JP2007080341A - Optical pickup apparatus - Google Patents

Optical pickup apparatus Download PDF

Info

Publication number
JP2007080341A
JP2007080341A JP2005265322A JP2005265322A JP2007080341A JP 2007080341 A JP2007080341 A JP 2007080341A JP 2005265322 A JP2005265322 A JP 2005265322A JP 2005265322 A JP2005265322 A JP 2005265322A JP 2007080341 A JP2007080341 A JP 2007080341A
Authority
JP
Japan
Prior art keywords
information recording
objective lens
recording surface
optical
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005265322A
Other languages
Japanese (ja)
Inventor
Masahiro Matsumaru
正宏 松丸
Makoto Suzuki
鈴木  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2005265322A priority Critical patent/JP2007080341A/en
Publication of JP2007080341A publication Critical patent/JP2007080341A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that since a liquid crystal optical element is used as an aberration compensation optical element for compensating aberration due to optical axis deviation of an objective lens in a conventional optical head apparatus wherein recording and reproduction of information signals are performed to a multilayered optical recording medium, the element is expensive and a driving circuit and driving power are needed. <P>SOLUTION: When laser light is selectively condensed on information surfaces 1a and 1b of an optical disk 1 by using an objective lens 17 to perform recording or reproduction of information signals, the objective lens having a high NA has less influence on spherical aberration caused by difference of substrate thickness when special spherical aberration compensation is not performed and the objective lens having a low NA brings satisfactory recording and reproducing jitter value. Thereby, the range of the NA of the objective lens condensing the laser light on the optical disk 1 having a prescribed specification is specified to be ≤0.64 so that both spherical aberration and recording and reproducing jitter at the information recording surfaces 1a and 1b have low values having no problem on practical use. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は光ピックアップ装置に係り、特に光源から出射されたレーザー光束を、対物レンズにより2層以上の情報記録面を有する多層光記録媒体の情報記録面に選択的に集光して、情報信号を記録又は再生する光ピックアップ装置に関する。   The present invention relates to an optical pickup device, and in particular, a laser beam emitted from a light source is selectively condensed on an information recording surface of a multilayer optical recording medium having two or more information recording surfaces by an objective lens, thereby generating an information signal. The present invention relates to an optical pickup device that records or reproduces.

一般的に、円盤状の光ディスクやカード状の光カードなどの光記録媒体は、映像情報、音声情報、コンピュータデータなどの情報信号が螺旋状又は同心円状に形成したトラックに高密度に記録され、記録済みのトラックを再生する際には、所望のトラックを高速にアクセスできることから多用されている。   In general, an optical recording medium such as a disk-shaped optical disk or a card-shaped optical card is recorded with high density on a track in which information signals such as video information, audio information, and computer data are spirally or concentrically formed, When a recorded track is reproduced, it is frequently used because a desired track can be accessed at high speed.

この種の円盤状の光記録媒体となる光ディスクとして、例えばCD(Compact Disc)やDVD(Digital Versatile Disc)などは既に市販されている。DVDにはCDと違って長時間又は高精細の映画ソフトなどを収録するために、片面2層の記録容量8.5GBのDVDと、両面各1層の記録容量9.4GBの読み出し専用ROM(Read Only Memory)とがある。最近になって記録型光ディスクDVD−R、DVD+R、DVD−RW、DVD+RWでもより一層高密度化を図るために、光ディスクの情報記録面の2層化を図って情報信号を超高密度に記録又は再生できる高密度光ディスクの開発が盛んに行われている。   For example, CDs (Compact Discs) and DVDs (Digital Versatile Discs) are already commercially available as optical discs that serve as this type of disk-shaped optical recording media. Unlike a CD, a DVD has a recording capacity of 8.5 GB on one side and a read-only ROM with a recording capacity of 9.4 GB on each side for recording long-term or high-definition movie software. Read Only Memory). Recently, in order to further increase the density of recordable optical discs DVD-R, DVD + R, DVD-RW, and DVD + RW, the information recording surface of the optical disc is made to be two-layered to record information signals at an ultra-high density. Development of high-density optical discs that can be played back has been actively conducted.

ところで、光ディスクの情報記録面を2層化するにあたって、ディスク表面から光ディスクの第1層までのディスク基板厚さと第2層までのディスク基板厚さが異なるため、単層用の光ピックアップを用いると球面収差の発生量が大きくなるので、光ピックアップ装置内に球面収差補正機構を設けて、最適な状態に球面収差を補正することが必要になる。   By the way, when the information recording surface of the optical disc is made into two layers, the disc substrate thickness from the disc surface to the first layer of the optical disc is different from the disc substrate thickness from the second layer. Since the amount of generation of spherical aberration increases, it is necessary to provide a spherical aberration correction mechanism in the optical pickup device to correct the spherical aberration in an optimum state.

この際、情報記録面が2層化された光ディスク(以下、単に2層ディスクともいう)に対して球面収差を補正する方法には、対物レンズへ入射されるレーザー光の光束の平行度を変化(結像倍率を変化)させて球面収差を補正する倍率誤差法と、球面収差と反対の極性の球面収差を発生させて収差を相殺することで補正する波面補正法とに大別できる。   At this time, a method for correcting spherical aberration with respect to an optical disc having a double-layered information recording surface (hereinafter also simply referred to as a double-layer disc) changes the parallelism of the laser beam incident on the objective lens. A magnification error method for correcting spherical aberration by changing the imaging magnification and a wavefront correction method for correcting by correcting the aberration by generating a spherical aberration of the opposite polarity to the spherical aberration.

ここで、2層ディスクに対して球面収差を補正するための収差補正光学素子を光ピックアップ装置内に設ける場合に、収差補正光学素子を、対物レンズを保持するレンズホルダ内に一体に設けると、対物レンズと収差補正光学素子の両方の重量がレンズホルダに加わるために全体の重量が重くなり、対物レンズをトラッキング方向及びフォーカス方向に制御する際の周波数特性が低下するなどの問題点があると共に、対物レンズをレンズホルダの内部に保持し、かつ、トラッキングコイル及びフォーカスコイルをレンズホルダの外部に保持したアクチュエータを薄くすることができないため、光ピックアップ装置の小型薄型化を阻害するという問題点がある。   Here, when the aberration correction optical element for correcting the spherical aberration with respect to the two-layer disc is provided in the optical pickup device, the aberration correction optical element is integrally provided in the lens holder that holds the objective lens. Since the weight of both the objective lens and the aberration correcting optical element is added to the lens holder, the overall weight becomes heavy, and there is a problem that the frequency characteristics when the objective lens is controlled in the tracking direction and the focus direction are lowered. The actuator that holds the objective lens inside the lens holder and that holds the tracking coil and focus coil outside the lens holder cannot be made thin, which hinders the reduction in size and thickness of the optical pickup device. is there.

そこで、光ピックアップ装置内に設けたレーザー光源と対物レンズとの間の光学系中に液晶を用いた位相可変型の収差補正光学素子を固定設置し、光ディスクの基板厚さのバラツキや、レーザー光の波長変動などに起因して発生する球面収差を、液晶を用いた位相可変型の収差補正光学素子により補正するものがある。しかし、この場合は、対物レンズと収差補正光学素子の間に偏芯が生じるとコマ収差が生じるという別な問題が生じる。そこで、特に、収差補正光学素子に対して対物レンズの光軸ずれ(レンズシフト)が存在しても、収差の発生が抑えられるようにした光ヘッド装置あるいは光ピックアップ装置が従来から知られている(例えば、特許文献1〜特許文献4参照)。   Therefore, a phase-variable aberration correction optical element using liquid crystal is fixedly installed in the optical system between the laser light source and the objective lens provided in the optical pickup device, and the substrate thickness variation of the optical disk and the laser light In some cases, spherical aberration that occurs due to the wavelength variation of the light is corrected by a phase-variable aberration correcting optical element using liquid crystal. However, in this case, another problem arises that coma occurs when decentration occurs between the objective lens and the aberration correcting optical element. Thus, in particular, an optical head device or an optical pickup device that can suppress the occurrence of aberrations even when there is an optical axis shift (lens shift) of the objective lens with respect to the aberration correction optical element is conventionally known. (For example, see Patent Documents 1 to 4).

特許文献1(特開2001−143309号公報)に開示された光ヘッド装置は、光ディスクと光ヘッド装置との間にチルトが発生した場合等に発生するコマ収差を補正するための位相補正素子を有している。この特許文献1には、対物レンズのレンズシフトに応じて、位相補正素子内の液晶を駆動する電極の電極パターンを実質的に変位することにより、対物レンズの光軸ずれにより発生する収差の発生を抑える発明が開示されている。   The optical head device disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2001-143309) includes a phase correction element for correcting coma aberration that occurs when a tilt occurs between the optical disk and the optical head device. Have. In this Patent Document 1, the occurrence of aberration caused by the optical axis shift of the objective lens by substantially displacing the electrode pattern of the electrode that drives the liquid crystal in the phase correction element according to the lens shift of the objective lens. An invention for suppressing the above is disclosed.

また、特許文献2から特許文献4には、液晶を駆動する電極の電極パターンとして複数の収差に対応した複数のパターンを持たせて、対物レンズの光軸ずれにより発生した収差を適応的に補正可能にした光ヘッド装置が開示されている。   In Patent Documents 2 to 4, a plurality of patterns corresponding to a plurality of aberrations are provided as electrode patterns of electrodes for driving liquid crystals, and aberrations caused by optical axis deviation of the objective lens are adaptively corrected. An enabled optical head device is disclosed.

具体的に説明すると、特許文献2(特開2002−133697号公報)に開示された光ヘッド装置は、液晶を用いた位相補正素子で球面収差の補正を行うものであるが、同時にコマ収差を補正可能な電極パターンを位相補正素子が有している。ここで、球面収差を補正した状態で対物レンズの光軸がずれると、対物レンズの光軸のずれに比例してコマ収差が発生するが、この特許文献2記載の従来の光ヘッド装置は、対物レンズの光軸ずれの量に応じて、コマ収差の補正量(コマ収差の位相変化量)を適切な量変化させて、対物レンズの光軸ずれによるコマ収差と相殺させている。   More specifically, the optical head device disclosed in Patent Document 2 (Japanese Patent Application Laid-Open No. 2002-133697) corrects spherical aberration with a phase correction element using liquid crystal, but at the same time, coma aberration is corrected. The phase correction element has a correctable electrode pattern. Here, when the optical axis of the objective lens is shifted in a state where the spherical aberration is corrected, coma aberration is generated in proportion to the shift of the optical axis of the objective lens. However, the conventional optical head device described in Patent Document 2 According to the amount of optical axis deviation of the objective lens, the coma aberration correction amount (coma aberration phase change amount) is changed by an appropriate amount to cancel the coma aberration due to the optical axis deviation of the objective lens.

また、特許文献3(特開2003−317298号公報)に開示された光ヘッド装置は、コマ収差の補正を液晶を用いた位相補正素子で行うものであるが、同時に非点収差を補正可能な電極パターンを位相補正素子が有している。ここで、コマ収差を補正した状態で対物レンズの光軸がずれると、対物レンズの光軸のずれに比例して非点収差が発生するが、この特許文献3記載の従来の光ヘッド装置では、対物レンズの光軸のずれの量に応じて、非点収差の補正量(非点収差の位相変化量)を適切な量変化させて、対物レンズの光軸ずれによる非点収差と相殺させている。   The optical head device disclosed in Patent Document 3 (Japanese Patent Application Laid-Open No. 2003-317298) corrects coma with a phase correction element using liquid crystal, but can simultaneously correct astigmatism. The phase correction element has an electrode pattern. Here, when the optical axis of the objective lens shifts in a state where the coma aberration is corrected, astigmatism occurs in proportion to the shift of the optical axis of the objective lens. In the conventional optical head device described in Patent Document 3, Depending on the amount of deviation of the optical axis of the objective lens, the amount of astigmatism correction (the amount of astigmatism phase change) is changed by an appropriate amount to cancel out the astigmatism caused by the optical axis deviation of the objective lens. ing.

また、特許文献4(特開2003−338070号公報)に開示された光ヘッド装置は、コマ収差と球面収差の補正を、液晶を用いた位相補正素子で行うものであるが、同時に非点収差を補正可能な電極パターンを位相補正素子が有している。ここで、コマ収差を補正した状態で対物レンズの光軸がずれると、対物レンズの光軸のずれに比例して非点収差が発生するが、この特許文献4記載の従来の光ヘッド装置では、対物レンズの光軸のずれの量に応じて、非点収差の補正量(非点収差の位相変化量)を適切な量変化させて、対物レンズの光軸ずれによる非点収差と相殺させている。また、球面収差を補正した状態で対物レンズの光軸がずれると、対物レンズの光軸のずれに比例してコマ収差が発生するが、この特許文献4記載の従来の光ヘッド装置では、対物レンズの光軸のずれの量に応じて、コマ収差の補正量(コマ収差の位相変化量)を適切な量変化させて、対物レンズの光軸ずれによるコマ収差と相殺させている。   The optical head device disclosed in Patent Document 4 (Japanese Patent Application Laid-Open No. 2003-338070) corrects coma and spherical aberration with a phase correction element using liquid crystal, but at the same time astigmatism. The phase correction element has an electrode pattern capable of correcting the above. Here, when the optical axis of the objective lens shifts in a state where the coma aberration is corrected, astigmatism occurs in proportion to the shift of the optical axis of the objective lens. In the conventional optical head device described in Patent Document 4, Depending on the amount of deviation of the optical axis of the objective lens, the amount of astigmatism correction (the amount of astigmatism phase change) is changed by an appropriate amount to cancel out the astigmatism caused by the optical axis deviation of the objective lens. ing. Further, when the optical axis of the objective lens is deviated with the spherical aberration corrected, coma aberration is generated in proportion to the deviation of the optical axis of the objective lens. A coma aberration correction amount (a coma aberration phase change amount) is changed by an appropriate amount in accordance with the amount of deviation of the optical axis of the lens to cancel out coma aberration due to the optical axis deviation of the objective lens.

更に、特許文献5(特開2005−209297号公報)には、位相変化型の液晶収差補正光学素子の位相獲得量が少なくても、光記録媒体の基板厚さのバラツキや、レーザー光の波長変動などに起因して発生する球面収差を良好に補正できる従来の光ピックアップ装置が開示されている。すなわち、特許文献5記載の従来の光ピックアップ装置は、位相可変型の収差補正光学素子を透過するレーザー光の波面の変化を位相関数で表した場合に、対物レンズの瞳径に相当する領域中で光軸が通る中心部位を除いて、位相関数が極値を持たないようにすることで、光記録媒体を再生した時に対物レンズのレンズシフトがあっても、光記録媒体の基板厚さのバラツキや、レーザー光の波長変動などに起因して発生する球面収差を良好に補正できるようにしたものである。   Further, Patent Document 5 (Japanese Patent Laid-Open No. 2005-209297) discloses that the substrate thickness of the optical recording medium varies and the wavelength of the laser light even when the phase acquisition amount of the phase change type liquid crystal aberration correcting optical element is small. A conventional optical pickup device that can satisfactorily correct spherical aberration caused by fluctuation or the like is disclosed. That is, in the conventional optical pickup device described in Patent Document 5, when the change of the wavefront of the laser light transmitted through the phase-variable aberration correcting optical element is expressed by a phase function, the optical pickup device is in a region corresponding to the pupil diameter of the objective lens. With the exception of the central part where the optical axis passes through, the phase function does not have an extreme value, so that even if there is a lens shift of the objective lens when the optical recording medium is reproduced, the substrate thickness of the optical recording medium Spherical aberration that occurs due to variations and wavelength variation of laser light can be corrected satisfactorily.

特開2001−143309号公報JP 2001-143309 A 特開2002−133697号公報Japanese Patent Laid-Open No. 2002-133697 特開2003−317298号公報JP 2003-317298 A 特開2003−338070号公報JP 2003-338070 A 特開2005−209297号公報JP 2005-209297 A

しかるに、上記特許文献1〜特許文献4記載の従来の光ヘッド装置では、液晶を用いた位相補正素子を光ヘッド装置の光学系中に固定設置しているので、位相補正素子を光軸方向に移動させずに各種の収差を補正でき、光ヘッド装置の小型軽量化を図ることができるものの、下記の課題がそれぞれある。   However, in the conventional optical head devices described in Patent Documents 1 to 4, since the phase correction element using liquid crystal is fixedly installed in the optical system of the optical head device, the phase correction element is arranged in the optical axis direction. Various aberrations can be corrected without moving, and the optical head device can be reduced in size and weight, but each has the following problems.

まず、特許文献1の従来の光ヘッド装置では、液晶を駆動する電極の電極パターンを細分化して収差の補正力を増加させた場合は、電極パターンが極端に複雑になり、実質的に位相補正素子を作ることができなくなってしまう。   First, in the conventional optical head device of Patent Document 1, when the electrode pattern of the electrode that drives the liquid crystal is subdivided to increase the aberration correction power, the electrode pattern becomes extremely complicated and substantially phase correction is performed. It becomes impossible to make an element.

また、特許文献2〜特許文献4記載の従来の光ヘッド装置では、以下の共通した課題を有している。すなわち、(a)対物レンズの光軸ずれによる収差の補正は、本来の収差の補正量と補正光軸ずれの量に比例するので、その各々を正確に検出して制御する必要があるが、特に、対物レンズの光軸ずれ量の正確な検出は、余分な検出素子等を必要とし、大きさとコスト的に不利であるという問題がある。また、対物レンズの光軸ずれの原因が光ディスクの偏芯の場合は、対物レンズの光軸ずれが変化する周波数が高いため、液晶の応答速度では追従することが難しい。   Further, the conventional optical head devices described in Patent Documents 2 to 4 have the following common problems. That is, (a) the correction of aberration due to the optical axis deviation of the objective lens is proportional to the original aberration correction amount and the correction optical axis deviation amount, and thus it is necessary to accurately detect and control each of them. In particular, accurate detection of the amount of optical axis deviation of the objective lens requires an extra detection element and is disadvantageous in terms of size and cost. Further, when the optical axis deviation of the objective lens is caused by the eccentricity of the optical disk, it is difficult to follow the response speed of the liquid crystal because the frequency at which the optical axis deviation of the objective lens changes is high.

(b)収差の補正量を大きくとりたい場合は、液晶を駆動する電極の分割数を増やすか、よりスムーズな位相分布を実現する必要がある。この場合は、複数の収差に対応した電極パターンを備えることは、収差補正素子の複雑化を招く。   (B) In order to increase the correction amount of aberration, it is necessary to increase the number of divisions of the electrodes that drive the liquid crystal or to realize a smoother phase distribution. In this case, providing an electrode pattern corresponding to a plurality of aberrations causes complication of the aberration correction element.

また、特許文献3記載の従来の光ヘッド装置においては、複数の収差を同時に扱っているため、例えば球面収差の補正をしている場合に、対物レンズの光軸ずれが生じてコマ収差を補正する場合に、同時にチルトによるコマ収差が生じているような場合の制御はかなり複雑であり、必要な補正の精度を確保することが難しい。   In addition, since the conventional optical head device described in Patent Document 3 handles a plurality of aberrations at the same time, for example, when correcting spherical aberration, the optical axis shift of the objective lens occurs to correct coma aberration. In this case, the control in the case where coma aberration due to tilt occurs at the same time is quite complicated, and it is difficult to ensure the necessary correction accuracy.

そこで、特許文献5記載の従来の光ピックアップ装置では、対物レンズのレンズシフトの検出値を用いた適応的な方法ではなく、本質的に対物レンズの光軸ずれにより副次的な収差の発生が無い位相可変型の収差補正光学素子を用いているが、特許文献1〜特許文献4記載の従来の光ヘッド装置と同様に収差補正光学素子として液晶光学素子を用いるため、その素子が高価であり、さらに駆動回路と駆動電力を必要とするという問題がある。   Therefore, the conventional optical pickup device described in Patent Document 5 is not an adaptive method using the detection value of the lens shift of the objective lens, but essentially generates secondary aberrations due to the optical axis shift of the objective lens. Although there is no phase variable aberration correction optical element, a liquid crystal optical element is used as the aberration correction optical element as in the conventional optical head device described in Patent Documents 1 to 4, and the element is expensive. Furthermore, there is a problem that a driving circuit and driving power are required.

本発明は以上の点に鑑みなされたもので、2層以上の多層光記録媒体の基板厚さのバラツキや、記録又は再生する層の違いによるトータル基板厚の差に起因して発生する球面収差の影響を受け難くし、良好に記録再生ができる光ピックアップ装置を提供することを目的とする。   The present invention has been made in view of the above points, and spherical aberration generated due to variations in the substrate thickness of a multilayer optical recording medium having two or more layers and differences in the total substrate thickness due to differences in recording or reproducing layers. It is an object of the present invention to provide an optical pickup device that is less susceptible to the influence of the above and can perform good recording and reproduction.

また、本発明の他の目的は、球面収差を補正するための収差補正光学素子を備えることなく、小型軽量であり、しかも安価な構成の光ピックアップ装置を提供することにある。   Another object of the present invention is to provide an optical pickup device having a small size and a light weight without including an aberration correction optical element for correcting spherical aberration.

上記の目的を達成するため、本発明は、光源から出射された所定波長のレーザー光を、少なくとも第1の情報記録面と第2の情報記録面とがレーザー光の光軸方向に積層された2層以上の光記録媒体の第1の情報記録面又は第2の情報記録面に対して、対物レンズで集光して照射して記録または再生する光ピックアップ装置において、
光記録媒体は、
レーザー光の入射側表面から第1の情報記録面までの基板厚最小値が0.56mm、レーザー光の入射側表面から第2の情報記録面までの基板厚最大値が0.64mm、第1の情報記録面と第2の情報記録面との距離が0.055±0.005mm以内、第1の情報記録面の透過率が40〜60%で反射率が5〜12%、第2の情報記録面の反射率が5〜12%の相変化型記録媒体であり、第1の情報記録面及び第2の情報記録面には、渦巻状又は同心円状に情報信号記録再生用のグルーブ溝が形成され、かつ、隣接する2つのグルーブ溝間にはランドが形成され、ランドには所定間隔で少なくともアドレス情報がプリピットとして形成されており、グルーブ溝とランドとの境界の側壁は単一周波数140.6±42.2kHzで蛇行形成されており、
レーザー光を集光する対物レンズの実効的な開口数を0.64以下とし、球面収差補正手段を設けることなく対物レンズにより集光したレーザー光により第1の情報記録面又は第2の情報記録面のグルーブ溝に、チャネルビット長146.7±1.5nmで情報信号を記録再生することを特徴とする。
In order to achieve the above object, according to the present invention, a laser beam having a predetermined wavelength emitted from a light source is formed by laminating at least a first information recording surface and a second information recording surface in the optical axis direction of the laser beam. In an optical pickup device for recording or reproducing by condensing and irradiating the first information recording surface or the second information recording surface of an optical recording medium having two or more layers with an objective lens,
Optical recording media
The substrate thickness minimum value from the laser light incident side surface to the first information recording surface is 0.56 mm, the substrate thickness maximum value from the laser light incident side surface to the second information recording surface is 0.64 mm, the first The distance between the information recording surface and the second information recording surface is within 0.055 ± 0.005 mm, the transmittance of the first information recording surface is 40 to 60%, the reflectance is 5 to 12%, the second A phase change recording medium having a reflectivity of 5 to 12% on an information recording surface, and a groove for information signal recording and reproduction in a spiral shape or a concentric shape on the first information recording surface and the second information recording surface And a land is formed between two adjacent groove grooves, and at least address information is formed as pre-pits at predetermined intervals in the land, and the side wall of the boundary between the groove groove and the land has a single frequency. Meandering at 140.6 ± 42.2kHz,
The effective numerical aperture of the objective lens for condensing the laser light is set to 0.64 or less, and the first information recording surface or the second information recording is performed by the laser light condensed by the objective lens without providing spherical aberration correcting means. An information signal is recorded and reproduced with a channel bit length of 146.7 ± 1.5 nm in the groove groove of the surface.

2層以上の光記録媒体の複数の情報記録面に選択的に集光して、情報信号の記録又は再生を行う場合に、特別な球面収差補正を行わないときには、基板厚の差に起因して発生する球面収差は、対物レンズの開口数(NA)が大きい方がその影響が少なく、一方、記録再生ジッタについては、対物レンズのNAが小さい方が、ジッタの値は良い。そこで、本発明では、2層以上の光記録媒体に情報信号の記録又は再生を行う場合に、各情報記録面での球面収差と記録再生ジッタの両方がそれぞれ実用上問題ない小さな値となるように、対物レンズのNAの範囲を0.64以下とすることにより、特別な球面収差補正手段を設けなくとも、各情報記録面に情報信号を良好に記録再生することができる。   When the information signal is recorded or reproduced by selectively focusing on a plurality of information recording surfaces of an optical recording medium having two or more layers, when special spherical aberration correction is not performed, it is caused by a difference in substrate thickness. The larger the numerical aperture (NA) of the objective lens, the smaller the influence of the spherical aberration generated in this manner. On the other hand, as for the recording / reproducing jitter, the smaller the NA of the objective lens, the better the jitter value. Therefore, in the present invention, when information signals are recorded or reproduced on an optical recording medium having two or more layers, both the spherical aberration and the recording / reproducing jitter on each information recording surface are small values that have no practical problem. In addition, by setting the NA range of the objective lens to 0.64 or less, it is possible to record and reproduce information signals on each information recording surface satisfactorily without providing special spherical aberration correction means.

本発明によれば、所定の諸元の2層以上の光記録媒体の各情報記録面に対して、レーザー光を集光する対物レンズの開口数(NA)を所定の値以下とすることにより、特別な球面収差補正手段を設けなくとも、2層以上の光記録媒体の基板厚さのバラツキや、記録又は再生する情報記録面(記録層)の違いによるトータル基板厚の差に起因して発生する球面収差の影響を受け難くし、良好に記録再生を行うことができる。   According to the present invention, by setting the numerical aperture (NA) of an objective lens for condensing laser light to a predetermined value or less for each information recording surface of an optical recording medium having two or more layers having a predetermined specification. Even without special spherical aberration correction means, due to variations in the substrate thickness of two or more optical recording media and differences in the total substrate thickness due to differences in the information recording surface (recording layer) to be recorded or reproduced It is difficult to be affected by the generated spherical aberration, and recording and reproduction can be performed satisfactorily.

従って、本発明によれば、従来のように球面収差を補正するための収差補正光学素子を備える必要がなく、光ピックアップの構成を簡単にすることができ、小型、軽量化することができ、また、材料コストや組立て、調整コストを削減することが可能である。   Therefore, according to the present invention, it is not necessary to provide an aberration correction optical element for correcting spherical aberration as in the prior art, the configuration of the optical pickup can be simplified, and the size and weight can be reduced. Moreover, it is possible to reduce material cost, assembly, and adjustment cost.

次に、発明を実施するための最良の形態について図面と共に説明する。図1は本発明になる光ピックアップ装置の一実施の形態の構成図を示す。同図において、光源である半導体レーザー11から出射されたレーザー光は、コリメータレンズ12により平行光となり、トラッキング方式として公知の3ビーム法、あるいは差動プッシュプル(DPP)法を使用する場合は、回折格子13で3ビームに分割される。3ビームのレーザー光の偏光方向は、偏光ビームスプリッタ(PBS)14の反射面に対してP偏光としているため、レーザー光の大部分はPBS14の反射面を通過し、レーザー光の一部はPBS14の反射面で反射して半導体レーザー11のパワーを検出し制御するためのフロントモニタ15に入射する。   Next, the best mode for carrying out the invention will be described with reference to the drawings. FIG. 1 shows a configuration diagram of an embodiment of an optical pickup device according to the present invention. In the figure, laser light emitted from a semiconductor laser 11 as a light source is converted into parallel light by a collimator lens 12, and when a known three-beam method or a differential push-pull (DPP) method is used as a tracking method, Divided into three beams by the diffraction grating 13. Since the polarization direction of the three-beam laser light is P-polarized with respect to the reflecting surface of the polarizing beam splitter (PBS) 14, most of the laser light passes through the reflecting surface of the PBS 14, and a part of the laser light is PBS 14 The light is reflected by the reflecting surface of the semiconductor laser 11 and is incident on the front monitor 15 for detecting and controlling the power of the semiconductor laser 11.

PBS14の反射面を通過したレーザー光は、1/4波長板16により円偏光に変換された後、対物レンズ17に入射して所定の基板厚、所定の反射率と透過率の第1層と第2層の情報記録面を有する円盤状の相変化型光記録媒体である光ディスク1に集光され、3つのスポットを形成する。これら3つのスポットのうち、トラック走査方向に対して真中のメインスポットはトラック中心線上を走査し、残りの2つのスポットはメインスポットに対して一方が先行し他方が後行する位置で、かつ、メインスポットに対して、ディスク半径方向に1/2トラックピッチ程度互いに反対方向にずれた位置を走査するサブスポットとなる。   The laser light that has passed through the reflection surface of the PBS 14 is converted into circularly polarized light by the quarter-wave plate 16 and then enters the objective lens 17 to enter the first layer having a predetermined substrate thickness, predetermined reflectance, and transmittance. The light is condensed on the optical disk 1 which is a disk-shaped phase change optical recording medium having the information recording surface of the second layer to form three spots. Of these three spots, the main spot in the middle with respect to the track scanning direction scans on the track center line, and the remaining two spots are positions where one precedes and the other follows the main spot, and This is a sub-spot that scans the main spot at a position shifted by about 1/2 track pitch in the disk radial direction.

光ディスク1上の3つのスポットは光ディスク1で反射され、反射光として再度対物レンズ17と1/4波長板16を通ることにより、入射光に対して90°偏光面が変わった直線偏光に変換される。この1/4波長板16を通過した反射光は、PBS14の反射面に対してS偏光となるため、PBS14の反射面で反射された後、検出レンズ18を通り集光され、フォーカシング方式として非点収差法を使用する場合は、シリンドリカルレンズ19を通り、公知の構成の光検出器20に入射して光電変換され、公知の方法で信号が検出される。   The three spots on the optical disk 1 are reflected by the optical disk 1, and are converted into linearly polarized light whose 90 ° polarization plane is changed with respect to the incident light by passing again through the objective lens 17 and the quarter wavelength plate 16 as reflected light. The Since the reflected light that has passed through the quarter-wave plate 16 becomes S-polarized light with respect to the reflective surface of the PBS 14, it is reflected by the reflective surface of the PBS 14 and then collected through the detection lens 18 to be non-focusing. When the point aberration method is used, the light passes through the cylindrical lens 19 and enters the photodetector 20 having a known configuration, is photoelectrically converted, and a signal is detected by a known method.

このように、本実施の形態では、球面収差を補正するための収差補正光学素子を備えておらず、後述するように、対物レンズ17の開口数(NA)を最適な値に設定することにより、収差補正光学素子を用いなくても球面収差の影響を極力小さく抑え、2層の光ディスク1への記録再生を良好に行おうというものである。   Thus, in the present embodiment, no aberration correction optical element for correcting spherical aberration is provided, and the numerical aperture (NA) of the objective lens 17 is set to an optimum value as will be described later. Thus, the effect of spherical aberration is suppressed as much as possible without using an aberration correction optical element, and recording and reproduction on the two-layered optical disk 1 are favorably performed.

図2は光ディスク1に対する記録再生方法の一例の説明図を示す。図2に示すように、光ディスク1は、下面の入射光側に基板1cが形成されており、基板1cの上面には半透明の反射膜からなる第1の情報記録面1aが形成され、第1の情報記録面1aの上面には中間層1dが形成され、中間層1dの上面に反射膜からなる第2の情報記録面1bが形成された2層構造の円盤状の相変化型記録媒体である。   FIG. 2 is an explanatory diagram showing an example of a recording / reproducing method for the optical disc 1. As shown in FIG. 2, the optical disc 1 has a substrate 1c formed on the lower surface on the incident light side, and a first information recording surface 1a made of a translucent reflective film is formed on the upper surface of the substrate 1c. A disc-shaped phase change recording medium having a two-layer structure in which an intermediate layer 1d is formed on the upper surface of one information recording surface 1a, and a second information recording surface 1b made of a reflective film is formed on the upper surface of the intermediate layer 1d. It is.

図2において、2層の光ディスク1の第1の情報記録面1aに対して情報信号を記録又は再生するときには、図1の対物レンズ17を光ディスク1に対して図2に17−1で示す高さ位置に移動してレーザー光22を第1の情報記録面1aに集光する。他方、2層の光ディスク1の第2の情報記録面1bに対して情報信号を記録又は再生するときには、図1の対物レンズ17を光ディスク1に対して図2に17−2で示す高さ位置に移動してレーザー光23を第2の情報記録面1bに集光する。   2, when an information signal is recorded on or reproduced from the first information recording surface 1a of the two-layer optical disc 1, the objective lens 17 shown in FIG. Then, the laser beam 22 is focused on the first information recording surface 1a. On the other hand, when an information signal is recorded on or reproduced from the second information recording surface 1b of the two-layer optical disc 1, the objective lens 17 shown in FIG. To focus the laser beam 23 on the second information recording surface 1b.

対物レンズ17の設計においては、光ディスク1の基板厚を考慮して球面収差が最小となるように設計される。2層の光ディスク1では、第1の情報記録面1aの基板厚と第2の情報記録面1bの基板厚が異なるため、対物レンズ17を各情報記録面1a,1bの各々に対して最適な設計とした場合には、その設計仕様は異なるものとなる。同一の対物レンズ17で各情報記録面1a,1bに対して記録再生を行おうとすると、球面収差が発生し各情報記録面1a,1bに対して良好な記録再生を行うことは困難である。   The objective lens 17 is designed so that the spherical aberration is minimized in consideration of the substrate thickness of the optical disk 1. In the two-layer optical disc 1, the substrate thickness of the first information recording surface 1a and the substrate thickness of the second information recording surface 1b are different, so that the objective lens 17 is optimal for each of the information recording surfaces 1a and 1b. In the case of design, the design specifications are different. When recording / reproduction is performed on each information recording surface 1a, 1b with the same objective lens 17, spherical aberration occurs, and it is difficult to perform good recording / reproduction on each information recording surface 1a, 1b.

従来の光ピックアップ装置では、2層の光ディスク1に記録再生を行うときに発生する球面収差については、前述したように収差補正光学素子を新たに設け、球面収差補正を行うことにより、2層の光ディスク1への記録再生を良好に行おうとしている。しかし、そのために、光ピックアップの構成は複雑なものとなり、小型、軽量化を阻害すると共に、材料コストや組立て、調整コストが増加することになる。   In the conventional optical pickup device, the spherical aberration that occurs when recording / reproducing is performed on the two-layer optical disc 1 is newly provided with an aberration correction optical element as described above. An attempt is being made to satisfactorily perform recording and reproduction on the optical disc 1. However, the configuration of the optical pickup is complicated, which hinders downsizing and weight reduction, and increases material costs, assembly, and adjustment costs.

そこで、本実施の形態では、球面収差を補正するための収差補正光学素子を備えることなく、以下説明するように、対物レンズ17のNAを最適な値に設定することにより、球面収差の影響を極力小さく抑え、2層の光ディスク1への記録再生を良好に行うものである。   Therefore, in the present embodiment, without providing an aberration correction optical element for correcting the spherical aberration, the NA of the objective lens 17 is set to an optimum value as described below, thereby reducing the influence of the spherical aberration. It is kept as small as possible, and recording / reproduction on the two-layered optical disk 1 is favorably performed.

本実施の形態は、例えば2層の光ディスク1をDVD−RWとし、光ディスク1は、表面から図2の第1の情報記録面1aまでの基板厚最小値が0.56mm、光ディスク1の表面から図2の第2の情報記録面1bまでの基板厚最大値が0.64mm、光ディスク1の第1の情報記録面1aと第2の情報記録面1bとの距離が0.055±0.005mm以内、第1の情報記録面1aの透過率が40〜60%、反射率が5〜12%(望ましくは7〜12%)、第2の情報記録面1bの反射率が5〜12%(望ましくは5〜7%)の2層の相変化型記録媒体である。   In the present embodiment, for example, a two-layer optical disc 1 is a DVD-RW, and the optical disc 1 has a minimum substrate thickness of 0.56 mm from the surface to the first information recording surface 1a in FIG. The maximum substrate thickness up to the second information recording surface 1b in FIG. 2 is 0.64 mm, and the distance between the first information recording surface 1a and the second information recording surface 1b of the optical disc 1 is 0.055 ± 0.005 mm. The transmittance of the first information recording surface 1a is 40 to 60%, the reflectance is 5 to 12% (preferably 7 to 12%), and the reflectance of the second information recording surface 1b is 5 to 12% ( Preferably, it is a 5 to 7%) two-layer phase change recording medium.

なお、情報記録面1bの反射率は、情報記録面1aを透過して情報記録面1bで反射し、再度情報記録面1aを透過して戻ってきた光量と入射光の比であるので、情報記録面1aの透過率を上げると、情報記録面1bの反射率も上がる。   The reflectance of the information recording surface 1b is the ratio of the amount of light incident on the information recording surface 1a, reflected by the information recording surface 1b, and transmitted again through the information recording surface 1a to the incident light. Increasing the transmittance of the recording surface 1a increases the reflectance of the information recording surface 1b.

また、光ディスク1は渦巻状又は同心円状の情報信号記録再生用のトラック溝(グルーブ溝)がディスク半径方向に所定のトラックピッチで形成されると共に、隣接するグルーブ溝間にはランドが形成されており、グルーブ溝とランドとの境界の側壁は単一周波数(例えば、140.6±42.2kHz)で微小に蛇行(ウォブリング)されており、ランドには所定間隔でアドレス情報を載せたプリピットがディスク製造段階で記録された、所謂Wobble&LPP形式である。   The optical disk 1 has spiral or concentric information signal recording / reproducing track grooves (groove grooves) formed at a predetermined track pitch in the radial direction of the disk, and lands are formed between adjacent groove grooves. The side wall at the boundary between the groove groove and the land is slightly meandered (wobbled) at a single frequency (for example, 140.6 ± 42.2 kHz), and prepits on which address information is placed at predetermined intervals are landed. This is the so-called Wobble & LPP format recorded at the disc manufacturing stage.

更に、光ディスク1は、チャネルビット長(channel bit length)が146.7±1.5nmで、記録容量が8.54GBの場合と、チャネルビット長(channel bit length)が133.3±1.4nmで、記録容量が9.4GBの場合の光ディスクを対象とする。また、使用するレーザー光の波長は、635〜660nmの範囲で中心値650nmである。   Further, the optical disc 1 has a channel bit length of 146.7 ± 1.5 nm and a recording capacity of 8.54 GB, and a channel bit length of 133.3 ± 1.4 nm. Thus, an optical disk having a recording capacity of 9.4 GB is targeted. Moreover, the wavelength of the laser beam to be used has a center value of 650 nm in the range of 635 to 660 nm.

図3は対物レンズ17のNAと波面収差と基板厚との関係を光学シミュレーションにより求めた図を示す。光学系の設計は、単層の基板厚0.6mmで行う。2層の光ディスクの情報記録面を、この基板厚0.6mmに対して30μm厚い0.63mm(t0.63)と、30μm薄い0.57mm(t0.57)に設定した場合、図3にI、IIで示すように、波面収差は対物レンズ17のNAが0.6〜0.65の範囲では、約30mλ〜約40mλとなるが、両者の差は約5mλであり、両者はNAの増加に伴いほぼ同等に増加する。   FIG. 3 shows the relationship between the NA of the objective lens 17, wavefront aberration, and substrate thickness obtained by optical simulation. The optical system is designed with a single-layer substrate thickness of 0.6 mm. When the information recording surface of the two-layer optical disc is set to 0.63 mm (t0.63) 30 μm thick and 0.57 mm (t0.57) 30 μm thinner than the substrate thickness 0.6 mm, FIG. As shown by II, the wavefront aberration is about 30 mλ to about 40 mλ when the NA of the objective lens 17 is in the range of 0.6 to 0.65, but the difference between them is about 5 mλ. As a result, it increases almost equally.

同様に、上記の基板厚0.6mmに対して40μm厚い0.64mm(t0.64)と、40μm薄い0.56mm(t0.56)に設定した場合、図3にIII、IVで示すように、波面収差は対物レンズ17のNAが0.6〜0.65の範囲では、約40mλ〜約55mλとなるが、両者の差は約5mλであり、両者はNAの増加に伴いほぼ同等に増加する。   Similarly, when the thickness is set to 0.64 mm (t0.64) which is 40 μm thick and 0.56 mm (t0.56) which is 40 μm thinner than the above substrate thickness of 0.6 mm, as shown by III and IV in FIG. The wavefront aberration is about 40 mλ to about 55 mλ when the NA of the objective lens 17 is in the range of 0.6 to 0.65, but the difference between the two is about 5 mλ. To do.

そこで、本実施の形態では、対物レンズ17は、同一の対物レンズで第1の情報記録面1aと第2の情報記録面1bの球面収差が均等に小さくなるように、各層の中間の基板厚0.6mmにおいて対物レンズ17を設計している。   Therefore, in the present embodiment, the objective lens 17 has a substrate thickness intermediate between the layers so that the spherical aberration of the first information recording surface 1a and the second information recording surface 1b is uniformly reduced with the same objective lens. The objective lens 17 is designed at 0.6 mm.

図3より、基板厚が設計値の0.6mmからズレることにより、その差に伴って球面収差が悪化していることが分かる。また、対物レンズ17のNAについては、NAが小さい方が基板厚の差の影響を受けにくく、球面収差が小さいことが分かる。   As can be seen from FIG. 3, when the substrate thickness deviates from the design value of 0.6 mm, the spherical aberration deteriorates with the difference. It can also be seen that the NA of the objective lens 17 is less affected by the difference in substrate thickness when the NA is smaller, and the spherical aberration is smaller.

一方、図4は対物レンズ17のNAを変化させたときの記録再生ジッタを測定した結果を示す。ただし、図4はチャネルビット長(channel bit length)が133.3±1.4nmの場合で単層の光ディスクに対して信号を記録し再生すると共に、再生信号をジッタメータで測定したものである。このときの対物レンズのNAは0.60、0.625、0.65のものを切り替え使用している。   On the other hand, FIG. 4 shows the result of measuring the recording / reproducing jitter when the NA of the objective lens 17 is changed. However, FIG. 4 shows a case where a signal is recorded on and reproduced from a single-layer optical disk when the channel bit length is 133.3 ± 1.4 nm, and the reproduced signal is measured with a jitter meter. At this time, NAs of 0.60, 0.625, and 0.65 are switched and used.

図3より、対物レンズ17のNAは小さい方が基板厚の差の影響を受けにくく、球面収差が小さいことが分かったが、図4より、対物レンズ17のNAが小さいと光ディスク1の記録面に集光されたスポット径が大きくなり、記録再生時の解像度が悪化し、ジッタが悪くなることが分かる。   3 that the smaller NA of the objective lens 17 is less affected by the difference in substrate thickness and the spherical aberration is smaller. However, from FIG. 4, when the NA of the objective lens 17 is small, the recording surface of the optical disc 1 is obtained. It can be seen that the spot diameter focused on the surface increases, the resolution during recording and reproduction deteriorates, and the jitter deteriorates.

また、図5は光学シミュレーションにより、対物レンズ17のNAを変化させたときの集光スポットの最大強度とX方向とY方向のスポット径(半値全幅)を示す。図5より、対物レンズ17のNAが小さくなると、スポット径が大きくなり、最大強度が小さくなることが分かる。このために、対物レンズ17のNAが小さくなると、集光スポットの解像度が下がり、記録再生ジッタが悪化する。   FIG. 5 shows the maximum intensity of the focused spot and the spot diameters in the X and Y directions (full width at half maximum) when the NA of the objective lens 17 is changed by optical simulation. FIG. 5 shows that the spot diameter increases and the maximum intensity decreases as the NA of the objective lens 17 decreases. For this reason, when the NA of the objective lens 17 is reduced, the resolution of the focused spot is lowered and the recording / reproducing jitter is deteriorated.

以上のように、対物レンズ17のNAは小さい方が基板厚の差の影響を受け難く、球面収差が小さくなり、逆にNAが小さすぎると記録再生ジッタは悪化する。そこで、本実施の形態では、第1の情報記録面(第1層)1aと第2の情報記録面(第2層)1bにおいて球面収差の影響を受け難く、良好な記録再生を可能とするために、図3の対物レンズ17のNAと球面収差、基板厚との関係より、球面収差が第1の情報記録面1aと第2の情報記録面1bにおいて55mλ以下となるように、対物レンズ17のNAを0.64以下と規定したことを特徴とする。   As described above, the smaller the NA of the objective lens 17 is, the less affected by the difference in substrate thickness, the smaller the spherical aberration, and conversely, if the NA is too small, the recording / reproducing jitter deteriorates. Therefore, in the present embodiment, the first information recording surface (first layer) 1a and the second information recording surface (second layer) 1b are hardly affected by spherical aberration, and can be recorded and reproduced satisfactorily. Therefore, from the relationship between the NA of the objective lens 17 in FIG. 3 and the spherical aberration and the substrate thickness, the objective lens is set so that the spherical aberration is 55 mλ or less on the first information recording surface 1a and the second information recording surface 1b. 17 NA is defined as 0.64 or less.

ただし、図4より、対物レンズ17のNAが小さい場合については、ジッタが悪化するため、上記のNAは0.64以下であれば、なるべく大きい値とした方が、より良好な記録再生が可能となるので望ましい。   However, as shown in FIG. 4, when the NA of the objective lens 17 is small, the jitter deteriorates. Therefore, if the above NA is 0.64 or less, it is possible to perform better recording and reproduction by setting the NA as large as possible. This is desirable.

ここで、前記したNAが0.64以下の対物レンズ17について具体的に説明する。例えば、NAが0.65の対物レンズをレンズホルダ(ボビンともいう)に装着して、レンズホルダの穴径(=アパーチャ)をNAが0.65の対物レンズの有効径よりも小さくすることで、NAが0.64以下の対物レンズと同等の光学特性を有する対物レンズを得ることができる。換言すれば、NAが0.65の対物レンズを用いて実効的なNAが0.64以下の対物レンズを得ることができる。   Here, the objective lens 17 having the NA of 0.64 or less will be described in detail. For example, by mounting an objective lens having an NA of 0.65 on a lens holder (also called a bobbin), the hole diameter (= aperture) of the lens holder is made smaller than the effective diameter of the objective lens having an NA of 0.65. , An objective lens having an optical characteristic equivalent to that of an objective lens having an NA of 0.64 or less can be obtained. In other words, an objective lens having an effective NA of 0.64 or less can be obtained using an objective lens having an NA of 0.65.

レンズホルダに対物レンズを装着する際には、レンズの中心(光軸)に穴の中心を合わせることが必要であるが、レンズの光軸に対して穴の中心がずれても、実効的なNAは小さくなってしまう。前記したのは、実効的なNAが0.64以下の対物レンズを得るために、NAが0.65の対物レンズを用いる場合について説明したが、これに限定されることなく、結果的に対物レンズのNAが実効的に0.64以下となる開口制限が与えられたならば、NAが0.65よりも大きい、例えばNAが0.70等の対物レンズを用いることができるのはいうまでもない。   When attaching the objective lens to the lens holder, it is necessary to align the center of the hole with the center (optical axis) of the lens, but it is effective even if the center of the hole is deviated from the optical axis of the lens. NA becomes small. In the above description, the case where an objective lens having an NA of 0.65 is used in order to obtain an objective lens having an effective NA of 0.64 or less has been described. It goes without saying that an objective lens having an NA greater than 0.65, for example, NA of 0.70 can be used if an aperture limit is given so that the NA of the lens is effectively 0.64 or less. Nor.

このように、本実施の形態によれば、対物レンズ17のNAを所定範囲内に選定することにより、従来例のように球面収差を補正するための収差補正光学素子を備えることもなく、2層光ディスク1の各層の基板厚の差により発生する球面収差の影響を受け難くし、各層に対して良好に記録再生を行うことが可能となる。   Thus, according to the present embodiment, by selecting the NA of the objective lens 17 within a predetermined range, there is no need for an aberration correction optical element for correcting spherical aberration as in the conventional example. It becomes difficult to be affected by the spherical aberration caused by the difference in the substrate thickness of each layer of the layered optical disc 1, and it becomes possible to perform recording and reproduction with respect to each layer satisfactorily.

なお、上記の実施の形態はチャネルビット長(channel bit length)が133.3±1.4nmの場合で2層の光ディスク(記録容量8.54GB)に対して情報信号を記録再生するが、本発明はこれに限らず、チャネルビット長(channel bit length)が133.3±1.4nmの場合で2層の光ディスク(記録容量9.4GB)にも対応することができる。   In the above embodiment, when the channel bit length is 133.3 ± 1.4 nm, an information signal is recorded and reproduced with respect to a two-layer optical disc (recording capacity 8.54 GB). The present invention is not limited to this, and can be applied to a two-layer optical disc (recording capacity 9.4 GB) when the channel bit length is 133.3 ± 1.4 nm.

本発明の光ピックアップ装置の一実施の形態の構成図である。It is a block diagram of one embodiment of the optical pickup device of the present invention. 2層光ディスクに対する記録再生時の対物レンズの位置を模式的に示す図である。It is a figure which shows typically the position of the objective lens at the time of the recording / reproducing with respect to a 2 layer optical disk. 対物レンズのNAと球面収差と基板厚との関係の一例を示す図である。It is a figure which shows an example of the relationship between NA of an objective lens, spherical aberration, and board | substrate thickness. 対物レンズのNAと記録再生ジッタとの関係の一例を示す図である。It is a figure which shows an example of the relationship between NA of an objective lens, and a recording / reproducing jitter. 対物レンズのNAと集光スポットの最大強度とスポット径の関係の一例を示す図である。It is a figure which shows an example of the relationship between NA of an objective lens, the maximum intensity | strength of a condensing spot, and a spot diameter.

符号の説明Explanation of symbols

1 2層光ディスク
1a 第1の情報記録面(第1層)
1b 第2の情報記録面(第2層)
1c 基板
1d 中間層
11 半導体レーザー
12 コリメータレンズ
13 回折格子
14 偏光ビームスプリッタ(PBS)
15 フロントモニタ
16 1/4波長板
17 対物レンズ
18 検出レンズ
19 シリンドリカルレンズ
20 光検出器


1 Double-layer optical disc 1a First information recording surface (first layer)
1b Second information recording surface (second layer)
1c substrate 1d intermediate layer 11 semiconductor laser 12 collimator lens 13 diffraction grating 14 polarization beam splitter (PBS)
15 Front monitor 16 1/4 wavelength plate 17 Objective lens 18 Detection lens 19 Cylindrical lens 20 Photo detector


Claims (1)

光源から出射された所定波長のレーザー光を、少なくとも第1の情報記録面と第2の情報記録面とが前記レーザー光の光軸方向に積層された2層以上の光記録媒体の前記第1の情報記録面又は前記第2の情報記録面に対して、対物レンズで集光して照射して記録または再生する光ピックアップ装置において、
前記光記録媒体は、
前記レーザー光の入射側表面から前記第1の情報記録面までの基板厚最小値が0.56mm、前記レーザー光の入射側表面から前記第2の情報記録面までの基板厚最大値が0.64mm、前記第1の情報記録面と前記第2の情報記録面との距離が0.055±0.005mm以内、前記第1の情報記録面の透過率が40〜60%で反射率が5〜12%、前記第2の情報記録面の反射率が5〜12%の相変化型記録媒体であり、
前記第1の情報記録面及び前記第2の情報記録面には、渦巻状又は同心円状に情報信号記録再生用のグルーブ溝が形成され、かつ、隣接する2つの前記グルーブ溝間にはランドが形成され、前記ランドには所定間隔で少なくともアドレス情報がプリピットとして形成されており、前記グルーブ溝と前記ランドとの境界の側壁は単一周波数140.6±42.2kHzで蛇行形成されており、
前記レーザー光を集光する前記対物レンズの実効的な開口数を0.64以下とし、球面収差補正手段を設けることなく前記対物レンズにより集光した前記レーザー光により前記第1の情報記録面又は前記第2の情報記録面の前記グルーブ溝に、チャネルビット長146.7±1.5nmで情報信号を記録再生することを特徴とする光ピックアップ装置。
Laser light having a predetermined wavelength emitted from a light source is a first optical recording medium having two or more layers in which at least a first information recording surface and a second information recording surface are stacked in the optical axis direction of the laser light. In the optical pickup device for recording or reproducing the information recording surface or the second information recording surface by focusing and irradiating with an objective lens,
The optical recording medium is
The substrate thickness minimum value from the laser beam incident side surface to the first information recording surface is 0.56 mm, and the substrate thickness maximum value from the laser beam incident side surface to the second information recording surface is 0.5 mm. 64 mm, the distance between the first information recording surface and the second information recording surface is within 0.055 ± 0.005 mm, the transmittance of the first information recording surface is 40 to 60%, and the reflectance is 5 A phase change recording medium having a reflectivity of 5 to 12% of the second information recording surface of -12%,
On the first information recording surface and the second information recording surface, groove grooves for information signal recording / reproduction are formed in a spiral shape or concentric circle shape, and a land is formed between two adjacent groove grooves. And at least address information is formed as pre-pits at predetermined intervals on the land, and a side wall at the boundary between the groove and the land is meandered at a single frequency of 140.6 ± 42.2 kHz,
The effective numerical aperture of the objective lens for condensing the laser light is set to 0.64 or less, and the first information recording surface or the first information recording surface by the laser light condensed by the objective lens without providing spherical aberration correction means. An optical pickup device for recording and reproducing information signals with a channel bit length of 146.7 ± 1.5 nm in the groove groove of the second information recording surface.
JP2005265322A 2005-09-13 2005-09-13 Optical pickup apparatus Pending JP2007080341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005265322A JP2007080341A (en) 2005-09-13 2005-09-13 Optical pickup apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265322A JP2007080341A (en) 2005-09-13 2005-09-13 Optical pickup apparatus

Publications (1)

Publication Number Publication Date
JP2007080341A true JP2007080341A (en) 2007-03-29

Family

ID=37940504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265322A Pending JP2007080341A (en) 2005-09-13 2005-09-13 Optical pickup apparatus

Country Status (1)

Country Link
JP (1) JP2007080341A (en)

Similar Documents

Publication Publication Date Title
US7227819B2 (en) Optical pick-up head, optical information apparatus, and optical information reproducing method
US7778135B2 (en) Optical recording medium, method for recording/reproducing information to/from optical recording medium and apparatus for recording/reproducing information
JP4994178B2 (en) Optical recording medium, information recording or reproducing method, and information recording or reproducing apparatus
US7842366B2 (en) Multi-layer optical information recording medium
JP2004171635A (en) Information reproducing method and information reproducing apparatus of multilayer optical disk
JP5281115B2 (en) Optical recording medium manufacturing method and optical recording medium
US20080109837A1 (en) Optical recording medium, information recording or reproducing method, and information recording or reproducing apparatus
WO2003075266A1 (en) Optical head and optical recording/reproducing device using it, and aberration correction method
US20080165655A1 (en) Optical pickup device
US6667947B2 (en) Optical multi-layer information recordating medium
EP1755116A2 (en) Optical pickup apparatus capable of detecting and compensating for spherical aberration caused by thickness variation of recording layer
JPWO2007046284A1 (en) Optical head and optical disk apparatus
JP2005032423A (en) Optical pickup for reducing focus offset, and optical recording and/or reproducing apparatus adopting it
US7298675B2 (en) Multilayer recording medium and optical pickup for recording and/or reproducing the same
WO2007046256A1 (en) Optical head device and optical disc device
US7952978B2 (en) Optical control device, optical information recording/reproducing device, optical information recording medium and optical head control method
JP4781601B2 (en) Optical pickup device and manufacturing method thereof
JP2007080341A (en) Optical pickup apparatus
JP2004259439A (en) Optical disk and its recording and playing-back device
JP4356017B2 (en) OPTICAL HEAD DEVICE AND INFORMATION PROCESSING DEVICE USING OPTICAL RECORDING MEDIUM
JP4505979B2 (en) Optical head, light emitting / receiving element, and optical recording medium recording / reproducing apparatus
JP2008059619A (en) Optical pickup device
JP2009123339A (en) Optical pickup device and its manufacturing method
JP2005209297A (en) Phase variable type aberration correction optical element and optical pickup device
CN101140770A (en) Optical pickup and optical disc apparatus