JP2007076347A - Heat resistant light interference reflective structure - Google Patents

Heat resistant light interference reflective structure Download PDF

Info

Publication number
JP2007076347A
JP2007076347A JP2005298143A JP2005298143A JP2007076347A JP 2007076347 A JP2007076347 A JP 2007076347A JP 2005298143 A JP2005298143 A JP 2005298143A JP 2005298143 A JP2005298143 A JP 2005298143A JP 2007076347 A JP2007076347 A JP 2007076347A
Authority
JP
Japan
Prior art keywords
layer
oxide
heat
optical interference
interference reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005298143A
Other languages
Japanese (ja)
Inventor
Hiroshi Kobayashi
弘 小林
Kimiko Ishide
公美子 石出
Hiroshi Tabata
洋 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WELL CORP O
O Well Corp
Original Assignee
WELL CORP O
O Well Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WELL CORP O, O Well Corp filed Critical WELL CORP O
Priority to JP2005298143A priority Critical patent/JP2007076347A/en
Publication of JP2007076347A publication Critical patent/JP2007076347A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light interference reflective structure showing excellent heat resistance which has not attained, hitherto and also to provide its molding method by designing a laminated structure comprising at least two kinds of inorganic oxides or inorganic sulfides for its pigmentation sufficient to derive a sharp light reflective spectrum so as to achieve a high reflective function of a designed specific wave length in a visible light range, an UV ray range or an infrared ray range. <P>SOLUTION: Two kinds of materials selected from inorganic oxides and sulfides whose light refractive indexes are different from each other are made to alternately and continuously overlie a substrate in such a thickness as giving transparency by reflecting the desired light wave length. Additionally or alternatively, a peeling-off layer is formed between the laminated layer and the substrate, and the peeling-off layer is removed after molding. By this, the heat resistant light interference reflective structure can be obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は耐熱性が高く先鋭な波長反射機能を有する光干渉反射構造体に関するものである。  The present invention relates to an optical interference reflection structure having high heat resistance and a sharp wavelength reflection function.

特定の波長の光を反射する構造体は多くの分野で適用されている。特に赤外線は熱影響が大きく、これを遮断することができれば温度上昇を抑制することができる。また紫外線は過度に受ければ人体に悪影響を及ぼすことがあり、各種塗装物や建築材料など種々の材料の劣化の原因にもなる。従って、多くの材料にとって赤外線や紫外線の影響を制御することは極めて重要なことであり、そのための様々な開発がなされている。また可視光領域の波長の吸収や反射は、顔料や染料にみられるように着色剤として機能し、様々な色や質感を表現するための素材開発が一層求められている。光干渉反射構造体の反射特性は、それを形成するために用いる光学的コーティングまたは膜の適切な設計によって制御することができ、特定の波長領域の光線を反射させることができる。特定の色が知覚されるのは、使用する各材料の波長吸収や反射に起因するが、光干渉反射構造体の発色は基本的には光の吸収に基づく発色ではなく、光の干渉現象によるため、従来の物体色とは異なった機能、質感が得られるようになる。近年、このような特徴を有する素材の開発が進められてきた。  Structures that reflect light of a specific wavelength are applied in many fields. In particular, infrared rays have a large heat effect, and if this can be blocked, temperature rise can be suppressed. In addition, if ultraviolet rays are excessively received, the human body may be adversely affected, which may cause deterioration of various materials such as various paints and building materials. Therefore, it is extremely important for many materials to control the influence of infrared rays and ultraviolet rays, and various developments have been made for that purpose. Further, the absorption and reflection of wavelengths in the visible light region function as a colorant as seen in pigments and dyes, and there is a further demand for the development of materials for expressing various colors and textures. The reflective properties of the light interference reflective structure can be controlled by the appropriate design of the optical coating or film used to form it, and can reflect light in a particular wavelength region. The specific color is perceived due to the wavelength absorption and reflection of each material used, but the color development of the light interference reflection structure is basically not based on the light absorption but the light interference phenomenon. Therefore, functions and textures different from those of the conventional object color can be obtained. In recent years, development of materials having such characteristics has been promoted.

或る特定の波長を反射するように設計された光干渉反射構造体は以前から開発されており(特許文献1)、これは光の入射角または視点の角度により色相変化を提供する構造体である。この事例の光干渉反射構造体は5層設計の膜構造をとっており、基板上に第1吸収層、第1誘電層、反射層、第2誘電層、第2吸収層の順に積層させている。次いで層を基板上から薄片の状態で外す。これらの薄片を媒体中に分散させて着色材料を製造する。第1及び第2吸収層の材料はクロム、ニッケル、パラジウム、チタンなどの中から選択し、第1及び第2誘電層の材料は硫化亜鉛、酸化ジルコニウム、酸化タンタル、酸化珪素などの中から選択し、反射層はアルミニウム、銀、銅、金などの反射性の金属の中から選択する。第1、第2吸収層および第1、第2誘電層はそれぞれ同一の材料から構成することが好ましいとしている。なお5層構造のうち、誘電層及び吸収層を反射層の一方の側から省略して3層構成とすることもできるとしている。  An optical interference reflection structure designed to reflect a specific wavelength has been developed (Patent Document 1), and is a structure that provides a hue change according to an incident angle or a viewpoint angle of light. is there. The optical interference reflection structure in this example has a film structure of a five-layer design, and a first absorption layer, a first dielectric layer, a reflection layer, a second dielectric layer, and a second absorption layer are laminated on a substrate in this order. Yes. The layer is then peeled off from the substrate. These flakes are dispersed in a medium to produce a colored material. The material of the first and second absorption layers is selected from chromium, nickel, palladium, titanium, etc., and the material of the first and second dielectric layers is selected from zinc sulfide, zirconium oxide, tantalum oxide, silicon oxide, etc. The reflective layer is selected from reflective metals such as aluminum, silver, copper, and gold. The first and second absorption layers and the first and second dielectric layers are preferably made of the same material. In the five-layer structure, the dielectric layer and the absorption layer can be omitted from one side of the reflective layer to form a three-layer structure.

上記発明における光干渉反射構造体は、金属層からなる光の吸収層と干渉作用に関係する無機酸化物層と層内での光の反射強度を上げる作用をする金属層の積層構造となっているため、発色設計通りになり難い欠点がある。また反射層に金属を使用しているため、使用耐熱雰囲気は一般的にそれらの酸化物系より低い融点に依存してしまう。また、層厚制御の状況によっては不透明となり、構造内部への光の透過を妨げ、目的とする光の干渉機能を阻害する可能性が高い。3層構造をとった場合、反射層表層における反射光量が大きく、光の干渉機能を十分に得られない可能性も高い。  The optical interference reflection structure in the above invention has a laminated structure of a light absorption layer composed of a metal layer, an inorganic oxide layer related to the interference action, and a metal layer that increases the reflection intensity of light in the layer. Therefore, there is a drawback that it is difficult to achieve the color development design. In addition, since a metal is used for the reflective layer, the heat-resistant atmosphere is generally dependent on a lower melting point than those oxides. In addition, it becomes opaque depending on the situation of the layer thickness control, and there is a high possibility that the transmission of light to the inside of the structure is hindered and a target light interference function is hindered. When the three-layer structure is adopted, the amount of reflected light on the surface layer of the reflective layer is large, and there is a high possibility that a sufficient light interference function cannot be obtained.

また、上記の例を応用した光干渉反射構造体も存在し、これは吸収層にチタンベースの材料を用いることを特徴としている。(特許文献2)  There is also an optical interference reflection structure applying the above example, which is characterized by using a titanium-based material for the absorption layer. (Patent Document 2)

上記の2例による光干渉反射構造体は、実施例で示されているように、吸収層・誘電層に用いる材料の選択により可視光領域に2つの反射ピークを示すように構成されているが、いずれにしても吸収層の作用として吸収層使用金属固有の光吸収に伴う物体色となり、干渉発色とは異なること、また、吸収層と誘電層の2層構造では鋭い反射ピークは得られないことから単一深色を得ることは極めて困難である。  The optical interference reflection structure according to the above two examples is configured to show two reflection peaks in the visible light region by selecting materials used for the absorption layer and the dielectric layer as shown in the examples. In any case, the function of the absorption layer is to be an object color accompanying light absorption inherent to the metal used in the absorption layer, which is different from interference color development, and a sharp reflection peak cannot be obtained with the two-layer structure of the absorption layer and the dielectric layer. Therefore, it is very difficult to obtain a single deep color.

また別の例は、製造が容易で所望の波長で鮮やかな色調を確実かつ安定的に得ることの出来る反射干渉作用を有する発色構造体を提供している。この例は材料として2種類の有機高分子ポリマーを用い、2物質の交互多層積層からなる層状構造を有し、自然光の反射干渉作用によって可視光領域の波長の色を発色する。(特許文献3)  Another example provides a color forming structure having a reflection interference effect that can be easily manufactured and can reliably and stably obtain a vivid color tone at a desired wavelength. This example uses two types of organic polymer polymers as materials, has a layered structure consisting of two layers of alternating multilayers, and develops a color in the wavelength range of visible light by the reflection interference action of natural light. (Patent Document 3)

赤外線や紫外線を遮蔽する例としては、近紫外線と近赤外線の一方あるいは両方を反射する構造体がある。前記の例同様、材料として有機高分子ポリマーを用い、2物質を交互多層積層させている。(特許文献4)  As an example of shielding infrared rays or ultraviolet rays, there is a structure that reflects one or both of near ultraviolet rays and near infrared rays. As in the above example, an organic polymer is used as a material, and two substances are alternately laminated in layers. (Patent Document 4)

これら2種の構造体では、使用材料が有機高分子ポリマーであるため、必然的に屈折率比を大きくとることはできない。従って、明瞭な発色を呈するためには非常に多層数の積層構成をとらざるを得ない。また、有機高分子ポリマーは一般にガラス転移点が低く、高温雰囲気中、例えば200℃以上では、各層の設計層厚を維持することができないため、所定発色を含め、光の反射干渉機能を維持することはできないという欠点がある。  In these two types of structures, since the material used is an organic polymer, the refractive index ratio cannot necessarily be increased. Therefore, in order to exhibit clear color development, it is necessary to take a very multi-layered structure. In addition, organic polymer polymers generally have a low glass transition point, and the design layer thickness of each layer cannot be maintained in a high-temperature atmosphere, for example, 200 ° C. or higher. Therefore, the light reflection interference function including predetermined color development is maintained. There is a drawback that you can not.

また、耐熱性が期待される光干渉反射構造体としては、雲母片やシリカ粒子の表面に蒸着あるいはめっき処理により金属薄層を設け、後処理により酸化物層を成し、干渉発色させる方法がある。ここでの問題は基板表面の平滑性が低いこと、及び所定の光波長のみを干渉反射させることが困難になり多様の発色色相になるため、狙いとする特定色相の深み感は得られにくいとともに構造体のエッジ効果が得られないため、例えば塗装顔料に応用した場合光輝感も得られにくい。
米国特許6,157,489号 米国特許6,569,529号 特開平7−034324 特開平7−195603
In addition, as an optical interference reflection structure that is expected to have heat resistance, there is a method in which a thin metal layer is formed on the surface of mica pieces or silica particles by vapor deposition or plating, and an oxide layer is formed by post-processing to cause interference color development. is there. The problem here is that the smoothness of the substrate surface is low, and it is difficult to interfere and reflect only the predetermined light wavelength, resulting in various colored hues. Since the edge effect of the structure cannot be obtained, for example, when applied to a coating pigment, it is difficult to obtain a glitter feeling.
US Pat. No. 6,157,489 US Pat. No. 6,569,529 Japanese Patent Laid-Open No. 7-034324 JP-A-7-195603

本発明が解決しようとする課題は、従来にない耐熱性を備えた光干渉反射構造体及びその顔料を提供するために、耐熱基板上あるいはその基板上に高脆性材料による剥離層を設けた上に、少なくとも2種以上の無機系材料による積層構造を工夫し、設計特定波長の高反射機能を得ること、さらに剥離層を除去し、交互積層部分と基板部分を分離回収することで光輝性の干渉反射機能を有する耐熱性光干渉反射構造体を得ることである。  The problem to be solved by the present invention is to provide an optical interference reflection structure having unprecedented heat resistance and a pigment thereof, on which a release layer made of a highly brittle material is provided on the heat resistant substrate or on the substrate. In addition, by devising a laminated structure composed of at least two kinds of inorganic materials, obtaining a high reflection function of a design specific wavelength, further removing the peeling layer, and separating and collecting the alternately laminated portion and the substrate portion, The object is to obtain a heat-resistant optical interference reflection structure having an interference reflection function.

上記の課題を解決するため、光学屈折率が異なる無機系酸化物あるいは無機系硫化物を形成することができる化合物から選択した2種の材料を、夫々が透明になり所定の光波長を反射する光学厚み範囲内で、連続交互積層構造を得る。可視光領域、紫外線領域あるいはまた赤外線領域から少なくとも1種以上の波長を干渉反射することを特徴とする。また本構造体の各層の境界面はできるだけ相互のマイグレーションを避け、所定の厚みで平行に積層させる。この構造形態において、上述の無機系酸化物あるいは無機系硫化物による屈折率比ができるだけ大きくなるよう選択することにより、積層数の低減化とともに設計所定光の反射スペクトルも先鋭にすることができ、特に可視光領域においては深み感を誘起する耐熱発色材が得られる。さらに光干渉反射構造体から板状、フィルム状及び微小片状の光干渉反射構造体とすることにより、応用範囲の拡大を図ったものである。  In order to solve the above problems, two materials selected from compounds capable of forming inorganic oxides or inorganic sulfides having different optical refractive indices are transparent and reflect a predetermined light wavelength. A continuous alternating laminated structure is obtained within the optical thickness range. It is characterized by interfering and reflecting at least one wavelength from the visible light region, the ultraviolet region, or the infrared region. Further, the boundary surfaces of the layers of the structure body are laminated in parallel with a predetermined thickness while avoiding mutual migration as much as possible. In this structure form, by selecting the refractive index ratio due to the above-described inorganic oxide or inorganic sulfide as large as possible, the reflection spectrum of the designed predetermined light can be sharpened with a reduction in the number of layers, In particular, in the visible light region, a heat-resistant coloring material that induces a sense of depth can be obtained. Further, the optical interference reflection structure is changed to a plate-like, film-like, and micro-piece-like optical interference reflection structure to expand the application range.

上記光干渉反射構造体において、第1の材料の屈折率をn、その層厚をd、第2の材料の屈折率をn、その層厚をdとすると、紫外線光領域、可視光領域及び赤外線光領域

Figure 2007076347
を等しくした時、設計最大反射率を得ることができる。In the optical interference reflection structure, the refractive index of the first material n a, the thickness d a, the refractive index n b of the second material, when the layer thickness and d b, ultraviolet light region, Visible light region and infrared light region
Figure 2007076347
Is equal, the design maximum reflectivity can be obtained.

Figure 2007076347
Figure 2007076347

Figure 2007076347
Figure 2007076347

第1の材料の厚みdと第2の材料の厚みdの取りうる範囲は上記の関係式を満たす範囲内で所定の反射波長を得るように設計できる。両物質層の設計厚みの成形誤差が大きくなると設計反射強度に悪影響があるため、層厚精度には十分注意する必要があるが、2種の異なる無機系酸化物あるいは無機系硫化物のみを用い、その厚みを変化させるだけで所望する様々な波長を反射させることが可能となる。The possible range of the thickness d a of the first material and the thickness d b of the second material can be designed so as to obtain a predetermined reflection wavelength within a range satisfying the above relational expression. If the molding error of the design thickness of both material layers becomes large, the design reflection strength will be adversely affected, so it is necessary to pay close attention to the layer thickness accuracy, but only two different inorganic oxides or sulfides are used. It is possible to reflect various desired wavelengths simply by changing the thickness.

光学屈折率の異なる2種の材料は、本発明における光干渉反射構造体を実現するものとして、なるべく透明性が高いものが望ましく、例えば酸化ジルコニウム、酸化タンタル、一酸化珪素、二酸化珪素、酸化アルミニウム、酸化セリウム、酸化ハフニウム、酸化チタン、酸化プラセオジウム、酸化イットリウム、酸化亜鉛、硫化亜鉛あるいは各種無機系酸化物や無機系硫化物の混合物等が挙げられ、これらの中から目的と用途に応じて2種類の材料を選定し、交互積層を成形する。なおこれらはあくまで例示でありこれらによって本発明の構成物質が限定されるものではない。  The two materials having different optical refractive indices are preferably as highly transparent as possible for realizing the optical interference reflection structure in the present invention. For example, zirconium oxide, tantalum oxide, silicon monoxide, silicon dioxide, aluminum oxide Cerium oxide, hafnium oxide, titanium oxide, praseodymium oxide, yttrium oxide, zinc oxide, zinc sulfide, or a mixture of various inorganic oxides and inorganic sulfides. Among these, depending on the purpose and application, 2 Select the type of material and form the alternating stack. These are merely examples, and the constituent materials of the present invention are not limited by these.

自然光が層に対して縦方向に入射するとき、第1の材料(光学屈折率n)と第2の材料(光学屈折率n)の交互積層の仕方は2種類ある。すなわち、自然光が入射する表層から第1の物質層/第2の物質層/第1の物質層/第2の物質層…と積層する場合と、第2の物質層/第1の物質層/第2の物質層/第1の物質層…と積層する場合である。表面での反射を大きくする、即ち光沢度を高めるためには、高屈折率の物質を表面層にした交互積層構造にすることが望ましい。本発明における構造体の積層数Nは、第1の物質層/第2の物質層の1ペアを指すものとする。When natural light is incident on the layer in the longitudinal direction, there are two ways of alternately stacking the first material (optical refractive index n a ) and the second material (optical refractive index n b ). That is, the first material layer / the second material layer / the first material layer / the second material layer are laminated from the surface layer on which natural light is incident, and the second material layer / the first material layer / In this case, the second material layer / first material layer are stacked. In order to increase the reflection on the surface, that is, to increase the glossiness, it is desirable to use an alternating layered structure in which a surface layer is made of a material having a high refractive index. The number N of stacked structures in the present invention refers to one pair of first material layer / second material layer.

上記構造体の積層ペア数Nと構成材料の屈折率比は、反射率に関わる非常に重要な因子である。例えば可視光領域で言えば屈折率比が1.5程度ある場合、上記Nが7程度で最大反射波長におけるエネルギー反射率0.8程度以上が得られ、極めて明確な発色が得られやすい。また屈折率比が1.1以下のような場合、上記と同様のエネルギー反射率を得ようとするとNは30以上、つまり積層数として60層以上を必要とする可能性が大きくなる。したがって材料の選択は大変重要である。屈折率比の増大するほど、あるいはNが増加するほどエネルギー反射率は大きくなるとともに、最大反射スペクトルも先鋭的になっていくが、これを図3のグラフに示す。  The number of stacked pairs N of the structure and the refractive index ratio of the constituent materials are very important factors related to the reflectance. For example, in the visible light region, when the refractive index ratio is about 1.5, the N is about 7, and an energy reflectance of about 0.8 or more at the maximum reflection wavelength is obtained, and a very clear color development is easily obtained. In the case where the refractive index ratio is 1.1 or less, if an energy reflectance similar to that described above is to be obtained, there is a high possibility that N is 30 or more, that is, 60 or more layers are required. Therefore, the choice of material is very important. As the refractive index ratio increases or as N increases, the energy reflectance increases and the maximum reflection spectrum becomes sharper, as shown in the graph of FIG.

板状、フィルム状あるいは微小片状光干渉反射構造体の成形において、第1に多層構造層と基板を密着させたまま供する場合と、第2に多積層と基板の間に剥離層を挟み積層させた後に多層積層部分のみを外して用いる場合とがある。  In the formation of a plate-like, film-like or micro-piece-like optical interference reflection structure, first, the multilayer structure layer and the substrate are provided in close contact with each other, and secondly, the release layer is sandwiched between the multi-layer and the substrate. In some cases, only the multilayer laminated portion is removed after use.

第1の方法をとる場合、基板に2種の無機系材料を積層したものをそのままの形態で板状、フィルム状材料として利用するか、あるいは微小片状にする場合は基板に積層させたまま破砕する。この場合の基板としては透明耐熱フィルムやガラスなどが選択される。なお、層平面に平行な面と層平面に垂直な面に関するアスペクト比が小さいと、微小片が一定方向を向く確率が小さくなり光反射干渉機能は抑制されてしまう。これを考慮すれば、アスペクト比は大きい方が良い。用途に応じて調節することがよい。  When the first method is used, a substrate in which two kinds of inorganic materials are laminated is used as it is as a plate-like or film-like material, or when it is made into a minute piece, it is laminated on the substrate. Crush. In this case, a transparent heat-resistant film or glass is selected as the substrate. In addition, when the aspect ratio regarding the plane parallel to the layer plane and the plane perpendicular to the layer plane is small, the probability that the minute piece is directed in a certain direction is reduced, and the light reflection interference function is suppressed. Considering this, it is better that the aspect ratio is large. It is good to adjust according to the application.

第2の場合、幾つかの剥離方法があるが、その一つとして、基板と多積層との間に脆性の比較的高い周期律表のVIa族またはIVb族の金属、例えばタングステンなどを剥離層として用い、基板であるガラス、または耐熱フィルム上に適正にスパッタ等で蒸着し、その上に所定の光干渉反射積層体を設けた後、液体窒素等に浸漬し急冷剥離させることによって外す方法がある。その後フルイ等により分別分離して交互積層部分のみを得る。  In the second case, there are several peeling methods. As one of them, a VIa or IVb group metal of the periodic table having a relatively high brittleness, such as tungsten, is used as a peeling layer between the substrate and the multi-layer. It is used as a glass substrate or heat-resistant film as a substrate, properly deposited by sputtering, etc., and after providing a predetermined light interference reflection laminate on it, it is removed by immersing in liquid nitrogen etc. and rapidly peeling off is there. Thereafter, it is separated and separated by a sieve or the like to obtain only the alternately laminated portion.

また第2の場合の別の方法として、基板と多積層との間に交互積層層や基板より低融点物質あるいは有機溶媒に可溶な物質を剥離層として用い、溶媒を用いることによって外す方法がある。この場合剥離層に適した物質として、アクリル樹脂、セルロースプロピオネート、ポリビニルアルコールまたはアセテート等のような物質が挙げられる。  Further, as another method in the second case, there is a method of using an alternate laminated layer or a substance having a lower melting point than the substrate or a substance soluble in an organic solvent as a release layer between the substrate and the multi-layer, and removing by using a solvent is there. In this case, materials suitable for the release layer include materials such as acrylic resin, cellulose propionate, polyvinyl alcohol or acetate.

上記のような方法によって剥離した後、積層部分を板状あるいはフィルム状材料として利用するか、または所望の大きさまで微小化して用いる。  After peeling by the method as described above, the laminated portion is used as a plate-like or film-like material, or is used after being miniaturized to a desired size.

材料に2種の異なる無機系酸化物あるいは無機系硫化物を用い、その厚みを変化させるだけで所望する様々な波長を反射させることが可能となる。これにより、可視光領域においては単一深色の実現を提供することができ、赤外線領域や紫外線領域においてはその影響を制御することが可能になる。また本構造体は耐熱性や耐久性が高く、常温雰囲気中のみならず高温雰囲気でも使用できるため、広範な用途に使用できる可能性がある。  It is possible to reflect various desired wavelengths only by changing the thickness of the material using two different inorganic oxides or inorganic sulfides. This makes it possible to provide a single deep color in the visible light region and to control its influence in the infrared region and the ultraviolet region. In addition, since this structure has high heat resistance and durability and can be used not only in a normal temperature atmosphere but also in a high temperature atmosphere, it may be used in a wide range of applications.

図1、図2は本発明の実施の形態に係わる耐熱性光干渉反射構造体を概略的に示した説明図である。図1は耐熱透明薄ガラス基板上に低屈折率の無機系酸化物あるいは無機系硫化物を構成する金属を所定の光学厚みになるようにスパッタリング等の手法にて蒸着させた後、酸化雰囲気中あるいは硫化雰囲気中など目的とする化合物になる雰囲気中で加熱して低屈折率層を形成し、次いでその上に所定の光学厚みになるように、より高屈折率の無機系酸化物あるいは無機系硫化物になる物質を蒸着し、酸化雰囲気中あるいは硫化雰囲気中など目的とする化合物になる雰囲気中で加熱することで高屈折率層を形成し、これらの処理を所定の波長における反射率を得られるよう繰り返して得られた反射構造体の概略断面形態である。なお別の蒸着方法として化学蒸着や燃焼化学蒸着等でもよい。この場合も前述と同じく酸化雰囲気中あるいは硫化雰囲気中など目的とする化合物になる雰囲気中で基板上に低屈折率層と高屈折率層を交互に積層させていくが、各蒸着後に焼成する必要はない。また、図2に示す概略断面形態は、基板上に所定の無機酸化物あるいは無機硫化物を形成させるために、高脆性物質あるいは容易に除去可能な物質の剥離層を設けておくことで目的の機能性薄膜積層層を形成後の後処理により、機能性膜部分のみを得るための構成である。剥離層とする物質や剥離方法は先に記したとおりである。  1 and 2 are explanatory views schematically showing a heat-resistant optical interference reflection structure according to an embodiment of the present invention. FIG. 1 shows that a metal constituting a low refractive index inorganic oxide or inorganic sulfide is deposited on a heat-resistant transparent thin glass substrate by a technique such as sputtering so as to have a predetermined optical thickness, and then in an oxidizing atmosphere. Alternatively, a low refractive index layer is formed by heating in an atmosphere that becomes a target compound, such as in a sulfurized atmosphere, and then a higher refractive index inorganic oxide or inorganic type so as to have a predetermined optical thickness thereon. A substance that becomes sulfide is deposited and heated in an atmosphere that becomes the target compound, such as in an oxidizing atmosphere or a sulfurizing atmosphere, to form a high refractive index layer, and these treatments obtain reflectance at a predetermined wavelength. It is a schematic cross-sectional form of the reflective structure obtained by repeating as described. Another vapor deposition method may be chemical vapor deposition, combustion chemical vapor deposition, or the like. In this case as well, the low refractive index layer and the high refractive index layer are alternately laminated on the substrate in an atmosphere that becomes the target compound, such as in an oxidizing atmosphere or a sulfurizing atmosphere, as described above. There is no. In addition, the schematic cross-sectional form shown in FIG. 2 is provided by providing a release layer of a highly brittle substance or an easily removable substance in order to form a predetermined inorganic oxide or inorganic sulfide on the substrate. This is a configuration for obtaining only the functional film portion by post-processing after forming the functional thin film multilayer layer. The substance and peeling method used as the peeling layer are as described above.

(実施例1)
図1に示す反射構造体の形成を下記に準じて行った。設計反射波長470nmとした。低屈折率層には二酸化珪素、高屈折率層には二酸化チタンを選んだ。屈折率はそれぞれ1.5、2.4であり、屈折率比は1.6となる。層の厚みは前述数2により、二酸化珪素は78nm、二酸化チタンは49nmと設定した。まず耐熱透明ガラス基板にスパッタリングにより二酸化珪素を蒸着させた後焼成し、次に二酸化チタンを同じくスパッタリングにより蒸着し焼成する。交互に7ペア(14層)を繰り返し成形させ、分光光度計(モデルU−6000:日立製作所)を用い、入射0°/受光0°にて評価した。結果は以下の表1に示す。
Example 1
The reflective structure shown in FIG. 1 was formed according to the following. The design reflection wavelength was 470 nm. Silicon dioxide was selected for the low refractive index layer, and titanium dioxide was selected for the high refractive index layer. The refractive indexes are 1.5 and 2.4, respectively, and the refractive index ratio is 1.6. The thickness of the layer was set to 78 nm for silicon dioxide and 49 nm for titanium dioxide according to the above equation 2. First, silicon dioxide is vapor-deposited by sputtering on a heat-resistant transparent glass substrate and then fired, and then titanium dioxide is vapor-deposited and fired by sputtering. Seven pairs (14 layers) were alternately molded repeatedly, and evaluated using a spectrophotometer (model U-6000: Hitachi, Ltd.) at 0 ° incidence / 0 ° light reception. The results are shown in Table 1 below.

(実施例2)
実施例1とは異なる無機材料の組合せで、図1に示す反射構造体の形成を下記に準じて行った。設計反射波長470nmとした。低屈折率層には酸化アルミニウム、高屈折率層には硫化亜鉛を選んだ。屈折率はそれぞれ1.6、2.4であり、屈折率比は1.5となる。層の厚みは前述数2により、酸化アルミニウムは73nm、硫化亜鉛は49nmと設定した。まず耐熱透明薄ガラス基板に酸化アルミニウムを蒸着した後、さらに硫化亜鉛を用いて蒸着する。交互に7ペア(14層)を繰り返し成形させ、分光光度計(モデルU−6000:日立製作所)を用い、入射0°/受光0°にて評価した。結果は以下の表1に示す。
(Example 2)
The reflective structure shown in FIG. 1 was formed according to the following using a combination of inorganic materials different from Example 1. The design reflection wavelength was 470 nm. Aluminum oxide was selected for the low refractive index layer and zinc sulfide was selected for the high refractive index layer. The refractive indexes are 1.6 and 2.4, respectively, and the refractive index ratio is 1.5. The thickness of the layer was set to 73 nm for aluminum oxide and 49 nm for zinc sulfide according to Equation 2 described above. First, aluminum oxide is vapor-deposited on a heat-resistant transparent thin glass substrate, and further vapor-deposited using zinc sulfide. Seven pairs (14 layers) were alternately molded repeatedly, and evaluated using a spectrophotometer (model U-6000: Hitachi, Ltd.) at 0 ° incidence / 0 ° light reception. The results are shown in Table 1 below.

(実施例3)
実施例1とは異なる無機材料の組合せで、図1に示す反射構造体の形成を下記に準じて行った。設計反射波長470nmとした。低屈折率層には酸化アルミニウム、高屈折率層には二酸化チタンを選んだ。屈折率はそれぞれ1.6、2.4であり、屈折率比は1.5となる。層の厚みは前述数2により、酸化アルミニウムは73nm、二酸化チタンは49nmと設定した。まず耐熱透明薄ガラス基板に酸化アルミニウムを蒸着した後、さらに二酸化チタンを用いて蒸着する。交互に7ペア(14層)を繰り返し成形させ、分光光度計(モデルU−6000:日立製作所)を用い、入射0°/受光0°にて評価した。結果は以下の表1に示す。
(Example 3)
The reflective structure shown in FIG. 1 was formed according to the following using a combination of inorganic materials different from Example 1. The design reflection wavelength was 470 nm. Aluminum oxide was selected for the low refractive index layer and titanium dioxide was selected for the high refractive index layer. The refractive indexes are 1.6 and 2.4, respectively, and the refractive index ratio is 1.5. The thickness of the layer was set to 73 nm for aluminum oxide and 49 nm for titanium dioxide according to the above formula 2. First, aluminum oxide is vapor-deposited on a heat-resistant transparent thin glass substrate, and further vapor-deposited using titanium dioxide. Seven pairs (14 layers) were alternately molded repeatedly, and evaluated using a spectrophotometer (model U-6000: Hitachi, Ltd.) at 0 ° incidence / 0 ° light reception. The results are shown in Table 1 below.

Figure 2007076347
上述した例はあくまで例示であって、制約されるものではない。本発明の範囲は上記の例によるものよりもむしろ記載する特許請求の範囲によって示される。
Figure 2007076347
The above-described examples are merely examples and are not limited. The scope of the invention is indicated by the appended claims rather than by the above examples.

(実施例4)
設計反射波長900nmとする光干渉反射構造体を形成した。屈折率比を1.1、1.3、1.5とする3種の反射構造体を例1と同様の方法で厚さ3mmのフロート板ガラス基板上に形成した。それぞれの最大反射率を測定した結果を以下表2に示す。分光光度計(日立製自記分光光度計)を用い、入射0°/受光0°にて評価した。
Example 4
An optical interference reflection structure having a design reflection wavelength of 900 nm was formed. Three types of reflective structures having a refractive index ratio of 1.1, 1.3, and 1.5 were formed on a float plate glass substrate having a thickness of 3 mm in the same manner as in Example 1. The results of measuring each maximum reflectance are shown in Table 2 below. Using a spectrophotometer (manufactured by Hitachi, a self-recording spectrophotometer), the evaluation was carried out at 0 ° incidence / 0 ° light reception.

Figure 2007076347
Figure 2007076347

(実施例5)
設計反射波長350nmとする光干渉反射構造体を形成した。屈折率比を1.1、1.3、1.5とする3種の反射構造体を例1と同様の方法で厚さ3mmのフロート板ガラス基板上に形成し、それぞれの最大反射率を測定した結果を以下表3に示す。分光光度計(モデルU−6000:日立製作所)を用い、入射0°/受光0°にて評価した。
(Example 5)
An optical interference reflection structure having a design reflection wavelength of 350 nm was formed. Three types of reflective structures having a refractive index ratio of 1.1, 1.3, and 1.5 are formed on a 3 mm-thick float glass substrate in the same manner as in Example 1, and the maximum reflectance is measured. The results are shown in Table 3 below. Using a spectrophotometer (model U-6000: Hitachi, Ltd.), evaluation was performed at 0 ° incidence / 0 ° light reception.

Figure 2007076347
Figure 2007076347

(実施例6)
実施例1の構成において基板と積層層の間に剥離層を挟む光干渉反射構造体を形成した。設計反射波長470nmとした。厚さ3mmのフロート板ガラス基板上にタングステンを蒸着させ、さらに実施例1と同様の手法にて二酸化珪素の層と二酸化チタンの層を交互に7ペア形成させる。これを液体窒素中に浸漬し破砕させた後、フルイを用いて2段階で分離し、交互積層部分のみを回収した。得られた光干渉反射構造体顔料の反射スペクトルを測定したところ、その最大反射率は83%であった。
(Example 6)
In the configuration of Example 1, an optical interference reflection structure in which a peeling layer was sandwiched between the substrate and the laminated layer was formed. The design reflection wavelength was 470 nm. Tungsten is vapor-deposited on a float plate glass substrate having a thickness of 3 mm, and seven pairs of silicon dioxide layers and titanium dioxide layers are alternately formed in the same manner as in the first embodiment. This was immersed in liquid nitrogen and crushed, then separated in two stages using a sieve, and only the alternately laminated portions were collected. When the reflection spectrum of the obtained optical interference reflection structure pigment was measured, the maximum reflectance was 83%.

(実施例7)
実施例1の構成において基板と積層層の間に剥離層としてアクリル樹脂を挟む光干渉反射構造体を形成した。設計反射波長470nmとした。厚さ3mmのフロート板ガラス基板上にアクリル樹脂を蒸着させ、さらに実施例1と同様の手法にて二酸化珪素の層と二酸化チタンの層を交互に7ペア形成させる。これを有機溶媒に浸漬してアクリル樹脂を溶解し、交互積層部分のみを回収した。得られた光干渉反射構造体顔料の反射スペクトルを測定したところ、その最大反射率は82%であった。
(Example 7)
In the configuration of Example 1, an optical interference reflection structure in which an acrylic resin was sandwiched between the substrate and the laminated layer as a release layer was formed. The design reflection wavelength was 470 nm. Acrylic resin is vapor-deposited on a 3 mm thick float glass substrate, and seven pairs of silicon dioxide layers and titanium dioxide layers are alternately formed in the same manner as in Example 1. This was immersed in an organic solvent to dissolve the acrylic resin, and only the alternately laminated portions were collected. When the reflection spectrum of the obtained optical interference reflection structure pigment was measured, the maximum reflectance was 82%.

本発明者らのこれまでの経験から、塗料顔料は反射スペクトルが先鋭的であるほど塗膜となったときに深み感を与える傾向があることがわかっている。本発明により得られる微小片を顔料として用いることにより、深み感を与える塗料を提供でき、外観の印象が重要な自動車、電気機器、建築材料、玩具、化粧品その他に使用することができる。この反射構造体は耐熱性が高いため使用用途の自由度は高い。有機ポリマーを材料とする干渉反射体と本発明による反射干渉体の温度変化と屈折率の関係を図4に示すが、これらの差は耐熱性において対照的である。有機ポリマーからなる反射干渉体は、例えばポリエチレンテレフタレートとナイロンによる干渉反射構造体の場合は、200℃程度の雰囲気に曝されているとすぐに夫々の層厚が変化することで初期機能を維持できないが、本発明による反射干渉構造体では全く問題はない。これを自動車用顔料とする場合、塗料の焼付温度の関係で有機物から形成される顔料は適用しにくいが、この反射構造体からなる無機顔料は高温にも耐えることができる。  From our experience so far, it has been found that paint pigments tend to give a sense of depth when the coating becomes sharper as the reflection spectrum becomes sharper. By using the fine piece obtained by the present invention as a pigment, it is possible to provide a paint that gives a sense of depth, and it can be used for automobiles, electrical equipment, building materials, toys, cosmetics, and the like where the appearance impression is important. Since this reflective structure has high heat resistance, the degree of freedom of use is high. FIG. 4 shows the relationship between the temperature change and the refractive index of the interference reflector made of an organic polymer and the reflection interferer according to the present invention. These differences are contrasted in heat resistance. For example, in the case of an interference reflection structure made of polyethylene terephthalate and nylon, the reflection interference body made of an organic polymer cannot maintain the initial function by changing the layer thickness immediately after being exposed to an atmosphere of about 200 ° C. However, there is no problem at all in the reflection interference structure according to the present invention. When this is used as an automobile pigment, a pigment formed from an organic substance is difficult to apply due to the baking temperature of the paint, but an inorganic pigment made of this reflective structure can withstand high temperatures.

赤外線光領域を反射するフィルムを建築物のガラス面に貼れば、耐熱フィルムとして機能する。また、赤外線光領域を反射する微小片を含んだ塗料をタイル等建築材料に塗布した場合、例えば暖房効率を上げることができるなどエネルギー低減にも寄与することができる。紫外線光領域を反射するフィルムを建築物のガラス面に貼ったり、あるいは紫外線光領域を反射する微小片を含んだ塗料を建築物のガラス面にコーティングしたりすれば、透明性が高く且つ耐紫外線効果のある膜となる。無機系材料から構成されるため、紫外線照射による劣化は極めて小さく、建材を含め広範囲に応用可能である。  If a film reflecting the infrared light region is attached to the glass surface of the building, it functions as a heat-resistant film. Moreover, when the coating material containing the micro piece which reflects an infrared-light area | region is applied to building materials, such as a tile, it can contribute to energy reduction, for example, can raise heating efficiency. If a film that reflects the ultraviolet light region is pasted on the glass surface of the building, or a coating containing fine pieces reflecting the ultraviolet light region is coated on the glass surface of the building, the transparency and UV resistance are high. It becomes an effective film. Since it is composed of an inorganic material, the deterioration due to ultraviolet irradiation is extremely small, and it can be applied in a wide range including building materials.

上記の板状、フィルム状及び微小片状光干渉反射構造体は耐熱性、耐久性が高いため、加工性に優れ、様々な用途に使用できる可能性がある。  The plate-like, film-like, and minute piece-like optical interference reflection structures described above have high heat resistance and durability, and thus have excellent workability and may be used for various applications.

光学屈折率の異なる2種の無機系材料を透明基板上に連続して交互に3ペア積層した構造を示す図である。It is a figure which shows the structure which laminated | stacked 3 pairs of two types of inorganic type materials from which an optical refractive index differs continuously on a transparent substrate. 光学屈折率の異なる2種の無機系材料の積層と基板との間に剥離層を挟んだ構造を示す図である。It is a figure which shows the structure which pinched | stacked the peeling layer between lamination | stacking of two types of inorganic type materials from which an optical refractive index differs, and a board | substrate. (a)、(b)、(c)は屈折率比と積層ペア数によるエネルギー反射率の関係を示すグラフである。(A), (b), (c) is a graph which shows the relationship between a refractive index ratio and the energy reflectance by the number of lamination | stacking pairs. 温度変化と最大反射率の関係を示すグラフである。It is a graph which shows the relationship between a temperature change and a maximum reflectance.

符号の説明Explanation of symbols

101 基板
102 低屈折率の無機系酸化物層または無機系硫化物層
103 高屈折率の無機系酸化物層または無機系硫化物層
104 剥離層
101 Substrate 102 Low-refractive index inorganic oxide layer or inorganic sulfide layer 103 High-refractive index inorganic oxide layer or inorganic sulfide layer 104 Release layer

Claims (7)

基板上に光学屈折率の異なる無機系酸化物あるいは無機系硫化物の中から選択された2種の成分が夫々透明になる光学厚み範囲内で交互に連続した積層構造を有し、あるいはまた、該基板と前記積層構造との間に高脆性材料層からなる剥離層を設けた構造体であり、該積層構造部が紫外線領域、可視光線領域及び赤外線領域の少なくとも1種以上の波長を先鋭に干渉反射することを特徴とする耐熱性光干渉反射構造体。The substrate has a laminated structure in which two components selected from inorganic oxides or inorganic sulfides having different optical refractive indexes are alternately continuous within an optical thickness range in which each component is transparent, or A structure in which a release layer made of a highly brittle material layer is provided between the substrate and the laminated structure, and the laminated structure portion sharpens at least one wavelength in an ultraviolet region, a visible light region, and an infrared region. A heat-resistant optical interference reflection structure characterized by interference reflection. 請求項1項において、ガラスあるいは耐熱フィルム等の基板上の剥離層が周期律表のVIa族およびIVb族から選択された金属種であり、好ましくはモリブデン、タングステン、錫の中から選択された金属であることを特徴とする耐熱性光干渉反射構造体。The release layer on a substrate such as glass or heat-resistant film is a metal species selected from Group VIa and Group IVb of the periodic table, preferably a metal selected from molybdenum, tungsten, and tin A heat-resistant optical interference reflection structure characterized in that 請求項1、2項記載の構造体を急速冷凍破砕後に交互積層片を分離回収して得られる耐熱性光干渉反射構造体。A heat-resistant optical interference reflection structure obtained by separating and collecting the alternately laminated pieces after quick freezing and crushing the structure according to claim 1 or 2. 請求項1項記載における剥離層が溶解剥離性のあるアクリル樹脂、セルロースプロピオネート、ポリビニルアルコール、アセテート類から選択されることを特徴とする耐熱性光干渉反射構造体。The heat-resistant optical interference reflection structure according to claim 1, wherein the release layer is selected from an acrylic resin, cellulose propionate, polyvinyl alcohol, and acetates having dissolution peelability. 請求項1、2、3、4項記載の交互積層構造体の構成において、酸化ジルコニウム、酸化タンタル、一酸化珪素、二酸化珪素、酸化アルミニウム、酸化セリウム、酸化ハフニウム、酸化チタン、酸化プラセオジウム、酸化イットリウム、酸化亜鉛、硫化亜鉛等の酸化物系、硫化物系あるいはそれらの複合による構造であり、好ましくは同一系から構成されることを特徴とする耐熱性光干渉反射構造体。5. The structure of the alternately laminated structure according to claim 1, 2, 3, 4, wherein zirconium oxide, tantalum oxide, silicon monoxide, silicon dioxide, aluminum oxide, cerium oxide, hafnium oxide, titanium oxide, praseodymium oxide, yttrium oxide A heat-resistant optical interference reflection structure characterized in that the structure is composed of an oxide system such as zinc oxide or zinc sulfide, a sulfide system, or a composite thereof, preferably composed of the same system. 請求項1、2、3、4、5項記載の構造体の積層数が2層以上であることを特徴とする耐熱性光干渉反射構造体。6. The heat-resistant optical interference reflection structure, wherein the number of stacked layers of the structure according to claim 1, 2, 3, 4, and 5 is two or more. 請求項1、2、3、4、5、6項記載の交互積層構造体の耐熱性において、300℃以上で使用できることを特徴とする耐熱性光干渉反射構造体。7. The heat resistant optical interference reflection structure according to claim 1, wherein the heat resistance of the alternately laminated structure according to claim 1 can be used at 300 [deg.] C. or higher.
JP2005298143A 2005-09-12 2005-09-12 Heat resistant light interference reflective structure Pending JP2007076347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005298143A JP2007076347A (en) 2005-09-12 2005-09-12 Heat resistant light interference reflective structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005298143A JP2007076347A (en) 2005-09-12 2005-09-12 Heat resistant light interference reflective structure

Publications (1)

Publication Number Publication Date
JP2007076347A true JP2007076347A (en) 2007-03-29

Family

ID=37937083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005298143A Pending JP2007076347A (en) 2005-09-12 2005-09-12 Heat resistant light interference reflective structure

Country Status (1)

Country Link
JP (1) JP2007076347A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101609525B1 (en) 2013-04-11 2016-04-05 닛토덴코 가부시키가이샤 Infrared-ray reflecting film
JP2018024018A (en) * 2016-07-27 2018-02-15 東洋アルミニウム株式会社 Aluminum member for visible light reflection material
CN108508517A (en) * 2018-04-27 2018-09-07 厦门信达光电物联科技研究院有限公司 Reflectance coating for deep UV and preparation method thereof, reflecting element and LED matrix
CN110160121A (en) * 2019-06-11 2019-08-23 慧迈材料科技(广东)有限公司 A kind of electric heating floor tile and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101609525B1 (en) 2013-04-11 2016-04-05 닛토덴코 가부시키가이샤 Infrared-ray reflecting film
US10007037B2 (en) 2013-04-11 2018-06-26 Nitto Denko Corporation Infrared-ray reflective film
JP2018024018A (en) * 2016-07-27 2018-02-15 東洋アルミニウム株式会社 Aluminum member for visible light reflection material
CN108508517A (en) * 2018-04-27 2018-09-07 厦门信达光电物联科技研究院有限公司 Reflectance coating for deep UV and preparation method thereof, reflecting element and LED matrix
CN110160121A (en) * 2019-06-11 2019-08-23 慧迈材料科技(广东)有限公司 A kind of electric heating floor tile and its manufacturing method
CN110160121B (en) * 2019-06-11 2023-08-29 慧迈材料科技(广东)有限公司 Electric heating floor tile and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US20230350110A1 (en) Non-color shifting multilayer structures
US9739917B2 (en) Red omnidirectional structural color made from metal and dielectric layers
TW567343B (en) Achromatic multilayer diffractive pigments and foils
EP2873994B1 (en) Design method for matched interference pigments or foils
CN104385800B (en) Optical anti-counterfeit element and optical anti-counterfeiting product
US10788608B2 (en) Non-color shifting multilayer structures
CN106199799B (en) Colour anti-counterfeit structure body and coloring anti-counterfeiting medium
US9482798B2 (en) Plasmonic nano-color coating layer and method for fabricating the same
US9612369B2 (en) Red omnidirectional structural color made from metal and dielectric layers
US20060023327A1 (en) Thermal control interface coatings and pigments
JP6437817B2 (en) Red omnidirectional structural color made from metal and dielectric layers
JP6416714B2 (en) Red omnidirectional structural color made from metal and dielectric layers
JP2004510013A (en) Optically variable pigments and foils with enhanced color shifting properties
JP7005541B2 (en) Metallic security device
CN110749945A (en) Optical film, structural color pigment and preparation method of optical film
JP2016049777A5 (en)
CN107667011A (en) Solar control film
JP2007076347A (en) Heat resistant light interference reflective structure
JP2022093349A (en) Omnidirectional high chroma red structural colors
JP6643192B2 (en) Omnidirectional high chroma red structural color with semiconductor absorber layer
JP2017021333A5 (en)
CN115576045A (en) Colored nano film structure with protection function, preparation method and application
KR20020091535A (en) Multilayer interference film
EP3933463A2 (en) An article including a wavelength selective absorbing material
CN114958077B (en) Magnetic pigment flakes, optically variable inks, and security articles