JP2007075678A - Zirconium oxide-based optically functional oxide - Google Patents

Zirconium oxide-based optically functional oxide Download PDF

Info

Publication number
JP2007075678A
JP2007075678A JP2005263580A JP2005263580A JP2007075678A JP 2007075678 A JP2007075678 A JP 2007075678A JP 2005263580 A JP2005263580 A JP 2005263580A JP 2005263580 A JP2005263580 A JP 2005263580A JP 2007075678 A JP2007075678 A JP 2007075678A
Authority
JP
Japan
Prior art keywords
oxide
photofunctional
zro
visible light
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005263580A
Other languages
Japanese (ja)
Other versions
JP4565239B2 (en
Inventor
Hiroyoshi Takagi
弘義 高木
Yoshinobu Fujishiro
芳伸 藤代
Koichi Hamamoto
孝一 濱本
Masanobu Tanno
正信 淡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005263580A priority Critical patent/JP4565239B2/en
Publication of JP2007075678A publication Critical patent/JP2007075678A/en
Application granted granted Critical
Publication of JP4565239B2 publication Critical patent/JP4565239B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new zirconium oxide-based optically functional oxide having sensibility to visible light, its manufacturing method and its product. <P>SOLUTION: The optically functional oxide consists of the crystalline metallic compound shown by general formula: (ZrO<SB>2</SB>)<SB>1-n</SB>[(M<SP>1</SP>O<SB>5/2</SB>)(M<SP>2</SP>O<SB>3/2</SB>)]<SB>n</SB>(wherein M<SP>1</SP>is at least one metallic element selected from Nb, Ta and Sb; M<SP>2</SP>is at least one metallic element selected from Cr and Fe). The method for manufacturing the optically functional oxide comprises a solution precipitation reaction step. A photocatalytic product consists of the optically functional oxide. The optically functional oxide can be used as a new zirconium oxide-based photocatalyst which can be used in a visible light region accounting for the majority of solar energy and has excellent sensibility to visible light. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光触媒作用を有するジルコニウム含有結晶性金属化合物であって、従来の酸化チタン光触媒とは異なる組成を有する新しい酸化ジルコニウム系光機能性酸化物に関するものであり、更に詳しくは、本発明は、一般式:(ZrO1−n[(M5/2)(M3/2)](式中、MはNb、Ta、Sbから選ばれる少なくとも一種の金属元素、MはCr、Feから選ばれる少なくとも一種の金属元素を表す。)で表される組成の可視光感受性を有する酸化ジルコニウム系光機能性酸化物に関するものである。本発明は、光触媒の技術分野において、可視光感受性を利用した新しい光触媒として、現在広く使われている光触媒である酸化チタンの利用分野等への適用に限らず、幅広く、脱臭、殺菌、排水処理、有機反応等への利用を可能にする新しい酸化ジルコニウム系光機能性酸化物及び光触媒製品に関する新技術・新製品を提供することを実現するものである。 The present invention relates to a zirconium-containing crystalline metal compound having a photocatalytic action, and relates to a new zirconium oxide-based photofunctional oxide having a composition different from that of the conventional titanium oxide photocatalyst. , General formula: (ZrO 2 ) 1-n [(M 1 O 5/2 ) (M 2 O 3/2 )] n (wherein M 1 is at least one metal element selected from Nb, Ta, and Sb) , M 2 represents at least one metal element selected from Cr and Fe.) And relates to a zirconium oxide photofunctional oxide having a visible light sensitivity and a composition represented by: In the technical field of photocatalysts, as a new photocatalyst using visible light sensitivity, the present invention is not limited to the application field of titanium oxide, which is a photocatalyst that is currently widely used. It is intended to provide new technologies and new products related to new zirconium oxide-based photofunctional oxides and photocatalytic products that can be used for organic reactions and the like.

従来、光機能性酸化物として、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、酸化アンチモン等が知られているが、その中で光触媒として最も広く使われている酸化チタンは、400nm以下の波長の紫外光によってのみ励起されて光触媒特性を発現する。酸化チタンは、波長400nm以下の光に照射されると、励起されて電子が導電帯に移動し、移動した電子の跡には正孔ができる。光触媒である酸化チタンに生じた電子と正孔は、その粒子の表面に移動して、電子による還元反応と正孔による酸化反応が生じる。   Conventionally, as photofunctional oxides, for example, titanium oxide, zinc oxide, zirconium oxide, antimony oxide, and the like are known. Among them, titanium oxide that is most widely used as a photocatalyst has a wavelength of 400 nm or less. Excited only by ultraviolet light to develop photocatalytic properties. When titanium oxide is irradiated with light having a wavelength of 400 nm or less, it is excited and electrons move to the conduction band, and holes are formed in the traces of the moved electrons. Electrons and holes generated in titanium oxide as a photocatalyst move to the surface of the particle, and a reduction reaction by electrons and an oxidation reaction by holes occur.

表面に移動した電子は、酸化チタン表面に存在する酸素を還元してO (スーパーオキシドイオン)を生成し、それが水分と反応して、過酸化水素を経て、更にOH・ラジカルが生成すると云われている。このOH・ラジカルは、オゾンより強い酸化力を示し、あらゆる有機物のチェーンを切断したり、これを酸化・分解反応により炭素や水に変化させる。正孔は、結晶表面の水分やOH基と反応してOH・(ヒドロキシラジカル)を生成し、このOH・ラジカルが酸化反応に係わると云われている。このような酸化チタンによる酸化還元作用は、太陽光エネルギー全体の約5%以下しか含まれない紫外光によってのみ生じるものである。従って、酸化チタンは、太陽光の利用効率が極めて低く、また、紫外光のないところでは利用することができない。 Moved electrons on the surface, by reducing oxygen present in the surface of titanium oxide with the O 2 - generate (superoxide ions), it reacts with water, through the hydrogen peroxide, further OH · radicals generated It is said that. This OH · radical has a stronger oxidizing power than ozone and breaks any organic chain or changes it to carbon or water by oxidation / decomposition reaction. It is said that the holes react with moisture and OH groups on the crystal surface to generate OH · (hydroxy radical), and this OH · radical is involved in the oxidation reaction. Such an oxidation-reduction effect by titanium oxide is caused only by ultraviolet light that is contained by about 5% or less of the total solar energy. Therefore, titanium oxide has very low utilization efficiency of sunlight and cannot be used in the absence of ultraviolet light.

従来、可視光による光触媒作用を有する光触媒を開発するために、多くの提案がなされてきた。先行技術として、例えば、(1)熱分解法により得られ、窒素を含み、一般式:MOx−TiO(MOxは、酸化ニッケル、酸化コバルト、酸化タングステン、酸化亜鉛、酸化鉄、酸化銅、酸化タンタル、酸化ジルコニウム)で表される、チタン以外の金属酸化物と酸化チタンよりなる可視光感受性を有する複合光触媒(特許文献1参照)、(2)アナターゼ型酸化チタンを基材とし、この表面に酸化鉄(FeO、Fe、Fe、FeTiO等)を有し、かつBET比表面積が55m/g以上である光触媒体(特許文献2参照)、(3)光触媒作用を有する酸化チタンに、金属フタロシアニン、クリプトシアニン等の光増感剤を付着させて室内でも光触媒作用を達成する方法(特許文献3参照)、等が報告されている。 Conventionally, many proposals have been made to develop a photocatalyst having a photocatalytic action by visible light. As a prior art, for example, (1) obtained by a thermal decomposition method and containing nitrogen, the general formula: MOx-TiO 2 (MOx is nickel oxide, cobalt oxide, tungsten oxide, zinc oxide, iron oxide, copper oxide, oxidation A composite photocatalyst having a visible light sensitivity composed of a metal oxide other than titanium and titanium oxide (refer to Patent Document 1) represented by (tantalum, zirconium oxide), and (2) an anatase-type titanium oxide as a base material. A photocatalyst having iron oxide (FeO, Fe 2 O 3 , Fe 3 O 4 , FeTiO 3, etc.) and having a BET specific surface area of 55 m 2 / g or more (see Patent Document 2), (3) Photocatalytic action A method for achieving a photocatalytic action indoors by attaching a photosensitizer such as metal phthalocyanine or cryptocyanine to titanium oxide (see Patent Document 3) has been reported. The

また、酸化チタン光触媒以外の光触媒に関しては、例えば、酸化亜鉛光触媒は、酸化チタン光触媒と同様に、波長が短い紫外光しか吸収しないため、可視光による光触媒反応は殆ど起こらないが、これを可視光感受性にするために、例えば、(4)一般式:MOx−ZnO(MOxは、酸化バナジウム、酸化鉄、酸化タングステン、酸化銅、酸化タンタル、酸化ルテニウム、酸化クロム、酸化マンガン、酸化カドニウム、酸化インジウム等の可視光を吸収できる金属酸化物)からなる可視光感受性の酸化亜鉛光触媒(特許文献4参照)、が提案されている。   As for photocatalysts other than the titanium oxide photocatalyst, for example, the zinc oxide photocatalyst absorbs only ultraviolet light having a short wavelength as in the case of the titanium oxide photocatalyst. In order to make it sensitive, for example, (4) General formula: MOx-ZnO (MOx is vanadium oxide, iron oxide, tungsten oxide, copper oxide, tantalum oxide, ruthenium oxide, chromium oxide, manganese oxide, cadmium oxide, indium oxide. A visible light sensitive zinc oxide photocatalyst (refer to Patent Document 4) made of a metal oxide capable of absorbing visible light, etc.) has been proposed.

また、酸化ジルコニウムは、光触媒としての特性を有し、紫外光照射により触媒作用を発揮することが知られているが、この酸化ジルコニウム光触媒を作製する方法として、例えば、(5)硫酸ジルコニウムをメタノール等の有機溶媒に溶解・反応して得られるゾルゲル反応により得たゲルを、常温で乾燥するだけの簡便な方法で酸化ジルコニウム光触媒を得る方法(特許文献5参照)、また、(6)ジルコン酸イソプロポキシドを粒状活性アルミナに担持して焼成する酸化ジルコニウム光触媒の担持方法(特許文献6参照)、等が提案されている。   Zirconium oxide has characteristics as a photocatalyst and is known to exhibit a catalytic action when irradiated with ultraviolet light. As a method for producing this zirconium oxide photocatalyst, for example, (5) zirconium sulfate is converted to methanol. A method of obtaining a zirconium oxide photocatalyst by a simple method in which a gel obtained by dissolving and reacting in an organic solvent such as sol-gel reaction is dried at room temperature (see Patent Document 5), and (6) zirconic acid A method of supporting a zirconium oxide photocatalyst in which isopropoxide is supported on granular activated alumina and calcined (see Patent Document 6) has been proposed.

酸化ジルコニウム光触媒は、紫外光にのみ感受性を示して酸化還元作用を発現するが、可視光には感受性を有しないため、太陽光の利用効率が悪いという欠点がある。これは、酸化ジルコニウムのバンドギャップが約5.0e.Vと大きいため、太陽光の中の紫外光だけにしか反応せず、太陽光エネルギーの大半を占める可視光をほとんど吸収しないからである。従って、この光触媒は、紫外光のないところでは使用できないことになり、その応用範囲が限定される。例えば、可視光で反応する光触媒であれば、普通の安価なガラス容器等が使えるが、紫外光応答型の光触媒では、紫外光を吸収しない容器、例えば、石英ガラス容器等を特別に細工して使用しなければならないため、高価な装置になる。また、装置にも紫外光発生器を余分に装備しなければならないという問題がある。   Zirconium oxide photocatalysts are sensitive only to ultraviolet light and exhibit a redox effect, but have no drawback to the efficiency of sunlight utilization because they are not sensitive to visible light. This is because the band gap of zirconium oxide is about 5.0 e. This is because V is so large that it reacts only to ultraviolet light in sunlight and hardly absorbs visible light that occupies most of the solar energy. Therefore, this photocatalyst cannot be used in the absence of ultraviolet light, and its application range is limited. For example, if it is a photocatalyst that reacts with visible light, an ordinary inexpensive glass container can be used. However, with an ultraviolet light-responsive photocatalyst, a container that does not absorb ultraviolet light, such as a quartz glass container, is specially crafted. Because it must be used, it becomes an expensive device. In addition, there is a problem that the apparatus must be equipped with an extra ultraviolet light generator.

特開2005−138008号公報JP 2005-138008 A 特開2003−190811号公報JP 2003-190811 A 特開平11−169725号公報JP-A-11-169725 特開2004−160327号公報JP 2004-160327 A 特開2003−334452号公報Japanese Patent Laid-Open No. 2003-334442 特開平8−257411号公報JP-A-8-257411

このような状況の中で、本発明者らは、上記従来技術に鑑みて、可視光に感受性を有する可視光感受性の新しい光触媒を開発することを目指して鋭意研究を積み重ねた結果、特定の酸化物と複合化した酸化ジルコニウム系複合化合物が、可視光感受性を有する新しい光機能性酸化物として使用できることを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted intensive research aimed at developing a new visible light-sensitive photocatalyst having sensitivity to visible light in view of the above-described conventional technology. The present inventors have found that a zirconium oxide-based composite compound complexed with a product can be used as a new photofunctional oxide having visible light sensitivity, and completed the present invention.

本発明は、可視光感受性を有する酸化ジルコニウム含有結晶性金属化合物からなる新しい光機能性酸化物を提供することを目的とするものである。また、本発明は、太陽光エネルギーの大部分を占める可視光領域を有効に利用することができる酸化ジルコニウム系光触媒を提供することを目的とするものである。また、本発明は、紫外光を透過する材料を使用することなく、安価に光触媒装置を構築することを可能とする、可視光感受性光触媒装置を提供することを目的とするものである。また、本発明は、特殊な原料化合物を使用することなく、通常の溶液反応により簡便に可視光感受性の酸化ジルコニウム系光触媒を製造することを可能とする可視光感受性の酸化ジルコニウム系光機能性酸化物の製造方法を提供することを目的とするものである。更に、本発明は、可視光感受性の酸化ジルコニウム系光触媒製品を提供することを目的とするものである。   It is an object of the present invention to provide a new photofunctional oxide comprising a zirconium oxide-containing crystalline metal compound having visible light sensitivity. Another object of the present invention is to provide a zirconium oxide photocatalyst that can effectively use the visible light region that occupies most of the solar energy. Another object of the present invention is to provide a visible light sensitive photocatalyst device that makes it possible to construct a photocatalyst device at low cost without using a material that transmits ultraviolet light. In addition, the present invention provides a visible light sensitive zirconium oxide-based photofunctional oxidation that makes it possible to easily produce a visible light sensitive zirconium oxide-based photocatalyst by an ordinary solution reaction without using a special raw material compound. It aims at providing the manufacturing method of a thing. It is another object of the present invention to provide a visible light sensitive zirconium oxide photocatalyst product.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)ZrOと、M5/2及びM3/2を構成成分とする光機能性酸化物であって、一般式: (ZrO1−n[(M5/2)(M3/2)]
(式中、MはNb、Ta、Sbから選ばれる少なくとも一種の金属元素、MはCr、Feから選ばれる少なくとも一種の金属元素を表す。)で表される結晶性金属化合物からなることを特徴とする光機能性酸化物。
(2)結晶性金属化合物が、(ZrO1−n(M(式中、nは0.3〜0.7である。)からなる前記(1)に記載の光機能性酸化物。
(3)結晶性金属化合物が、(ZrO2/3[(M5/2)(M3/2)]1/3、又は(ZrO1/2[(M5/2)(M3/2)]1/2である前記(1)に記載の光機能性酸化物。
(4)(M5/2)/(M3/2)=1である前記(1)に記載の光機能性酸化物。
(5)酸化ジルコニウムの含有量が、30〜60モル%である前記(1)に記載の光機能性酸化物。
(6)結晶性金属化合物が、可視光感受性の光触媒作用を有する前記(1)に記載の光機能性酸化物。
(7)前記(1)から(6)のいずれかに記載の光機能性酸化物からなることを特徴とする可視光感受性を有する光触媒。
(8)前記(7)に記載の光触媒を担持させたことを特徴とする光触媒製品。
(9)ジルコニウムと、ニオブ、タンタル、アンチモンから選ばれる少なくとも一種の金属元素、及び鉄、クロムから選ばれる少なくとも一種の金属元素を所定の割合で含有する原料溶液を調製し、これにアルカリを加えて溶液のpHを調整することにより生成した反応生成物を仮焼することを特徴とする光機能性酸化物の製造方法。
(10)原料溶液を加熱処理した後、アルカリを加えて溶液のpHを調整して沈殿物を形成させ、更に、これを加熱処理する前記(9)に記載の光機能性酸化物の製造方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) A photofunctional oxide containing ZrO 2 and M 1 O 5/2 and M 2 O 3/2 as constituent components, and having a general formula: (ZrO 2 ) 1-n [(M 1 O 5 / 2 ) (M 2 O 3/2 )] n
(Wherein M 1 represents at least one metal element selected from Nb, Ta, and Sb, and M 2 represents at least one metal element selected from Cr and Fe). Photofunctional oxide characterized by
(2) The crystalline metal compound according to (1), wherein the crystalline metal compound is composed of (ZrO 2 ) 1-n (M 1 M 2 O 4 ) n (wherein n is 0.3 to 0.7). Photofunctional oxide.
(3) The crystalline metal compound is (ZrO 2 ) 2/3 [(M 1 O 5/2 ) (M 2 O 3/2 )] 1/3 or (ZrO 2 ) 1/2 [(M 1 O 5/2 ) (M 2 O 3/2 )] 1/2 The photofunctional oxide according to (1).
(4) The photofunctional oxide according to (1), wherein (M 1 O 5/2 ) / (M 2 O 3/2 ) = 1.
(5) The photofunctional oxide according to (1), wherein the content of zirconium oxide is 30 to 60 mol%.
(6) The photofunctional oxide according to (1), wherein the crystalline metal compound has a visible light sensitive photocatalytic action.
(7) A photocatalyst having visible light sensitivity, comprising the photofunctional oxide according to any one of (1) to (6).
(8) A photocatalyst product comprising the photocatalyst according to (7) supported thereon.
(9) A raw material solution containing zirconium, at least one metal element selected from niobium, tantalum, and antimony, and at least one metal element selected from iron and chromium in a predetermined ratio is prepared, and an alkali is added thereto. A method for producing a photofunctional oxide, comprising calcining a reaction product produced by adjusting the pH of the solution.
(10) The method for producing a photofunctional oxide according to (9) above, wherein the raw material solution is heat-treated, an alkali is added to adjust the pH of the solution to form a precipitate, and this is further heat-treated. .

次に、本発明について更に詳細に説明する。
本発明は、ZrOとM5/2及びM3/2を構成成分とする光機能性酸化物であって、一般式:(ZrO1−n[(M5/2)(M3/2)](式中、MはNb、Ta、Sbから選ばれる少なくとも一種の金属元素、MはCr、Feから選ばれる少なくとも一種の金属元素を表す。)で表される結晶性金属化合物からなる紫外光及び可視光に感受性を有する光機能性酸化物、その製造方法及び光触媒製品の点、に特徴を有するものである。
Next, the present invention will be described in more detail.
The present invention is a photofunctional oxide containing ZrO 2 , M 1 O 5/2 and M 2 O 3/2 as constituent components, and has the general formula: (ZrO 2 ) 1-n [(M 1 O 5 / 2 ) (M 2 O 3/2 )] n (wherein M 1 represents at least one metal element selected from Nb, Ta, and Sb, and M 2 represents at least one metal element selected from Cr and Fe. .) Is a photofunctional oxide that is sensitive to ultraviolet light and visible light, and is characterized by its production method and photocatalytic product.

従来知られている酸化チタン光触媒の欠点は、バンドギャップが約3e.Vと少し大きいため、400nm以上の波長の可視光を利用できないことであり、そのために、バンドギャップを少しでも小さくすることにより、可視光域での光吸収率を高め、太陽光の利用効率を高める提案が数多くなされている。その場合、バンド構造における導電帯位置は、水素発生電位よりもある程度離れていて、例えば、SrTiOと略同じ位の位置になることが望ましい。 The disadvantage of the conventionally known titanium oxide photocatalyst is that the band gap is about 3e. Since it is a little larger than V, it is impossible to use visible light having a wavelength of 400 nm or more. Therefore, by reducing the band gap as much as possible, the light absorption rate in the visible light region is increased, and the utilization efficiency of sunlight is increased. Many proposals have been made to increase it. In that case, it is desirable that the conductive band position in the band structure is somewhat away from the hydrogen generation potential, for example, approximately the same position as SrTiO 3 .

酸化ジルコニウムは、バンドギャップが大きく、約5.0e.Vであるが、水素還元電位は、かなり離れている。本発明者らは、バンドギャップの比較的小さい酸化物としては、Cr(1.6e.V)、Fe酸化鉄(2.2e.V)が知られていることから、これらの酸化物を組み合わせれば、3e.V以下のバンドギャップで、しかも水素還元電位より−側に導電帯のある物質ができるのではないかと考えた。本発明は、こうした考えのもとに新しい光触媒材料として開発されたものであり、本発明の光機能性酸化物は、紫外光は勿論のこと可視光照射下でも光触媒作用を発揮することを実現したものである。 Zirconium oxide has a large band gap, about 5.0 e. V, but the hydrogen reduction potential is quite far away. The present inventors have known Cr 2 O 3 (1.6 eV) and Fe 2 O 3 iron oxide (2.2 eV) as oxides having a relatively small band gap. If these oxides are combined, 3e. It was thought that a substance having a band gap of V or less and having a conduction band on the negative side from the hydrogen reduction potential may be formed. The present invention was developed as a new photocatalytic material based on these ideas, and the photofunctional oxide of the present invention realizes a photocatalytic action under irradiation of visible light as well as ultraviolet light. It is a thing.

本発明は、バンドギャップの大きい酸化ジルコニウムを、Nb、Ta、Sbから選ばれる少なくとも一種の酸化物(M5/2)、及びCr、Feから選ばれる少なくとも一種の酸化物(M3/2)とで複合化して結晶性金属化合物とすることにより、バンドギャップを小さくし、紫外光及び可視光により励起される新しい光機能性酸化物を作製することを実現するものである。本発明の光機能性酸化物は、1モルのZrOに対して、(M5/2、M3/2)が0.42〜2.33モル、好適には0.50〜1.0モルであり、M5/2とM3/2のモル比は1である。 In the present invention, zirconium oxide having a large band gap is obtained by using at least one oxide selected from Nb, Ta, and Sb (M 1 O 5/2 ) and at least one oxide selected from Cr and Fe (M 2 O). 3/2 ) to form a crystalline metal compound, thereby reducing the band gap and producing a new photofunctional oxide excited by ultraviolet light and visible light. The photofunctional oxide of the present invention has (M 1 O 5/2 , M 2 O 3/2 ) of 0.42 to 2.33 mol, preferably 0.50 with respect to 1 mol of ZrO 2 . The molar ratio of M 1 O 5/2 and M 2 O 3/2 is 1.

本発明の光機能性酸化物は、酸化ジルコニウムを30〜60モル%含み、残りがM5/2、及びM3/2からなる組成を有するものが好適である。本発明の光機能性酸化物の好適な組成物としては、例えば、(ZrO2/3[(M5/2)(M3/2)]1/3、又は(ZrO1/2[(M5/2)(M3/2)]1/2を挙げることができる。しかし、これらに制限されるものではない。本発明の光機能性酸化物は、Cr及び/又はFeを含んでいるために、薄い褐色又は薄い青色に着色している。このため、白色の酸化チタン粉体等に比べて、可視光領域での光吸収が大きくなっている。このような可視光域での吸収が大きいことが、本発明の可視光感受性の光触媒としての効果を発現するための大きな要因である。 The photofunctional oxide of the present invention preferably contains 30 to 60 mol% of zirconium oxide, and the remainder has a composition composed of M 1 O 5/2 and M 2 O 3/2 . As a suitable composition of the photofunctional oxide of the present invention, for example, (ZrO 2 ) 2/3 [(M 1 O 5/2 ) (M 2 O 3/2 )] 1/3 , or (ZrO 2 ) 1/2 [(M 1 O 5/2 ) (M 2 O 3/2 )] 1/2 may be mentioned. However, it is not limited to these. Since the photofunctional oxide of the present invention contains Cr 2 O 3 and / or Fe 2 O 3 , it is colored light brown or light blue. For this reason, light absorption in the visible light region is larger than that of white titanium oxide powder or the like. Such a large absorption in the visible light region is a major factor for expressing the effect of the present invention as a visible light sensitive photocatalyst.

本発明の光機能性酸化物は、紫外光は勿論のこと可視光照射下でも光触媒作用を発現する。本発明の光機能性酸化物の光触媒機能を評価するために、評価テストの一つとして、青色染料のメチレンブルーを脱色させる方法により、本発明の光機能性酸化物をメチレンブルー溶液に分散して、自然光のみで青色染料を分解させたところ、これを分解脱色することが分かった。比較のために、市販の光触媒用酸化チタン粉体(P−25)を同じ条件で試験したところ、自然光ではメチレンブルーを分解することはできなかった。   The photofunctional oxide of the present invention exhibits a photocatalytic action under irradiation of visible light as well as ultraviolet light. In order to evaluate the photocatalytic function of the photofunctional oxide of the present invention, as one of the evaluation tests, the photofunctional oxide of the present invention is dispersed in a methylene blue solution by a method of decolorizing the blue dye methylene blue, When the blue dye was decomposed only with natural light, it was found to decompose and decolor it. For comparison, when a commercially available titanium oxide powder for photocatalyst (P-25) was tested under the same conditions, methylene blue could not be decomposed by natural light.

本発明の光機能性酸化物は、ジルコニウムと、ニオブ、タンタル、アンチモンから選ばれる少なくとも一種の金属元素(M)、及び鉄、クロムから選ばれる少なくとも一種の金属元素(M)を所定の割合で含有する原料溶液を調製し、これにアルカリを加えて溶液のpHを調整することにより生成した沈殿物を仮焼することにより作製される。ジルコニウム、金属元素(M)、及び金属元素(M)を含む原料溶液を作製するには、所定量の金属塩、金属アルコキシド、金属等を原料として、これらを溶解して調製する。好適には、例えば、オキシ塩化ジルコニウム、オキシ硝酸ジルコニウム、硝酸ジルコニウム等の硝酸塩、塩化タンタル、五塩化アンチモン、塩化ニオビウム等の塩化物、塩化クロミウム等の水溶性クロム塩、塩化鉄等の水溶性鉄塩、金属ニオブ、金属タンタル、金属アンチモン等が使用される。 The photofunctional oxide of the present invention contains zirconium, at least one metal element (M 1 ) selected from niobium, tantalum, and antimony, and at least one metal element (M 2 ) selected from iron and chromium. It is prepared by preparing a raw material solution contained in a proportion and calcining a precipitate generated by adding alkali to the solution to adjust the pH of the solution. In order to prepare a raw material solution containing zirconium, a metal element (M 1 ), and a metal element (M 2 ), a predetermined amount of a metal salt, a metal alkoxide, a metal, or the like is used as a raw material to prepare them. Preferably, for example, nitrates such as zirconium oxychloride, zirconium oxynitrate and zirconium nitrate, chlorides such as tantalum chloride, antimony pentachloride and niobium chloride, water-soluble chromium salts such as chromium chloride, and water-soluble iron such as iron chloride Salts, metallic niobium, metallic tantalum, metallic antimony, etc. are used.

原料溶液は、水性溶媒から調製するのが好適であるが、アルコール類等の有機溶媒から調製することも適宜可能である。溶液の金属イオン濃度は、0.01〜0.1モル%程度が好適である。こうして調製した原料溶液に、アンモニア、炭酸アンモニウム等のアルカリを添加してpHを調整することにより反応生成物を沈殿させるが、この場合、溶液のpHを9以上、好適にはpHを9〜11に調整することにより、金属の水酸化物あるいは水和酸化物の沈殿を生成させることができる。   The raw material solution is preferably prepared from an aqueous solvent, but can also be appropriately prepared from an organic solvent such as alcohols. The metal ion concentration of the solution is preferably about 0.01 to 0.1 mol%. The reaction product is precipitated by adjusting the pH by adding an alkali such as ammonia or ammonium carbonate to the raw material solution thus prepared. In this case, the pH of the solution is 9 or more, preferably 9 to 11 pH. By adjusting to, a precipitate of metal hydroxide or hydrated oxide can be generated.

原料溶液は、アルカリを添加して加水分解反応を行う前に加熱処理を行うことが好適であり、例えば、80〜100℃で、24〜72時間の加熱処理、例えば、24時間以上煮沸処理して、原料溶液を水和酸化物の懸濁状にさせることが好適である。次いで、これにアルカリを添加して加水分解物を沈殿させる。また、この場合、加水分解反応の終了後、溶液を加熱処理することが好ましく、例えば、溶液を、30分間以上煮沸する等の加熱処理をすることが好適である。反応生成物の乾燥は、例えば、50〜300℃行われ、仮焼は400〜1300℃で2〜8時間加熱して行うことが好適である。   The raw material solution is preferably subjected to a heat treatment before adding an alkali to carry out a hydrolysis reaction. For example, the raw material solution is heated at 80 to 100 ° C. for 24 to 72 hours, for example, boiled for 24 hours or more. Thus, it is preferable to make the raw material solution into a hydrated oxide suspension. Next, an alkali is added thereto to precipitate the hydrolyzate. In this case, after completion of the hydrolysis reaction, the solution is preferably heat-treated. For example, it is preferable to heat-treat the solution such as boiling for 30 minutes or more. The reaction product is dried, for example, at 50 to 300 ° C., and the calcination is preferably performed at 400 to 1300 ° C. for 2 to 8 hours.

酸化ジルコニウムは、バンドギャップが約5.0e.Vと大きく、また、水素還元電位が水素発生電位よりもかなりかけ離れていることから、紫外光にのみ感受性を有する光触媒特性を示す光機能性材料の一種として知られているが、光触媒としての利用はほとんど行われていなかった。これに対して、本発明は、酸化ジルコニウムと、ニオブ、タンタル、アンチモンから選ばれる少なくとも一種の金属元素、及びクロム、鉄から選ばれる少なくとも一種の金属元素を特定の割合で有することにより、酸化チタンよりもバンドギャップが大きい酸化ジルコニウムを可視光感受性の機能性酸化物とした、新規な酸化ジルコニウム系光機能性酸化物を作製し、提供することを実現するものである。   Zirconium oxide has a band gap of about 5.0 e. It is known as a kind of photofunctional material exhibiting photocatalytic properties that are sensitive only to ultraviolet light because it is large as V and the hydrogen reduction potential is far away from the hydrogen generation potential, but it is used as a photocatalyst. Was hardly done. On the other hand, the present invention includes zirconium oxide, at least one metal element selected from niobium, tantalum, and antimony, and at least one metal element selected from chromium and iron in a specific ratio. It is possible to produce and provide a novel zirconium oxide-based photofunctional oxide using zirconium oxide having a larger band gap as a visible light sensitive functional oxide.

本発明は、従来、可視光感受性の光触媒機能を付与することができなかった酸化ジルコニウムを複合化することにより、3e.V以下のバンドギャップで、しかも水素還元電位より−側に導電帯を有する新規複合光機能性酸化物を作製することで、可視光領域において活性化することに成功したものであり、太陽エネルギーの有効利用を可能とし、更に、可視光感受性の光触媒作用を利用した新しい反応プロセス、装置及び光触媒製品を提供するものとして有用である。本発明は、任意の対象物の表面に上記酸化ジルコニウム系光機能性酸化物を光触媒として適宜の手段で担持させて光触媒特性を付与した光触媒製品を作製し、提供することを可能とする。   In the present invention, by combining zirconium oxide, which could not provide a visible light-sensitive photocatalytic function, 3e. By producing a novel composite photofunctional oxide having a band gap of V or less and having a conduction band on the negative side from the hydrogen reduction potential, it was successfully activated in the visible light region. It is useful for providing a new reaction process, apparatus, and photocatalyst product that enable effective use and that utilizes photocatalysis that is sensitive to visible light. The present invention makes it possible to produce and provide a photocatalyst product imparted with photocatalytic properties by supporting the above-described zirconium oxide photofunctional oxide as a photocatalyst on the surface of an arbitrary object by an appropriate means.

本発明により、(1)一般式:(ZrO1−n[(M5/2)(M3/2)](MはNb、Ta、Sbから選ばれる少なくとも一種の金属元素、MはCr、Feから選ばれる少なくとも一種の金属元素を表す。)の組成を有する結晶性金属化合物からなる新しい光機能性酸化物を提供することができる、(2)太陽光エネルギーの大部分を占める可視光領域の光により励起されて光触媒作用を発揮するジルコニウム含有結晶性金属化合物を提供することができる、(3)紫外光透過性を有する材料を使用することなく、可視光のみを透過する材料、例えば、安価な普通のガラスにより光触媒装置を構築することができる、(4)溶液沈殿反応を利用して、簡便に上記光機能性酸化物を製造することを可能とする上記光機能性酸化物の製造方法を提供することができる、(5)更に、上記酸化ジルコニウム系光機能性酸化物の光触媒作用を利用した新規な可視光感受性光触媒製品を提供することができる、という効果が奏される。 According to the present invention, (1) general formula: (ZrO 2 ) 1-n [(M 1 O 5/2 ) (M 2 O 3/2 )] n (M 1 is at least one selected from Nb, Ta, Sb) And (2) sunlight, which can provide a new photofunctional oxide comprising a crystalline metal compound having a composition of (M 2 represents at least one metal element selected from Cr and Fe). A zirconium-containing crystalline metal compound that is excited by light in the visible light region that occupies most of the energy and exhibits a photocatalytic action can be provided. (3) Visible without using a material having ultraviolet light transparency. A photocatalytic device can be constructed from a material that transmits only light, for example, inexpensive ordinary glass. (4) It is possible to easily produce the above-mentioned photofunctional oxide using a solution precipitation reaction. Do A method for producing the photofunctional oxide can be provided. (5) Furthermore, a novel visible light sensitive photocatalytic product utilizing the photocatalytic action of the zirconium oxide photofunctional oxide can be provided. The effect is played.

次に、実施例により本発明を具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples.

本実施例では、(ZrO1−n(CrNbO、n=1/3からなる光機能性酸化物を作製した。まず、0.026モルのオキシ塩化ジルコニウム・8水和物、0.0065モルの塩化ニオビウム、0.0065モルの塩化クロミウム・6水和物の各化合物を、水2000mlに溶解して原料溶液を調製した。この水溶液を24時間煮沸した後に、pH値が約9となるようにアンモニア水を添加して沈殿を形成させた。沈殿反応が完結した後、再度30分間煮沸した。静置して沈殿を沈降させた後、上澄み液を除去してスプレードライ装置により乾燥して粉体を得た。この粉末を1200℃で1時間、大気中で仮焼した後、乳鉢でほぐして平均粒径2μm以下の粉体とした。この粉体のX線回折図を図1に、反射スペクトルを図3の分光反射率曲線(Cr/Nb)に示した。これらの結果から、本発明の光機能性酸化物が、(ZrO2/3(CrNbO1/3の組成を有すること、明確な結晶性を有し、可視光領域で高い光吸収を示すことが分かった。 In this example, a photofunctional oxide composed of (ZrO 2 ) 1-n (CrNbO 4 ) n and n = 1/3 was produced. First, 0.026 mol of zirconium oxychloride · 8 hydrate, 0.0065 mol of niobium chloride, 0.0065 mol of chromium chloride · hexahydrate were dissolved in 2000 ml of water to prepare a raw material solution. Prepared. After boiling this aqueous solution for 24 hours, aqueous ammonia was added to form a precipitate so that the pH value was about 9. After the precipitation reaction was completed, it was boiled again for 30 minutes. After allowing to stand to settle the precipitate, the supernatant was removed and dried with a spray dryer to obtain a powder. This powder was calcined in the atmosphere at 1200 ° C. for 1 hour and then loosened in a mortar to obtain a powder having an average particle size of 2 μm or less. The X-ray diffraction pattern of this powder is shown in FIG. 1, and the reflection spectrum is shown in the spectral reflectance curve (Cr / Nb) of FIG. From these results, the photofunctional oxide of the present invention has a composition of (ZrO 2 ) 2/3 (CrNbO 4 ) 1/3 , clear crystallinity, and high light absorption in the visible light region. It was found that

本実施例では、(ZrO1−n(FeNbO、n=1/3からなる光機能性酸化物を作製した。0.026モルのオキシ塩化ジルコニウム・8水和物、0.0065モルの塩化ニオビウム、0.0065ルの塩化鉄・6水和物の各化合物を、水2000mlに溶解して原料溶液を調製した。この水溶液を48時間煮沸した後に、pH値が約9となるように、アンモニア水を添加して沈殿を形成させた。沈殿反応が完結した後、再度60分間煮沸した。静置して沈殿を沈降させた後、上澄み液を除去してスプレードライ装置により乾燥して粉体を得た。この粉末を1200℃で1時間、大気中で仮焼した後、乳鉢でほぐして平均粒径2μm以下の粉体とした。図2に、この粉体のX線回折図を示した。また、図3に、この粉体の分光反射率曲線(Fe/Nb)を示した。これらの結果から、得られた生成物が(ZrO2/3(FeNbO1/3の組成を有すること、明確な結晶性を有し、可視光領域で高い光吸収性を示すこと、が分かった。 In this example, a photofunctional oxide composed of (ZrO 2 ) 1-n (FeNbO 4 ) n and n = 1/3 was produced. 0.026 mol of zirconium oxychloride / octahydrate, 0.0065 mol of niobium chloride and 0.0065 mol of iron chloride / hexahydrate were dissolved in 2000 ml of water to prepare a raw material solution. . After boiling this aqueous solution for 48 hours, ammonia water was added to form a precipitate so that the pH value was about 9. After the precipitation reaction was completed, it was boiled again for 60 minutes. After allowing to stand to settle the precipitate, the supernatant was removed and dried with a spray dryer to obtain a powder. This powder was calcined in the atmosphere at 1200 ° C. for 1 hour and then loosened in a mortar to obtain a powder having an average particle size of 2 μm or less. FIG. 2 shows an X-ray diffraction pattern of this powder. FIG. 3 shows the spectral reflectance curve (Fe / Nb) of this powder. From these results, the obtained product has a composition of (ZrO 2 ) 2/3 (FeNbO 4 ) 1/3 , clear crystallinity, and high light absorption in the visible light region. I understand.

本実施例では、(ZrO1−n(FeTaO、n=1/3からなる光機能性酸化物を作製した。0.026モルのオキシ塩化ジルコニウム・8水和物、0.0065モルの塩化タンタル、0.0065モルの塩化鉄・6水和物の各化合物を、水2000mlに溶解して原料溶液を調製した以外は、実施例1と同様にして、光機能性酸化物を作製した。 In this example, a photofunctional oxide composed of (ZrO 2 ) 1-n (FeTaO 4 ) n , n = 1/3 was produced. 0.026 mol of zirconium oxychloride octahydrate, 0.0065 mol of tantalum chloride and 0.0065 mol of iron chloride hexahydrate were dissolved in 2000 ml of water to prepare a raw material solution. Except for the above, a photofunctional oxide was produced in the same manner as in Example 1.

本実施例では、(ZrO1−n(CrTaO、n=1/3からなる光機能性酸化物を作製した。0.026モルのオキシ塩化ジルコニウム・8水和物、0.0065モルの塩化タンタル、0.0065モルの塩化クロミウム・6水和物の各化合物を、水2000mlに溶解して原料溶液を調製した以外は、実施例1と同様にして、光機能性酸化物を作製した。 In this example, a photofunctional oxide composed of (ZrO 2 ) 1-n (CrTaO 4 ) n and n = 1/3 was produced. 0.026 mol of zirconium oxychloride octahydrate, 0.0065 mol of tantalum chloride and 0.0065 mol of chromium chloride hexahydrate were dissolved in 2000 ml of water to prepare a raw material solution. Except for the above, a photofunctional oxide was produced in the same manner as in Example 1.

本実施例では、(ZrO1−n(Cr0.5Fe0.5TaO、n=1/3からなる光機能性酸化物を作製した。0.026モルのオキシ塩化ジルコニウム・8水和物、0.0065モルの塩化タンタル、0.0033モルの塩化クロミウム・6水和物、0.0033モルの塩化鉄・6水和物の各化合物を、水2000mlに溶解して原料溶液を調製した以外は、実施例1と同様にして、光機能性酸化物を作製した。 In this example, a photofunctional oxide composed of (ZrO 2 ) 1-n (Cr 0.5 Fe 0.5 TaO 4 ) n and n = 1/3 was produced. 0.026 mol zirconium oxychloride octahydrate, 0.0065 mol tantalum chloride, 0.0033 mol chromium chloride hexahydrate, 0.0033 mol iron chloride hexahydrate Was dissolved in 2000 ml of water to prepare a raw material solution, and a photofunctional oxide was produced in the same manner as in Example 1.

本実施例では、(ZrO1−n(CrNbO、n=1/2からなる光機能性酸化物を作製した。0.02モルのオキシ塩化ジルコニウム・8水和物、0.01モルの塩化ニオビウム、0.01モルの塩化クロミウム・6水和物の各化合物を、水2000mlに溶解して原料溶液を調製した。乾燥した粉体を800℃、2時間、大気中で仮焼した以外は、実施例1と同様にして、光機能性酸化物を作製した。 In this example, an optical functional oxide composed of (ZrO 2 ) 1-n (CrNbO 4 ) n and n = 1/2 was produced. 0.02 mol of zirconium oxychloride / octahydrate, 0.01 mol of niobium chloride, 0.01 mol of chromium chloride / hexahydrate were dissolved in 2000 ml of water to prepare a raw material solution. . A photofunctional oxide was produced in the same manner as in Example 1 except that the dried powder was calcined in the air at 800 ° C. for 2 hours.

本実施例では、(ZrO1−n(CrTaO、n=1/2からなる光機能性酸化物を作製した。0.02モルのオキシ塩化ジルコニウム・8水和物、0.01モルの塩化タンタル、0.01モルの塩化クロミウム・6水和物の各化合物を、水2000mlに溶解して原料溶液を調製した。乾燥した粉体を800℃、2時間、大気中で仮焼した以外は、実施例1と同様にして、光機能性酸化物を作製した。 In this example, a photofunctional oxide composed of (ZrO 2 ) 1-n (CrTaO 4 ) n and n = 1/2 was produced. 0.02 mol zirconium oxychloride octahydrate, 0.01 mol tantalum chloride, 0.01 mol chromium chloride hexahydrate were dissolved in 2000 ml of water to prepare a raw material solution. . A photofunctional oxide was produced in the same manner as in Example 1 except that the dried powder was calcined in the air at 800 ° C. for 2 hours.

本実施例では、(ZrO1−n(CrSbO、n=1/2からなる光機能性酸化物を作製した。0.02モルのオキシ塩化ジルコニウム・8水和物、0.01モルの塩化アンチモン、0.01モルの塩化クロミウム・6水和物の各化合物を、水2000mlに溶解して原料溶液を調製した。乾燥した粉体を800℃、2時間、大気中で仮焼した以外は、実施例1と同様にして、光機能性酸化物を作製した。 In this example, an optical functional oxide composed of (ZrO 2 ) 1-n (CrSbO 4 ) n and n = 1/2 was produced. 0.02 mol of zirconium oxychloride / octahydrate, 0.01 mol of antimony chloride, 0.01 mol of chromium chloride / hexahydrate were dissolved in 2000 ml of water to prepare a raw material solution. . A photofunctional oxide was produced in the same manner as in Example 1 except that the dried powder was calcined in the air at 800 ° C. for 2 hours.

本実施例では、(ZrO1−n(FeSbO、n=1/2からなる光機能性酸化物を作製した。0.02モルのオキシ塩化ジルコニウム・8水和物、0.01モルの塩化アンチモン、0.01モルの塩化鉄・6水和物の各化合物を、水2000mlに溶解して原料溶液を調製した。乾燥した粉体を800℃、4時間、大気中で仮焼した以外は、実施例1と同様にして、光機能性酸化物を作製した。 In this example, an optical functional oxide composed of (ZrO 2 ) 1-n (FeSbO 4 ) n and n = 1/2 was produced. 0.02 mol of zirconium oxychloride / octahydrate, 0.01 mol of antimony chloride, 0.01 mol of iron chloride / hexahydrate were dissolved in 2000 ml of water to prepare a raw material solution. . A photofunctional oxide was produced in the same manner as in Example 1 except that the dried powder was calcined in the air at 800 ° C. for 4 hours.

実施例1及び2で作製した光機能性酸化物粉体(実施例1:Zr−Cr−Nb、実施例2:Zr−Fe−Nb)の夫々0.3gを、10ppmのメチレンブルー水溶液30ml中に攪拌、分散させて、室内に放置して、その脱色を観察した。比較のために、P−25(デグッサ社製TiO)と、TZ8YS(東ソー社製ZrO)を、メチレンブルー水溶液中に分散させて、同様にして、脱色を観察した。1日放置後の脱色状態を図4に示した。実施例1及び2で作製した本発明の光機能性酸化物は、ほぼ完全にメチレンブルーを脱色したが、比較例では脱色しなかった。なお、この試験では、紫外光を透過し難い普通のガラス瓶を用いた。 0.3 g of each of the photofunctional oxide powders prepared in Examples 1 and 2 (Example 1: Zr—Cr—Nb, Example 2: Zr—Fe—Nb) was added to 30 ml of 10 ppm methylene blue aqueous solution. The mixture was stirred and dispersed and left in the room to observe decolorization. For comparison, P-25 (TiO 2 manufactured by Degussa) and TZ8YS (ZrO 2 manufactured by Tosoh Corporation) were dispersed in an aqueous methylene blue solution, and decolorization was observed in the same manner. The decolored state after standing for 1 day is shown in FIG. The photofunctional oxide of the present invention produced in Examples 1 and 2 decolorized methylene blue almost completely, but did not decolor in the comparative example. In this test, an ordinary glass bottle that hardly transmits ultraviolet light was used.

実施例1で作製した光機能性酸化物粉体0.5gを普通のガラス瓶に入れ、0.1nのヨウ化カリ(KI)溶液50mlを加えて分散させ、約2時間、窓際において自然光に当てた後、光触媒機能によるヨー素の析出状態を溶液中にデンプン溶液を滴下して観察した。その結果、本発明の光機能性酸化物の試料では、ヨウ素析出により紫色に着色し、本発明の酸化物粉体がヨウ素イオンを酸化したことが証明された。   Place 0.5 g of the photofunctional oxide powder prepared in Example 1 in an ordinary glass bottle, add 50 ml of 0.1 n potassium iodide (KI) solution and disperse it, and expose it to natural light at the window for about 2 hours. Thereafter, the precipitation state of iodine due to the photocatalytic function was observed by dropping the starch solution into the solution. As a result, the sample of the photofunctional oxide of the present invention was colored purple by iodine precipitation, and it was proved that the oxide powder of the present invention oxidized iodine ions.

以上詳述したように、本発明は、一般式:(ZrO1−n[(M5/2)(M3/2)](式中、MはNb、Ta、Sbから選ばれる少なくとも一種の金属元素、MはCr、Feから選ばれる少なくとも一種の金属元素を表す。)で表される結晶性金属化合物からなる新しい光機能性酸化物、その製造方法及びその光触媒製品に係るものであり、本発明により、可視光による光触媒作用を有するジルコニウム含有結晶性金属化合物を製造し、提供することができる。また、本発明により、太陽エネルギーの95%を占める可視光領域を有効利用し、太陽光の利用効率を高めることが可能な新しい光機能性酸化物を提供することができる。更に、本発明は、可視光の照射を受けて発現される光触媒作用を利用した光触媒装置、その製品及び反応プロセス等を提供することができる。本発明は、可視光感受性の新規酸化ジルコニウム系光機能性酸化物及び光触媒に関する新技術・新製品を提供するものとして有用である。 As described in detail above, the present invention provides a general formula: (ZrO 2 ) 1-n [(M 1 O 5/2 ) (M 2 O 3/2 )] n (wherein M 1 is Nb, Ta , At least one metal element selected from Sb, M 2 represents at least one metal element selected from Cr and Fe.), A new photofunctional oxide comprising a crystalline metal compound represented by According to the present invention, a zirconium-containing crystalline metal compound having a photocatalytic action by visible light can be produced and provided. In addition, according to the present invention, it is possible to provide a new optical functional oxide capable of effectively using the visible light region occupying 95% of the solar energy and improving the utilization efficiency of sunlight. Furthermore, the present invention can provide a photocatalytic device utilizing a photocatalytic action that is expressed by irradiation with visible light, a product thereof, a reaction process, and the like. INDUSTRIAL APPLICATION This invention is useful as what provides the new technique and new product regarding the novel zirconium oxide type photofunctional oxide and photocatalyst which are sensitive to visible light.

実施例1で作製した、(ZrO1−n(CrNbO、n=1/3のX線回折パターンを示す。Produced in Example 1, it shows a (ZrO 2) 1-n ( CrNbO 4) n, n = 1/3 of the X-ray diffraction pattern. 実施例2で作製した、(ZrO1−n(FeNbO、n=1/3のX線回折パターンを示す。Produced in Example 2, showing a (ZrO 2) 1-n ( FeNbO 4) n, n = 1/3 of the X-ray diffraction pattern. (ZrO1−n(CrNbO、n=1/3(図中Cr/Nb)と、(ZrO1−n(FeNbO、n=1/3(図中Fe/Nb)の分光反射率曲線を示す。(ZrO 2 ) 1-n (CrNbO 4 ) n , n = 1/3 (Cr / Nb in the figure), (ZrO 2 ) 1-n (FeNbO 4 ) n , n = 1/3 (Fe / in the figure) The spectral reflectance curve of Nb) is shown. 本発明の光機能性酸化物及び比較例の光触媒機能を示す。Zr−Cr−Nbは実施例1の酸化物、Zr−Fe−Nbは実施例2の酸化物であり、P−25(デグッサ製TiO)、TZ8YS(東ソー製ZrO)は、比較例の酸化物である。The photofunctional oxide of this invention and the photocatalytic function of a comparative example are shown. Zr—Cr—Nb is the oxide of Example 1, Zr—Fe—Nb is the oxide of Example 2, and P-25 (Degussa TiO 2 ) and TZ8YS (Tosoh ZrO 2 ) are comparative examples. It is an oxide.

Claims (10)

ZrOと、M5/2及びM3/2を構成成分とする光機能性酸化物であって、一般式: (ZrO1−n[(M5/2)(M3/2)]
(式中、MはNb、Ta、Sbから選ばれる少なくとも一種の金属元素、MはCr、Feから選ばれる少なくとも一種の金属元素を表す。)で表される結晶性金属化合物からなることを特徴とする光機能性酸化物。
ZrO 2 , a photofunctional oxide containing M 1 O 5/2 and M 2 O 3/2 as constituents, having the general formula: (ZrO 2 ) 1-n [(M 1 O 5/2 ) (M 2 O 3/2 )] n
(Wherein M 1 represents at least one metal element selected from Nb, Ta, and Sb, and M 2 represents at least one metal element selected from Cr and Fe). Photofunctional oxide characterized by
結晶性金属化合物が、(ZrO1−n(M(式中、nは0.3〜0.7である。)からなる請求項1に記載の光機能性酸化物。 Crystalline metal compound, (ZrO 2) 1-n (M 1 M 2 O 4) n ( wherein, n is 0.3 to 0.7.) Optical functional according to claim 1 consisting of Oxides. 結晶性金属化合物が、(ZrO2/3[(M5/2)(M3/2)]1/3、又は(ZrO1/2[(M5/2)(M3/2)]1/2である請求項1に記載の光機能性酸化物。 The crystalline metal compound is (ZrO 2 ) 2/3 [(M 1 O 5/2 ) (M 2 O 3/2 )] 1/3 , or (ZrO 2 ) 1/2 [(M 1 O 5 / 2 ) (M 2 O 3/2 )] 1/2 , The photofunctional oxide according to claim 1. (M5/2)/(M3/2)=1である請求項1に記載の光機能性酸化物。 The photofunctional oxide according to claim 1, wherein (M 1 O 5/2 ) / (M 2 O 3/2 ) = 1. 酸化ジルコニウムの含有量が、30〜60モル%である請求項1に記載の光機能性酸化物。   The photofunctional oxide according to claim 1, wherein the content of zirconium oxide is 30 to 60 mol%. 結晶性金属化合物が、可視光感受性の光触媒作用を有する請求項1に記載の光機能性酸化物。   The photofunctional oxide according to claim 1, wherein the crystalline metal compound has a visible light sensitive photocatalytic action. 請求項1から6のいずれかに記載の光機能性酸化物からなることを特徴とする可視光感受性を有する光触媒。   A photocatalyst having visible light sensitivity, comprising the photofunctional oxide according to any one of claims 1 to 6. 請求項7に記載の光触媒を担持させたことを特徴とする光触媒製品。   A photocatalyst product carrying the photocatalyst according to claim 7. ジルコニウムと、ニオブ、タンタル、アンチモンから選ばれる少なくとも一種の金属元素、及び鉄、クロムから選ばれる少なくとも一種の金属元素を所定の割合で含有する原料溶液を調製し、これにアルカリを加えて溶液のpHを調整することにより生成した反応生成物を仮焼することを特徴とする光機能性酸化物の製造方法。   Prepare a raw material solution containing zirconium, at least one metal element selected from niobium, tantalum, and antimony, and at least one metal element selected from iron and chromium in a predetermined ratio, and add alkali to the solution. A method for producing a photofunctional oxide, characterized by calcining a reaction product produced by adjusting pH. 原料溶液を加熱処理した後、アルカリを加えて溶液のpHを調整して沈殿物を形成させ、更に、これを加熱処理する請求項9に記載の光機能性酸化物の製造方法。   The method for producing a photofunctional oxide according to claim 9, wherein after the raw material solution is heat-treated, alkali is added to adjust the pH of the solution to form a precipitate, which is further heat-treated.
JP2005263580A 2005-09-12 2005-09-12 Zirconium oxide photofunctional oxide Expired - Fee Related JP4565239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005263580A JP4565239B2 (en) 2005-09-12 2005-09-12 Zirconium oxide photofunctional oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263580A JP4565239B2 (en) 2005-09-12 2005-09-12 Zirconium oxide photofunctional oxide

Publications (2)

Publication Number Publication Date
JP2007075678A true JP2007075678A (en) 2007-03-29
JP4565239B2 JP4565239B2 (en) 2010-10-20

Family

ID=37936507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263580A Expired - Fee Related JP4565239B2 (en) 2005-09-12 2005-09-12 Zirconium oxide photofunctional oxide

Country Status (1)

Country Link
JP (1) JP4565239B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073708A (en) * 2007-09-21 2009-04-09 National Institute Of Advanced Industrial & Technology Composite oxide, and semiconductor photoelectrode and photocatalyst using the same
JP2010046604A (en) * 2008-08-21 2010-03-04 Utsunomiya Univ Photocatalyst, method for producing hydrogen and method for decomposing organic matter
JP2010264351A (en) * 2009-05-13 2010-11-25 National Institute Of Advanced Industrial Science & Technology Visible light-responsive composition and photoelectrode, photocatalyst and photosensor formed by using the composition
WO2011111800A1 (en) 2010-03-12 2011-09-15 株式会社オハラ Photocatalyst, slurry mixture, forming member and coating, coating film forming member, sintered body, glass-ceramic composite, glass, building material and clarification material
JP2012176332A (en) * 2011-02-25 2012-09-13 Green Chemy:Kk Visible light response photocatalyst, method for manufacturing the same and method for using the same
CN113145171A (en) * 2021-03-10 2021-07-23 南通大学 Nitrogen-containing ligand structure-oriented chromium niobium oxygen cluster crystalline material, and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104174408B (en) * 2014-07-16 2016-06-29 苏州德捷膜材料科技有限公司 A kind of have visible light-responded ferrochrome vanadate photocatalytic material and its preparation method and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126189A (en) * 1992-10-19 1994-05-10 Agency Of Ind Science & Technol Production of hydrogen and oxygen by using semiconductor photocatalyst and production of hydrogen, oxygen and carbon monoxide
JPH11188270A (en) * 1997-12-26 1999-07-13 Catalysts & Chem Ind Co Ltd Coating solution for forming transparent coating film having photocatalytic activity and substrate with transparent coating film
JP2001259436A (en) * 2000-03-17 2001-09-25 Kawasaki Steel Corp Fe2O3 PHOTOCATALYST COMPONENT, PHOTOCATALYST AND METHOD OF REMOVING NITROGEN OXIDE IN AIR
JP2005138008A (en) * 2003-11-05 2005-06-02 National Institute For Materials Science Visible light responding type titanium oxide composite photocatalyst and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126189A (en) * 1992-10-19 1994-05-10 Agency Of Ind Science & Technol Production of hydrogen and oxygen by using semiconductor photocatalyst and production of hydrogen, oxygen and carbon monoxide
JPH11188270A (en) * 1997-12-26 1999-07-13 Catalysts & Chem Ind Co Ltd Coating solution for forming transparent coating film having photocatalytic activity and substrate with transparent coating film
JP2001259436A (en) * 2000-03-17 2001-09-25 Kawasaki Steel Corp Fe2O3 PHOTOCATALYST COMPONENT, PHOTOCATALYST AND METHOD OF REMOVING NITROGEN OXIDE IN AIR
JP2005138008A (en) * 2003-11-05 2005-06-02 National Institute For Materials Science Visible light responding type titanium oxide composite photocatalyst and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073708A (en) * 2007-09-21 2009-04-09 National Institute Of Advanced Industrial & Technology Composite oxide, and semiconductor photoelectrode and photocatalyst using the same
JP2010046604A (en) * 2008-08-21 2010-03-04 Utsunomiya Univ Photocatalyst, method for producing hydrogen and method for decomposing organic matter
JP2010264351A (en) * 2009-05-13 2010-11-25 National Institute Of Advanced Industrial Science & Technology Visible light-responsive composition and photoelectrode, photocatalyst and photosensor formed by using the composition
WO2011111800A1 (en) 2010-03-12 2011-09-15 株式会社オハラ Photocatalyst, slurry mixture, forming member and coating, coating film forming member, sintered body, glass-ceramic composite, glass, building material and clarification material
JP2012176332A (en) * 2011-02-25 2012-09-13 Green Chemy:Kk Visible light response photocatalyst, method for manufacturing the same and method for using the same
CN113145171A (en) * 2021-03-10 2021-07-23 南通大学 Nitrogen-containing ligand structure-oriented chromium niobium oxygen cluster crystalline material, and preparation method and application thereof
CN113145171B (en) * 2021-03-10 2022-04-22 南通大学 Nitrogen-containing ligand structure-oriented chromium niobium oxygen cluster crystalline material, and preparation method and application thereof

Also Published As

Publication number Publication date
JP4565239B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
Mehmood et al. Structural, Raman and photoluminescence properties of Fe doped WO3 nanoplates with anti cancer and visible light driven photocatalytic activities
Xu et al. Preparations and photocatalytic properties of visible-light-active zinc ferrite-doped TiO2 photocatalyst
AU2002344596B2 (en) Tubular titanium oxide particles, method for preparing the same, and use of the same
Merka et al. pH-control of the photocatalytic degradation mechanism of rhodamine B over Pb3Nb4O13
Mohapatra et al. Molybdate/tungstate intercalated oxo-bridged Zn/Y LDH for solar light induced photodegradation of organic pollutants
JP4565239B2 (en) Zirconium oxide photofunctional oxide
Dey et al. Metal-to-metal charge transfer in AWO4 (A= Mg, Mn, Co, Ni, Cu, or Zn) compounds with the wolframite structure
KR100945035B1 (en) Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof
Di Paola et al. Coupled semiconductor systems for photocatalysis. Preparation and characterization of polycrystalline mixed WO3/WS2 powders
Lin et al. Effect of vanadium (IV)-doping on the visible light-induced catalytic activity of titanium dioxide catalysts for methylene blue degradation
Yao et al. Hydrogen production and characterization of MLaSrNb2NiO9 (M= Na, Cs, H) based photocatalysts
Mahmoud et al. The efficacy of samarium loaded titanium dioxide (Sm: TiO2) for enhanced photocatalytic removal of rhodamine B dye in natural sunlight exposure
EP2519348B1 (en) Method of production of photocatalytic powder comprising titanium dioxide and manganese dioxide active under ultraviolet and visible light
Letifi et al. Enhanced photocatalytic activity of vanadium-doped SnO2 nanoparticles in rhodamine B degradation
KR20020031054A (en) Photocatalyst, process for producing the same and photocatalyst coating composition comprising the same
KR101146899B1 (en) Photocatalyst having titanium dioxide and a metal tungsten oxide junction structure and preparation method thereof
Khan et al. Sensitization of TiO2 nanosheets with Cu–biphenylamine framework to enhance photocatalytic degradation performance of toxic organic contaminants: synthesis, mechanism and kinetic studies
Mohanta et al. MnO doped SnO2 nanocatalysts: Activation of wide band gap semiconducting nanomaterials towards visible light induced photoelectrocatalytic water oxidation
JP2005068001A (en) Fibrous titanium oxide particle, production method therefor, and application of the particle
Kirankumar et al. Photocatalytic performance of cerium doped copper aluminate nanoparticles under visible light irradiation
Hou et al. One-step synthesis of OH-TiO2/TiOF2 nanohybrids and their enhanced solar light photocatalytic performance
Prabhavathy et al. Visible light-induced Silver and Lanthanum co-doped BiVO4 nanoparticles for photocatalytic dye degradation of organic pollutants
Gagrani et al. Solid state synthesis and photocatalytic activity of bio-inspired calcium manganese oxide catalysts
CN102274719A (en) Visible-light-responsive nano composite powder photocatalyst and preparation method thereof
KR20160123178A (en) A manufacturing method of nanocomposite photocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

R150 Certificate of patent or registration of utility model

Ref document number: 4565239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees