained.
μ 1 / ρ = k × λ 1 3 × Z 3 (9a)
μ 2 / ρ = k × λ 2 3 × Z 3 (9b)
The unknowns in the equations (9a) and (9b) are only ρ and Z of the substance, and ρ and Z of the substance can be obtained by solving these two equations.
Note that the above-described equation (9) is an approximate equation, and an equation with higher accuracy is actually used.

上述した図1の例において、各単色X線の物質通過後の各X線強度I,Iは別々に計測できることが前提となる。しかし、複数の光子が時間的に同時に入射する状況において、通常のX線検出器で波長の異なる複数の単色X線を同時に検出すると複数の単色X線の強度の合計(すなわち全エネルギー)を計測してしまい、これを区別して計測することは原理的にできない。
本発明はこの問題を解決し、複数の単色X線を同時に検出し、かつ複数の単色X線の各強度又はその比率を求めることを可能にするものである。
In the example of FIG. 1 described above, it is assumed that the X-ray intensities I 1 and I 2 after the passage of each monochromatic X-ray material can be measured separately. However, in a situation where multiple photons are incident simultaneously, if a single X-ray with different wavelengths is detected simultaneously with an ordinary X-ray detector, the total intensity (ie, total energy) of the multiple monochrome X-rays is measured. Therefore, it is impossible in principle to distinguish and measure this.
The present invention solves this problem and makes it possible to detect a plurality of monochromatic X-rays at the same time and determine the intensity of each of the monochromatic X-rays or the ratio thereof.

図2は、本発明の多色X線測定装置の第1実施形態を示す全体構成図である。この図において、本発明の多色X線測定装置10は、互いに異なる波長λ,λを有する2種の単色X線1a、2aを含む多色X線を測定する装置である。 FIG. 2 is an overall configuration diagram showing the first embodiment of the multicolor X-ray measuring apparatus of the present invention. In this figure, the polychromatic X-ray measuring apparatus 10 of the present invention is an apparatus for measuring polychromatic X-rays including two types of monochromatic X-rays 1a and 2a having different wavelengths λ 1 and λ 2 .

この多色X線測定装置10は、上流側の第1X線検出器12、下流側の第2X線検出器14、および演算装置20を備える。上流側の第1X線検出器12と下流側の第2X線検出器14は、多色X線(2種の単色X線1a、2a)が順次同時に通過するように互いに積層されている。また、演算装置20は、第1X線検出器12と第2X線検出器14の検出強度V,Vから第1X線検出器12に入射する2種の単色X線1a、2aの各強度I,I又はその比率を演算する機能を有する。 The multicolor X-ray measurement apparatus 10 includes an upstream first X-ray detector 12, a downstream second X-ray detector 14, and a computing device 20. The first X-ray detector 12 on the upstream side and the second X-ray detector 14 on the downstream side are stacked on each other so that multicolor X-rays (two types of monochromatic X-rays 1a and 2a) pass through in sequence. In addition, the arithmetic unit 20 uses the respective intensities of the two types of monochromatic X-rays 1a and 2a incident on the first X-ray detector 12 from the detection intensities V 1 and V 2 of the first X-ray detector 12 and the second X-ray detector 14. It has a function of calculating I 1 , I 2 or a ratio thereof.

図2において、波長λ,λの単色X線に対する第1X線検出器12の検出効率をG11,G21とすると、第1X線検出器12の検出強度Vは、式(1)で表される。
=I×G11+I×G21・・・(1)
また、波長λ,λの単色X線が第2X線検出器14に入射するまでの透過効率をA12,A22とすると、第2X線検出器14に入射する2種の単色X線1b、2bの各強度I1b,I2bは、式(10a)(10b)で表される。
1b=I×A12・・・(10a)
2b=I×A22・・・(10b)
従って、波長λ,λの単色X線に対する第2X線検出器14の検出効率をG12,G22とすると、第2X線検出器14の検出強度Vは、式(2)で表される。
=I×A12×G12+I×A22×G22・・・(2)
In FIG. 2, when the detection efficiencies of the first X-ray detector 12 for monochromatic X-rays with wavelengths λ 1 and λ 2 are G 11 and G 21 , the detection intensity V 1 of the first X-ray detector 12 is expressed by the equation (1). It is represented by
V 1 = I 1 × G 11 + I 2 × G 21 (1)
Also, assuming that the transmission efficiencies until the monochromatic X-rays of wavelengths λ 1 and λ 2 are incident on the second X-ray detector 14 are A 12 and A 22 , two types of monochromatic X-rays incident on the second X-ray detector 14. The intensities I 1b and I 2b of 1b and 2b are expressed by equations (10a) and (10b).
I 1b = I 1 × A 12 (10a)
I 2b = I 2 × A 22 (10b)
Therefore, if the detection efficiency of the second X-ray detector 14 for monochromatic X-rays with wavelengths λ 1 and λ 2 is G 12 and G 22 , the detection intensity V 2 of the second X-ray detector 14 is expressed by Equation (2). Is done.
V 2 = I 1 × A 12 × G 12 + I 2 × A 22 × G 22 (2)

演算装置20は、例えばPC(パーソナルコンピュータ)であり、各波長λ,λの単色X線に対する、第1X線検出器12の検出効率G11,G21と、第2X線検出器14の検出効率G12,G22と、各波長λ,λの単色X線が第2X線検出器14に入射するまでの透過効率A12,A22と、第1X線検出器12と第2X線検出器14の検出強度V,Vとから、上述した式(1)(2)により、第1X線検出器12に入射する2種の単色X線の各強度I,Iを演算するようになっている。 The arithmetic unit 20 is, for example, a PC (personal computer), and the detection efficiencies G 11 and G 21 of the first X-ray detector 12 and the second X-ray detector 14 for monochromatic X-rays of the wavelengths λ 1 and λ 2 . Detection efficiency G 12 , G 22 , transmission efficiency A 12 , A 22 until the monochromatic X-rays of the wavelengths λ 1 , λ 2 enter the second X-ray detector 14, the first X-ray detector 12, and the second X From the detected intensities V 1 and V 2 of the line detector 14, the intensities I 1 and I 2 of the two types of monochromatic X-rays incident on the first X-ray detector 12 are obtained by the above-described equations (1) and (2). It comes to calculate.

すなわち、上述した各波長λ,λの単色X線に対する、第1X線検出器12と第2X線検出器14の検出効率G11,G21と、第2X線検出器12に入射するまでの透過効率A12,A22はそれぞれ相違しており、これらは予め検定等で求めることができるので、これらの値を用いて上述した式から、2種の単色X線の各強度I,I又はその比率を演算することができる。 That is, until the first X-ray detector 12 and the second X-ray detector 14 are incident on the second X-ray detector 12 and the detection efficiencies G 11 and G 21 for the monochromatic X-rays having the wavelengths λ 1 and λ 2 described above. The transmission efficiencies A 12 and A 22 are different from each other, and since these can be obtained in advance by a test or the like, the intensities I 1 and I 2 of the two types of monochromatic X-rays are obtained from the above-described equation using these values. I 2 or its ratio can be calculated.

図3は、本発明の多色X線測定装置の第2実施形態を示す全体構成図である。この図において、本発明の多色X線測定装置10は、第1X線検出器12と第2X線検出器14の間に各波長λ,λの単色X線に対する透過効率の異なる吸収体18を備える。この吸収体18は、例えば差分イメージングの対象となる特定元素を含有するのが好ましい。その他の構成は、図2と同様である。 FIG. 3 is an overall configuration diagram showing a second embodiment of the multicolor X-ray measurement apparatus of the present invention. In this figure, the polychromatic X-ray measuring apparatus 10 of the present invention includes an absorber having different transmission efficiencies for monochromatic X-rays of wavelengths λ 1 and λ 2 between a first X-ray detector 12 and a second X-ray detector 14. 18 is provided. The absorber 18 preferably contains a specific element to be subjected to differential imaging, for example. Other configurations are the same as those in FIG.

図3において、吸収体18の各波長λ,λの単色X線に対する透過効率をB,Bとすると、各波長λ,λの単色X線が下流側の第2X線検出器14に入射するまでの透過効率A12,A22は、透過効率B,B倍に変化する。
しかし、透過効率をB,Bも、予め検定等で求めることができるので、これらの値を用いて吸収体の影響を含めた透過効率A12,A22を予め求めることができる。
従って、この場合でも、第1X線検出器12と第2X線検出器14の検出強度V,Vから、上述した式(1)(2)により、第1X線検出器に入射する2種の単色X線の各強度I,Iを演算することができる。
In FIG. 3, if the transmission efficiency of the absorber 18 with respect to the monochromatic X-rays of the wavelengths λ 1 and λ 2 is B 1 and B 2 , the monochromatic X-rays of the wavelengths λ 1 and λ 2 are detected on the downstream side of the second X-ray. The transmission efficiencies A 12 and A 22 until entering the device 14 change to the transmission efficiencies B 1 and B 2 .
However, since the transmission efficiencies B 1 and B 2 can also be obtained in advance by testing or the like, the transmission efficiencies A 12 and A 22 including the influence of the absorber can be obtained in advance using these values.
Accordingly, even in this case, two types of incident light to the first X-ray detector are obtained from the detection intensities V 1 and V 2 of the first X-ray detector 12 and the second X-ray detector 14 according to the above-described equations (1) and (2). The intensities I 1 and I 2 of the monochromatic X-rays can be calculated.

すなわち、吸収体を用いる場合でも、「吸収体の透過効率を含めてX線検出器に入射するまでの透過効率」を用いることで、常に式(1)(2)により、第1X線検出器12に入射する2種の単色X線の各強度I,Iを演算することができる。
後述する他の例の場合も同様である。
That is, even when the absorber is used, the first X-ray detector is always obtained by the equations (1) and (2) by using the “transmission efficiency until it enters the X-ray detector including the transmission efficiency of the absorber”. The intensities I 1 and I 2 of the two types of monochromatic X-rays incident on 12 can be calculated.
The same applies to other examples described later.

図4は、本発明の多色X線測定装置の第3実施形態を示す全体構成図である。この図において、本発明の多色X線測定装置10は、互いに異なる波長λ,λ,λを有する3種の単色X線1a、2a、3aを含む多色X線を測定する装置である。 FIG. 4 is an overall configuration diagram showing a third embodiment of the multicolor X-ray measurement apparatus of the present invention. In this figure, the polychromatic X-ray measuring apparatus 10 of the present invention is an apparatus for measuring polychromatic X-rays including three types of monochromatic X-rays 1a, 2a and 3a having different wavelengths λ 1 , λ 2 and λ 3. It is.

この多色X線測定装置10は、上流側の第1X線検出器12、中間の第2X線検出器14、下流側の第3X線検出器16、及び演算装置20を備える。3台のX線検出器12、14、16は、多色X線(3種の単色X線1a、2a、3a)が順次同時に通過するように互いに積層されている。また、演算装置20は、第1X線検出器12、第2X線検出器14および第3X線検出器16の検出強度V,V,Vから第1X線検出器12に入射する3種の単色X線1a、2a、3aの各強度I,I,I又はその比率を演算する機能を有する。 The multicolor X-ray measurement apparatus 10 includes an upstream first X-ray detector 12, an intermediate second X-ray detector 14, a downstream third X-ray detector 16, and a computing device 20. The three X-ray detectors 12, 14, and 16 are stacked on each other so that multicolor X-rays (three types of monochromatic X-rays 1a, 2a, and 3a) pass through sequentially. The arithmetic unit 20 includes three types of light incident on the first X-ray detector 12 from the detection intensities V 1 , V 2 , and V 3 of the first X-ray detector 12, the second X-ray detector 14, and the third X-ray detector 16. Each of the intensities I 1 , I 2 , I 3 of the monochromatic X-rays 1a, 2a, 3a or a ratio thereof.

図4において、各波長λ,λ,λに対する、第1X線検出器12の検出効率G11,G21,G31と、第2X線検出器14の検出効率G12,G22,G32と、第3X線検出器16の検出効率G13, G23,G33と、各波長λ,λ,λの単色X線が、第2X線検出器14に入射するまでの透過効率A12,A22,A32と、第3X線検出器16に入射するまでの透過効率A13,A23,A33とは、予め検定等で得られているものとする。
この場合、各X線検出器12、14、16の検出強度V,V,Vは、下記の式(3)(4)(5)で表され、これから、第1X線検出器に入射する3種の単色X線の各強度I,I,Iを演算することができる。
=I×G11+I×G21+I×G31・・・(3)
=I×A12×G12+I×A22×G22+I×A32×G32・・・(4)
=I×A13×G13+I×A23×G23+I×A33×G33・・・(5)
In FIG. 4, the detection efficiencies G 11 , G 21 , G 31 of the first X-ray detector 12 and the detection efficiencies G 12 , G 22 , of the second X-ray detector 14 for the respective wavelengths λ 1 , λ 2 , λ 3 . G 32 , detection efficiencies G 13 , G 23 , and G 33 of the third X-ray detector 16 and monochromatic X-rays having wavelengths λ 1 , λ 2 , and λ 3 until they enter the second X-ray detector 14. It is assumed that the transmission efficiencies A 12 , A 22 , A 32 and the transmission efficiencies A 13 , A 23 , A 33 until they enter the third X-ray detector 16 are obtained in advance by an examination or the like.
In this case, the detection intensities V 1 , V 2 , and V 3 of the X-ray detectors 12, 14, and 16 are expressed by the following formulas (3), (4), and (5). The intensities I 1 , I 2 , and I 3 of the three types of incident monochromatic X-rays can be calculated.
V 1 = I 1 × G 11 + I 2 × G 21 + I 3 × G 31 (3)
V 2 = I 1 × A 12 × G 12 + I 2 × A 22 × G 22 + I 3 × A 32 × G 32 ··· (4)
V 3 = I 1 × A 13 × G 13 + I 2 × A 23 × G 23 + I 3 × A 33 × G 33 (5)

また、この例においても、3台のX線検出器12、14、16の間に各波長λ,λ,λの単色X線に対する透過効率の異なる吸収体(図示せず)を備えることが好ましい。またこの吸収体は、例えば差分イメージングの対象となる特定元素を含有するのが好ましい。 Also in this example, absorbers (not shown) having different transmission efficiencies for monochromatic X-rays of the wavelengths λ 1 , λ 2 , and λ 3 are provided between the three X-ray detectors 12, 14, and 16. It is preferable. Moreover, this absorber preferably contains a specific element to be subjected to differential imaging, for example.

次に図1において、波長(エネルギー)が判明している2波長λ,λの単色X線を被写体に照射し、透過したX線を本発明の多色X線測定装置10で検出する場合について説明する。
この場合、使用する多色X線測定装置10は、例えば図2に示したものであり、被写体の下流に設置される第1X線検出器12とそのさらに下流に設置される第2X線検出器14を備える。
なお、さらに第3、第4のX線検出器を設置してもよい。また隣接するX線検出器同士の間には、図3のようにX線吸収体18を設置するのが好ましいが、必須ではなく自由空間でもよい。
Next, in FIG. 1, the subject is irradiated with monochromatic X-rays of two wavelengths λ 1 and λ 2 whose wavelengths (energy) are known, and the transmitted X-rays are detected by the multicolor X-ray measuring apparatus 10 of the present invention. The case will be described.
In this case, the polychromatic X-ray measuring apparatus 10 to be used is, for example, as shown in FIG. 2, and the first X-ray detector 12 installed downstream of the subject and the second X-ray detector installed further downstream thereof. 14.
Further, third and fourth X-ray detectors may be installed. Moreover, although it is preferable to install the X-ray absorber 18 between adjacent X-ray detectors like FIG. 3, it is not essential and free space may be sufficient.

各X線検出器におけるX線の検出効率はX線エネルギーによって一般に異なる。ここでは、第1X線検出器12における第1波長λに対する検出効率をG11,第2波長λ(ここでは第1波長λよりも短いものとする)に対する検出効率をG21とする。また、各波長λ,λに対する第2X線検出器14の検出効率G12,G22とする。
第1X線検出器12に入射するそれぞれの波長の各強度をI,Iとし、各波長λ,λの単色X線が第2X線検出器14に入射するまでの透過効率をA12,A22(第2X線検出器14に入射するX線は、第1X線検出器12に入射するX線のA12倍あるいはA22倍)とする。このとき、各X線検出器12、14での検出強度V,Vは、上述した式(1)(2)のように表すことができる。
The detection efficiency of X-rays in each X-ray detector generally differs depending on the X-ray energy. Here, the detection efficiency for the first wavelength λ 1 in the first X-ray detector 12 is G 11 , and the detection efficiency for the second wavelength λ 2 (here, shorter than the first wavelength λ 1 ) is G 21 . . Further, the detection efficiencies G 12 and G 22 of the second X-ray detector 14 for the wavelengths λ 1 and λ 2 are used.
The respective intensities of the wavelengths incident on the first X-ray detector 12 are I 1 and I 2, and the transmission efficiency until the monochromatic X-rays of the wavelengths λ 1 and λ 2 enter the second X-ray detector A is A. 12 , A 22 (the X-rays incident on the second X-ray detector 14 are A 12 times or A 22 times the X-rays incident on the first X-ray detector 12). At this time, the detection intensities V 1 and V 2 at the respective X-ray detectors 12 and 14 can be expressed as the above-described equations (1) and (2).

これより、第1X線検出器12に入射するX線の各強度は、式(11a)(11b)と表せる。
=(V×A22×G12-V×G11
/(A12×G12×G21-A22×G11×G22)・・・(11a)
=(V×A22×G22-V×G21
/(A22×G11×G22-A12×G12×G21)・・・(11b)
Thereby, each intensity | strength of the X-ray which injects into the 1st X-ray detector 12 can be represented with Formula (11a) (11b).
I 2 = (V 2 × A 22 × G 12 -V 1 × G 11 )
/ (A 12 × G 12 × G 21 -A 22 × G 11 × G 22) ··· (11a)
I 1 = (V 1 × A 22 × G 22 −V 2 × G 21 )
/ (A 22 × G 11 × G 22 -A 12 × G 12 × G 21) ··· (11b)

一般に、A12,A22は異なり(それぞれの波長とX線吸収体の物質に依る)、V,Vを測定することにより式(11a)(11b)から、第1X線検出器12に入射するX線の各強度、すなわちX線の混合比を知ることができる。 In general, A 12 and A 22 are different (depending on the wavelength and the substance of the X-ray absorber), and by measuring V 1 and V 2 , the equations (11a) and (11b) are used to calculate the first X-ray detector 12. Each intensity of incident X-rays, that is, the mixing ratio of X-rays can be known.

X線が3波長の場合は、A13,A23,A33を第3X線検出器16の手前に存在する全ての検出器及びX線吸収体での各波長に対するX線透過率とすると、それぞれのX線検出器の信号強度は、上述した式(3)(4)(5)のように表される。
従って、この式を最上流側のX線検出器の入射X線強度I,I,Iについて解けば、各波長の混合比が判明する。
また、検出器の数が波長の数より多い場合、上記の式に最小自乗法を適用することにより、波長混合比の推定値の誤差を見積もることができる。
When X-rays have three wavelengths, let A 13 , A 23 , and A 33 be the X-ray transmittance for each wavelength at all detectors and X-ray absorbers existing in front of the third X-ray detector 16. The signal intensity of each X-ray detector is expressed as the above-described equations (3), (4), and (5).
Accordingly, when this equation is solved for the incident X-ray intensities I 1 , I 2 , and I 3 of the most upstream X-ray detector, the mixing ratio of each wavelength can be determined.
Further, when the number of detectors is larger than the number of wavelengths, the error of the estimated value of the wavelength mixing ratio can be estimated by applying the least square method to the above equation.

また、例として、特定元素のKエッジを用いた差分イメージング等に適用する場合においては、差分イメージングの対象となる特定元素をX線吸収体18とすることにより、各波長におけるX線減衰の割合を大きく(つまりA12,A22の比を大きく)とることができ、高精度でのイメージングを実現できる。 Further, as an example, in the case of application to differential imaging using a K edge of a specific element, the ratio of X-ray attenuation at each wavelength is obtained by using the specific element to be subjected to differential imaging as the X-ray absorber 18. (That is, the ratio of A 12 and A 22 is increased), and imaging with high accuracy can be realized.

X線が3波長以上の場合も同様であり、X線検出器を波長の数だけ設置することにより、各波長の混合比がもとめられる。
この場合、互いに異なる波長λ(i=1,2,…n;nは2以上の整数)の複数の単色X線に対し、波長の数と同数以上の複数(m;mは2以上の整数)のX線検出器を用いる。
複数のX線検出器は、前記多色X線が順次同時に通過するように積層され、通過する多色X線の強度V(j=1,2,…m;mは2以上の整数)をそれぞれ検出する。
演算装置20は、各波長λに対する前記複数のX線検出器の検出効率Gijと、各波長λの単色X線が前記複数のX線検出器に入射するまでの透過効率Aijと、各X線検出器の検出強度Vとから、最上流側のX線検出器に入射する複数の単色X線の各強度I(i=1,2,…n)又はその比率を演算する。
The same applies to the case where X-rays have three or more wavelengths, and the mixing ratio of each wavelength can be obtained by installing X-ray detectors by the number of wavelengths.
In this case, for a plurality of monochromatic X-rays having different wavelengths λ i (i = 1, 2,..., N; n is an integer of 2 or more), a plurality (m; m is 2 or more) equal to or more than the number of wavelengths. An integer) X-ray detector.
A plurality of X-ray detectors are stacked such that the multicolor X-rays pass through sequentially at the same time, and the intensity V j of the multicolor X-rays passing through (j = 1, 2,... M; m is an integer of 2 or more) Are detected respectively.
Calculation unit 20, and the detection efficiency G ij of the plurality of X-ray detectors for each wavelength lambda i, and transmission efficiency A ij to monochromatic X-rays of each wavelength lambda i is incident on the plurality of X-ray detector , Each intensity I i (i = 1, 2,... N) of a plurality of monochromatic X-rays incident on the most upstream X-ray detector or a ratio thereof is calculated from the detected intensity V j of each X-ray detector. To do.

また、本発明の方法によれば、上述した複数のX線検出器と演算装置を用い、
多色X線が順次同時に通過するように複数のX線検出器を積層して配置し、
各X線検出器を通過する多色X線の強度V(j=1,2,…m;mは2以上の整数)をそれぞれ検出し、
検出された各検出強度Vjから最上流側のX線検出器に入射する複数の単色X線の各強度又はその比率を演算する。
In addition, according to the method of the present invention, using the plurality of X-ray detectors and the arithmetic device described above,
A plurality of X-ray detectors are stacked and arranged so that multicolor X-rays pass through sequentially at the same time,
Detecting the intensity V j (j = 1, 2,... M; m is an integer of 2 or more) of the polychromatic X-rays passing through each X-ray detector,
The intensity of each of a plurality of monochromatic X-rays incident on the most upstream X-ray detector or the ratio thereof is calculated from each detected intensity Vj.

なお、上述した各実施形態において、各X線検出器の間隔は、必須ではなく、例えば、互いに密着して一体に形成してもよい。
また、本発明を構成する各X線検出器は、多数の検出器が2次元的に配列され2次元画像が同時に撮像できるものが好ましい。この構成により、複数の単色X線の各強度又はその比率を演算すると同時に、被写体を透過したX線画像を撮像することができる。
In the above-described embodiments, the interval between the X-ray detectors is not essential, and may be formed in close contact with each other, for example.
Further, it is preferable that each X-ray detector constituting the present invention has a large number of detectors arranged two-dimensionally so that a two-dimensional image can be taken simultaneously. With this configuration, it is possible to calculate the intensity of each of a plurality of monochromatic X-rays or the ratio thereof, and simultaneously capture an X-ray image transmitted through the subject.

以下、本発明の実施例を説明する。
最も簡単な実施例は図2に示したように2個のX線検出器12、14を並べたものである。X線検出器には、透過効率や検出効率ができるだけ均一のものが好ましく、例えば非特許文献3に示した平面型X線検出器や、固体半導体のイオン化作用を利用した半導体検出器、或いは薄いCsI膜とCCDの組み合わせ等を用いるのがよい。
特にCsI(ヨウ化セリウム)はX線吸収率が高いため効率の高い検出が可能である。
また上流側の第2X線検出器12内でのX線の散乱等による下流側の第2X線検出器14での像の滲みをさけるため、各X線検出器は極端に近づけるか、或いは適当な距離だけ離すことが望ましい。
Examples of the present invention will be described below.
In the simplest embodiment, two X-ray detectors 12 and 14 are arranged as shown in FIG. The X-ray detector is preferably as uniform as possible in transmission efficiency and detection efficiency. For example, the flat X-ray detector shown in Non-Patent Document 3, a semiconductor detector using an ionization action of a solid semiconductor, or a thin detector It is preferable to use a combination of a CsI film and a CCD.
In particular, since CsI (cerium iodide) has a high X-ray absorption rate, highly efficient detection is possible.
Further, in order to avoid bleeding of the image at the downstream second X-ray detector 14 due to X-ray scattering or the like in the upstream second X-ray detector 12, each X-ray detector is extremely close or appropriate. It is desirable to keep the distance apart.

ここで、図2の多色X線測定装置において、15keVと30keVの2色X線をこの装置で検出する場合を考える。この場合、光量子エネルギーが15kev,30keVの単色X線の波長λはそれぞれ0.83Å、0.41Åである。   Here, let us consider a case where the multicolor X-ray measurement apparatus of FIG. 2 detects two color X-rays of 15 keV and 30 keV. In this case, the wavelengths λ of monochromatic X-rays with photon energies of 15 kev and 30 keV are 0.83Å and 0.41Å, respectively.

図5は第1X線検出器12のCsI層を100μmとした場合の、第1X線検出器12でのX線透過率であり、CsI以外の層については無視している。算出は、米国ローレンスバークレー国立研究所の計算プログラム、(
1127277424890_0.html
)に拠った。
15keVでは7.6%のX線が、また30keV付近では68%のX線が透過する。透過していないX線は吸収され信号として検出されると考えられる。第1X線検出器12を透過したX線は第2X線検出器14で検出される。このとき、第2X線検出器14のCsI層は特別な問題がある場合を除き出来るだけ厚いほうがよい。しかしあまり厚くすると、CsI層内でのX線の散乱や、蛍光の散乱及び減衰により取得像が滲む可能性がある。
FIG. 5 shows the X-ray transmittance in the first X-ray detector 12 when the CsI layer of the first X-ray detector 12 is 100 μm, and the layers other than CsI are ignored. The calculation is based on the calculation program of Lawrence Berkeley National Laboratory, USA (
1127277424890_0.html
)
At 15 keV, 7.6% of X-rays are transmitted, and near 30 keV, 68% of X-rays are transmitted. X-rays that are not transmitted are absorbed and detected as signals. X-rays transmitted through the first X-ray detector 12 are detected by the second X-ray detector 14. At this time, the CsI layer of the second X-ray detector 14 should be as thick as possible unless there is a special problem. However, if it is too thick, the acquired image may be blurred due to X-ray scattering in the CsI layer, or fluorescence scattering and attenuation.

第2X線検出器14のCsI層を300μmとした場合の、第2X線検出器14のX線透過率は図6のようになる。15keVでは0.45%、30keVでは32%が透過する。X線が検出器のCsI以外の部分で減衰しないとし、CsI部分で吸収されたものは全て検出されるとした場合、本装置全体でのX線検出効率は15keVでは99.9%、30keV付近では97.8%となる。   FIG. 6 shows the X-ray transmittance of the second X-ray detector 14 when the CsI layer of the second X-ray detector 14 is 300 μm. At 15 keV, 0.45% is transmitted, and at 30 keV, 32% is transmitted. Assuming that X-rays are not attenuated at portions other than CsI of the detector, and all the absorption at the CsI portion is detected, the X-ray detection efficiency of the entire apparatus is 99.9% at 15 keV, around 30 keV Then, it becomes 97.8%.

前述の通り、入射するX線の各強度は、X線の透過率と検出効率より、式(11a)(11b)で算出されるが、本実施例では、A12=0.076、A22=0.68、G11=1-0.076=0.924、G21=1-0.68=0.32、G12=1-0.0045=0.9955、G22=1-0.32=0.68である。 As described above, each intensity of incident X-rays is calculated by the equations (11a) and (11b) from the X-ray transmittance and detection efficiency. In this embodiment, A 12 = 0.076, A 22 = 0.68, G 11 = 1-0.076 = 0.924, G 21 = 1-0.68 = 0.32, G 12 = 1-0.0045 = 0.9955, G 22 = 1-0 .32 = 0.68.

なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

本発明の多色X線測定装置を適用する装置の原理図である。It is a principle figure of the apparatus which applies the polychromatic X-ray measuring apparatus of this invention. 本発明の多色X線測定装置の第1実施形態を示す全体構成図である。1 is an overall configuration diagram showing a first embodiment of a polychromatic X-ray measurement apparatus of the present invention. 本発明の多色X線測定装置の第2実施形態を示す全体構成図である。It is a whole block diagram which shows 2nd Embodiment of the polychromatic X-ray measuring apparatus of this invention. 本発明の多色X線測定装置の第3実施形態を示す全体構成図である。It is a whole block diagram which shows 3rd Embodiment of the polychromatic X-ray measuring apparatus of this invention. 第1X線検出器のCsI層を100μmとした場合のX線透過率である。This is the X-ray transmittance when the CsI layer of the first X-ray detector is 100 μm. 第2X線検出器のCsI層を300μmとした場合のX線透過率である。This is the X-ray transmittance when the CsI layer of the second X-ray detector is 300 μm. 非特許文献1の「小型X線発生装置」の模式図である。1 is a schematic diagram of a “small X-ray generator” in Non-Patent Document 1. FIG. 非特許文献2の「混合2色X線CT装置」の模式図である。2 is a schematic diagram of “mixed two-color X-ray CT apparatus” of Non-Patent Document 2. FIG.

符号の説明Explanation of symbols

1a、1b 波長λの単色X線、
2a、2b 波長λの単色X線、
3a、3b 波長λの単色X線、
10 多色X線測定装置、
12 第2X線検出器、
14 第2X線検出器、
16 第3X線検出器、
18 吸収体、20 演算装置

1a, 1b Monochromatic X-ray with wavelength λ 1
2a, 2b monochromatic X-ray with wavelength λ 2 ,
3a, 3b monochromatic X-ray with wavelength λ 3 ,
10 Multicolor X-ray measuring device,
12 Second X-ray detector,
14 second X-ray detector,
16 3rd X-ray detector,
18 absorber, 20 arithmetic unit

Claims (7)

互いに異なる波長λ(i=1,2,…n;nは2以上の整数)の複数の単色X線を含む多色X線を測定する多色X線測定装置であって、
前記多色X線が順次同時に通過するように積層され、通過する多色X線の強度V(j=1,2,…m;mは2以上の整数)をそれぞれ検出する複数のX線検出器と、
前記各X線検出器の検出強度Vから最上流側のX線検出器に入射する複数の単色X線の各強度又はその比率を演算する演算装置と、を備えることを特徴とする多色X線測定装置。
A multicolor X-ray measurement apparatus that measures multicolor X-rays including a plurality of monochromatic X-rays having different wavelengths λ i (i = 1, 2,... N; n is an integer of 2 or more),
A plurality of X-rays that are stacked so that the multicolor X-rays pass through sequentially and detect the intensity V j (j = 1, 2,... M; m is an integer of 2 or more) of the passing multicolor X-rays. A detector;
A multicolor, comprising: an arithmetic unit that calculates each intensity or a ratio of a plurality of monochromatic X-rays incident on the most upstream X-ray detector from the detection intensity V j of each X-ray detector. X-ray measuring device.
前記演算装置は、
前記各波長λに対する前記複数のX線検出器の検出効率Gijと、
前記各波長λの単色X線が前記複数のX線検出器に入射するまでの透過効率Aijと、
各X線検出器の検出強度Vとから、最上流側のX線検出器に入射する複数の単色X線の各強度I(i=1,2,…n)又はその比率を演算する、ことを特徴とする請求項1に記載の多色X線測定装置。
The arithmetic unit is
Detection efficiencies G ij of the plurality of X-ray detectors for each wavelength λ i ;
Transmission efficiency A ij until the monochromatic X-rays of the respective wavelengths λ i are incident on the plurality of X-ray detectors,
Each intensity I i (i = 1, 2,... N) of a plurality of monochromatic X-rays incident on the most upstream X-ray detector or a ratio thereof is calculated from the detection intensity V j of each X-ray detector. The multicolor X-ray measuring apparatus according to claim 1.
前記多色X線は、互いに異なる波長λ,λを有する2種の単色X線を含み、
前記複数のX線検出器は、互いに積層された上流側の第1X線検出器と下流側の第2X線検出器からなり、
前記演算装置は、
前記各波長λ,λに対する、第1X線検出器の検出効率G11,G21と、第2X線検出器の検出効率G12,G22と、
前記各波長λ,λの単色X線が第2X線検出器に入射するまでの透過効率A12,A22と、
第1X線検出器と第2X線検出器の検出強度V,Vとから、下記の式(1)(2)により、第1X線検出器に入射する2種の単色X線の各強度I,Iを演算する、

=I×G11+I×G21・・・(1)
=I×A12×G12+I×A22×G22・・・(2)

ことを特徴とする請求項1に記載の多色X線測定装置。
The polychromatic X-ray includes two types of monochromatic X-rays having different wavelengths λ 1 and λ 2 ,
The plurality of X-ray detectors includes an upstream first X-ray detector and a downstream second X-ray detector stacked on each other,
The arithmetic unit is
Detection efficiencies G 11 and G 21 of the first X-ray detector and detection efficiencies G 12 and G 22 of the second X-ray detector for the wavelengths λ 1 and λ 2 ,
Transmission efficiencies A 12 and A 22 until the monochromatic X-rays of the wavelengths λ 1 and λ 2 enter the second X-ray detector;
From the detected intensities V 1 and V 2 of the first X-ray detector and the second X-ray detector, the respective intensities of the two types of monochromatic X-rays incident on the first X-ray detector according to the following formulas (1) and (2) Calculate I 1 and I 2 ,

V 1 = I 1 × G 11 + I 2 × G 21 (1)
V 2 = I 1 × A 12 × G 12 + I 2 × A 22 × G 22 (2)

The multicolor X-ray measuring apparatus according to claim 1.
前記多色X線は、互いに異なる波長λ,λ,λを有する3種の単色X線を含み、
前記複数のX線検出器は、互いに積層された上流側の第1X線検出器、中間の第2X線検出器、及び下流側の第3X線検出器からなり、
前記演算装置は、
前記各波長λ,λ,λに対する、第1X線検出器の検出効率G11,G21,G31と、第2X線検出器の検出効率G12,G22,G32と、第3X線検出器の検出効率G13, G23,G33と、
前記各波長λ,λ,λの単色X線が、第2X線検出器に入射するまでの透過効率A12,A22,A32と、第3X線検出器に入射するまでの透過効率A13,A23,A33と、
第1X線検出器、第2X線検出器および第3X線検出器の検出強度V,V,Vとから、下記の式(3)(4)(5)により、第1X線検出器に入射する3種の単色X線の各強度I,I,Iを演算する、

=I×G11+I×G21+I×G31・・・(3)
=I×A12×G12+I×A22×G22+I×A32×G32・・・(4)
=I×A13×G13+I×A23×G23+I×A33×G33・・・(5)

ことを特徴とする請求項1に記載の多色X線測定装置。
The polychromatic X-ray includes three kinds of monochromatic X-rays having different wavelengths λ 1 , λ 2 and λ 3 ,
The plurality of X-ray detectors includes an upstream first X-ray detector, an intermediate second X-ray detector, and a downstream third X-ray detector stacked on each other,
The arithmetic unit is
For each of the wavelengths λ 1 , λ 2 , λ 3 , the detection efficiency G 11 , G 21 , G 31 of the first X-ray detector, the detection efficiency G 12 , G 22 , G 32 of the second X-ray detector, Detection efficiency G 13 , G 23 , G 33 of the 3X-ray detector,
Transmission efficiency A 12 , A 22 , A 32 until the monochromatic X-rays of the respective wavelengths λ 1 , λ 2 , λ 3 are incident on the second X-ray detector, and transmission until they are incident on the third X-ray detector Efficiency A 13 , A 23 , A 33 ,
From the detection intensities V 1 , V 2 , and V 3 of the first X-ray detector, the second X-ray detector, and the third X-ray detector, the first X-ray detector is expressed by the following equations (3), (4), and (5). Calculating the intensities I 1 , I 2 , and I 3 of the three types of monochromatic X-rays incident on

V 1 = I 1 × G 11 + I 2 × G 21 + I 3 × G 31 (3)
V 2 = I 1 × A 12 × G 12 + I 2 × A 22 × G 22 + I 3 × A 32 × G 32 ··· (4)
V 3 = I 1 × A 13 × G 13 + I 2 × A 23 × G 23 + I 3 × A 33 × G 33 (5)

The multicolor X-ray measuring apparatus according to claim 1.
前記積層された複数のX線検出器の間に、前記各波長λiの単色X線に対する透過効率の異なる吸収体を備える、ことを特徴とする請求項1に記載の単色X線の混合比測定装置。   2. The monochromatic X-ray mixture ratio measurement according to claim 1, further comprising: an absorber having a different transmission efficiency for the monochromatic X-rays having the respective wavelengths λi between the plurality of stacked X-ray detectors. apparatus. 前記吸収体は、差分イメージングの対象となる特定元素を含有する、ことを特徴とする請求項5に記載の多色X線測定装置。   The multicolor X-ray measurement apparatus according to claim 5, wherein the absorber contains a specific element to be subjected to differential imaging. 互いに異なる波長λ(i=1,2,…n;nは2以上の整数)の複数の単色X線を含む多色X線を測定する多色X線測定方法であって、
前記多色X線が順次同時に通過するように複数のX線検出器を積層して配置し、
各X線検出器を通過する前記多色X線の強度V(j=1,2,…m;mは2以上の整数)をそれぞれ検出し、
検出された各検出強度Vjから最上流側のX線検出器に入射する複数の単色X線の各強度又はその比率を演算する、ことを特徴とする多色X線測定方法。

A multicolor X-ray measurement method for measuring multicolor X-rays including a plurality of monochromatic X-rays having different wavelengths λ i (i = 1, 2,... N; n is an integer of 2 or more),
A plurality of X-ray detectors are stacked and arranged so that the polychromatic X-rays pass through sequentially at the same time,
Detecting the intensity V j (j = 1, 2,... M; m is an integer of 2 or more) of the polychromatic X-rays passing through each X-ray detector,
A multicolor X-ray measurement method, comprising: calculating each intensity or a ratio of a plurality of monochromatic X-rays incident on the most upstream X-ray detector from each detected intensity Vj.

JP2005273485A 2005-09-21 2005-09-21 Multicolor X-ray measuring device Expired - Fee Related JP4839050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005273485A JP4839050B2 (en) 2005-09-21 2005-09-21 Multicolor X-ray measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005273485A JP4839050B2 (en) 2005-09-21 2005-09-21 Multicolor X-ray measuring device

Publications (2)

Publication Number Publication Date
JP2007082663A true JP2007082663A (en) 2007-04-05
JP4839050B2 JP4839050B2 (en) 2011-12-14

Family

ID=37970259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005273485A Expired - Fee Related JP4839050B2 (en) 2005-09-21 2005-09-21 Multicolor X-ray measuring device

Country Status (1)

Country Link
JP (1) JP4839050B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113713A1 (en) * 2008-03-12 2009-09-17 Canon Kabushiki Kaisha X-ray imaging apparatus, x-ray imaging method and method of controlling x-ray imaging apparatus
JP2016501361A (en) * 2012-11-13 2016-01-18 クロメック リミテッドKromek Limited Material identification method
US10175382B2 (en) 2012-11-13 2019-01-08 Kromek Limited Identification of materials
JP2019045238A (en) * 2017-08-31 2019-03-22 国立大学法人京都大学 Analysis device for energy decomposition ct, x-ray ct device, analysis method for energy decomposition ct, and analysis program for energy decomposition ct
JP2020526344A (en) * 2017-07-13 2020-08-31 ラッシュ ユニヴァーシティ メディカル センター Energy decomposition scatter imaging methods, devices and systems during radiation therapy
CN117170171B (en) * 2023-09-05 2024-03-01 同济大学 Multicolor monoenergetic imaging system of gradient multilayer film coupling pinhole array and design method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145983A (en) * 1982-11-26 1984-08-21 ザボ−ド オブ トラシテイ−ス オブ ザ ユニバ−シテイ オブ アラバマ フオア ザ ユニバ−シテイ オブ アラバマ イン バ−ミンガム Detector for energy discriminating radiation and its method
JPS6363039A (en) * 1986-09-03 1988-03-19 Yoshito Takao Photographing method for original image for x-ray photographic energy subtraction
JPS6314984B2 (en) * 1976-07-30 1988-04-02 Riirando Sutanfuoodo Junia Univ
JPH05208000A (en) * 1992-01-31 1993-08-20 Fuji Photo Film Co Ltd Energy subtraction image forming device
JPH06205767A (en) * 1992-11-25 1994-07-26 Xerox Corp Radiation picture formation system
JPH087389B2 (en) * 1983-02-17 1996-01-29 富士写真フイルム株式会社 Method for energy subtraction of X-ray image and laminate used in the method
JP2001170034A (en) * 1999-12-20 2001-06-26 Toshiba Corp Medical radiography system and x-ray intensifying screen for medical radiography
JP2001174564A (en) * 1999-12-15 2001-06-29 Ge Yokogawa Medical Systems Ltd X-ray detector and x-ray computed tomograph
JP2002505752A (en) * 1997-06-25 2002-02-19 クワンタム・イメージング・コーポレーション Optical quantum imaging device without film
JP2002336230A (en) * 2001-05-16 2002-11-26 Fuji Photo Film Co Ltd Phase contrast picture forming method and device, and program
JP2003513727A (en) * 1999-11-09 2003-04-15 ゼネラル・エレクトリック・カンパニイ Apparatus, method and computer program for estimating and correcting scatter in digital radiographic and tomographic imaging
JP2003116828A (en) * 2001-10-16 2003-04-22 Fuji Photo Film Co Ltd Method and apparatus for photographing radiation image
JP3476381B2 (en) * 1998-02-19 2003-12-10 アドバンスド オプティカル テクノロジーズ,インコーポレイテッド Apparatus and method for dual energy X-ray imaging
JP2004140492A (en) * 2002-10-16 2004-05-13 Fuji Photo Film Co Ltd Method and apparatus for radiation imaging, and radiation imaging program
JP2004264472A (en) * 2003-02-28 2004-09-24 Fuji Photo Film Co Ltd Radiation image forming unit

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314984B2 (en) * 1976-07-30 1988-04-02 Riirando Sutanfuoodo Junia Univ
JPS59145983A (en) * 1982-11-26 1984-08-21 ザボ−ド オブ トラシテイ−ス オブ ザ ユニバ−シテイ オブ アラバマ フオア ザ ユニバ−シテイ オブ アラバマ イン バ−ミンガム Detector for energy discriminating radiation and its method
JPH087389B2 (en) * 1983-02-17 1996-01-29 富士写真フイルム株式会社 Method for energy subtraction of X-ray image and laminate used in the method
JPS6363039A (en) * 1986-09-03 1988-03-19 Yoshito Takao Photographing method for original image for x-ray photographic energy subtraction
JPH05208000A (en) * 1992-01-31 1993-08-20 Fuji Photo Film Co Ltd Energy subtraction image forming device
JPH06205767A (en) * 1992-11-25 1994-07-26 Xerox Corp Radiation picture formation system
JP2002505752A (en) * 1997-06-25 2002-02-19 クワンタム・イメージング・コーポレーション Optical quantum imaging device without film
JP3476381B2 (en) * 1998-02-19 2003-12-10 アドバンスド オプティカル テクノロジーズ,インコーポレイテッド Apparatus and method for dual energy X-ray imaging
JP2003513727A (en) * 1999-11-09 2003-04-15 ゼネラル・エレクトリック・カンパニイ Apparatus, method and computer program for estimating and correcting scatter in digital radiographic and tomographic imaging
JP2001174564A (en) * 1999-12-15 2001-06-29 Ge Yokogawa Medical Systems Ltd X-ray detector and x-ray computed tomograph
JP2001170034A (en) * 1999-12-20 2001-06-26 Toshiba Corp Medical radiography system and x-ray intensifying screen for medical radiography
JP2002336230A (en) * 2001-05-16 2002-11-26 Fuji Photo Film Co Ltd Phase contrast picture forming method and device, and program
JP2003116828A (en) * 2001-10-16 2003-04-22 Fuji Photo Film Co Ltd Method and apparatus for photographing radiation image
JP2004140492A (en) * 2002-10-16 2004-05-13 Fuji Photo Film Co Ltd Method and apparatus for radiation imaging, and radiation imaging program
JP2004264472A (en) * 2003-02-28 2004-09-24 Fuji Photo Film Co Ltd Radiation image forming unit

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113713A1 (en) * 2008-03-12 2009-09-17 Canon Kabushiki Kaisha X-ray imaging apparatus, x-ray imaging method and method of controlling x-ray imaging apparatus
JP2009240764A (en) * 2008-03-12 2009-10-22 Canon Inc X-ray imaging apparatus, x-ray imaging method and method of controlling x-ray imaging apparatus
JP4512660B2 (en) * 2008-03-12 2010-07-28 キヤノン株式会社 X-ray imaging apparatus, X-ray imaging method, and X-ray imaging apparatus control method
US8036336B2 (en) 2008-03-12 2011-10-11 Canon Kabushiki Kaisha X-ray imaging apparatus, X-ray imaging method and method of controlling X-ray imaging apparatus
US8214158B2 (en) 2008-03-12 2012-07-03 Canon Kabushiki Kaisha X-ray imaging apparatus, X-ray imaging method and method of controlling X-ray imaging apparatus
JP2016501361A (en) * 2012-11-13 2016-01-18 クロメック リミテッドKromek Limited Material identification method
US9841390B2 (en) 2012-11-13 2017-12-12 Kromek Limited Identification of materials from a hydrogen to electron ratio
US10175382B2 (en) 2012-11-13 2019-01-08 Kromek Limited Identification of materials
JP2020526344A (en) * 2017-07-13 2020-08-31 ラッシュ ユニヴァーシティ メディカル センター Energy decomposition scatter imaging methods, devices and systems during radiation therapy
JP7321141B2 (en) 2017-07-13 2023-08-04 ラッシュ ユニヴァーシティ メディカル センター Energy-resolved scatter imaging method, device and system during radiation therapy
JP2019045238A (en) * 2017-08-31 2019-03-22 国立大学法人京都大学 Analysis device for energy decomposition ct, x-ray ct device, analysis method for energy decomposition ct, and analysis program for energy decomposition ct
CN117170171B (en) * 2023-09-05 2024-03-01 同济大学 Multicolor monoenergetic imaging system of gradient multilayer film coupling pinhole array and design method

Also Published As

Publication number Publication date
JP4839050B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
Park et al. High-energy Kα radiography using high-intensity, short-pulse lasers
US7388208B2 (en) Dual energy x-ray detector
US9234856B2 (en) X-ray apparatus and X-ray measuring method
Shikhaliev et al. Photon counting computed tomography: concept and initial results
JP4839050B2 (en) Multicolor X-ray measuring device
Boutoux et al. Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the “PETawatt Aquitaine Laser”
Singh et al. Compact high energy x-ray spectrometer based on forward Compton scattering for high intensity laser plasma experiments
CN103323872B (en) X-ray detector for counting quantum carries out the method for energy calibration
O'Day III et al. Initial results from a multiple monoenergetic gamma radiography system for nuclear security
Rabhi et al. Calibration of imaging plates to electrons between 40 and 180 MeV
Kandarakis et al. Experimental determination of detector gain, zero frequency detective quantum efficiency, and spectral compatibility of phosphor screens: comparison of CsI: Na and Gd2O2S: Tb for medical imaging applications
US8588370B2 (en) Article inspection device and inspection method
WO2009135350A1 (en) Gas radiation detector and radiation imaging system
Shevelev et al. Study of runaway electrons in TUMAN-3M tokamak plasmas
Sato et al. First demonstration of iodine mapping in nonliving phantoms using an X-ray fluorescence computed tomography system with a cadmium telluride detector and a tungsten-target tube
Manninen Compton scattering: present status and future
Akkuş et al. Polar and azimuthal angular dependence of coherent to incoherent scattering differential cross-section ratios of Au at 59.54 keV
Toyofuku et al. Development of a fluorescent x‐ray source for medical imaging
Moss et al. miniPixD: a compact sample analysis system which combines X-ray imaging and diffraction
Cheng et al. The spectrum and angular distribution of x rays scattered from a water phantom
Shikhaliev et al. Quantum efficiency of the MCP detector: Monte Carlo calculation
Zhang et al. Compact broadband high-resolution Compton spectroscopy for laser-driven high-flux gamma rays
Kamiyama et al. Accelerator-based neutron tomography cooperating with X-ray radiography
Singh et al. Measurement of effective atomic number and Rayleigh-to-Compton cross-section ratio for 145 keV gamma photons
Buzug Fundamentals of X-ray physics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees