JP2007077856A - Combustion condition judgment device for internal combustion engine - Google Patents

Combustion condition judgment device for internal combustion engine Download PDF

Info

Publication number
JP2007077856A
JP2007077856A JP2005265293A JP2005265293A JP2007077856A JP 2007077856 A JP2007077856 A JP 2007077856A JP 2005265293 A JP2005265293 A JP 2005265293A JP 2005265293 A JP2005265293 A JP 2005265293A JP 2007077856 A JP2007077856 A JP 2007077856A
Authority
JP
Japan
Prior art keywords
value
pressure fluctuation
internal combustion
combustion
dpth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005265293A
Other languages
Japanese (ja)
Other versions
JP4243600B2 (en
Inventor
Satoshi Yamaguchi
山口  聡
Mamoru Hasegawa
衛 長谷川
Hideki Sakamoto
英樹 坂本
Yoshito Kitayama
由人 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005265293A priority Critical patent/JP4243600B2/en
Publication of JP2007077856A publication Critical patent/JP2007077856A/en
Application granted granted Critical
Publication of JP4243600B2 publication Critical patent/JP4243600B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion condition judgment device for an internal combustion engine capable of accurately judging a combustion condition by eliminating influence of change of an engine operation condition and variation of characteristics of a cylinder pressure sensor. <P>SOLUTION: A judgment threshold DPTH(k) is calculated by multiplying a predetermined value α and a previous value of the maximum pressure change rate dpdθmax (k-1) which is the maximum value of pressure change rate dpdθ detected by the cylinder pressure sensor 2 (S11) together. Limiting processing of the judgment threshold DPTH(k) is performed (S12-S16) and an error counter CERR is incremented when the maximum pressure change rate dpdθ(k) is the judgment threshold DPTH(k) or less (S17, S18). An error rate RERR is calculated based on a value of the error counter CERR, and the occurrence of a misfire is judged (S21-S23) if the error rate RERR exceeds a predetermined reference value RERTH. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の燃焼室内における混合気の燃焼状態を判定する燃焼状態判定装置に関し、特に燃焼室内の圧力変動を検出することにより、燃焼状態を判定するものに関する。   The present invention relates to a combustion state determination device that determines a combustion state of an air-fuel mixture in a combustion chamber of an internal combustion engine, and more particularly to a device that determines a combustion state by detecting pressure fluctuations in the combustion chamber.

特許文献1には、燃焼室内の圧力(筒内圧)を検出する筒内圧センサを設け、筒内圧センサにより検出される筒内圧に基づいて、燃焼状態を判定する装置が示されている。この装置によれば、膨張行程における上死点後30度のタイミングでの筒内圧と、圧縮行程における下死点後30度のタイミングでの筒内圧との差圧が算出され、この差圧が所定レベルを超えると正常燃焼と判定され、差圧が所定レベルを下回ったときは、失火と判定される。   Japanese Patent Application Laid-Open No. 2005-228561 discloses an apparatus that includes a cylinder pressure sensor that detects a pressure in a combustion chamber (cylinder pressure) and determines a combustion state based on the cylinder pressure detected by the cylinder pressure sensor. According to this apparatus, the differential pressure between the in-cylinder pressure at the timing of 30 degrees after the top dead center in the expansion stroke and the in-cylinder pressure at the timing of 30 degrees after the bottom dead center in the compression stroke is calculated. When it exceeds a predetermined level, it is determined as normal combustion, and when the differential pressure falls below a predetermined level, it is determined as misfire.

特開平10−231740号公報JP-A-10-231740

上記従来の装置では、失火判定のための所定レベルが固定されているため、機関運転状態が変化すると、誤判定が起きやすいという課題、あるいは筒内圧センサの特性ばらつきにより、所定レベルが不適切なものとなって誤判定し易いという課題があった。   In the above-described conventional apparatus, the predetermined level for misfire determination is fixed, and therefore the predetermined level is inappropriate due to a problem that erroneous determination is likely to occur when the engine operating state changes or due to characteristic variations of the in-cylinder pressure sensor. There was a problem that it was easy to make an erroneous determination.

本発明はこの点に着目してなされたものであり、機関運転状態の変化や筒内圧センサの特性ばらつきの影響を除いて、正確な燃焼状態の判定を行うことができる内燃機関の燃焼状態判定装置を提供することを目的とする。   The present invention has been made paying attention to this point, and can determine the combustion state of an internal combustion engine that can accurately determine the combustion state, excluding the influence of changes in the engine operating state and variations in characteristics of the in-cylinder pressure sensor. An object is to provide an apparatus.

上記目的を達成するため請求項1に記載の発明は、内燃機関(1)の燃焼室内の圧力変動を検出する圧力変動検出手段(2)を備え、該圧力変動検出手段(2)により検出される圧力変動値(dpdθ)に基づいて、前記燃焼室内の混合気の燃焼状態を判定する内燃機関の燃焼状態判定装置において、前記圧力変動検出手段(2)により検出された前回の圧力変動値の最大値(dpdθmax(k-1))に基づいて閾値(DPTH(k))を算出する閾値算出手段を備え、該閾値算出手段により算出された閾値(DPTH(k))と、検出される圧力変動値の最大値(dpdθmax(k))とを比較し、該比較の結果に基づいて前記燃焼状態を判定することを特徴とする。
具体的には、前記閾値算出手段は、前記の圧力変動値の最大値に「1」より小さい所定値を乗算することにより前記判定閾値を算出することが望ましい。また、前記燃焼状態判定装置は、検出される圧力変動値の最大値が前記判定閾値を以下となったエラー回数及び前記比較の実行回数を計数する計数手段を備え、該計数手段により計数されたエラー回数の前記実行回数に対する比率が所定基準値を所定基準値以上となったとき、失火が発生していると判定することが望ましい。
In order to achieve the above object, the invention described in claim 1 includes pressure fluctuation detecting means (2) for detecting pressure fluctuation in the combustion chamber of the internal combustion engine (1), and is detected by the pressure fluctuation detecting means (2). In the combustion state determination device for an internal combustion engine that determines the combustion state of the air-fuel mixture in the combustion chamber based on the pressure fluctuation value (dpdθ), the previous pressure fluctuation value detected by the pressure fluctuation detection means (2) Threshold calculation means for calculating a threshold value (DPTH (k)) based on the maximum value (dpdθmax (k−1)) is provided, the threshold value (DPTH (k)) calculated by the threshold value calculation means, and the detected pressure It is characterized by comparing the maximum value (dpdθmax (k)) of the fluctuation value and determining the combustion state based on the result of the comparison.
Specifically, it is desirable that the threshold value calculation means calculates the determination threshold value by multiplying the maximum value of the pressure fluctuation value by a predetermined value smaller than “1”. The combustion state determination device includes a counting unit that counts the number of times that the maximum value of the detected pressure fluctuation value is less than or equal to the determination threshold and the number of executions of the comparison, and is counted by the counting unit. It is desirable to determine that a misfire has occurred when the ratio of the number of errors to the number of executions exceeds a predetermined reference value above a predetermined reference value.

請求項1に記載の発明によれば、圧力変動検出手段により検出された前回の圧力変動値の最大値に基づいて閾値が出され、この閾値と、検出される圧力変動値との比較結果に基づいて燃焼状態が判定される。前回の圧力変動値の最大値に基づいて算出される閾値には、機関運転状態の変化や圧力変動検出手段を構成するセンサの特性ばらつきの影響が反映されるので、この閾値と圧力変動値とを比較することにより、正確な燃焼状態の判定を行うことができる。   According to the first aspect of the present invention, the threshold value is output based on the maximum value of the previous pressure fluctuation value detected by the pressure fluctuation detection means, and the comparison result between this threshold value and the detected pressure fluctuation value is obtained. Based on this, the combustion state is determined. The threshold calculated based on the previous maximum value of the pressure fluctuation value reflects the influence of changes in engine operating conditions and variations in the characteristics of the sensors constituting the pressure fluctuation detection means. By comparing these, it is possible to accurately determine the combustion state.

以下本発明の実施の形態を図面を参照して説明する。
図1は本発明の一実施形態にかかる内燃機関及びその制御装置の構成を示す図である。4気筒を有する内燃機関(以下単に「エンジン」という)1は、シリンダ内に燃料を直接噴射するディーゼルエンジンであり、各気筒に燃料噴射弁6が設けられている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a configuration of an internal combustion engine and a control device thereof according to an embodiment of the present invention. An internal combustion engine (hereinafter simply referred to as “engine”) 1 having four cylinders is a diesel engine that directly injects fuel into a cylinder, and a fuel injection valve 6 is provided in each cylinder.

エンジン1の各気筒には、筒内圧(燃焼圧力)を検出する筒内圧センサ2が設けられている。本実施形態では、筒内圧センサ2は、各気筒に設けられるグロープラグと一体に構成されている。筒内圧センサ2の検出信号は、ECU4に供給される。なお、筒内圧センサ2の検出信号は、実際には、筒内圧PCYLのクランク角度(時間)に対する微分信号に相当するものであり、筒内圧PCYLは、筒内圧センサ出力を積分することにより得られる。   Each cylinder of the engine 1 is provided with an in-cylinder pressure sensor 2 that detects an in-cylinder pressure (combustion pressure). In the present embodiment, the in-cylinder pressure sensor 2 is configured integrally with a glow plug provided in each cylinder. A detection signal from the in-cylinder pressure sensor 2 is supplied to the ECU 4. The detection signal of the in-cylinder pressure sensor 2 actually corresponds to a differential signal with respect to the crank angle (time) of the in-cylinder pressure PCYL, and the in-cylinder pressure PCYL is obtained by integrating the in-cylinder pressure sensor output. .

またエンジン1には、クランク軸(図示せず)の回転角度を検出するクランク角度位置センサ3が設けられている。クランク角度位置センサ3は、クランク角1度毎にパルスを発生し、そのパルス信号はECU4に供給される。クランク角度位置センサ3は、さらに特定気筒の所定クランク角度位置で気筒識別パルスを生成して、ECU4に供給する。   The engine 1 is provided with a crank angle position sensor 3 that detects a rotation angle of a crankshaft (not shown). The crank angle position sensor 3 generates a pulse every crank angle, and the pulse signal is supplied to the ECU 4. The crank angle position sensor 3 further generates a cylinder identification pulse at a predetermined crank angle position of the specific cylinder and supplies it to the ECU 4.

ECU4には、エンジン1により駆動される車両のアクセルペダルの操作量APを検出するアクセルセンサ33、エンジン1の冷却水温TWを検出する冷却水温センサ34、及びエンジン1の吸気温TAを検出する吸気温センサ35が接続されており、これらのセンサの検出信号がECU4に供給される。   The ECU 4 includes an accelerator sensor 33 that detects an operation amount AP of an accelerator pedal of a vehicle driven by the engine 1, a cooling water temperature sensor 34 that detects a cooling water temperature TW of the engine 1, and an intake air that detects an intake air temperature TA of the engine 1. An air temperature sensor 35 is connected, and detection signals from these sensors are supplied to the ECU 4.

ECU4は、エンジン1の各気筒の燃焼室に設けられた燃料噴射弁6の制御信号を駆動回路5に供給する。駆動回路5は、燃料噴射弁6に接続されており、ECU4から供給される制御信号に応じた駆動信号を、燃料噴射弁6に供給する。これにより、ECU4から出力される制御信号に応じた燃料噴射時期において、前記制御信号に応じた燃料噴射量だけ燃料が、各気筒の燃焼室内に噴射される。   The ECU 4 supplies a control signal for the fuel injection valve 6 provided in the combustion chamber of each cylinder of the engine 1 to the drive circuit 5. The drive circuit 5 is connected to the fuel injection valve 6, and supplies a drive signal corresponding to the control signal supplied from the ECU 4 to the fuel injection valve 6. Thus, at the fuel injection timing corresponding to the control signal output from the ECU 4, fuel is injected into the combustion chamber of each cylinder by the fuel injection amount corresponding to the control signal.

ECU4は、増幅器10と、A/D変換部11と、パルス生成部13と、CPU(Central Processing Unit)14と、CPU14で実行されるプログラムを格納するROM(Read Only Memory)15と、CPU14が演算結果などを格納するRAM(Random Access Memory)16と、入力回路17と、出力回路18とを備えている。筒内圧センサ2の検出信号は、増幅器10に入力される。増幅器10は、入力される信号を増幅する。増幅器10により増幅された信号は、A/D変換部11に入力される。また、クランク角度位置センサ3から出力されるパルス信号は、パルス生成部13に入力される。   The ECU 4 includes an amplifier 10, an A / D converter 11, a pulse generator 13, a CPU (Central Processing Unit) 14, a ROM (Read Only Memory) 15 that stores a program executed by the CPU 14, and a CPU 14. A RAM (Random Access Memory) 16 for storing calculation results and the like, an input circuit 17, and an output circuit 18 are provided. A detection signal of the in-cylinder pressure sensor 2 is input to the amplifier 10. The amplifier 10 amplifies an input signal. The signal amplified by the amplifier 10 is input to the A / D converter 11. The pulse signal output from the crank angle position sensor 3 is input to the pulse generator 13.

A/D変換部11は、バッファ12を備えており、増幅器10から入力される筒内圧センサ出力をディジタル値(以下「圧力変化率」という)dpdθに変換し、バッファ12に格納する。より具体的には、A/D変換部11には、パルス生成部13から、クランク角1度周期のパルス信号(以下「1度パルス」という)PLS1が供給されており、この1度パルスPLS1の周期で筒内圧センサ出力をサンプリングし、ディジタル値に変換してバッファ12に格納する。   The A / D conversion unit 11 includes a buffer 12, converts the in-cylinder pressure sensor output input from the amplifier 10 into a digital value (hereinafter referred to as “pressure change rate”) dpdθ, and stores the converted value in the buffer 12. More specifically, the A / D converter 11 is supplied with a pulse signal PLS1 (hereinafter referred to as “1 degree pulse”) PLS1 having a crank angle of 1 degree from the pulse generator 13, and this 1 degree pulse PLS1. The in-cylinder pressure sensor output is sampled at a period of ## EQU2 ## and converted into a digital value and stored in the buffer 12.

一方、CPU14には、パルス生成部13から、クランク角6度周期のパルス信号PLS6が供給されており、CPU14はこの6度パルスPLS6の周期でバッファ12に格納されたディジタル値を読み出す処理を行う。すなわち、本実施形態では、A/D変換部11からCPU14に対して割り込み要求を行うのではなく、CPU14が6度パルスPLS6の周期で読出処理を行う。   On the other hand, the pulse signal PLS6 with a crank angle of 6 degrees is supplied from the pulse generator 13 to the CPU 14, and the CPU 14 performs a process of reading the digital value stored in the buffer 12 with the period of the 6 degrees pulse PLS6. . That is, in this embodiment, the A / D conversion unit 11 does not issue an interrupt request to the CPU 14, but the CPU 14 performs a reading process at a cycle of the 6-degree pulse PLS6.

入力回路17は、各種センサの検出信号をディジタル値に変換し、CPU14に供給する。なお、エンジン回転数NEは、6度パルスPLSの周期から算出される。   The input circuit 17 converts detection signals from various sensors into digital values and supplies them to the CPU 14. The engine speed NE is calculated from the cycle of the 6-degree pulse PLS.

図2は、失火判定を行う処理のフローチャートであり、この処理はクランク軸が180度回転する毎に、CPU14で実行される。   FIG. 2 is a flowchart of a process for determining misfire, and this process is executed by the CPU 14 every time the crankshaft rotates 180 degrees.

ステップS11では、点火気筒における圧力変化率dpdθの最大値(以下「最大圧力変化率」という)dpdθmaxの前回値dpdθmax(k-1)に所定値α(例えば0.6)を乗算することにより、判定閾値DPTH(k)を算出する。最大圧力変化率dpdθmax(k)は、図示しない処理において、膨張行程にある気筒の筒内圧センサ2の出力信号から得られる圧力変化率dpdθをモニタすることにより算出される。ここで「k」は、燃焼サイクル(クランク軸が720度回転するのに要する期間)で離散化した離散化時刻を示す。
ステップS12では、判定閾値の今回値DPTH(k)から前回値DPTH(k-1)を減算することにより、閾値変化量DDPTHを算出する。
In step S11, by multiplying the previous value dpdθmax (k−1) of the maximum value (hereinafter referred to as “maximum pressure change rate”) dpdθmax of the pressure change rate dpdθ in the ignition cylinder by a predetermined value α (for example, 0.6), A determination threshold DPTH (k) is calculated. The maximum pressure change rate dpdθmax (k) is calculated by monitoring the pressure change rate dpdθ obtained from the output signal of the in-cylinder pressure sensor 2 of the cylinder in the expansion stroke in a process (not shown). Here, “k” indicates a discretization time discretized in the combustion cycle (a period required for the crankshaft to rotate 720 degrees).
In step S12, the threshold value change amount DDPTH is calculated by subtracting the previous value DPTH (k-1) from the current value DPTH (k) of the determination threshold value.

ステップS13では、閾値変化量DDPTHの絶対値が所定変化量DDPLMTより大きいか否かを判別する。その答が否定(NO)であるときは直ちにステップS17に進み、肯定(YES)であるときは、閾値変化量DDPTHが「0」より大きいか否かを判別する(ステップS14)。DDPTH>0であるときは、判定閾値DPTH(k)を、前回値DPTH(k-1)に所定変化量DDPLMTを加算した値に設定する(ステップS15)。一方DDPTH<0であるときは、判定閾値DPTH(k)を、前回値DPTH(k-1)から所定変化量DDPLMTを減算した値に設定する(ステップS16)。ステップS12〜S16により、判定閾値DPTHの急変が防止される。   In step S13, it is determined whether or not the absolute value of the threshold change amount DDPTH is greater than a predetermined change amount DDPLMT. If the answer is negative (NO), the process immediately proceeds to step S17. If the answer is positive (YES), it is determined whether or not the threshold change amount DDPTH is larger than “0” (step S14). When DDPTH> 0, the determination threshold DPTH (k) is set to a value obtained by adding the predetermined change amount DDPLMT to the previous value DPTH (k−1) (step S15). On the other hand, when DDPTH <0, the determination threshold DPTH (k) is set to a value obtained by subtracting the predetermined change amount DDPLMT from the previous value DPTH (k-1) (step S16). By steps S12 to S16, a sudden change in the determination threshold value DPTH is prevented.

ステップS17では、最大圧力変化率dpdθmax(k)が判定閾値DPTH(k)より大きいか否かを判別する。この答が肯定(YES)であるときは直ちにステップS19に進み、否定(NO)であるとき、すなわち最大圧力変化率dpdθmax(k)が判定閾値DPTH(k)以下であるときは、エラーカウンタCERRを「1」だけインクリメントして(ステップS18)、ステップS19に進む。   In step S17, it is determined whether or not the maximum pressure change rate dpdθmax (k) is larger than a determination threshold value DPTH (k). When the answer is affirmative (YES), the process immediately proceeds to step S19, and when it is negative (NO), that is, when the maximum pressure change rate dpdθmax (k) is equal to or less than the determination threshold DPTH (k), the error counter CERR. Is incremented by "1" (step S18), and the process proceeds to step S19.

ステップS19では、演算カウンタnを「1」だけインクリメントし、次いで演算カウンタnの値が所定値N0(例えば10)に達したか否かを判別する(ステップS20)。最初はこの答は否定(NO)となるので、直ちに本処理を終了する。   In step S19, the operation counter n is incremented by “1”, and then it is determined whether or not the value of the operation counter n has reached a predetermined value N0 (for example, 10) (step S20). Since this answer is negative (NO) at first, this processing is immediately terminated.

その後演算カウンタnの値が、所定値N0に達すると、ステップS20からステップS21に進み、下記式によりエラー率RERRを算出する。
RERR=CERR/N0
ステップS22では、エラー率RERRが所定基準値RERTH(例えば0.1)以上であるか否かを判別し、RERR<RERTHであるときは正常と判定する(ステップS24)。一方、エラー率RERRが所定基準値RERTH以上となったときは、失火が発生していると判定する(ステップS23)。
Thereafter, when the value of the operation counter n reaches a predetermined value N0, the process proceeds from step S20 to step S21, and an error rate RERR is calculated by the following equation.
RERR = CERR / N0
In step S22, it is determined whether or not the error rate RERR is equal to or greater than a predetermined reference value RERTH (for example, 0.1). If RERR <RERTH, it is determined to be normal (step S24). On the other hand, when the error rate RERR is equal to or greater than the predetermined reference value RERTH, it is determined that a misfire has occurred (step S23).

図3は、圧力変化率dpdθの推移を示す波形図(タイムチャート)であり、同図に示す実線が最大圧力変化率dpdθmaxを示し、破線が最大圧力変化率dpdθmaxの前回値から算出される判定閾値DPTHを示す。同図(a)は失火が全く発生していないときの波形が示されており、同図(b)に示す例では、時刻terにおいて、最大圧力変化率dpdθmaxが判定閾値DPTHを下回るため、エラーカウンタCERRがインクリメントされる。   FIG. 3 is a waveform diagram (time chart) showing the transition of the pressure change rate dpdθ, in which the solid line indicates the maximum pressure change rate dpdθmax, and the broken line is a determination calculated from the previous value of the maximum pressure change rate dpdθmax. The threshold value DPTH is indicated. FIG. 5A shows a waveform when no misfire has occurred. In the example shown in FIG. 4B, the error rate is detected because the maximum pressure change rate dpdθmax falls below the determination threshold value DPTH at time ter. The counter CERR is incremented.

図4は、図示平均有効圧の変動率(以下「Pmi変動率」という)RDPMと、図2のステップS20で算出されるエラー率RERRとの関係を示す図であり、Pmi変動率RDPMの増加に伴ってエラー率RERRがほぼ直線的に増加する。したがって、筒内圧センサ出力からPmi変動率を算出することに代えて、エラー率RERRを算出することにより、エンジン1の各気筒における燃焼状態を比較的正確に判定することができる。Pmi変動率RDPMの算出は、CPU14の演算負荷をかなり増加させるので、Pmi変動率RDPMに代えてエラー率RERRを用いて燃焼状態(失火)の判定を行うことにより、CPU14の演算負荷の増加を抑制しつつ正確な判定を行うことが可能となる。   FIG. 4 is a diagram showing the relationship between the fluctuation rate of the indicated mean effective pressure (hereinafter referred to as “Pmi fluctuation rate”) RDPM and the error rate RERR calculated in step S20 of FIG. 2, and an increase in the Pmi fluctuation rate RDPM. As a result, the error rate RERR increases almost linearly. Therefore, the combustion state in each cylinder of the engine 1 can be determined relatively accurately by calculating the error rate RERR instead of calculating the Pmi variation rate from the in-cylinder pressure sensor output. The calculation of the Pmi fluctuation rate RDPM considerably increases the calculation load of the CPU 14, so that the calculation load of the CPU 14 is increased by determining the combustion state (misfire) using the error rate RERR instead of the Pmi change rate RDPM. It is possible to perform accurate determination while suppressing.

以上詳述したように本実施形態では、最大圧力変化率の前回値dpdθmax(k-1)に「1」より小さい所定値αを乗算することにより、判定閾値DPTH(k)が算出され、この判定閾値DPTH(k)を用いてエンジンの燃焼状態が判定される。具体的には、最大圧力変化率dpdθ(k)が判定閾値DPTH以下であるとき、エラーカウンタCERRがインクリメントされ、図2の処理の実行回数を示す演算カウンタnの値が所定値N0に達すると、エラー率RERRが算出され、エラー率RERRが所定基準値RERTH以上であるとき、失火が発生していると判定される。したがって、エンジン運転状態の変化や筒内圧センサ2の特性ばらつきの影響が判定閾値DPTH(k)に反映され、正確な燃焼状態の判定を行うことができる。   As described above in detail, in the present embodiment, the determination threshold value DPTH (k) is calculated by multiplying the previous value dpdθmax (k−1) of the maximum pressure change rate by a predetermined value α smaller than “1”. The combustion state of the engine is determined using the determination threshold value DPTH (k). Specifically, when the maximum pressure change rate dpdθ (k) is equal to or less than the determination threshold DPTH, the error counter CERR is incremented, and when the value of the operation counter n indicating the number of executions of the process of FIG. 2 reaches the predetermined value N0. When the error rate RERR is calculated and the error rate RERR is equal to or greater than a predetermined reference value RERTH, it is determined that a misfire has occurred. Therefore, the influence of the change in the engine operating state and the characteristic variation of the in-cylinder pressure sensor 2 is reflected in the determination threshold value DPTH (k), and the accurate combustion state determination can be performed.

本実施形態では、筒内圧センサ2及びECU4よって燃焼状態判定装置が構成される。具体的には、筒内圧センサ2が圧力変動検出手段に相当し、図2のステップS11〜S16が閾値算出手段に相当する。   In the present embodiment, the in-cylinder pressure sensor 2 and the ECU 4 constitute a combustion state determination device. Specifically, the in-cylinder pressure sensor 2 corresponds to a pressure fluctuation detection unit, and steps S11 to S16 in FIG. 2 correspond to a threshold value calculation unit.

なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、上述した実施形態では、所定値N0の設定例として「10」を示したが、「10」より大きな数(例えば「100」、あるいは「10」から「100」の間の値)に設定してもよい。所定値N0の値を大きくするほど、判定結果を得るまでの時間が長くなるが、判定精度を向上させることができる。   The present invention is not limited to the embodiment described above, and various modifications can be made. For example, in the above-described embodiment, “10” is shown as an example of setting the predetermined value N0. However, it is set to a number larger than “10” (for example, “100” or a value between “10” and “100”). May be. As the value of the predetermined value N0 is increased, the time until the determination result is obtained becomes longer, but the determination accuracy can be improved.

また上述した実施形態では、4気筒のディーゼル内燃機関の例を示したが、これに限るものではなく、気筒数の異なるディーゼル内燃機関、クランク軸を鉛直方向とした船外機などのような船舶推進機用エンジン、またはガソリン内燃機関などの燃焼状態判定にも適用が可能である。   In the above-described embodiment, an example of a four-cylinder diesel internal combustion engine has been described. However, the present invention is not limited to this, and a ship such as a diesel internal combustion engine having a different number of cylinders, an outboard motor having a crankshaft in a vertical direction, or the like. The present invention can also be applied to a combustion state determination of a propulsion engine or a gasoline internal combustion engine.

本発明の一実施形態にかかる内燃機関及びその制御装置の構成を示す図である。It is a figure which shows the structure of the internal combustion engine and its control apparatus concerning one Embodiment of this invention. 燃焼状態(失火)の判定を行う処理のフローチャートである。It is a flowchart of the process which determines a combustion state (misfire). 筒内圧センサにより検出される圧力変化率の推移を示すタイムチャートである。It is a time chart which shows transition of the pressure change rate detected by a cylinder pressure sensor. Pmi変動率(RDPM)と、図2の処理で算出されるエラー率(RERR)との関係を示す図である。It is a figure which shows the relationship between Pmi fluctuation rate (RDPM) and the error rate (RERR) calculated by the process of FIG.

符号の説明Explanation of symbols

1 内燃機関
2 筒内圧センサ(圧力変動検出手段)
3 クランク角度位置センサ
4 電子制御ユニット(閾値検出手段)
6 燃料噴射弁
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 In-cylinder pressure sensor (pressure fluctuation detection means)
3 Crank angle position sensor 4 Electronic control unit (threshold detection means)
6 Fuel injection valve

Claims (1)

内燃機関の燃焼室内の圧力変動を検出する圧力変動検出手段を備え、該圧力変動検出手段により検出される圧力変動値に基づいて、前記燃焼室内の混合気の燃焼状態を判定する内燃機関の燃焼状態判定装置において、
前記圧力変動検出手段により検出された前回の圧力変動値の最大値に基づいて閾値を算出する閾値算出手段を備え、
該閾値算出手段により算出された閾値と、検出される圧力変動値の最大値とを比較し、該比較の結果に基づいて前記燃焼状態を判定することを特徴とする内燃機関の燃焼状態判定装置。
Combustion of the internal combustion engine comprising pressure fluctuation detection means for detecting pressure fluctuation in the combustion chamber of the internal combustion engine, and determining the combustion state of the air-fuel mixture in the combustion chamber based on the pressure fluctuation value detected by the pressure fluctuation detection means In the state determination device,
Threshold value calculating means for calculating a threshold value based on the maximum value of the previous pressure fluctuation value detected by the pressure fluctuation detecting means;
A combustion state determination device for an internal combustion engine, wherein the threshold value calculated by the threshold value calculation means is compared with the maximum value of the detected pressure fluctuation value, and the combustion state is determined based on the comparison result. .
JP2005265293A 2005-09-13 2005-09-13 Combustion state determination device for internal combustion engine Expired - Fee Related JP4243600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005265293A JP4243600B2 (en) 2005-09-13 2005-09-13 Combustion state determination device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265293A JP4243600B2 (en) 2005-09-13 2005-09-13 Combustion state determination device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007077856A true JP2007077856A (en) 2007-03-29
JP4243600B2 JP4243600B2 (en) 2009-03-25

Family

ID=37938441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265293A Expired - Fee Related JP4243600B2 (en) 2005-09-13 2005-09-13 Combustion state determination device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4243600B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231758A (en) * 2013-05-28 2014-12-11 トヨタ自動車株式会社 Combustion state diagnostic device
JP2015052323A (en) * 2009-12-07 2015-03-19 マクアリスター テクノロジーズ エルエルシー Adaptive control system for fuel injector and igniter
CN114278434A (en) * 2022-01-10 2022-04-05 潍柴动力股份有限公司 Crankcase fault detection method and device and related equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052323A (en) * 2009-12-07 2015-03-19 マクアリスター テクノロジーズ エルエルシー Adaptive control system for fuel injector and igniter
JP2014231758A (en) * 2013-05-28 2014-12-11 トヨタ自動車株式会社 Combustion state diagnostic device
CN114278434A (en) * 2022-01-10 2022-04-05 潍柴动力股份有限公司 Crankcase fault detection method and device and related equipment

Also Published As

Publication number Publication date
JP4243600B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
US7478624B2 (en) Ignition timing control device of internal combustion engine
US7401591B2 (en) Control system for internal combustion engine
US7392788B2 (en) Device and method for controlling ignition timing of internal combustion engine
JP4491427B2 (en) Ignition timing control device for internal combustion engine
US7588015B2 (en) Device and method for controlling ignition timing of internal combustion engine
US20120239311A1 (en) Misfire detecting apparatus for internal combustion engine
US8005607B2 (en) Device and method for controlling ignition timing of internal combustion engine
JP4243600B2 (en) Combustion state determination device for internal combustion engine
KR102406503B1 (en) Method of misfire detection for catalyst damage
JP4317842B2 (en) Abnormality judgment device for pressure state detection device
JP2007154802A (en) Control device of internal combustion engine
JP4633695B2 (en) Control device for internal combustion engine
JP2006284533A (en) Abnormality detector for cylinder pressure sensor
JP5279644B2 (en) Control device for internal combustion engine
JP4260830B2 (en) Internal combustion engine control device
JPWO2003036068A1 (en) Engine control device
JP4302843B2 (en) Internal combustion engine control method
JP4345723B2 (en) Method for estimating the indicated mean effective pressure of an internal combustion engine
JP2006009670A (en) Control device for internal combustion engine
JP4340577B2 (en) In-cylinder pressure sensor temperature detection device, in-cylinder pressure detection device using the same, and control device for internal combustion engine
JP4279690B2 (en) In-cylinder pressure detection device for internal combustion engine
US20230408374A1 (en) Misfire determination device for internal combustion engine
JP4281677B2 (en) Control device for internal combustion engine
JP4798647B2 (en) In-cylinder pressure sensor abnormality detection device
JP2005180356A (en) Compensating gear and compensating method of crank angle sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

A131 Notification of reasons for refusal

Effective date: 20080805

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080916

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20081216

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090105

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees