JP2007077192A - Corrosion-resistant glittering pigment, method for producing the same and corrosion-resistant glittering coating material - Google Patents
Corrosion-resistant glittering pigment, method for producing the same and corrosion-resistant glittering coating material Download PDFInfo
- Publication number
- JP2007077192A JP2007077192A JP2005263843A JP2005263843A JP2007077192A JP 2007077192 A JP2007077192 A JP 2007077192A JP 2005263843 A JP2005263843 A JP 2005263843A JP 2005263843 A JP2005263843 A JP 2005263843A JP 2007077192 A JP2007077192 A JP 2007077192A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- resistant
- alloy
- mass
- flake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Paints Or Removers (AREA)
Abstract
Description
本発明は、自動車部品や家電部品などの基材を赤色メタリック塗装する際に用いる耐食光輝性顔料とその製造方法および耐食光輝性塗料に関する。 TECHNICAL FIELD The present invention relates to a corrosion-resistant glitter pigment used when red metallic coating is applied to a substrate such as an automobile part or a household appliance part, a method for producing the same, and a corrosion-resistant glitter paint.
基材を光輝化する手段として、湿式メッキや真空蒸着やメタリック塗装がある。特に、メタリック塗装は、手法が簡便であり、広く用いられている。メタリック塗装においては、アルミニウムの顔料やアルミニウムフレーク状合金片を混入した塗料を用いることにより、基材が光輝化される。塗膜中のアルミニウムを保護するために、塗膜表面にはクリアコートが塗布される。 As means for brightening the substrate, there are wet plating, vacuum deposition and metallic coating. In particular, metallic coating has a simple method and is widely used. In metallic coating, the base material is brightened by using a paint mixed with an aluminum pigment or an aluminum flake-like alloy piece. In order to protect the aluminum in the coating film, a clear coat is applied to the surface of the coating film.
アルミニウムフレーク状合金片は、スタンプミル法、乾式ボールミル法、湿式ボールミル法などにより機械的に金属アルミニウムを粉砕して作製したり、金属アルミニウムを真空中で蒸発させてアルミニウム膜を形成する真空蒸着法を用いて作製したりするのが一般的である。 Aluminum flake-like alloy pieces are produced by mechanically crushing metal aluminum by stamp mill method, dry ball mill method, wet ball mill method, etc., or vacuum evaporation method in which metal aluminum is evaporated in vacuum to form an aluminum film It is common to make using
アルミニウムには、表面反射率が高いという利点、および価格が安いという利点がある。このため、フレーク状合金片(箔)にして、光輝感を出す顔料として使用されている。 Aluminum has the advantage of high surface reflectivity and low price. For this reason, it is used as a pigment which gives a glittering feeling as a flaky alloy piece (foil).
家電品や携帯電話部品あるいは車体部品などに赤色メタリック塗装を行う場合は、樹脂に弁柄やカドミウムレッド、カドモポンレッド、クロムレッド、モリブデートオレンジなどの赤色顔料と、アルミニウムフレーク状合金片とを混入した塗料を使用する。 When red metallic paint is applied to home appliances, mobile phone parts, body parts, etc., red pigments such as petals, cadmium red, cadmopon red, chrome red, molybdate orange and aluminum flake-like alloy pieces are mixed in the resin. Use paint.
しかし、該塗料で塗装(赤色メタリック塗装)した塗膜においては、赤色顔料の赤とアルミニウムの白が目立ち、人の目には中間色であるピンク色に見えるという欠点がある。また、アルミニウムは、表面反射率が可視光で80%以上と高いため、アルミニウムを混入した赤色メタリック塗装では外観が白っぽくなり、赤色メタリックメッキのような赤色にならず、高級感に欠けるとういう欠点もある。 However, in a coating film painted with the paint (red metallic coating), red pigment red and aluminum white are conspicuous, and human eyes have a disadvantage that they appear pink as an intermediate color. In addition, since aluminum has a high surface reflectance of 80% or more in visible light, the red metallic paint mixed with aluminum becomes whitish, does not become red like red metallic plating, and lacks a high-class feeling. There is also.
一方、赤色メタリック塗装よりも仕上がりの質のよい赤色メタリックメッキにも、次のような問題点がある。 On the other hand, red metallic plating, which has a better finish than red metallic coating, has the following problems.
赤色メタリックメッキを真空蒸着法等の乾式メッキ法で形成すると、成膜中に酸素、窒素、アルゴンなどのガスの影響を受けて薄膜の色が黒ずんでしまい、きれいな色にならない。電気メッキ薄膜の表面反射率が約60%であるのに対して、乾式メッキ薄膜の表面反射率は約30〜40%と低いためである。また、乾式メッキ薄膜は耐クラック性が低い。 When the red metallic plating is formed by a dry plating method such as a vacuum evaporation method, the color of the thin film is darkened due to the influence of gas such as oxygen, nitrogen, and argon during the film formation, and the color is not clean. This is because the surface reflectance of the electroplated thin film is about 60%, whereas the surface reflectance of the dry-plated thin film is as low as about 30 to 40%. Moreover, the dry plating thin film has low crack resistance.
赤色メタリックメッキを電気メッキ法で形成すると、電気メッキは溶液に有害物質を用いるため、廃液処理にコストがかかる。また、異種金属が混じることで、アルミニウムホイール等メッキ製品のリサイクルができなくなる。 When the red metallic plating is formed by electroplating, the electroplating uses a harmful substance in the solution, so that the waste liquid treatment is costly. In addition, mixing of dissimilar metals makes it impossible to recycle plated products such as aluminum wheels.
赤色メタリックメッキにはこのような欠点があるため、赤色メタリック塗装の欠点を解消することが求められている。 Since red metallic plating has such drawbacks, it is required to eliminate the disadvantages of red metallic coating.
赤色メタリック塗装での外観上の欠点に対しては、黒っぽいアンダーコートを下地に塗布する方法が提案されている(特許文献1(特開昭62−13565号公報)、特許文献2(特開平9−290213号公報)参照。)。 In order to deal with defects in the appearance of red metallic coating, a method of applying a blackish undercoat to the underlayer has been proposed (Patent Document 1 (Japanese Patent Laid-Open No. 62-13565), Patent Document 2 (Japanese Patent Laid-Open No. 9-126)). -290213).).
他方、アルミニウムフレーク状合金片を用いたメタリック塗装には、前述した外観上の問題に加えて、アルミニウムフレーク状合金片の耐食性が十分でないことに起因する以下のような問題点もあり、解決が求められている。 On the other hand, metallic coating using aluminum flake-like alloy pieces has the following problems due to insufficient corrosion resistance of aluminum flake-like alloy pieces in addition to the above-mentioned appearance problems. It has been demanded.
アルミニウムフレーク状合金片は活性があり、大気に触れると、表面に酸化物被膜を形成して光輝感を失う。それだけでなく、酸化物被膜の成長に伴って、基材と塗膜との密着性(塗膜密着性)が低下する。 The aluminum flake-like alloy pieces are active, and when exposed to the atmosphere, an oxide film is formed on the surface and loses the glitter. In addition, as the oxide film grows, the adhesion between the substrate and the coating film (coating film adhesion) decreases.
また、水分を含む環境下では、アルミニウムフレーク状合金片は、酸化物被膜ではなく水酸化物被膜を表面に形成する。形成された水酸化物被膜は、それを含む塗膜の乾燥・加熱により容易に酸化物被膜になる。乾燥・加熱を経たこの塗膜は水分を通してしまうため、塗膜内でアルミニウムと水分が反応(水分子と結合する水和反応)して、塗膜が腐食・剥離する可能性がある。具体的には、厚さ0.05〜1.0μmのアルミニウムフレーク状合金片を含む薄膜を、トップコートをしないで40〜60℃の温水に浸すと、水和反応が起こり、24〜100時間で塗膜内のアルミニウムフレーク状合金片は溶解してしまう。また、塩水噴霧試験よりも厳しい腐食条件であるキャス試験(JISH8502)では、トップコートをしていても、トップコートを通じて試験液が浸透し、60時間以上で塗膜内のアルミニウムフレーク状合金片が溶解する。 In an environment containing moisture, the aluminum flake-like alloy piece forms a hydroxide film on the surface instead of an oxide film. The formed hydroxide film easily becomes an oxide film by drying and heating of the coating film containing the hydroxide film. Since this coating film that has been dried and heated passes moisture, there is a possibility that aluminum and moisture react in the coating film (hydration reaction combined with water molecules), and the coating film may corrode and peel off. Specifically, when a thin film containing an aluminum flake-like alloy piece having a thickness of 0.05 to 1.0 μm is immersed in warm water at 40 to 60 ° C. without a top coat, a hydration reaction occurs, and 24 to 100 hours. Thus, the aluminum flake-like alloy pieces in the coating film are dissolved. Also, in the cast test (JIS 8502), which is a more severe corrosion condition than the salt spray test, even if the top coat is applied, the test solution penetrates through the top coat, and the aluminum flake-like alloy pieces in the paint film are removed in 60 hours or more. Dissolve.
このように、アルミニウムフレーク状合金片には腐食に弱いという問題がある。このため、保護膜としてのトップコートを厚くし、かつ、傷などを生じさせないようにする必要がある。 Thus, the aluminum flake-like alloy piece has a problem that it is vulnerable to corrosion. For this reason, it is necessary to make the top coat as a protective film thick and not to cause scratches.
しかし、例えば、奥まった個所では保護膜が薄くなりがちであり、酸性物質・アルカリ性物質などが保護膜を浸透・通過してしまうことがあり、アルミニウムフレーク合金片が溶解してしまう可能性がある。 However, for example, the protective film tends to be thin at a deep part, and an acidic substance / alkaline substance may permeate and pass through the protective film, and the aluminum flake alloy piece may be dissolved. .
また、トップコートに傷が入った場合、例えば、車の走行中に飛び石により車体の塗膜に傷が入ったり、車体の清掃中に塗膜に傷が付いた場合、その状態で海岸地帯、凍結防止のために塩を散布する地帯、高温多湿地帯などを走行すると、アルミニウムフレーク状合金片が外部環境に触れ、その傷から塗膜の腐食が始まることがある。 In addition, if the top coat is damaged, for example, if the coating film on the vehicle body is damaged by a stepping stone while the car is running, or if the coating film is damaged during the cleaning of the vehicle body, When traveling in a zone where salt is sprayed to prevent freezing or in a hot and humid region, the aluminum flake-like alloy piece may come into contact with the external environment, and the coating may start corroding from the scratches.
塗膜の腐食がいったん始まり進行していくと、アルミニウムフレーク合金片は溶解消失し、アンダーコートが露出する。すると、本来の光輝面が損なわれるだけでなく、アンダーコートとトップコートとの密着がなくなり、膨れが発生する。さらに、そこを基点として基材の腐食へと進展する可能性がある。 Once corrosion of the coating begins and proceeds, the aluminum flake alloy pieces dissolve and disappear, and the undercoat is exposed. Then, not only the original brilliant surface is damaged, but the adhesion between the undercoat and the topcoat is lost, and swelling occurs. Furthermore, there is a possibility of progressing to corrosion of the base material from that point.
このため、従来から、アルミニウムフレーク合金片の耐食性・耐薬品性を向上させるための処理方法が種々提案されている。しかしながら、アルミニウム自体の耐食性・耐薬品性が低いので、十分な効果が得られていないのが実状である。 For this reason, various processing methods for improving the corrosion resistance and chemical resistance of aluminum flake alloy pieces have been proposed. However, since aluminum itself has low corrosion resistance and chemical resistance, a sufficient effect is not obtained.
以下の(1)〜(5)に、アルミニウムフレーク状合金片を顔料として用いている提案例とその提案例における問題点を記す。 In the following (1) to (5), a proposed example using an aluminum flake-like alloy piece as a pigment and problems in the proposed example are described.
(1)特許文献3(特開2000−354828号公報)
有機または無機の着色顔料にアルミニウムフレーク状合金片を混入させたメッキ調コートで、アルミニウムホイールの表面を被覆する。この着色顔料の反射とアルミニウムフレーク状合金片の反射との混合で、外観意匠ニーズに合った特殊な色調とすることができる。クロムメッキの外観に近い外観を得る場合には、各種の顔料と混合する。
(1) Patent Document 3 (Japanese Patent Laid-Open No. 2000-354828)
The surface of the aluminum wheel is covered with a plating coat in which an aluminum flake-like alloy piece is mixed with an organic or inorganic coloring pigment. By mixing the reflection of the color pigment and the reflection of the aluminum flake-like alloy piece, a special color tone that meets the appearance design needs can be obtained. In order to obtain an appearance close to that of chrome plating, it is mixed with various pigments.
しかし、光輝化する材質がアルミニウムであり、このメッキ調コートは耐食性・耐薬品性が低い。そのため、ホイールなどの隅や縦面など、保護膜が塗布しづらい個所では、フレーク状合金片が腐食してしまう可能性が高い。また、アルミニウムフレーク状合金片を使用しているため、白っぽく高級感のない外観しか得られない。一方、アルミニウムフレーク状合金片の混合比率を小さくすると、光輝感が低下する。 However, the brightening material is aluminum, and this plated coating has low corrosion resistance and chemical resistance. For this reason, there is a high possibility that the flake-like alloy pieces will corrode at places where the protective film is difficult to be applied, such as corners and vertical surfaces of wheels. Moreover, since the aluminum flake-like alloy piece is used, only a whitish and high-quality appearance can be obtained. On the other hand, when the mixing ratio of the aluminum flake-like alloy pieces is reduced, the glitter feeling is lowered.
(2)特許文献4(特開平11−90318号公報)
アルミニウムフレーク状合金片および有機溶剤を含有する組成物を燐酸基含有樹脂の上に塗装する。アルミニウムフレーク状合金片を含む塗膜を改善するために、特殊な塗装を行っている。しかし、この方法は、作業性が悪く、コスト高になり、広い範囲に塗布する場合には適用できない。
(2) Patent Document 4 (Japanese Patent Laid-Open No. 11-90318)
A composition containing an aluminum flake-like alloy piece and an organic solvent is coated on a phosphate group-containing resin. Special coating is performed to improve the coating film containing aluminum flake-like alloy pieces. However, this method has poor workability, is expensive, and cannot be applied when applied over a wide range.
(3)特許文献5(特開平9−122575号公報)
アルミニウムフレーク状合金片が有機溶剤によって変色するのを防止するために、有機溶剤に浸漬した後の色変化が、汚染用グレースケールで色票4号以上の色差を有するアルミニウムフレーク状合金片を用いる。しかし、この塗膜も、アルミニウムフレーク状合金片を含むため、耐食性・耐薬品性が低い。
(3) Patent Document 5 (Japanese Patent Laid-Open No. 9-122575)
In order to prevent the aluminum flake-like alloy piece from being discolored by the organic solvent, the aluminum flake-like alloy piece having a color difference of not less than color chart No. 4 on a gray scale for contamination is used after being immersed in the organic solvent. . However, since this coating film also includes aluminum flake-like alloy pieces, it has low corrosion resistance and chemical resistance.
(4)特許文献6(特開平7−150374号公報)
耐食性を付与するために、アルミニウムフレーク状合金片を腐食防止剤で処理する。腐食防止剤には、イットリウムおよび希土類金属など、高価で希少な金属の水溶性の塩などが含まれているため、コスト高になる。また、工程も複雑であり、コスト高になる。
(4) Patent Document 6 (Japanese Patent Laid-Open No. 7-150374)
In order to impart corrosion resistance, the aluminum flake-like alloy piece is treated with a corrosion inhibitor. Since the corrosion inhibitor contains expensive and rare metal water-soluble salts such as yttrium and rare earth metals, the cost increases. In addition, the process is complicated and the cost is high.
(5)特許文献7(特開平7−133440号公報)、特許文献8(特開平6−57171号公報)
アルミニウムに対してMo金属換算量で0.1〜10質量%のモリブデン酸被膜を成膜し、その上に、アルミニウムに対してP元素換算量で0.05〜5質量%の燐酸エステルを吸着させる。しかし、この処理は、複雑で時間がかかり、コストアップの原因にもなる。
(5) Patent Document 7 (JP-A-7-133440), Patent Document 8 (JP-A-6-57171)
A molybdate film of 0.1 to 10% by mass in terms of Mo metal is formed on aluminum, and 0.05 to 5% by mass of phosphate ester in terms of P element is adsorbed on aluminum. Let However, this process is complicated and time consuming, and increases the cost.
本発明は、かかる問題点に鑑みてなされたものであって、塗装後の塗膜が赤色メタリックメッキに近い高級感のある色になるとともに、優れた耐食性・耐薬品性を有する赤色メタリック塗装を可能とする耐食光輝性顔料およびこれを用いた耐食光輝性塗料を提供することを目的とする。 The present invention has been made in view of such problems, and a red metallic coating having excellent corrosion resistance and chemical resistance as well as a high-grade color close to that of a red metallic plating coating film. An object of the present invention is to provide a corrosion-resistant glitter pigment and a corrosion-resistant glitter paint using the same.
本発明に係る耐食光輝性顔料は、銅を50質量%以上、亜鉛を32〜43質量%、アルミニウムを3〜7質量%含み、L*a*b*表色系において明度がL*=35〜90、色度がa*=10〜50、b*=10〜25であるフレーク状合金片からなることを特徴とする。ここで、L*a*b*表色系とは、JISZ8729において採用された表色系であって、明度をL*、色相と彩度を示す色度をa*、b*で表す表色系のことである。 The corrosion-resistant bright pigment according to the present invention contains 50% by mass or more of copper, 32 to 43% by mass of zinc, and 3 to 7% by mass of aluminum, and has a lightness L * = 35 in the L * a * b * color system. It is characterized by comprising a flake-like alloy piece having ˜90 and chromaticity of a * = 10-50 and b * = 10-25. Here, the L * a * b * color system is a color system adopted in JISZ8729, and is a color system that expresses lightness as L * and chromaticity indicating hue and saturation as a * and b *. It is a system.
前記フレーク状合金片の表面反射率は、550nmの波長の光に対して25〜65%であることが好ましく、前記フレーク状合金片の厚さは、0.02〜5μmであることが好ましく、前記フレーク状合金片の大きさは、5〜50μmであることが好ましい。ここで、フレーク状合金片の大きさとは、該合金片の定方向径(合金片に外接する長方形の縦、横の辺のうち長い方の辺の長さ)を意味する。 The surface reflectance of the flaky alloy piece is preferably 25 to 65% with respect to light having a wavelength of 550 nm, and the thickness of the flaky alloy piece is preferably 0.02 to 5 μm, The size of the flaky alloy piece is preferably 5 to 50 μm. Here, the size of the flake-shaped alloy piece means the constant direction diameter of the alloy piece (the length of the longer side of the vertical and horizontal sides of the rectangle circumscribing the alloy piece).
本発明に係る耐食光輝性塗料は、前記耐食光輝性顔料と樹脂、または、前記耐食光輝性顔料と樹脂と赤色顔料を含有することを特徴とする。 The corrosion-resistant glitter paint according to the present invention is characterized by containing the corrosion-resistant glitter pigment and the resin, or the corrosion-resistant glitter pigment, the resin, and the red pigment.
前記樹脂は、アクリルウレタン樹脂、または、アクリルウレタン樹脂とメラミン樹脂を混合した樹脂であることが好ましく、前記赤色顔料は、弁柄、カドミウムレッド、カドモポンレッド、クロムレッド、バーミリオン、モリブデートオレンジからなる群から選択された1種以上の無機顔料であることが好ましい。 The resin is preferably an acrylic urethane resin or a resin in which an acrylic urethane resin and a melamine resin are mixed, and the red pigment is composed of a petal, cadmium red, cadmopon red, chrome red, vermilion, molybdate orange. One or more inorganic pigments selected from the group are preferred.
本発明に係る耐食光輝性顔料の製造方法の第一の態様は、銅を50質量%以上、亜鉛を32〜43質量%、アルミニウムを3〜7質量%含む薄膜を、スパッタリング法もしくは蒸着法で形成する工程1と、工程1で得られた薄膜を粉砕し、フレーク状合金片を得て、本発明に係る前記耐食光輝性顔料を得る工程2とを有することを特徴とする。 A first aspect of the method for producing a corrosion-resistant bright pigment according to the present invention is a sputtering method or a vapor deposition method for forming a thin film containing 50% by mass or more of copper, 32 to 43% by mass of zinc, and 3 to 7% by mass of aluminum. It is characterized by comprising Step 1 for forming and Step 2 for pulverizing the thin film obtained in Step 1 to obtain a flake-like alloy piece to obtain the corrosion-resistant bright pigment according to the present invention.
本発明に係る耐食光輝性顔料の製造方法の第二の態様は、金属原料を真空中で溶解し、銅を50質量%以上、亜鉛を32〜43質量%、アルミニウムを3〜7質量%含む合金を得る工程1と、工程1で得られた合金を粉砕機で粉砕した後、スタンピングしてフレーク状合金片を得て、本発明に係る前記耐食光輝性顔料を得る工程2とを有することを特徴とする。 The second aspect of the method for producing a corrosion-resistant bright pigment according to the present invention is a method in which a metal raw material is dissolved in a vacuum and contains 50 mass% or more of copper, 32 to 43 mass% of zinc, and 3 to 7 mass% of aluminum. Step 1 for obtaining an alloy, and Step 2 for obtaining the corrosion-resistant bright pigment according to the present invention by pulverizing the alloy obtained in Step 1 with a grinder and then stamping to obtain a flake-like alloy piece. It is characterized by.
本発明に係る耐食光輝性顔料は、L*a*b*表色系において、L*=35〜90、a*=10〜50、b*=10〜25の明度および色度を有するため、本発明に係る顔料を用いた耐食光輝性塗料により得られる塗膜は、赤色メタリックメッキに近い高級感のある外観となる。また、本発明に係る耐食光輝性顔料は、優れた耐食性・耐薬品性を有している。 Since the corrosion-resistant bright pigment according to the present invention has lightness and chromaticity of L * = 35 to 90, a * = 10 to 50, b * = 10 to 25 in the L * a * b * color system, The coating film obtained from the corrosion-resistant glitter paint using the pigment according to the present invention has a high-grade appearance close to that of red metallic plating. Moreover, the corrosion-resistant glitter pigment according to the present invention has excellent corrosion resistance and chemical resistance.
このため、本発明に係る耐食光輝性顔料は、家電品や携帯電話部品あるいは車体部品などの塗装に好適に用いることができる。 For this reason, the corrosion-resistant bright pigment according to the present invention can be suitably used for coating home appliances, mobile phone parts, car body parts and the like.
また、本発明に係る耐食光輝性顔料を構成するフレーク状合金片の厚さを0.02〜5μmにすると、塗装面の色および光輝感がより良好になるとともに、塗膜にひび割れが生じにくくなる。この場合、フレーク状合金片の厚さが非常に薄いため、母材の金属とともに溶融させても母材の金属に混入する割合は極めてわずかであり、再利用可能なので、リサイクル性にも優れることとなる。 In addition, when the thickness of the flake-like alloy piece constituting the corrosion-resistant glitter pigment according to the present invention is 0.02 to 5 μm, the color and glitter of the painted surface become better and the coating film is less likely to crack. Become. In this case, since the thickness of the flaky alloy piece is very thin, even if it is melted together with the base metal, the ratio of mixing into the base metal is very small and can be reused, so it is excellent in recyclability. It becomes.
さらに、本発明に係る耐食光輝性顔料は、人体に有害な材料を使っておらず、また、製造時に排水処理も不要であるため、環境に優しく安全である。 Furthermore, the corrosion-resistant bright pigment according to the present invention does not use a material harmful to the human body and does not require wastewater treatment during production, and is therefore environmentally friendly and safe.
また、本発明に係る耐食光輝性顔料を用いた塗料で塗膜を形成することは、簡単な塗装法で実施可能なので、施工性に優れており、該塗料は意匠性が求められる製品の塗装にも適する。 In addition, forming a coating film with a paint using the corrosion-resistant bright pigment according to the present invention can be carried out by a simple coating method, so that it is excellent in workability, and the paint is applied to a product that requires design properties. Also suitable for.
以下、本発明を実施するための最良の形態について説明する。 Hereinafter, the best mode for carrying out the present invention will be described.
1)銅、アルミニウム、亜鉛の含有量
本発明に係る耐食光輝性顔料は、銅を50質量%以上、亜鉛を32〜43質量%、アルミニウムを3〜7質量%含み、L*a*b*表色系において明度および色度がL*=35〜90、a*=10〜50、b*=10〜25であるフレーク状合金片からなる。
1) Content of copper, aluminum and zinc The anticorrosive bright pigment according to the present invention contains 50 mass% or more of copper, 32 to 43 mass% of zinc, 3 to 7 mass% of aluminum, and L * a * b *. In the color system, the lightness and chromaticity are L * = 35 to 90, a * = 10 to 50, and b * = 10 to 25.
本発明に係る耐食光輝性顔料をフレーク状合金片で構成する理由は、フレーク状合金片は、表面のうちに平面が占める割合が高く、表面反射が起きやすく、光輝性に優れるからである。耐食光輝性顔料においては、表面反射が重要な性能の一つである。 The reason why the corrosion-resistant glitter pigment according to the present invention is composed of a flake-shaped alloy piece is because the flake-shaped alloy piece has a high proportion of flat surfaces in the surface, surface reflection easily occurs, and is excellent in glitter. Surface reflection is one of the important performances of anticorrosive glitter pigments.
本発明に係る耐食光輝性顔料を構成するフレーク状合金片のL*a*b*表色系における明度をL*=35〜90、色度をa*=10〜50、b*=10〜25と規定した理由は、塗装後の塗膜において、赤色メタリックメッキに近い高級感のある赤色を得るためである。 The brightness in the L * a * b * color system of the flake-shaped alloy piece constituting the corrosion-resistant bright pigment according to the present invention is L * = 35 to 90, the chromaticity is a * = 10 to 50, and b * = 10. The reason defined as 25 is to obtain a high-grade red color close to red metallic plating in the coated film.
L*が35未満では、外観の明るさ、光沢が減り、塗膜のメタリック感が損なわれるため好ましくない。L*が90を超えると、塗膜の色が明るすぎて赤の色調が認識しづらくなるため好ましくない。 When L * is less than 35, the brightness and gloss of the appearance are reduced, and the metallic feeling of the coating film is impaired, which is not preferable. If L * exceeds 90, the color of the coating film is too bright and it is difficult to recognize the red color tone, which is not preferable.
a*が10未満では、赤い色調が低下し、塗膜の鮮やかさが損なわれ好ましくない。a*が50を超えると赤みが強すぎ、塗膜の色が銅色の色調から外れてしまい好ましくない。ここで、銅色とは、250nmと470nm付近の波長を選択吸収することにより、特に470nm(青緑色)付近の波長の光を選択吸収することにより、生じる色のことである。 If a * is less than 10, the red color tone is lowered, and the vividness of the coating film is impaired. When a * exceeds 50, redness is too strong, and the color of the coating film is not preferable because it deviates from the copper color. Here, the copper color is a color generated by selectively absorbing wavelengths near 250 nm and 470 nm, particularly by selectively absorbing light having a wavelength near 470 nm (blue green).
b*が10未満では、塗膜の色がくすんだ感じの銅色になり好ましくない。b*が25を超えると、塗膜の色が黄色みを帯びて銅色から外れてしまい好ましくない。 If b * is less than 10, the color of the coating becomes dull and coppery, which is not preferable. If b * exceeds 25, the color of the coating film becomes yellowish and deviates from the copper color.
なお、塗装後の塗膜の色が、赤色メタリックメッキに近い高級感のある赤色となるのは、塗膜の明度がL*=35〜90、色度がa*=10〜50、b*=10〜25のときであるが、塗膜の明度はL*=40〜80、色度はa*=15〜50、b*=10〜20であることがより好ましい。 In addition, the color of the coating film after coating becomes a high-grade red color similar to that of red metallic plating because the brightness of the coating film is L * = 35 to 90, the chromaticity is a * = 10 to 50, and b *. = 10 to 25, it is more preferable that the lightness of the coating film is L * = 40 to 80, and the chromaticity is a * = 15 to 50 and b * = 10 to 20.
銅を50質量%以上、亜鉛を32〜43質量%、アルミニウムを3〜7質量%含有させることが必要な理由は、明度および色度がL*=35〜90、a*=10〜50、b*=10〜25であるフレーク状合金片を得るためである。 The reason why it is necessary to contain 50% by mass or more of copper, 32 to 43% by mass of zinc, and 3 to 7% by mass of aluminum is that lightness and chromaticity are L * = 35 to 90, a * = 10 to 50, This is because a flaky alloy piece having b * = 10 to 25 is obtained.
本発明において、銅は、フレーク状合金片において発現する赤色の基調となる色を提供する働きがある。銅に他の金属を添加することで耐食性や加工性を向上させることができ、色相も変化させることができる。 In the present invention, copper has a function of providing a red base color that appears in the flaky alloy pieces. By adding other metals to copper, corrosion resistance and workability can be improved, and the hue can also be changed.
銅の含有量が50質量%未満の場合、フレーク状合金片の色は、色相が黒っぽい茶色になり赤みを帯びない。このため、フレーク状合金片の明度および色度は、L*a*b*表色系で、L*についてはL*=33〜51、a*についてはa*=3〜40、b*についてはb*=3〜20となり、本発明の範囲に入らず、目的とする赤色が得られない。 When the copper content is less than 50% by mass, the color of the flake-like alloy piece is dark brown with a hue of blackish brown. For this reason, the lightness and chromaticity of the flake-shaped alloy pieces are L * a * b * color system, L * = 33 to 51 for L *, a * = 3 to 40 for a *, and b *. Is b * = 3 to 20, which does not fall within the scope of the present invention, and the desired red color cannot be obtained.
本発明において、亜鉛は波長吸収帯を短波長側にずらす働きをする。 In the present invention, zinc functions to shift the wavelength absorption band to the short wavelength side.
亜鉛の含有量が32質量%未満の場合、フレーク状合金片の色は、銅色が強く出て赤みを帯びない。このため、フレーク状合金片の明度および色度は、L*a*b*表色系で、L*についてはL*=45〜56、a*についてはa*=12〜14、b*についてはb*=7〜9となり、本発明の範囲に入らず、目的とする赤色が得られない。一方、亜鉛の含有量が43質量%を超える場合、フレーク状合金片の色は、茶色の色調となる。このため、フレーク状合金片の明度および色度は、L*a*b*表色系で、L*についてはL*=36〜38、a*についてはa*=15〜18、b*についてはb*=6〜8となり、本発明の範囲に入らず、目的とする赤色が得られない。 When the zinc content is less than 32% by mass, the flake-like alloy piece has a strong copper color and is not reddish. For this reason, the brightness and chromaticity of the flake-shaped alloy pieces are L * a * b * color system, L * = 45 to 56 for L *, a * = 12 to 14 for a *, and b *. B * = 7 to 9, which is not within the scope of the present invention, and the desired red color cannot be obtained. On the other hand, when the zinc content exceeds 43% by mass, the color of the flaky alloy piece is brown. For this reason, the brightness and chromaticity of the flake-shaped alloy pieces are in the L * a * b * color system, L * = 36 to 38 for L *, a * = 15 to 18 for a *, and b *. B * = 6-8, which is not within the scope of the present invention, and the desired red color cannot be obtained.
本発明において、アルミニウムは少しの添加量で合金の波長吸収帯を短波長側にずらす働きをする。 In the present invention, aluminum functions to shift the wavelength absorption band of the alloy to the short wavelength side with a small addition amount.
アルミニウムの含有量が3質量%未満の場合、フレーク状合金片の色は、銅色が強く出て赤みを帯びない。このため、フレーク状合金片の明度および色度は、L*a*b*表色系で、L*についてはL*=41〜51、a*についてはa*=2〜3、b*についてはb*=25〜31となり、本発明の範囲に入らず、目的とする赤色が得られない。 When the aluminum content is less than 3% by mass, the flake-like alloy piece has a strong copper color and is not reddish. For this reason, the brightness and chromaticity of the flake-shaped alloy pieces are L * a * b * color system, L * = 41 to 51 for L *, a * = 2 to 3 for a *, and b *. Is b * = 25 to 31, which is not within the scope of the present invention, and the desired red color cannot be obtained.
一方、アルミニウムの含有量が7質量%を超える場合、灰色で白っぽくなる。このため、L*a*b*表色系で、L*についてはL*=48〜58、a*についてはa*=6〜8、b*についてはb*=20〜25となり、本発明の範囲に入らず、目的とする赤色が得られない。 On the other hand, when the aluminum content exceeds 7% by mass, it becomes gray and whitish. Therefore, in the L * a * b * color system, L * = 48 to 58 for L *, a * = 6 to 8 for a *, and b * = 20 to 25 for b *. The desired red color cannot be obtained.
ここで、銅が固有の有色光沢を呈するのは、銅が、固有の波長域の光を選択的に吸収するためである。銅は、波長250nm付近の波長域の光(紫外線)と470nm付近の波長域の光(青緑色の可視光)を選択的に吸収する特性を有する。銅の色に影響を与える光の吸収は、可視光域である470nm付近の波長域の光の吸収である。銅に対する可視光線の反射光においては、470nm付近の波長域の光の色である青緑色が減少する。このため、目に見える銅の色は、青緑色の余色すなわち銅赤色となる。 Here, the reason why copper exhibits a specific colored gloss is because copper selectively absorbs light in a specific wavelength range. Copper has a characteristic of selectively absorbing light in the wavelength range near 250 nm (ultraviolet light) and light in the wavelength range near 470 nm (blue-green visible light). The absorption of light that affects the color of copper is the absorption of light in the wavelength region near 470 nm, which is the visible light region. In the reflected light of visible light with respect to copper, blue-green, which is the color of light in the wavelength region near 470 nm, decreases. For this reason, the visible copper color is a blue-green aftercolor, that is, copper red.
波長250nm付近における吸収は、入射する光量子を伝導電子が吸収して、より高準位の空虚帯へ励起するために生ずる。波長470nm付近における吸収は、該波長帯域に対応する光電子が、d帯の電子を伝導体のフェルミ準位以上の空虚準位へ励起させるために生ずる。 Absorption near a wavelength of 250 nm occurs because conduction electrons absorb incident photons and excite them to a higher level vacant band. Absorption near a wavelength of 470 nm occurs because photoelectrons corresponding to the wavelength band excite d-band electrons to a vacant level higher than the Fermi level of the conductor.
一方、アルミニウムなどの多くの金属は、可視光線および赤外線をほぼ完全に全反射し金属光沢を有する。 On the other hand, many metals such as aluminum almost completely reflect visible light and infrared rays and have a metallic luster.
そして、前述のように合金組成により色が変わる理由は、次の事項に関連する。すなわち、銅を亜鉛と合金にすると、伝導電子が増えフェルミ準位が高まるので、吸収帯も短波長側へずれ、色相は真鍮色に移行する。 The reason why the color changes depending on the alloy composition as described above relates to the following matters. That is, when copper is alloyed with zinc, conduction electrons increase and the Fermi level increases, so the absorption band shifts to the short wavelength side, and the hue shifts to brass.
亜鉛を50%以上加えると、該合金は、全反射を示すようになり色相は銀白色となる。一方、銅をアルミニウムと合金にすると、銅合金の1原子当たりの伝導電子の数が、亜鉛と合金にした場合よりも多くなり、フェルミ準位がより高くなる。 When 50% or more of zinc is added, the alloy exhibits total reflection and the hue becomes silver white. On the other hand, when copper is alloyed with aluminum, the number of conduction electrons per atom of the copper alloy is larger than when zinc is alloyed with the Fermi level.
このため、銅にアルミニウムを添加した場合は、亜鉛を添加した場合よりも、より少ない添加量で吸収帯が短波長側にずれる。 For this reason, when aluminum is added to copper, the absorption band shifts to the short wavelength side with a smaller addition amount than when zinc is added.
次に、本発明に係る耐食光輝性顔料の耐食性について説明する。 Next, the corrosion resistance of the corrosion-resistant bright pigment according to the present invention will be described.
銅は、耐食性が高い金属である。ステンレスやチタンは表面を不動態化することで耐食性を維持するのに対し、貴金属である銅および銅合金は、それ自体が広い電位領域とpH領域において不変態を維持する。 Copper is a metal with high corrosion resistance. Stainless steel and titanium maintain their corrosion resistance by passivating their surfaces, whereas copper and copper alloys, which are noble metals, themselves maintain invariant states in a wide potential range and pH range.
しかし、銅は、強アルカリに対しては弱く、腐食する。 However, copper is weak against strong alkalis and corrodes.
この点、本発明に係る耐食光輝性顔料を構成するフレーク状合金片は、銅に前記所定量の亜鉛、アルミニウムが添加されているので、強アルカリに対しても腐食されにくい。 In this respect, the flake-shaped alloy piece constituting the corrosion-resistant bright pigment according to the present invention is hardly corroded even by strong alkali because the predetermined amounts of zinc and aluminum are added to copper.
亜鉛には、緻密な酸化膜を形成する働きがある。このため、銅に亜鉛を添加すると耐食性の向上に寄与する。亜鉛の含有量が32質量%未満では、この働きが十分には発現しない。一方、亜鉛の含有量が43質量%を超えると、材料の硬度が低下するとともに色は銀白色になる。 Zinc has a function of forming a dense oxide film. For this reason, when zinc is added to copper, it contributes to the improvement of corrosion resistance. If the zinc content is less than 32% by mass, this function is not sufficiently exhibited. On the other hand, when the zinc content exceeds 43% by mass, the hardness of the material decreases and the color becomes silver white.
アルミニウムには、強固で厚い酸化膜を形成する働きがある。このため、銅にアルミニウムを添加すると耐食性の向上に寄与する。アルミニウムの含有量が3質量%未満では、この働きが十分には発現しない。一方、アルミニウムの含有量が7質量%を超えると、材料の硬度が低下するとともに色は銀白色になる。 Aluminum has a function of forming a strong and thick oxide film. For this reason, when aluminum is added to copper, it contributes to the improvement of corrosion resistance. If the aluminum content is less than 3% by mass, this function is not sufficiently exhibited. On the other hand, if the aluminum content exceeds 7% by mass, the hardness of the material decreases and the color becomes silver white.
2)フレーク状合金片の厚さと大きさ
本発明者は、本発明に係る耐食光輝性顔料を構成するフレーク状合金片の表面反射率が、550nmの波長の光に対して25〜65%であると、塗装後の塗膜の色相が、赤色メタリックメッキに近い高級感のある赤色を帯びることを見出した。
2) Thickness and size of flake-shaped alloy pieces The inventors of the present invention have a surface reflectance of 25 to 65% with respect to light having a wavelength of 550 nm, which constitutes the corrosion-resistant bright pigment according to the present invention. It was found that the hue of the coating film after painting was red with a high-class feeling close to that of red metallic plating.
該表面反射率は、フレーク状合金片の厚さと一辺の長さに関係するので、厚さと大きさを適切に調整することが好ましく、厚さを0.02〜5μm、大きさを5〜50μmとすることが好ましい。 Since the surface reflectance is related to the thickness of the flaky alloy piece and the length of one side, it is preferable to appropriately adjust the thickness and size, and the thickness is 0.02 to 5 μm, and the size is 5 to 50 μm. It is preferable that
フレーク状合金片の厚さが0.02μmより薄いと、下地(樹脂塗膜)が透けて見えるようになり、塗装面の明度および色度が目標とする範囲(L*a*b*表色系において、L*=35〜90、a*=10〜50、b*=10〜25)から外れやすくなってしまう。また、表面反射率も下がり光輝感がなくなり、好ましくない。 If the thickness of the flake-shaped alloy piece is less than 0.02 μm, the base (resin coating film) can be seen through, and the lightness and chromaticity of the painted surface is the target range (L * a * b * color) In the system, L * = 35 to 90, a * = 10 to 50, and b * = 10 to 25) are easily removed. In addition, the surface reflectance is lowered and the glitter is lost, which is not preferable.
フレーク状合金片の厚さが5μmを超えると、フレーク状合金片の内部応力が高くなり、フレーク状合金片に割れが入りやすくなる。そのため、塗装乾燥後の塗膜にヒビが入る可能性が高くなり、好ましくない。なお、フレーク状合金片の厚さが5μmを超えても表面反射率に変化はなく、薄膜の成膜時間が延びて生産に必要な時間が長くなり、単にコストが上昇するのみである。 When the thickness of the flaky alloy piece exceeds 5 μm, the internal stress of the flaky alloy piece becomes high, and the flaky alloy piece is easily cracked. For this reason, there is a high possibility that cracks will enter the coated film after being dried. Note that even if the thickness of the flake-shaped alloy piece exceeds 5 μm, the surface reflectance does not change, the film formation time is increased, the time required for production is increased, and the cost is merely increased.
フレーク状合金片の大きさが5μm未満では、反射面が小さくなり光輝感が損なわれ、好ましくない。 If the size of the flaky alloy piece is less than 5 μm, the reflecting surface becomes small and the glitter feeling is impaired, which is not preferable.
フレーク状合金片の大きさが50μmを超えると、反射面が広がり表面反射率は上がるが、塗装面を上から見た場合に、フレーク状合金片同士の重なりがない部分が生じ、下地が見える可能性があり、好ましくない。 When the size of the flake-shaped alloy piece exceeds 50 μm, the reflecting surface spreads and the surface reflectance increases, but when the painted surface is viewed from above, there is a portion where the flake-shaped alloy pieces do not overlap each other and the base is visible It is possible and not preferred.
3)フレーク状合金片の製造方法
本発明に係る耐食光輝性顔料を構成するフレーク状合金片は、スパッタリング法もしくは蒸着法で作製することができる。具体的には、銅を50質量%以上、亜鉛を32〜43質量%、アルミニウムを3〜7質量%含有する薄膜を形成し、該薄膜を粉砕して作製することができる。
3) Method for producing flake-like alloy piece The flake-like alloy piece constituting the corrosion-resistant bright pigment according to the present invention can be produced by a sputtering method or a vapor deposition method. Specifically, a thin film containing 50% by mass or more of copper, 32 to 43% by mass of zinc, and 3 to 7% by mass of aluminum can be formed, and the thin film can be pulverized.
上記フレーク状合金片の原料となる薄膜を形成するのに用いるスパッタリング法は、真空中でアルゴンイオンをターゲットにぶつけてエネルギーを与え、該ターゲットを構成する原子を飛び出させ、対象物(基板)に付着させる方法である。 The sputtering method used to form a thin film as a raw material for the flake-shaped alloy piece is such that argon ions are struck against the target in a vacuum to give energy, and the atoms constituting the target are ejected, and the target (substrate) is ejected. It is the method of making it adhere.
スパッタリング法は、熱で蒸気化して原子を飛ばす方法ではないので、真空蒸着法のように蒸気圧による成分の狂いがない。そのため、一つの組成のターゲットのみを用いれば、そのターゲット組成とほぼ同じ組成の膜が得られる。 Since the sputtering method is not a method of vaporizing with heat and flying atoms, there is no component deviation due to vapor pressure unlike the vacuum deposition method. Therefore, if only a target having one composition is used, a film having almost the same composition as the target composition can be obtained.
また、銅ターゲット、亜鉛ターゲット、アルミニウムターゲットをそれぞれ配置して、同時に成膜することにより、銅−亜鉛−アルミニウム合金薄膜を得ることも可能である。この場合は、それぞれのターゲットの投入電流を調整することにより合金比率を調整することができる。 Moreover, it is also possible to obtain a copper-zinc-aluminum alloy thin film by disposing a copper target, a zinc target, and an aluminum target and forming films simultaneously. In this case, the alloy ratio can be adjusted by adjusting the input current of each target.
スパッタリング方式は、DCマグネトロンとRFマグネトロンのどちらでも良い。ターゲットは、溶解法や焼結法で作製することができる。 The sputtering method may be either a DC magnetron or an RF magnetron. The target can be produced by a melting method or a sintering method.
基板に形成した薄膜は、削り取ったり、剥ぎ取ったりして回収した後、ボールミルなどで粉砕したり、溶液中に入れた後に超音波を加えて粉砕したりして、フレーク状合金片にすることができる。あるいは、基板ごと溶液中に入れ、基板に形成した薄膜を化学的に剥離しながら粉砕し、フレーク状合金片にすることも可能である。 The thin film formed on the substrate is scraped or peeled off and collected, then pulverized with a ball mill, etc., or placed in a solution and then pulverized by applying ultrasonic waves to form a flaky alloy piece. Can do. Alternatively, the whole substrate can be put in a solution, and the thin film formed on the substrate can be pulverized while being chemically peeled to form a flaky alloy piece.
また、本発明に係る耐食光輝性顔料を構成するフレーク状合金片は、金属原料を真空中で溶解し、銅を50質量%以上、亜鉛を32〜43質量%、アルミニウムを3〜7質量%含有する合金を作製し、該合金を粉砕機で粉砕した後、スタンピングし、フレーク状合金片とする方法でも作製することができる。 Further, the flake-like alloy piece constituting the corrosion-resistant bright pigment according to the present invention is obtained by dissolving a metal raw material in a vacuum, 50 mass% or more of copper, 32 to 43 mass% of zinc, and 3 to 7 mass% of aluminum. It can also be produced by a method in which an alloy containing is prepared, the alloy is pulverized with a pulverizer, and then stamped to obtain a flaky alloy piece.
なお、本発明に係る耐食光輝性顔料を構成するフレーク状合金片の表面をシリカ等の無機材料や有機材料でコーティングすることで、さらに溶出防止と耐食性向上を図ることもできる。 The surface of the flake-like alloy piece constituting the corrosion-resistant glitter pigment according to the present invention is coated with an inorganic material such as silica or an organic material, so that further elution prevention and corrosion resistance can be improved.
4)耐食光輝性塗料
本発明に係る耐色光輝性塗料は、本発明に係る耐食光輝性顔料と樹脂を適切な比率で配合し、スターラ等の攪拌機を用いて良く攪拌することで作製することができる。
4) Corrosion-resistant glitter paint The color-resistant glitter paint according to the present invention is prepared by blending the corrosion-resistant glitter pigment according to the present invention and the resin in an appropriate ratio and stirring well using a stirrer such as a stirrer. Can do.
使用する樹脂としては、アクリルウレタン樹脂や、アクリルウレタン樹脂とメラミン樹脂を混合したものを好適に用いることができるが、これに限定されない。 As the resin to be used, an acrylic urethane resin or a mixture of an acrylic urethane resin and a melamine resin can be suitably used, but is not limited thereto.
また、光輝性および色度を調整し、赤色メタリックメッキに近い高級感のある色にするために、赤色顔料を追加して添加しても良い。該赤色顔料としては、弁柄(酸化第二鉄)あるいはカドミウムレッド、カドモポンレッド、クロムレッド、バーミリオン、モリブレートオレンジ等の無機顔料を好適に用いることができるが、これに限定されず、有機顔料でも同様の効果が得られる。 In addition, a red pigment may be added and added in order to adjust the glitter and chromaticity so as to obtain a high-grade color close to red metallic plating. As the red pigment, a petal (ferric oxide) or an inorganic pigment such as cadmium red, cadmopon red, chrome red, vermilion, molybdate orange, and the like can be preferably used. But the same effect can be obtained.
このようにして作製した該耐食光輝性塗料を、スプレーガン等で、塗装物に吹きつけて塗装を行い、所定の条件で加熱乾燥を行う。 The corrosion-resistant bright paint thus produced is sprayed onto a coated object with a spray gun or the like, and is then heated and dried under predetermined conditions.
加熱乾燥の方法は、塗装物の形状に応じて適宜選択して行う。その際、温度分布が大きいと乾燥ムラが生じてしまうので、乾燥ムラの生じにくい、熱風乾燥機、対流式オーブンなどで行うことが好ましい。 The method of heat drying is appropriately selected according to the shape of the coated object. At that time, if the temperature distribution is large, drying unevenness occurs, and therefore, it is preferable to carry out with a hot air drier, a convection oven or the like that is unlikely to generate uneven drying.
[実施例1]
Cu:Zn:Alを60:35:5の質量比となるように計量し、真空装置(株式会社神港製作所製、AIH−w36200SBTイオンプレーティング装置)中に入れ、電子ビームにより真空溶解して合金を作製した。
[Example 1]
Cu: Zn: Al was weighed so as to have a mass ratio of 60: 35: 5, placed in a vacuum apparatus (AIH-w36200SBT ion plating apparatus manufactured by Shinko Seisakusho Co., Ltd.), and vacuum melted by an electron beam. An alloy was made.
該合金の明度および色度を分光光度計(日立製作所社製、U−4000)で測定したところ、L*=47、a*=48、b*=23であった。 When the brightness and chromaticity of the alloy were measured with a spectrophotometer (U-4000, manufactured by Hitachi, Ltd.), L * = 47, a * = 48, and b * = 23.
該合金をジェットミル粉砕機で1〜3μmの微粉に粉砕し、スタンピングして、厚さ1μm、大きさ40μmのフレーク状合金片にした。該フレーク状合金片は、肉眼では赤みを帯びていた。また、得られたフレーク状合金片の反射率を、前記分光光度計を用いて波長550nmの光で測定したところ、55%であった。 The alloy was pulverized into fine particles of 1 to 3 μm by a jet mill pulverizer and stamped to obtain flake-like alloy pieces having a thickness of 1 μm and a size of 40 μm. The flake-shaped alloy piece was reddish to the naked eye. Further, the reflectance of the obtained flaky alloy piece was measured with light having a wavelength of 550 nm using the spectrophotometer, and found to be 55%.
該フレーク状合金片10gを透明アクリルウレタン樹脂90gに添加し、スターラを用いて良く攪拌し、耐食光輝性塗料を作製した。該塗料をスプレーガンに入れ、2kg/cm2の圧力で黒のプラスチック板(50mm×100mm×厚さ1mm)に塗装した。 10 g of the flaky alloy piece was added to 90 g of a transparent acrylic urethane resin and stirred well using a stirrer to prepare a corrosion-resistant glitter paint. The paint was put in a spray gun and applied to a black plastic plate (50 mm × 100 mm × thickness 1 mm) at a pressure of 2 kg / cm 2 .
塗装後は、熱風乾燥機(株式会社カトー社製、JMB23DP、加熱容量9kw)を用いて、80℃で30分間乾燥させた。乾燥後の塗装面は、肉眼では赤銅色を帯びていた。 After coating, it was dried at 80 ° C. for 30 minutes using a hot air dryer (manufactured by Kato Corporation, JMB23DP, heating capacity 9 kw). The painted surface after drying had a bronze color with the naked eye.
該プラスチック板の塗装面の明度および色度を、分光光度計(日立製作所社製、U−4000)で測定したところ、L*=45、a*=45、b*=22であった。また、該プラスチック板の塗装面の反射率を、前記分光光度計を用いて波長550nmの光で測定したところ、53%であった。 When the lightness and chromaticity of the coated surface of the plastic plate were measured with a spectrophotometer (U-4000, manufactured by Hitachi, Ltd.), L * = 45, a * = 45, and b * = 22. The reflectance of the coated surface of the plastic plate was 53% when measured with light having a wavelength of 550 nm using the spectrophotometer.
次に、アクリル樹脂50g、メラミン樹脂50gに、赤色顔料として弁柄を10g、前記フレーク状合金片を20g入れ、スターラを用いて良く攪拌し、耐食光輝性塗料を作製した。該塗料を鉄板(50mm×100mm×厚さ0.5mm)に塗装し、塗装後は、上記同様に熱風乾燥機を用いて、150℃で20分間乾燥させた。乾燥後の塗装面は、肉眼では光輝感のある赤メタリック色であった。 Next, 10 g of the dial as a red pigment and 20 g of the flake-like alloy piece were placed in 50 g of the acrylic resin and 50 g of the melamine resin, and stirred well using a stirrer to prepare a corrosion-resistant bright paint. The paint was applied to an iron plate (50 mm × 100 mm × thickness 0.5 mm), and after the coating, it was dried at 150 ° C. for 20 minutes using a hot air dryer in the same manner as described above. The painted surface after drying was a red metallic color with a brilliant feeling to the naked eye.
該鉄板の塗装面の明度および色度を、分光光度計(日立製作所社製、U−4000)で測定したところ、L*=44、a*=48、b*=20であった。また、該鉄板の塗装面の反射率を、前記分光光度計を用いて波長550nmの光で測定したところ、50%であった。 The brightness and chromaticity of the coated surface of the iron plate were measured with a spectrophotometer (U-4000, manufactured by Hitachi, Ltd.), and L * = 44, a * = 48, and b * = 20. The reflectance of the coated surface of the iron plate was measured with light having a wavelength of 550 nm using the spectrophotometer and found to be 50%.
次に、該鉄板を5%NaOH溶液に24時間浸漬したが、金属の溶解、外観の変化はなかった。 Next, the iron plate was immersed in a 5% NaOH solution for 24 hours, but the metal was not dissolved and the appearance was not changed.
[実施例2]
Cu:Zn:Alを65:32:3の質量比となるようにした以外は、実施例1と同様の方法で合金を作製した。
[Example 2]
An alloy was produced in the same manner as in Example 1 except that the mass ratio of Cu: Zn: Al was 65: 32: 3.
該合金の明度および色度を実施例1と同様の方法で測定したところ、L*=52、a*=45、b*=15であった。 When the brightness and chromaticity of the alloy were measured in the same manner as in Example 1, they were L * = 52, a * = 45, and b * = 15.
該合金を、実施例1と同様の方法で、厚さ2μm、大きさ35μmのフレーク状合金片にした。該フレーク状合金片は、肉眼では赤みを帯びていた。また、得られたフレーク状合金片の反射率を実施例1と同様に測定したところ、58%だった。 The alloy was made into a flaky alloy piece having a thickness of 2 μm and a size of 35 μm in the same manner as in Example 1. The flake-shaped alloy piece was reddish to the naked eye. Further, the reflectance of the obtained flaky alloy piece was measured in the same manner as in Example 1. As a result, it was 58%.
該フレーク状合金片10gを透明アクリルウレタン樹脂90gに添加し、実施例1と同様の方法で耐食光輝性塗料を作製し、黒のプラスチック板に塗装した。塗装後、80℃で30分間乾燥させた。乾燥後の塗装面は、肉眼では赤銅色を帯びていた。 10 g of the flaky alloy piece was added to 90 g of a transparent acrylic urethane resin, and a corrosion-resistant glitter paint was prepared in the same manner as in Example 1 and applied to a black plastic plate. After painting, it was dried at 80 ° C. for 30 minutes. The painted surface after drying had a bronze color with the naked eye.
該プラスチック板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=50、a*=43、b*=13であった。また、該プラスチック板の塗装面の反射率を実施例1と同様に測定したところ、56%であった。 The lightness and chromaticity of the coated surface of the plastic plate were measured by the same method as in Example 1. The results were L * = 50, a * = 43, and b * = 13. Further, the reflectance of the coated surface of the plastic plate was measured in the same manner as in Example 1, and found to be 56%.
次に、アクリル樹脂50g、メラミン樹脂50gに、赤色顔料として弁柄を10g、前記フレーク状合金片を20g入れ、実施例1と同様の方法で耐色光輝性塗料を作製し、鉄板に塗装した。塗装後、150℃で20分間乾燥させた。乾燥後の塗装面は、肉眼では光輝感のある赤メタリック色であった。 Next, 50 g of acrylic resin and 50 g of melamine resin were charged with 10 g of a petal as a red pigment and 20 g of the flake-like alloy piece. A color-resistant glittering paint was prepared in the same manner as in Example 1 and applied to an iron plate. . After painting, it was dried at 150 ° C. for 20 minutes. The painted surface after drying was a red metallic color with a brilliant feeling to the naked eye.
該鉄板の塗装面の明度および色度を実施例1と同様の方法で測定したところ、L*=54、a*=45、b*=18であった。また、該鉄板の塗装面の反射率を、実施例1と同様に測定したところ、53%であった。 When the brightness and chromaticity of the coated surface of the iron plate were measured by the same method as in Example 1, they were L * = 54, a * = 45, and b * = 18. Moreover, when the reflectance of the coating surface of this iron plate was measured similarly to Example 1, it was 53%.
次に、該鉄板を5%NaOH溶液に24時間浸漬したが、金属の溶解、外観の変化はなかった。 Next, the iron plate was immersed in a 5% NaOH solution for 24 hours, but the metal was not dissolved and the appearance was not changed.
[実施例3]
Cu:Zn:Alを50:43:7の質量比となるようにした以外は、実施例1と同様の方法で合金を作製した。
[Example 3]
An alloy was produced in the same manner as in Example 1 except that the mass ratio of Cu: Zn: Al was 50: 43: 7.
該合金の明度および色度を、実施例1と同様の方法で測定したところ、L*=40、a*=42、b*=24であった。 The brightness and chromaticity of the alloy were measured in the same manner as in Example 1. The results were L * = 40, a * = 42, and b * = 24.
該合金を、実施例1と同様の方法で、厚さ4μm、大きさ6μmのフレーク状合金片にした。該フレーク状合金片は、肉眼では銅赤色であった。また、該フレーク状合金片の反射率を、実施例1と同様に測定したところ、48%であった。 The alloy was made into a flaky alloy piece having a thickness of 4 μm and a size of 6 μm in the same manner as in Example 1. The flaky alloy pieces were copper red with the naked eye. The reflectance of the flaky alloy piece was measured in the same manner as in Example 1 and found to be 48%.
該フレーク状合金片10gを透明アクリルウレタン樹脂90gに添加し、実施例1と同様の方法で耐食光輝性塗料を作製し、黒のプラスチック板に塗装した。塗装後80℃で30分間乾燥させた。乾燥後の塗装面は、肉眼では赤銅色を帯びていた。 10 g of the flaky alloy piece was added to 90 g of a transparent acrylic urethane resin, and a corrosion-resistant glitter paint was prepared in the same manner as in Example 1 and applied to a black plastic plate. After coating, it was dried at 80 ° C. for 30 minutes. The painted surface after drying had a bronze color with the naked eye.
該プラスチック板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=37、a*=38、b*=18であった。また、該プラスチック板の塗装面の反射率を、実施例1と同様に測定したところ、45%であった。 When the lightness and chromaticity of the coated surface of the plastic plate were measured by the same method as in Example 1, L * = 37, a * = 38, and b * = 18. Further, the reflectance of the coated surface of the plastic plate was measured in the same manner as in Example 1, and found to be 45%.
次に、アクリル樹脂50g、メラミン樹脂50gに、赤色顔料として弁柄を10g、前記フレーク状合金片を20g入れ、実施例1と同様の方法で耐食光輝性塗料を作製し、鉄板に塗装した。塗装後150℃で20分間乾燥させた。乾燥後の塗装面は、肉眼では光輝感のある赤メタリック色であった。 Next, 50 g of acrylic resin and 50 g of melamine resin were charged with 10 g of a petal as a red pigment and 20 g of the flake-like alloy piece. A corrosion-resistant glitter paint was prepared in the same manner as in Example 1 and applied to an iron plate. After coating, it was dried at 150 ° C. for 20 minutes. The painted surface after drying was a red metallic color with a brilliant feeling to the naked eye.
該鉄板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=40、a*=43、b*=20であった。また、該鉄の塗装面の反射率を、実施例1と同様に測定したところ、42%であった。 The brightness and chromaticity of the coated surface of the iron plate were measured by the same method as in Example 1. The results were L * = 40, a * = 43, and b * = 20. The reflectance of the painted surface of the iron was measured in the same manner as in Example 1 and found to be 42%.
次に、該鉄板を5%NaOH溶液に24時間浸漬したが、金属の溶解、外観の変化はなかった。 Next, the iron plate was immersed in a 5% NaOH solution for 24 hours, but the metal was not dissolved and the appearance was not changed.
[実施例4]
Cu:Zn:Alを56:38:6の質量比となるようにした以外は、実施例1と同様の方法で合金を作製した。
[Example 4]
An alloy was produced in the same manner as in Example 1 except that the mass ratio of Cu: Zn: Al was 56: 38: 6.
該合金の明度および色度を、実施例1と同様の方法で測定したところ、L*=54、a*=38、b*=12であった。 The brightness and chromaticity of the alloy were measured in the same manner as in Example 1. The results were L * = 54, a * = 38, and b * = 12.
該合金を、実施例1と同様の方法で、厚さ0.03μm、大きさ45μmのフレーク状合金片にした。該フレーク状合金片は、肉眼では赤味を帯びていた。また、該フレーク状合金片の反射率を実施例1と同様に測定したところ、50%であった。 The alloy was made into a flaky alloy piece having a thickness of 0.03 μm and a size of 45 μm in the same manner as in Example 1. The flake-shaped alloy piece was reddish to the naked eye. Further, the reflectance of the flaky alloy piece was measured in the same manner as in Example 1, and found to be 50%.
該フレーク状合金片10gを透明アクリルウレタン樹脂90gに添加し、実施例1と同様の方法で耐食光輝性塗料を作製し、黒のプラスチック板に塗装した。塗装後、80℃で30分間乾燥させた。乾燥後の塗装面は、肉眼では赤みを帯びていた。 10 g of the flaky alloy piece was added to 90 g of a transparent acrylic urethane resin, and a corrosion-resistant glitter paint was prepared in the same manner as in Example 1 and applied to a black plastic plate. After painting, it was dried at 80 ° C. for 30 minutes. The painted surface after drying was reddish to the naked eye.
該プラスチック板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=52、a*=34、b*=10であった。また、該プラスチック板の塗装面の反射率を、実施例1と同様に測定したところ、47%であった。 When the lightness and chromaticity of the coated surface of the plastic plate were measured by the same method as in Example 1, L * = 52, a * = 34, and b * = 10. Further, the reflectance of the coated surface of the plastic plate was measured in the same manner as in Example 1, and found to be 47%.
次に、アクリル樹脂50g、メラミン樹脂50gに、赤色顔料として弁柄を10g、前記フレーク状合金片を20g入れ、実施例1と同様の方法で耐食光輝性塗料を作製し、鉄板に塗装した。塗装後、150℃で20分間乾燥させた。乾燥後の塗装面は、肉眼では光輝感のある赤メタリック色であった。 Next, 50 g of acrylic resin and 50 g of melamine resin were charged with 10 g of a petal as a red pigment and 20 g of the flake-like alloy piece. A corrosion-resistant glitter paint was prepared in the same manner as in Example 1 and applied to an iron plate. After painting, it was dried at 150 ° C. for 20 minutes. The painted surface after drying was a red metallic color with a brilliant feeling to the naked eye.
該鉄板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=56、a*=42、b*=16であった。また、該鉄板の塗装面の反射率を、実施例1と同様に測定したところ、45%であった。 The brightness and chromaticity of the coated surface of the iron plate were measured in the same manner as in Example 1. The results were L * = 56, a * = 42, and b * = 16. Moreover, when the reflectance of the coating surface of this iron plate was measured similarly to Example 1, it was 45%.
次に、該鉄板を5%NaOH溶液に24時間浸漬したが、金属の溶解、外観の変化はなかった。 Next, the iron plate was immersed in a 5% NaOH solution for 24 hours, but the metal was not dissolved and the appearance was not changed.
[実施例5]
Cu:Zn:Alを60:35:5の質量比となるようにした以外は、実施例1と同様の方法で合金を作製し、該合金を用いて、直径100mmφ、厚さ3mmのターゲットを作製した。
[Example 5]
An alloy was prepared in the same manner as in Example 1 except that the mass ratio of Cu: Zn: Al was 60: 35: 5, and a target having a diameter of 100 mmφ and a thickness of 3 mm was prepared using the alloy. Produced.
該ターゲットの明度および色度を、実施例1と同様の方法で測定したところ、L*=47、a*=48、b*=23であった。 When the brightness and chromaticity of the target were measured by the same method as in Example 1, they were L * = 47, a * = 48, and b * = 23.
次に、該ターゲットを真空装置(日本真空技術株式会社製、SH−S100、DCマグネトロン方式)にセットし、電子ビームを用いてポリプロピレンフィルム(表面にラッカーを塗布し、ラッカー層を1μm形成している。)上に真空蒸着し、薄膜を形成した。膜厚は0.04μmであった。該薄膜をMEK(メチルエチルケトン)に浸し、ポリプロピレンのみ溶解し、該薄膜だけを取り出した。 Next, the target is set in a vacuum apparatus (SH-S100, DC magnetron method manufactured by Nippon Vacuum Technology Co., Ltd.), and a polypropylene film (a lacquer is applied on the surface to form a lacquer layer by 1 μm using an electron beam). The film was vacuum-deposited to form a thin film. The film thickness was 0.04 μm. The thin film was immersed in MEK (methyl ethyl ketone), only polypropylene was dissolved, and only the thin film was taken out.
該薄膜を超音波粉砕機(イプロス社製)で14μmの大きさにし、フレーク状合金片を得た。該フレーク状合金片は、肉眼では赤味を帯びていた。また、得られたフレーク状合金片の反射率を、実施例1と同様に測定したところ、60%であった。 The thin film was made 14 μm in size with an ultrasonic pulverizer (manufactured by Ipros) to obtain a flake-like alloy piece. The flake-shaped alloy piece was reddish to the naked eye. Moreover, when the reflectance of the obtained flaky alloy piece was measured in the same manner as in Example 1, it was 60%.
該フレーク状合金片をMEK中に投入して質量比で10%となるように分散液を作製し、該分散液10gに透明アクリルウレタン樹脂90gを添加した。そして、スターラを用いて良く攪拌し、耐食光輝性塗料を作製した。 The flaky alloy piece was put into MEK to prepare a dispersion so that the mass ratio was 10%, and 90 g of a transparent acrylic urethane resin was added to 10 g of the dispersion. And it stirred well using the stirrer and produced the corrosion-proof glittering coating material.
該塗料を実施例1と同様の方法で黒のプラスチック板に塗装した。塗装後、80℃で30分間乾燥させた。乾燥後の該プラスチック板の塗装面は、肉眼では赤銅色を帯びていた。 The paint was applied to a black plastic plate in the same manner as in Example 1. After painting, it was dried at 80 ° C. for 30 minutes. The painted surface of the plastic plate after drying had a bronze color with the naked eye.
該プラスチック板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=45、a*=45、b*=17であった。また、該プラスチック板の塗装面の反射率を、実施例1と同様に測定したところ、58%であった。 When the lightness and chromaticity of the coated surface of the plastic plate were measured by the same method as in Example 1, L * = 45, a * = 45, and b * = 17. Further, the reflectance of the coated surface of the plastic plate was measured in the same manner as in Example 1, and found to be 58%.
次に、アクリル樹脂50g、メラミン樹脂50gに、赤色顔料として弁柄を10g、前記フレーク状合金片を20g入れ、実施例1と同様の方法で耐食光輝性塗料を作製し、鉄板に塗装した。塗装後、150℃で20分間乾燥させた。乾燥後の塗装面は、肉眼では光輝感のある赤メタリック色であった。 Next, 50 g of acrylic resin and 50 g of melamine resin were charged with 10 g of a petal as a red pigment and 20 g of the flake-like alloy piece. A corrosion-resistant glitter paint was prepared in the same manner as in Example 1 and applied to an iron plate. After painting, it was dried at 150 ° C. for 20 minutes. The painted surface after drying was a red metallic color with a brilliant feeling to the naked eye.
該鉄板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=44、a*=48、b*=20であった。また、該プラスチック板の塗装面の反射率を、実施例1と同様に測定したところ、56%であった。 The brightness and chromaticity of the coated surface of the iron plate were measured by the same method as in Example 1. The results were L * = 44, a * = 48, and b * = 20. Further, the reflectance of the coated surface of the plastic plate was measured in the same manner as in Example 1, and found to be 56%.
次に、該鉄板を5%NaOH溶液に24時間浸漬したが、金属の溶解、外観の変化はなかった。 Next, the iron plate was immersed in a 5% NaOH solution for 24 hours, but the metal was not dissolved and the appearance was not changed.
[実施例6]
Cu:Zn:Alを60:35:5の質量比となるようにした以外は、実施例1と同様の方法で合金を作製した。
[Example 6]
An alloy was produced in the same manner as in Example 1 except that the mass ratio of Cu: Zn: Al was 60: 35: 5.
該合金の明度および色度を、実施例1と同様の方法で測定したところ、L*=47、a*=48、b*=23であった。 The brightness and chromaticity of the alloy were measured in the same manner as in Example 1. The results were L * = 47, a * = 48, and b * = 23.
該合金を、実施例1と同様の方法で、厚さ1μm、大きさ40μmのフレーク状合金片にした。該フレーク状合金片は、肉眼では赤味を帯びていた。また、該フレーク状合金片の反射率を、実施例1と同様に測定したところ、55%であった。 The alloy was made into a flaky alloy piece having a thickness of 1 μm and a size of 40 μm in the same manner as in Example 1. The flake-shaped alloy piece was reddish to the naked eye. Further, the reflectance of the flaky alloy piece was measured in the same manner as in Example 1, and found to be 55%.
該フレーク状合金片10gを透明アクリルウレタン樹脂90gに添加し、実施例1と同様の方法で耐食光輝性塗料を作製し、黒のプラスチック板に塗装した。塗装後、80℃で30分間乾燥させた。乾燥後の塗装面は、肉眼では赤銅色を帯びていた。 10 g of the flaky alloy piece was added to 90 g of a transparent acrylic urethane resin, and a corrosion-resistant glitter paint was prepared in the same manner as in Example 1 and applied to a black plastic plate. After painting, it was dried at 80 ° C. for 30 minutes. The painted surface after drying had a bronze color with the naked eye.
該プラスチック板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=45、a*=45、b*=17であった。また、該プラスチック板の塗装面の反射率を、実施例1と同様に測定したところ、53%であった。 When the lightness and chromaticity of the coated surface of the plastic plate were measured by the same method as in Example 1, L * = 45, a * = 45, and b * = 17. Further, the reflectance of the coated surface of the plastic plate was measured in the same manner as in Example 1, and found to be 53%.
次に、アクリル樹脂50g、メラミン樹脂50gに、赤色顔料としてクロムレッドを10g、前記フレーク状合金片を20g入れ、実施例1と同様の方法で耐食光輝性塗料を作製し、鉄板に塗装した。塗装後、150℃で20分間乾燥させた。乾燥後の塗装面は、肉眼では光輝感のある赤メタリック色であった。 Next, 10 g of chrome red as a red pigment and 20 g of the flake-like alloy piece were placed in 50 g of acrylic resin and 50 g of melamine resin, and a corrosion-resistant bright paint was prepared in the same manner as in Example 1 and applied to an iron plate. After painting, it was dried at 150 ° C. for 20 minutes. The painted surface after drying was a red metallic color with a brilliant feeling to the naked eye.
該鉄板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=44、a*=48、b*=20であった。また、該鉄板の塗装面の反射率を、実施例1と同様に測定したところ、52%であった。 The brightness and chromaticity of the coated surface of the iron plate were measured by the same method as in Example 1. The results were L * = 44, a * = 48, and b * = 20. Moreover, when the reflectance of the coating surface of this iron plate was measured similarly to Example 1, it was 52%.
次に、該鉄板を5%NaOH溶液に24時間浸漬したが、金属の溶解、外観の変化はなかった。 Next, the iron plate was immersed in a 5% NaOH solution for 24 hours, but the metal was not dissolved and the appearance was not changed.
[比較例1]
Cuインゴットをジェットミル粉砕機にかけて1〜3μmの微粉にした。該微粉をスタンピングして、厚さ1μm、大きさ40μmのフレーク状金属片にした。該フレーク状合金片は、肉眼では銅色であった。該フレーク状合金片の反射率を、実施例1と同様に測定したところ、65%であった。
[Comparative Example 1]
The Cu ingot was put into a fine powder of 1 to 3 μm using a jet mill grinder. The fine powder was stamped into flaky metal pieces having a thickness of 1 μm and a size of 40 μm. The flaky alloy piece was copper-colored with the naked eye. When the reflectance of the flaky alloy piece was measured in the same manner as in Example 1, it was 65%.
Cuインゴットの明度および色度を実施例1と同様の方法で測定したところ、L*=83、a*=16、b*=16であった。 When the brightness and chromaticity of the Cu ingot were measured by the same method as in Example 1, they were L * = 83, a * = 16, and b * = 16.
該フレーク状金属片10gを透明アクリルウレタン樹脂90gに添加し、スターラを用いて良く攪拌し、塗料を作製した。該塗料をスプレーガンに入れ、2kg/cm2の圧力で黒のプラスチック板に塗装した。塗装後80℃で30分間乾燥させた。乾燥後の塗装面は、肉眼では赤銅色を帯びていた。 10 g of the flaky metal piece was added to 90 g of a transparent acrylic urethane resin and stirred well using a stirrer to prepare a paint. The paint was put in a spray gun and applied to a black plastic plate at a pressure of 2 kg / cm 2 . After coating, it was dried at 80 ° C. for 30 minutes. The painted surface after drying had a bronze color with the naked eye.
該プラスチック板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=80、a*=16、b*=14であった。また、該プラスチック板の塗装面の反射率を、実施例1と同様に測定したところ、63%であった。 The lightness and chromaticity of the coated surface of the plastic plate were measured in the same manner as in Example 1. The results were L * = 80, a * = 16, and b * = 14. Further, the reflectance of the coated surface of the plastic plate was measured in the same manner as in Example 1, and found to be 63%.
次に、アクリル樹脂50g、メラミン樹脂50gに、赤色顔料として弁柄を10g、前記フレーク状合金片を20g入れ、実施例1と同様の方法で塗料を作製し、鉄板に塗装した。塗装後、150℃で20分間乾燥させた。乾燥後の塗装面は、肉眼では光輝感のある赤メタリック色であった。 Next, 10 g of a petite as a red pigment and 20 g of the flake-like alloy piece were placed in 50 g of an acrylic resin and 50 g of a melamine resin, and a paint was prepared in the same manner as in Example 1 and applied to an iron plate. After painting, it was dried at 150 ° C. for 20 minutes. The painted surface after drying was a red metallic color with a brilliant feeling to the naked eye.
該鉄板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=78、a*=30、b*=18であった。該鉄板の反射率を、実施例1と同様に測定したところ、60%であった。 The brightness and chromaticity of the coated surface of the iron plate were measured by the same method as in Example 1. The results were L * = 78, a * = 30, and b * = 18. When the reflectance of the iron plate was measured in the same manner as in Example 1, it was 60%.
次に、該鉄板を5%NaOH溶液に24時間浸漬すると、銅の色が変色し、面積の50%が緑色に変色した。 Next, when the iron plate was immersed in a 5% NaOH solution for 24 hours, the color of copper was changed and 50% of the area was changed to green.
[比較例2]
Cu:Zn:Alを49:46:5の質量比となるようにした以外は、実施例1と同様の方法で合金を作製した。
[Comparative Example 2]
An alloy was produced in the same manner as in Example 1 except that the mass ratio of Cu: Zn: Al was 49: 46: 5.
該合金の明度および色度を、実施例1と同様の方法で測定したところ、L*=33、a*=40、b*=20であった。 The brightness and chromaticity of the alloy were measured in the same manner as in Example 1. The results were L * = 33, a * = 40, and b * = 20.
該合金を、実施例1と同様の方法で、厚さ6μm、大きさ52μmのフレーク状合金片にした。該フレーク状合金片は、肉眼では茶色っぽく見えた。該フレーク状合金片の反射率を、実施例1と同様に測定したところ、42%であった。 The alloy was made into a flaky alloy piece having a thickness of 6 μm and a size of 52 μm in the same manner as in Example 1. The flake-like alloy pieces looked brownish to the naked eye. When the reflectance of the flaky alloy piece was measured in the same manner as in Example 1, it was 42%.
該フレーク状合金片10gを透明アクリルウレタン樹脂90gに添加し、実施例1と同様の方法で塗料を作製し、黒のプラスチック板に塗装した。塗装後、80℃で30分間乾燥させた。乾燥後の塗装面は、茶色っぽく見えた。 10 g of the flaky alloy piece was added to 90 g of a transparent acrylic urethane resin, and a paint was prepared in the same manner as in Example 1 and applied to a black plastic plate. After painting, it was dried at 80 ° C. for 30 minutes. The painted surface after drying looked brownish.
該プラスチック板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=30、a*=37、b*=17であった。該プラスチック板の反射率を、実施例1と同様に測定したところ、39%であった。 The lightness and chromaticity of the coated surface of the plastic plate were measured by the same method as in Example 1. The results were L * = 30, a * = 37, and b * = 17. When the reflectance of the plastic plate was measured in the same manner as in Example 1, it was 39%.
次に、アクリル樹脂50g、メラミン樹脂50gに、赤色顔料として弁柄を10g、前記フレーク状合金片を20g入れ、実施例1と同様の方法で塗料を作製し、鉄板に塗装した。塗装後、150℃で20分間乾燥させた。乾燥後の塗装面は、茶色っぽく見えた。 Next, 10 g of a petite as a red pigment and 20 g of the flake-like alloy piece were placed in 50 g of an acrylic resin and 50 g of a melamine resin, and a paint was prepared in the same manner as in Example 1 and applied to an iron plate. After painting, it was dried at 150 ° C. for 20 minutes. The painted surface after drying looked brownish.
該鉄板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=28、a*=41、b*=50であった。該鉄板の反射率を、実施例1と同様に測定したところ、35%であった。 The brightness and chromaticity of the coated surface of the iron plate were measured by the same method as in Example 1. The results were L * = 28, a * = 41, and b * = 50. When the reflectance of the iron plate was measured in the same manner as in Example 1, it was 35%.
次に、該鉄板を5%NaOH溶液に24時間浸漬したが、金属の溶解、外観の変化はなかった。 Next, the iron plate was immersed in a 5% NaOH solution for 24 hours, but the metal was not dissolved and the appearance was not changed.
[比較例3]
Cu:Zn:Alを43:55:2の質量比となるようにした以外は、実施例1と同様の方法で合金を作製した。
[Comparative Example 3]
An alloy was produced in the same manner as in Example 1 except that the mass ratio of Cu: Zn: Al was 43: 55: 2.
該合金の明度および色度を、実施例1と同様の方法で測定したところ、L*=51、a*=3、b*=29であった。 The brightness and chromaticity of the alloy were measured in the same manner as in Example 1. The results were L * = 51, a * = 3, and b * = 29.
該合金を、実施例1と同様の方法で、厚さ0.01μm、大きさ4μmのフレーク状合金片にした。該フレーク状合金片は、肉眼では赤い色調が低下し、黄色味がかった色であった。該フレーク状合金片の反射率を、実施例1と同様に測定したところ、25%であった。 The alloy was formed into a flake-shaped alloy piece having a thickness of 0.01 μm and a size of 4 μm in the same manner as in Example 1. The flake-like alloy piece had a red color tone and a yellowish color with the naked eye. When the reflectance of the flaky alloy piece was measured in the same manner as in Example 1, it was 25%.
該フレーク状合金片10gを透明アクリルウレタン樹脂90gに添加し、実施例1と同様の方法で塗料を作製し、黒のプラスチック板に塗装した。塗装後、80℃で30分間乾燥させた。乾燥後の塗装面は、肉眼では赤みが薄れ、黄色っぽい外観であった。 10 g of the flaky alloy piece was added to 90 g of a transparent acrylic urethane resin, and a paint was prepared in the same manner as in Example 1 and applied to a black plastic plate. After painting, it was dried at 80 ° C. for 30 minutes. The painted surface after drying had a reddish appearance with a naked eye and a yellowish appearance.
該プラスチック板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=48、a*=1、b*=27であった。また、該プラスチック板の反射率を、実施例1と同様に測定したところ、24%であった。 When the lightness and chromaticity of the coated surface of the plastic plate were measured by the same method as in Example 1, L * = 48, a * = 1, and b * = 27. Further, the reflectance of the plastic plate was measured in the same manner as in Example 1, and found to be 24%.
次に、アクリル樹脂50g、メラミン樹脂50gに、赤色顔料として弁柄を10g、前記フレーク状合金片を20g入れ、実施例1と同様の方法で塗料を作製し、鉄板に塗装した。塗装後、150℃で20分間乾燥させた。乾燥後の塗装面は、肉眼では赤みが薄れ、黄色っぽい外観であった。 Next, 10 g of a petite as a red pigment and 20 g of the flake-like alloy piece were placed in 50 g of an acrylic resin and 50 g of a melamine resin, and a paint was prepared in the same manner as in Example 1 and applied to an iron plate. After painting, it was dried at 150 ° C. for 20 minutes. The painted surface after drying had a reddish appearance with a naked eye and a yellowish appearance.
該鉄板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=50、a*=5、b*=30であった。また、該プラスチック板の反射率を、実施例1と同様に測定したところ、23%であった。 The brightness and chromaticity of the coated surface of the iron plate were measured by the same method as in Example 1. The results were L * = 50, a * = 5, and b * = 30. Further, the reflectance of the plastic plate was measured in the same manner as in Example 1, and found to be 23%.
次に、該鉄板を5%NaOH溶液に24時間浸漬したが、金属の溶解、外観の変化はなかった。 Next, the iron plate was immersed in a 5% NaOH solution for 24 hours, but the metal was not dissolved and the appearance was not changed.
[比較例4]
Cu:Zn:Alを42:55:3の質量比となるようにした以外は、実施例1と同様の方法で合金を作製した。
[Comparative Example 4]
An alloy was produced in the same manner as in Example 1 except that the mass ratio of Cu: Zn: Al was 42: 55: 3.
該合金の明度および色度を、実施例1と同様の方法で測定したところ、L*=48、a*=3、b*=31であった。 The brightness and chromaticity of the alloy were measured in the same manner as in Example 1. The results were L * = 48, a * = 3, and b * = 31.
該合金を、実施例1と同様の方法で、厚さ2μm、大きさ60μmのフレーク状合金片にした。該フレーク状合金片は、肉眼では黄色味がかった赤色であった。該フレーク状合金片の反射率を、実施例1と同様に測定したところ、44%であった。 The alloy was formed into a flaky alloy piece having a thickness of 2 μm and a size of 60 μm in the same manner as in Example 1. The flaky alloy piece was reddish yellowish to the naked eye. When the reflectance of the flaky alloy piece was measured in the same manner as in Example 1, it was 44%.
該フレーク状合金片10gを透明アクリルウレタン樹脂90gに添加し、実施例1と同様の方法で塗料を作製し、黒のプラスチック板に塗装した。塗装後、80℃で30分間乾燥させた。乾燥後の塗装面は、肉眼では黄色味がかった赤色で、下地が見え、顔料の段差の重なりが目立った。 10 g of the flaky alloy piece was added to 90 g of a transparent acrylic urethane resin, and a paint was prepared in the same manner as in Example 1 and applied to a black plastic plate. After painting, it was dried at 80 ° C. for 30 minutes. The painted surface after drying was yellowish red with the naked eye, the ground was visible, and the overlapping of pigment steps was conspicuous.
該プラスチック板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=46、a*=1、b*=28であった。また、該プラスチック板の反射率を、実施例1と同様に測定したところ、42%であった。 The lightness and chromaticity of the coated surface of the plastic plate were measured in the same manner as in Example 1. The results were L * = 46, a * = 1, and b * = 28. Further, the reflectance of the plastic plate was measured in the same manner as in Example 1, and found to be 42%.
次に、アクリル樹脂50g、メラミン樹脂50gに、赤色顔料として弁柄を10g、該フレーク状合金片を20g入れ、実施例1と同様の方法で塗料を作製し、鉄板に塗装した。塗装後、150℃で20分間乾燥させた。乾燥後の塗装面は、黄色味がかった赤色で、下地が見え、顔料の段差の重なりが目立った。 Next, 10 g of the dial as a red pigment and 20 g of the flake-shaped alloy piece were placed in 50 g of acrylic resin and 50 g of melamine resin, and a paint was prepared in the same manner as in Example 1 and applied to an iron plate. After painting, it was dried at 150 ° C. for 20 minutes. The painted surface after drying was red with a yellowish tinge, the base was visible, and the overlap of pigment steps was conspicuous.
該鉄板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=44、a*=5、b*=25であった。また、該鉄板の反射率を、実施例1と同様に測定したところ、41%であった。 The brightness and chromaticity of the coated surface of the iron plate were measured by the same method as in Example 1. The results were L * = 44, a * = 5, and b * = 25. Moreover, when the reflectance of this iron plate was measured similarly to Example 1, it was 41%.
次に、該鉄板を5%NaOH溶液に24時間浸漬したが、金属の溶解、外観の変化はなかった。 Next, the iron plate was immersed in a 5% NaOH solution for 24 hours, but the metal was not dissolved and the appearance was not changed.
[比較例5]
Cu:Zn:Alを66:28:6の質量比となるようにした以外は、実施例1と同様の方法で合金を作製した。
[Comparative Example 5]
An alloy was produced in the same manner as in Example 1 except that the mass ratio of Cu: Zn: Al was 66: 28: 6.
該合金の明度および色度を実施例1と同様の方法で測定したところ、L*=54、a*=3、b*=45であった。 When the brightness and chromaticity of the alloy were measured in the same manner as in Example 1, they were L * = 54, a * = 3, and b * = 45.
該合金を、実施例1と同様の方法で、厚さ1μm、大きさ55μmのフレーク状合金片にした。該フレーク状合金片は、肉眼では黄色味がかった赤色を帯びていた。 The alloy was made into a flaky alloy piece having a thickness of 1 μm and a size of 55 μm in the same manner as in Example 1. The flaky alloy piece was reddish yellowish to the naked eye.
該フレーク状合金片の反射率を、実施例1と同様に測定したところ、54%であった。 When the reflectance of the flaky alloy piece was measured in the same manner as in Example 1, it was 54%.
該フレーク状合金片10gを透明アクリルウレタン樹脂90gに添加し、実施例1と同様の方法で塗料を作製し、黒のプラスチック板に塗装した。塗装後80℃で30分間乾燥させた。乾燥後の塗装面は、肉眼では黄色を帯びていた。 10 g of the flaky alloy piece was added to 90 g of a transparent acrylic urethane resin, and a paint was prepared in the same manner as in Example 1 and applied to a black plastic plate. After coating, it was dried at 80 ° C. for 30 minutes. The painted surface after drying was yellowish to the naked eye.
該プラスチック板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=52、a*=1、b*=43であった。また、該プラスチック板の反射率を、実施例1と同様に測定したところ、52%であった。 When the lightness and chromaticity of the coated surface of the plastic plate were measured by the same method as in Example 1, L * = 52, a * = 1, and b * = 43. Further, the reflectance of the plastic plate was measured in the same manner as in Example 1, and found to be 52%.
次に、アクリル樹脂50g、メラミン樹脂50gに、赤色顔料として弁柄を10g、前記フレーク状合金片を20g入れ、実施例1と同様の方法で塗料を作製し、鉄板に塗装した。塗装後、150℃で20分間乾燥させた。乾燥後の塗装面は、肉眼では黄色味がかった赤色であった。また、粒子感が目立ち、緻密感がない外観であった。 Next, 10 g of a petite as a red pigment and 20 g of the flake-like alloy piece were placed in 50 g of an acrylic resin and 50 g of a melamine resin, and a paint was prepared in the same manner as in Example 1 and applied to an iron plate. After painting, it was dried at 150 ° C. for 20 minutes. The painted surface after drying was yellowish red with the naked eye. In addition, the appearance was grainy and there was no denseness.
該鉄板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=50、a*=4、b*=40であった。該鉄板の反射率を、実施例1と同様に測定したところ、50%であった。 The brightness and chromaticity of the coated surface of the iron plate were measured by the same method as in Example 1. The results were L * = 50, a * = 4, and b * = 40. When the reflectance of the iron plate was measured in the same manner as in Example 1, it was 50%.
該鉄板を5%NaOH溶液に24時間浸漬したが、金属の溶解、外観の変化はなかった。 The iron plate was immersed in a 5% NaOH solution for 24 hours, but the metal was not dissolved and the appearance was not changed.
[比較例6]
Cu:Zn:Alを43:55:2の質量比となるようにした以外は、実施例1と同様の方法で合金を作製した。
[Comparative Example 6]
An alloy was produced in the same manner as in Example 1 except that the mass ratio of Cu: Zn: Al was 43: 55: 2.
該合金の明度および色度を、実施例1と同様の方法で測定したところ、L*=51、a*=3、b*=29であった。 The brightness and chromaticity of the alloy were measured in the same manner as in Example 1. The results were L * = 51, a * = 3, and b * = 29.
該合金を、実施例1と同様の方法で、厚さ0.01μm、大きさ4μmのフレーク状合金片にした。該フレーク状合金片は、肉眼では黄色味がかった赤色であった。また、該フレーク状合金片の反射率を、実施例1と同様に測定したところ、25%であった。 The alloy was formed into a flake-shaped alloy piece having a thickness of 0.01 μm and a size of 4 μm in the same manner as in Example 1. The flaky alloy piece was reddish yellowish to the naked eye. Further, the reflectance of the flaky alloy piece was measured in the same manner as in Example 1, and found to be 25%.
該フレーク状合金片10gを透明アクリルウレタン樹脂90gに添加し、実施例1と同様の方法で塗料を作製し、黒のプラスチック板に塗装した。塗装後80℃で30分間乾燥させた。乾燥後の塗装面は、肉眼では赤みが薄れ、黄色っぽい外観であった。 10 g of the flaky alloy piece was added to 90 g of a transparent acrylic urethane resin, and a paint was prepared in the same manner as in Example 1 and applied to a black plastic plate. After coating, it was dried at 80 ° C. for 30 minutes. The painted surface after drying had a reddish appearance with a naked eye and a yellowish appearance.
該プラスチック板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=48、a*=1、b*=27であった。また、該プラスチック板の塗装面の反射率を、実施例1と同様に測定したところ、24%であった。 When the lightness and chromaticity of the coated surface of the plastic plate were measured by the same method as in Example 1, L * = 48, a * = 1, and b * = 27. Further, the reflectance of the coated surface of the plastic plate was measured in the same manner as in Example 1, and found to be 24%.
次に、アクリル樹脂50g、メラミン樹脂50gに、赤色顔料としてカドミニウムレッドを10g、前記フレーク状合金片を20g入れ、実施例1と同様の方法で塗料を作製し、鉄板に塗装した。塗装後、150℃で20分間乾燥させた。乾燥後の塗装面は、肉眼では赤みが薄れ、黄色を帯びていた。 Next, 10 g of cadmium red as a red pigment and 20 g of the flake-like alloy piece were placed in 50 g of acrylic resin and 50 g of melamine resin, and a paint was prepared in the same manner as in Example 1 and applied to an iron plate. After painting, it was dried at 150 ° C. for 20 minutes. The painted surface after drying was reddish and yellowish to the naked eye.
該鉄板の塗装面の明度および色度を、実施例1と同様の方法で測定したところ、L*=50、a*=5、b*=30であった。また、該鉄板の塗装面の反射率を、実施例1と同様に測定したところ、23%であった。 The brightness and chromaticity of the coated surface of the iron plate were measured by the same method as in Example 1. The results were L * = 50, a * = 5, and b * = 30. Moreover, when the reflectance of the coating surface of this iron plate was measured similarly to Example 1, it was 23%.
該鉄板を5%NaOH溶液に24時間浸漬したが、金属の溶解、外観の変化はなかった。 The iron plate was immersed in a 5% NaOH solution for 24 hours, but the metal was not dissolved and the appearance was not changed.
フレーク状合金片の組成が本発明の範囲内にある実施例1〜6は、合金の明度および色度も本発明の範囲内(L*a*b*表色系においてL*=35〜90、a*=10〜50、b*=10〜25)に入っている。このため、該合金からなるフレーク状合金片を用いて作製した塗料により塗装を行ったプラスチック板および鉄板の塗装面の明度および色度も、L*a*b*表色系においてL*=35〜90、a*=10〜50、b*=10〜25の範囲内に入っており、赤色メタリックメッキに近い高級感のある外観となった。また、塗膜の耐食性も良好であった。 In Examples 1 to 6 in which the composition of the flaky alloy pieces is within the scope of the present invention, the brightness and chromaticity of the alloy are also within the scope of the present invention (L * = 35 to 90 in the L * a * b * color system). A * = 10-50, b * = 10-25). For this reason, the lightness and chromaticity of the painted surfaces of the plastic plate and the iron plate coated with the paint produced using the flake-like alloy piece made of the alloy are also L * = 35 in the L * a * b * color system. ˜90, a * = 10 to 50, b * = 10 to 25, and a high-grade appearance close to that of red metallic plating was obtained. Moreover, the corrosion resistance of the coating film was also good.
これに対し、フレーク状合金片の組成が本発明の範囲内に入っていない比較例2〜6は、合金の明度および色度も本発明の範囲内(L*a*b*表色系においてL*=35〜90、a*=10〜50、b*=10〜25)に入っていない。このため、該合金からなるフレーク状合金片を用いて作製した塗料により塗装を行ったプラスチック板および鉄板の塗装面の明度および色度も、L*a*b*表色系においてL*=35〜90、a*=10〜50、b*=10〜25の範囲内に入っておらず、赤色メタリックメッキに近い高級感のある外観とはならなかった。また、フレーク状合金片の組成がCuのみからなる比較例1は、合金の明度および色度ならびに塗装面の明度および色度がL*a*b*表色系においてL*=35〜90、a*=10〜50、b*=10〜25の範囲内に入っており、塗装面は赤色メタリックメッキに近い高級感のある外観となった。しかし、塗膜の耐食性がよくなかった。 On the other hand, Comparative Examples 2 to 6 in which the composition of the flaky alloy pieces does not fall within the scope of the present invention, the brightness and chromaticity of the alloy are also within the scope of the present invention (in the L * a * b * color system). L * = 35 to 90, a * = 10 to 50, b * = 10 to 25). For this reason, the lightness and chromaticity of the painted surfaces of the plastic plate and the iron plate coated with the paint produced using the flake-like alloy piece made of the alloy are also L * = 35 in the L * a * b * color system. It was not in the range of -90, a * = 10-50, b * = 10-25, and it did not become a high-grade appearance close to red metallic plating. Further, in Comparative Example 1 in which the composition of the flake-shaped alloy piece is composed only of Cu, the brightness and chromaticity of the alloy and the brightness and chromaticity of the painted surface are L * = 35 to 90 in the L * a * b * color system. It was in the range of a * = 10-50, b * = 10-25, and the painted surface had a high-grade appearance close to red metallic plating. However, the corrosion resistance of the coating film was not good.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005263843A JP2007077192A (en) | 2005-09-12 | 2005-09-12 | Corrosion-resistant glittering pigment, method for producing the same and corrosion-resistant glittering coating material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005263843A JP2007077192A (en) | 2005-09-12 | 2005-09-12 | Corrosion-resistant glittering pigment, method for producing the same and corrosion-resistant glittering coating material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007077192A true JP2007077192A (en) | 2007-03-29 |
Family
ID=37937817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005263843A Pending JP2007077192A (en) | 2005-09-12 | 2005-09-12 | Corrosion-resistant glittering pigment, method for producing the same and corrosion-resistant glittering coating material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007077192A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011521092A (en) * | 2008-05-28 | 2011-07-21 | エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング | Mixtures of copper-containing metallic effect pigments, methods for producing the same, and coating agents |
WO2015030182A1 (en) * | 2013-08-30 | 2015-03-05 | 戸田工業株式会社 | Black pigment having infrared-reflecting properties, and paint and resin composition that use said black pigment having infrared-reflecting properties |
JP2017186192A (en) * | 2016-04-04 | 2017-10-12 | 株式会社ノリタケカンパニーリミテド | Pigment for decorating ceramic |
-
2005
- 2005-09-12 JP JP2005263843A patent/JP2007077192A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011521092A (en) * | 2008-05-28 | 2011-07-21 | エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング | Mixtures of copper-containing metallic effect pigments, methods for producing the same, and coating agents |
JP2011522073A (en) * | 2008-05-28 | 2011-07-28 | エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング | Plate-shaped copper-containing metallic effect pigment, process for preparing it, and use thereof |
WO2015030182A1 (en) * | 2013-08-30 | 2015-03-05 | 戸田工業株式会社 | Black pigment having infrared-reflecting properties, and paint and resin composition that use said black pigment having infrared-reflecting properties |
JPWO2015030182A1 (en) * | 2013-08-30 | 2017-03-02 | 戸田工業株式会社 | Infrared reflective black pigment, paint and resin composition using the infrared reflective black pigment |
EP3040383A4 (en) * | 2013-08-30 | 2017-03-22 | Toda Kogyo Corporation | Black pigment having infrared-reflecting properties, and paint and resin composition that use said black pigment having infrared-reflecting properties |
JP2017186192A (en) * | 2016-04-04 | 2017-10-12 | 株式会社ノリタケカンパニーリミテド | Pigment for decorating ceramic |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1331950C (en) | Copper-based metal flakes, in particular comprising zinc and method for production thereof | |
US8993119B2 (en) | Process for producing a corrosion-protected and high-gloss substrate | |
TWI252162B (en) | Precoated metal sheet for light reflectors | |
US6896970B2 (en) | Corrosion resistant coating giving polished effect | |
JP2007099151A (en) | Light alloy wheel, and method for forming painted film therein | |
JP2007077192A (en) | Corrosion-resistant glittering pigment, method for producing the same and corrosion-resistant glittering coating material | |
JP5050654B2 (en) | Coating film repair method and repair coating film | |
KR20120124467A (en) | Metal-coated flake glass, resin composition comprising the same, and method for producing the same | |
EP2406409B1 (en) | Decoration by magnetron plasma sputtering onto glass containers for the cosmetic sectors | |
JP2007077423A (en) | Corrosion resistant glitter pigment, method for producing the same, and corrosion resistant glitter coating material | |
JP4604143B2 (en) | Metal or resin material whose surface is brightened and its brightening method | |
JP2007077257A (en) | Corrosion-resistant glittering pigment, method for producing the same and coating composition for corrosion-resistant glittering coating film | |
JP3994434B2 (en) | Metallic appearance multilayer coating film and method for forming the same | |
JP6132078B1 (en) | Black painted steel plate | |
JP2006028618A (en) | Corrosion resistant lustrous pigment, its production method, and coating composition for corrosion resistant lustrous coating film | |
JP2006152125A (en) | Corrosion-resistant luster pigment, method for producing the same, coating composition for corrosion-resistant luster film | |
JP3512592B2 (en) | Metallic paint with excellent weather resistance | |
JP2006028427A (en) | Corrosion-resistant brilliant pigment, its manufacturing method, and coating composition for corrosion-resistant brilliant coating film | |
JP4342049B2 (en) | Brightly colored material and method for producing the same | |
JP2003292823A (en) | Anti-corrosion bright pigment | |
JP2006257241A (en) | Glitter pigment and coating material composition for glitter coating film and method for producing glitter pigment | |
JP2006130771A (en) | Coated aluminum member | |
JP2008031311A (en) | Method for producing corrosion-resistant metal flake pigment | |
TWI313641B (en) | Heat-generating element cover with excellent heat absorptivity, surface-treated metal sheet therefor and their applications | |
JP2006028426A (en) | Corrosion-resistant brilliant pigment, and coating composition for corrosion-resistant brilliant coating film obtained using the same |