JP2007075046A - Heat-resistant cellulose-binding domain - Google Patents

Heat-resistant cellulose-binding domain Download PDF

Info

Publication number
JP2007075046A
JP2007075046A JP2005269362A JP2005269362A JP2007075046A JP 2007075046 A JP2007075046 A JP 2007075046A JP 2005269362 A JP2005269362 A JP 2005269362A JP 2005269362 A JP2005269362 A JP 2005269362A JP 2007075046 A JP2007075046 A JP 2007075046A
Authority
JP
Japan
Prior art keywords
cellulose
binding domain
thr
chitin
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005269362A
Other languages
Japanese (ja)
Other versions
JP4604185B2 (en
Inventor
Koichi Kamigaki
浩一 上垣
Kazuhiko Ishikawa
一彦 石川
Tsutomu Nakamura
努 中村
Yoshihisa Hagiwara
義久 萩原
Shohei Mine
昇平 峯
Mitsuo Ataka
光雄 安宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005269362A priority Critical patent/JP4604185B2/en
Publication of JP2007075046A publication Critical patent/JP2007075046A/en
Application granted granted Critical
Publication of JP4604185B2 publication Critical patent/JP4604185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polypeptide having a heat-resistant cellulose-binding action, to provide a cellulose-binding domain, and to provide a method for producing the same. <P>SOLUTION: This polypeptide is characterized in that (1) Glu<SP>279</SP>and/or Asp<SP>281</SP>are replaced by one or two amino acids selected from a neutral amino acid group consisting of Gln, Asn, Ala, Ser, Thr, Cys and Met, and if necessary, (2) one, several or a plurality of amino acids are replaced, added, deleted or inserted, and that the polypeptide has a cellulose-binding activity in an amino acid sequence having a specific sequence and comprising 101 amino acids from Thr<SP>258</SP>to Ile<SP>358</SP>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は耐熱性セルロース結合作用を有するポリペプチド、セルロース結合ドメイン及びその作製方法に関する。   The present invention relates to a polypeptide having a heat-resistant cellulose binding action, a cellulose binding domain, and a method for producing the same.

なお、本明細書及び特許請求の範囲において、配列番号3の最初のアミノ酸であるThr
を258位として表記する。
In the present specification and claims, Thr which is the first amino acid of SEQ ID NO: 3
Is described as 258th.

セルロースは地球上のバイオマスの大部分をしめ、その有効利用が期待されている。その有効利用のためにはセルラーゼの開発が重要課題の一つである。
セルラーゼの機能発現にはセルロース結合ドメインが必須であり、種々のセルロース結合ドメインが知られている(特許文献1)。
Cellulose accounts for most of the biomass on earth, and its effective use is expected. The development of cellulase is one of the important issues for its effective use.
A cellulose-binding domain is essential for cellulase functional expression, and various cellulose-binding domains are known (Patent Document 1).

セルロース結合ドメインは、例えば洗濯洗剤に応用されて洗浄力の向上に寄与している(特許文献2〜3)。   The cellulose binding domain is applied to, for example, laundry detergents and contributes to the improvement of detergency (Patent Documents 2 to 3).

従来知られているセルロース結合ドメインは非耐熱性のものであり、高温では失活し、かつ、室温から40℃程度の温度においても安定性に劣る欠点があり、より耐熱性に優れたセルロース結合ドメインが求められていた。
特表平08-509127 特表2003-521559 特表2003-526699
Conventionally known cellulose binding domains are non-heat-resistant, deactivated at high temperatures, and have the disadvantage of poor stability even at temperatures from room temperature to 40 ° C. The domain was sought.
Special table flat 08-509127 Special table 2003-521559 Special table 2003-526699

本発明は、耐熱性セルロース結合ドメインを提供することを目的とする。   An object of the present invention is to provide a heat-resistant cellulose-binding domain.

本発明者は、超好熱菌Pyrococcus furiosus由来の耐熱性キチン結合ドメインをセルロ
ース認識可能なドメインに変換する研究を行い、特定のアミノ酸残基を置換することにより、耐熱性のセルロース結合ドメインが得られることを見出した。
The present inventor conducted research to convert a thermostable chitin-binding domain derived from the hyperthermophilic bacterium Pyrococcus furiosus into a domain capable of recognizing cellulose, and obtained a thermostable cellulose-binding domain by substituting specific amino acid residues. I found out that

本発明は、以下のセルロース結合活性を有するポリペプチド及びその作製方法に関する。
1. 配列番号3のThr258からIle358の101個のアミノ酸配列において、
(1)Glu279及び/又はAsp281がGln、Asn、Ala、Ser、Thr、CysおよびMetからなる中性アミノ酸群から選ばれるアミノ酸に置換され、さらに必要に応じて
(2)1又は数個もしくは複数個のアミノ酸が置換、付加、欠失又は挿入され、且つ、セル
ロース結合活性を有する
ことを特徴とする、ポリペプチド。
2. 279位のグルタミン酸(Glu279)がThr、Ala、AsnまたはGlnに置換され、281位のアスパラギン酸(Asp281)がAsn, Ser、GlnまたはAlaに置換されている、項1に記載のポリペプチド。
3. 279位のグルタミン酸(Glu279)がThrで置換され、281位のアスパラギン酸
(Asp281)がAsnで置換されている、項2に記載のポリペプチド。
4. 項1〜3のいずれかに記載のポリペプチドからなる耐熱性セルロース結合ドメイン。
5. キチン結合ドメインのキチンとの相互作用面における酸性アミノ酸を中性アミノ酸に置換することを特徴とするセルロース結合ドメインの作製方法。
6. Glu279及び/又はAsp281を置換するアミノ酸がSer、Thr、Ala、Asn及びGlnからな
る群から選ばれる項5に記載の方法。
7. キチン結合ドメインがThermococcus属またはPyrococcus属由来のものである、項5又は6に記載の方法。
8. 項1〜3のいずれかに記載のポリペプチドをコードするDNA。
The present invention relates to a polypeptide having the following cellulose-binding activity and a method for producing the same.
1. In the 101 amino acid sequence from Thr 258 to Ile 358 of SEQ ID NO: 3,
(1) Glu 279 and / or Asp 281 is substituted with an amino acid selected from the group of neutral amino acids consisting of Gln, Asn, Ala, Ser, Thr, Cys and Met, and if necessary
(2) A polypeptide, wherein one or several or a plurality of amino acids are substituted, added, deleted or inserted, and has a cellulose binding activity.
2. The polypeptide according to Item 1, wherein glutamic acid at position 279 (Glu 279 ) is substituted with Thr, Ala, Asn, or Gln, and aspartic acid at position 281 (Asp 281 ) is substituted with Asn, Ser, Gln, or Ala. .
3. Item 3. The polypeptide according to Item 2, wherein glutamic acid at position 279 (Glu 279 ) is substituted with Thr, and aspartic acid at position 281 (Asp 281 ) is replaced with Asn.
4). Item 4. A heat-resistant cellulose-binding domain comprising the polypeptide according to any one of Items 1 to 3.
5. A method for producing a cellulose-binding domain, comprising substituting a neutral amino acid for an acidic amino acid in the surface of the chitin-binding domain interacting with chitin.
6). Item 6. The method according to Item 5, wherein the amino acid substituting Glu 279 and / or Asp 281 is selected from the group consisting of Ser, Thr, Ala, Asn and Gln.
7). Item 7. The method according to Item 5 or 6, wherein the chitin-binding domain is derived from the genus Thermococcus or Pyrococcus.
8). Item 4. A DNA encoding the polypeptide according to any one of Items 1 to 3.

本発明により、耐熱性キチン結合ドメインをその立体情報を元に合理的解釈のもとに耐熱性セルロース結合ドメインへと機能変換に成功した。開発した耐熱性のセルロース結合ドメインはキチン結合能も保持しており、高機能キチナーゼやセルラーゼの開発に利用可能なものである。   According to the present invention, the functional conversion of the thermostable chitin-binding domain to the thermostable cellulose-binding domain has been successful based on a rational interpretation based on the steric information. The newly developed thermostable cellulose-binding domain also retains chitin-binding ability and can be used for the development of high-performance chitinases and cellulases.

キチナーゼやセルラーゼに代表される炭水化物分解酵素は基質結合ドメインが機能発現に必須であることから、本研究で開発したドメインを利用することで耐熱性の炭水化物分解酵素の開発に弾みがつくものと期待できる。   Since carbohydrate-degrading enzymes such as chitinase and cellulase have a substrate-binding domain that is essential for functional expression, it is expected that the development of thermostable carbohydrate-degrading enzymes will gain momentum by using the domains developed in this study. it can.

特に、耐熱性のセルロース結合ドメインは本発明により初めて明らかにされたものであり、その意義は大きい。   In particular, the heat-resistant cellulose binding domain has been revealed for the first time by the present invention, and its significance is great.

1つの実施形態において、本発明は、耐熱性菌由来のキチナーゼのキチン結合ドメインをセルロース結合ドメインに変換する方法を提唱する。   In one embodiment, the present invention proposes a method for converting a chitin binding domain of a chitinase from a thermostable bacterium into a cellulose binding domain.

耐熱性菌としては、Thermococcus属またはPyrococcus属に属する菌が挙げられ、例えばPyrococcus furiosus、Thermococcus litoralis、Pyrococcus sp.KOD1, Thermotoga maritimaなどが例示され、これらの耐熱性菌由来のキチナーゼの耐熱性キチン結合ドメインを、本発明のデザイン方法に従い耐熱性セルロース結合ドメインに変換することができる。   Examples of thermostable bacteria include bacteria belonging to the genus Thermococcus or Pyrococcus, such as Pyrococcus furiosus, Thermococcus litoralis, Pyrococcus sp. KOD1, Thermotoga maritima, etc. Domains can be converted to thermostable cellulose binding domains according to the design method of the present invention.

Pyrococcus furiosus由来のキチン結合ドメイン2(ChBD2)のキチン結合面は図1aに
示すように構造上、一面に集中している。本ドメインの表面電荷を更に調べてみるとキチン結合面には一箇所、二つの酸性残基(E279とD281)が形成するマイナスの静電ポテンシャルがあることがわかった(図1b)。ChBD2と基質であるキチン(N-アセチルグルコサミン)の相互作用を考えた場合、N-アセチルグルコサミンにあるアセトアミド基(NHCOCH3
)のNHとこれらの酸性残基のカルボキシル基が水素結合を形成すると考えられる。このような相互作用はリゾチームとその基質(N-アセチルグルコサミンを含む)複合体において見られている(図2a)。すなわち、キチンの特異的認識はこれら二つの酸性アミノ酸が
担っていると本発明者は考えた。一方、キチンとセルロールの違いはこのアセトアミド基がセルロースでは水酸基に変わっているだけである(図2b)。
The chitin-binding surface of chitin-binding domain 2 (ChBD2) derived from Pyrococcus furiosus is structurally concentrated on one side as shown in FIG. 1a. Further investigation of the surface charge of this domain revealed that there was a negative electrostatic potential formed by two acidic residues (E279 and D281) at one location on the chitin-binding surface (FIG. 1b). When considering the interaction between ChBD2 and the substrate chitin (N-acetylglucosamine), the acetamide group (NHCOCH 3 in N-acetylglucosamine)
NH) and the carboxyl group of these acidic residues are considered to form hydrogen bonds. Such an interaction is seen in the complex of lysozyme and its substrate (including N-acetylglucosamine) (FIG. 2a). That is, the present inventor considered that these two acidic amino acids are responsible for specific recognition of chitin. On the other hand, the difference between chitin and cellulose is that this acetamide group is only changed to a hydroxyl group in cellulose (FIG. 2b).

このことから、本発明者は、前述の二つの酸性アミノ酸(E279とD281)を他のアミノ酸に置換すれば、本ドメインの基質認識を制御できると考えた。   Therefore, the present inventor considered that the substrate recognition of this domain can be controlled by substituting the two acidic amino acids (E279 and D281) with other amino acids.

酸性アミノ酸に代えて導入されるアミノ酸としては、Gln、Asn、Ala、Ser、Thr、Cys、Met、などに代表される疎水性の低い中性アミノ酸が挙げられ、好ましくはGln、Asn、Ala、Ser、Thr、Cys、より好ましくはGln、Asn、Ala、Ser、Thrが挙げられる。なお、Gluの
置換にはGlnがより好ましく、Aspの置換にはAsnがより好ましい。
Examples of amino acids introduced in place of acidic amino acids include neutral amino acids with low hydrophobicity, such as Gln, Asn, Ala, Ser, Thr, Cys, Met, etc., preferably Gln, Asn, Ala, Ser, Thr, Cys, more preferably Gln, Asn, Ala, Ser, Thr. Gln is more preferably substituted for Glu, and Asn is more preferably substituted for Asp.

これら以外の位置においては、配列番号3のアミノ酸配列において、1又は数個もしく
は複数個、例えば1〜20個、好ましくは1〜10個、より好ましくは1〜7個、さらに好ましくは1〜5個、特に1〜3個のアミノ酸が置換、付加、欠失又は挿入されていてもよい。
In other positions, the amino acid sequence of SEQ ID NO: 3 is 1 or several or plural, for example 1 to 20, preferably 1 to 10, more preferably 1 to 7, more preferably 1 to 5. , Especially 1-3 amino acids may be substituted, added, deleted or inserted.

なお、本発明で得られたキチン結合ドメインにセルロース結合活性を付与する方法は、Thermococcus属またはPyrococcus属などの耐熱性古細菌由来のキチナーゼのキチン結合ドメインに好適に適用できるが、他の微生物、植物、動物由来のキチナーゼのキチン結合ドメインにも同様に適用できる。   The method for imparting cellulose-binding activity to the chitin-binding domain obtained in the present invention can be suitably applied to the chitin-binding domain of chitinase derived from thermostable archaea such as Thermococcus or Pyrococcus, but other microorganisms, The same applies to chitinase domains of chitinases derived from plants and animals.

キチン結合ドメインに置換、付加、欠失、挿入などの変異を導入する方法としては、該ドメインをコードするDNAにおいて、例えばサイトスペシフィック・ミュータジェネシス(Methods in Enzymology, 154, 350, 367-382 (1987);同 100, 468 (1983);Nucleic
Acids Res., 12, 9441 (1984))などの遺伝子工学的手法、リン酸トリエステル法やリン酸アミダイト法などの化学合成手段(例えばDNA合成機を使用する)(J. Am. Chem. Soc., 89, 4801(1967);同 91, 3350 (1969);Science, 150, 178 (1968);Tetrahedron Lett.,22, 1859 (1981))などが挙げられる。コドンの選択は、宿主のコドンユーセージを考慮して決定できる。
As a method for introducing mutations such as substitution, addition, deletion, and insertion into the chitin-binding domain, DNA encoding the domain can be obtained by, for example, cytospecific mutagenesis (Methods in Enzymology, 154, 350, 367-382 (1987). ); 100, 468 (1983); Nucleic
Acids Res., 12, 9441 (1984)), chemical synthesis means such as the phosphate triester method and phosphate amidite method (for example, using a DNA synthesizer) (J. Am. Chem. Soc 89, 4801 (1967); 91, 3350 (1969); Science, 150, 178 (1968); Tetrahedron Lett., 22, 1859 (1981)). Codon selection can be determined by taking into account the codon usage of the host.

本発明の1つの好ましい実施形態において、キチン結合ドメインをセルロース結合ドメインに変換する目的で変異を導入するための方針として、1)基質結合面の親水性を下げつつ溶解性を維持する。2)水酸基と相互作用できるような極性アミノ酸を選ぶ。3)変異後のアミノ酸の大きさを維持するなどが挙げられる。この方針に従い、例えばE279を
スレオニンに、D281をセリンあるいはアスパラギンに置換した変異体(ChBD2TN、ChBD2TS)、そして、親水性を下げるため両方のアミノ酸をアラニンに置換した変異体(ChBD2AA)をデザインすることができる(図3)。
In one preferred embodiment of the present invention, the strategy for introducing mutations for the purpose of converting a chitin binding domain into a cellulose binding domain is as follows: 1) Maintaining solubility while reducing the hydrophilicity of the substrate binding surface. 2) Select polar amino acids that can interact with hydroxyl groups. 3) Maintaining the size of the amino acid after mutation. In accordance with this policy, for example, design mutants in which E279 is replaced with threonine and D281 is substituted with serine or asparagine (ChBD2TN, ChBD2TS), and mutants in which both amino acids are substituted with alanine (ChBD2AA) to reduce hydrophilicity. (Fig. 3).

以下、本発明を実施例に基づきより詳細に説明するが、本発明がこれら実施例に限定されないことは言うまでもない。
参考例1
・ChBDに対応する遺伝子の増幅
キチン結合ドメインと推定されるポリペプチド(当該遺伝子中アミノ酸番号では258番
のスレオニンから358番のイソロイシンに対応)を大腸菌内で大量に発現させるために、PreScission Protease認識配列をコードする塩基配列を含む合成DNAを用いPCR法により増幅した。発現ベクターへの組み込みはLICクローニングキット(NOVAGEN社)を用い大腸菌(XL-1Blue)(NOVAGEN社)に形質転換し、ChBD発現ベクターを作成した。
形質転換体は、(0.05 mg/ml アンピシリン)を含むLB寒天プレート上でのコロニー形成
を指標に選択した。形質転換体からChBD遺伝子含有プラスミドをアルカリ法で抽出した。

実施例1
実験方法
サンプル調整
・ChBD2変異体の作成法
参考例1で得られたChBD2発現ベクターを鋳型として、図3aに示す合成DNA(配列番号1〜2)を用い、変異体の作成を行った(図3b)。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, it cannot be overemphasized that this invention is not limited to these Examples.
Reference example 1
Prescission Protease recognition to express a large amount of the predicted chitin-binding domain of the gene corresponding to ChBD in the E. coli polypeptide (corresponding to leucine 258 to 358 isoleucine) Amplification was carried out by PCR using synthetic DNA containing a base sequence encoding the sequence. Incorporation into an expression vector was carried out by transforming into E. coli (XL-1Blue) (NOVAGEN) using a LIC cloning kit (NOVAGEN) to prepare a ChBD expression vector.
Transformants were selected using colony formation on LB agar plates containing (0.05 mg / ml ampicillin) as an indicator. A ChBD gene-containing plasmid was extracted from the transformant by the alkaline method.

Example 1
Experimental method Sample preparation
-Preparation method of ChBD2 mutant Using the ChBD2 expression vector obtained in Reference Example 1 as a template, the synthetic DNA (SEQ ID NO: 1-2) shown in Fig. 3a was used to create a mutant (Fig. 3b).

変異体作成はQuick change mutagenesis kit (STARATAGENE社)を用いた。

・ChBD2変異体遺伝子を含有する形質転換体の作製
1.5ml容チューブ内に、大腸菌(E. coli )Rosetta (DE3)株( Novagen社製)のコンピテ
ントセル0.04ml(2,000,0000cfu/mg)と、上記調製したChBD2遺伝子含有プラスミドDNA溶液0.003ml(プラスミドDNA 8.4ng)を加え氷中に30分間放置した後、42℃で30秒間
ヒートショックを与えた。次いで、チューブ内にSOCmedium を0.25ml加え、37℃で1
時間振とう培養した。次いで、アンピシリンを含むLB寒天プレートに塗布し、37℃で一晩培養することにより形質転換体を得た。

・ChBD2変異体の精製
得られた形質転換体をアンピシリンを含むLB培地に接種し、600nmにおける吸光度が0.5に達するまで、37℃で培養した後、ChBD2の発現量を高めるためにIPTG(Isopropyl-b-D-thiogalactopyranoside)を加えさらに19時間培養した。培養液を8,000rpmで10min遠心分離することにより集菌した。集菌した菌体10gに、BugBuster溶液(NOVAGEN社)100mlを加え、菌体を90Wの出力で30分間超音波破砕した。破砕した菌液を 15,000rpmで30分間遠心分離し、上清を採取した。同緩衝液で平衡化した金属キレートカラムHiTrap−Cleating(アマシャム バイオサイエンス社製)カラム(事前に100mM NiCl2
を添加しNiを結合)を用いてカラムクロマトグラフィーを行った。溶出は0.5Mイミダゾールを含む25mMトリスヒドロキシメチルアミノメタン、 500mM NaCl (pH8.5)
の直線グラジエントを用いた。
The mutant was prepared using Quick change mutagenesis kit (STARATAGENE).

・ Creation of transformant containing ChBD2 mutant gene
In a 1.5 ml tube, 0.04 ml (2,000,0000 cfu / mg) competent cell of E. coli Rosetta (DE3) strain (manufactured by Novagen) and 0.003 ml of the ChBD2 gene-containing plasmid DNA solution prepared above ( Plasmid DNA (8.4 ng) was added and allowed to stand in ice for 30 minutes, followed by heat shock at 42 ° C. for 30 seconds. Next, add 0.25 ml of SOC medium into the tube and add 1 at 37 ° C.
Cultured with shaking. Subsequently, it apply | coated to the LB agar plate containing an ampicillin, and the transformant was obtained by culture | cultivating at 37 degreeC overnight.

Purification of ChBD2 mutant In order to increase the expression level of ChBD2 after inoculating the obtained transformant into LB medium containing ampicillin and culturing at 37 ° C. until the absorbance at 600 nm reaches 0.5. IPTG (Isopropyl-bD-thiogalactopyranoside) was added and further cultured for 19 hours. The culture was collected by centrifuging at 8,000 rpm for 10 minutes. 100 ml of BugBuster solution (NOVAGEN) was added to 10 g of the collected bacterial cells, and the bacterial cells were ultrasonically crushed for 30 minutes at an output of 90 W. The disrupted bacterial solution was centrifuged at 15,000 rpm for 30 minutes, and the supernatant was collected. Metal chelate column HiTrap-Cleating (Amersham Biosciences) column equilibrated with the same buffer (100 mM NiCl2 in advance)
Was added to the column and Ni was bound). Elution is 25 mM trishydroxymethylaminomethane containing 0.5 M imidazole, 500 mM NaCl (pH 8.5)
A linear gradient was used.

得られたサンプル分画を20mM Tris−Cl、25mM NaCl(pH8.5)に一晩透析し、20mM Tris−Cl、25mM NaCl(pH8.5)緩衝液で平衡化した陰イオン交換樹脂のHiTrapQ(アマ
シャム バイオサイエンス社)カラムに透析サンプルを添加し、イオン交換クロマトグラフィーを行った。目的タンパク質を含む分画にはSDS−ポリアクリルアミドゲル電気泳動
により単一バンドを与える均一標品が含まれていた。蛋白質の濃度は280nmの吸収から算
出した。

セルロース粉末と変異体蛋白質の相互作用の解析
セルロース粉末(アビセル)/キチンの微粉末1mg(水に不溶性)を含む20mM Tris-Cl、pH 8.5に1ナノモルの各変異体蛋白質を溶液に加え、2時間、室温で放置した。その後、10000gで10分遠心することで、セルロース及びセルロースに結合した蛋白質を除き、上
澄みに残った蛋白質を定量し、上清に残った蛋白質を定量した。蛋白質の定量は280nmの
吸収を測定することにより行った。

結果と考察
・キチンと各変異体の結合に関して
変異導入により、キチン結合能がどのように変化したかを調べた結果、TN変異体はキチン結合力が野生型ChBD2と変わらないことがわかった(図4a)。これはアスパラギンのも
つカルボニル基が相補したものと考えられる。

・セルロースと各変異体の結合に関して
セルロースと変異体の結合がどのように変化したかを調べた(図4b)。野生型ではセルロースに対する結合は非常に弱いものであったが、前述した方針に則り導入した変異体は、セルロースに対する結合が上昇していた。TN変異体は、ほぼ10倍の結合力が上昇した。
The obtained sample fraction was dialyzed overnight against 20 mM Tris-Cl, 25 mM NaCl (pH 8.5), and equilibrated with 20 mM Tris-Cl, 25 mM NaCl (pH 8.5) buffer. A dialysis sample was added to a column (Amersham Bioscience) and ion exchange chromatography was performed. The fraction containing the target protein contained a homogeneous sample that gave a single band by SDS-polyacrylamide gel electrophoresis. The protein concentration was calculated from the absorption at 280 nm.

Analysis of interaction between cellulose powder and mutant protein <br/> Solution of 1 nmole of each mutant protein in 20 mM Tris-Cl, pH 8.5 containing 1 mg of cellulose powder (Avicel) / chitin fine powder (insoluble in water) And allowed to stand at room temperature for 2 hours. Thereafter, the mixture was centrifuged at 10000 g for 10 minutes to remove cellulose and proteins bound to cellulose, the protein remaining in the supernatant was quantified, and the protein remaining in the supernatant was quantified. The protein was quantified by measuring absorption at 280 nm.

Results and discussion
As a result of investigating how chitin-binding ability changed due to mutagenesis with regard to the binding between chitin and each mutant, it was found that the TN mutant had the same chitin-binding ability as wild-type ChBD2 (FIG. 4a). . This is thought to be a complement of the carbonyl group of asparagine.

-Regarding the binding between cellulose and each mutant It was examined how the binding between cellulose and the mutant was changed (Fig. 4b). In the wild type, the binding to cellulose was very weak, but the mutant introduced according to the above-mentioned policy had an increased binding to cellulose. The TN mutant increased its binding power almost 10 times.

A:ChBD2とキチンの相互作用面、赤が非常に強く相互作用、青がかなり強く相互作用している部位を示す。B:ChBD2の静電ポテンシャル分布を示す。赤がマイナスに荷電した場所、青がプラスに荷電した場所を示す。βシート部分は青の線で示している。A: The interaction surface of ChBD2 and chitin, red shows a very strong interaction, and blue shows a fairly strong interaction. B: shows the electrostatic potential distribution of ChBD2. Red indicates a negatively charged place and blue indicates a positively charged place. The β sheet portion is indicated by a blue line. A:リゾチームの活性部位に位置するアスパラギン酸とNAG(アセチルグルコサミン)の相互作用様式例B;セルロースとキチンの分子構造の比較図A: Interaction pattern of aspartic acid and NAG (acetylglucosamine) located in the active site of lysozyme B: Comparison of molecular structure of cellulose and chitin A:変異体作成に用いた合成DNA 配列B:変異を導入した位置。ChBD2の一文字表記でアミノ酸配列を示し、矢印で変異を入れた場所及び変異後のアミノ酸を示す。ボックスの矢印はβストランドを示す。A: Synthetic DNA used to create the mutant Sequence B: Position where the mutation was introduced. The amino acid sequence of ChBD2 is indicated by a single letter code, and the position of the mutation and the amino acid after the mutation are indicated by arrows. The box arrow indicates the β strand. A:野生型(wild)と変異体(ChBD2TN)のキチンに対する親和力の比較B: 野生型(wild)と変異体(ChBD2TN)のセルロースに対する親和力の比較A: Comparison of the affinity of wild type and mutant (ChBD2TN) for chitin B: Comparison of affinity of wild type and wild type (ChBD2TN) for cellulose

Claims (8)

配列番号3のThr258からIle358の101個のアミノ酸配列において、(1)Glu279及び/又はAsp281がGln、Asn、Ala、Ser、Thr、CysおよびMetからなる中性アミノ酸群から選ばれるア
ミノ酸に置換され、さらに必要に応じて
(2)1又は数個もしくは複数個のアミノ酸が置換、付加、欠失又は挿入され、且つ、セル
ロース結合活性を有する
ことを特徴とする、ポリペプチド。
In the 101 amino acid sequence of Thr 258 to Ile 358 of SEQ ID NO: 3, (1) Glu 279 and / or Asp 281 is selected from the group of neutral amino acids consisting of Gln, Asn, Ala, Ser, Thr, Cys and Met Substituted with an amino acid, and if necessary
(2) A polypeptide, wherein one or several or a plurality of amino acids are substituted, added, deleted or inserted, and has a cellulose binding activity.
279位のグルタミン酸(Glu279)がThr、Ala、AsnまたはGlnに置換され、281位のアスパラギン酸(Asp281)がAsn, Ser、GlnまたはAlaに置換されている、請求項1に記載のポリペプチド。 2. The poly of claim 1, wherein glutamic acid at position 279 (Glu 279 ) is substituted with Thr, Ala, Asn or Gln, and aspartic acid at position 281 (Asp 281 ) is substituted with Asn, Ser, Gln or Ala. peptide. 279位のグルタミン酸(Glu279)がThrで置換され、281位のアスパラギン酸(Asp281)がAsnで置換されている、請求項2に記載のポリペプチド。 The polypeptide according to claim 2, wherein glutamic acid at position 279 (Glu 279 ) is substituted with Thr, and aspartic acid at position 281 (Asp 281 ) is substituted with Asn. 請求項1〜3のいずれかに記載のポリペプチドからなる耐熱性セルロース結合ドメイン。 A heat-resistant cellulose-binding domain comprising the polypeptide according to claim 1. キチン結合ドメインのキチンとの相互作用面における酸性アミノ酸を中性アミノ酸に置換することを特徴とするセルロース結合ドメインの作製方法。 A method for producing a cellulose-binding domain, comprising substituting a neutral amino acid with an acidic amino acid in the surface of the chitin-binding domain that interacts with chitin. Glu279及び/又はAsp281を置換するアミノ酸がSer、Thr、Ala、Asn及びGlnからなる群か
ら選ばれる請求項5に記載の方法。
The method according to claim 5, wherein the amino acid substituting Glu 279 and / or Asp 281 is selected from the group consisting of Ser, Thr, Ala, Asn and Gln.
キチン結合ドメインがThermococcus属またはPyrococcus属由来のものである、請求項5又は6に記載の方法。 The method according to claim 5 or 6, wherein the chitin-binding domain is derived from the genus Thermococcus or Pyrococcus. 請求項1〜3のいずれかに記載のポリペプチドをコードするDNA。 DNA encoding the polypeptide according to any one of claims 1 to 3.
JP2005269362A 2005-09-16 2005-09-16 Thermostable cellulose binding domain Active JP4604185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005269362A JP4604185B2 (en) 2005-09-16 2005-09-16 Thermostable cellulose binding domain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005269362A JP4604185B2 (en) 2005-09-16 2005-09-16 Thermostable cellulose binding domain

Publications (2)

Publication Number Publication Date
JP2007075046A true JP2007075046A (en) 2007-03-29
JP4604185B2 JP4604185B2 (en) 2010-12-22

Family

ID=37935970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005269362A Active JP4604185B2 (en) 2005-09-16 2005-09-16 Thermostable cellulose binding domain

Country Status (1)

Country Link
JP (1) JP4604185B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804468B2 (en) * 2006-02-28 2011-11-02 パナソニック株式会社 Electret capacitor type composite sensor
WO2013094359A1 (en) * 2011-12-19 2013-06-27 独立行政法人産業技術総合研究所 Cellulose-/chitin-type polymeric light-emitting material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344160A (en) * 2003-02-27 2004-12-09 National Institute Of Advanced Industrial & Technology Heat-resistant chitinase derived from hyperthermophilic bacterium belonging to pyrococcus genus and gene encoding the same
JP2006025701A (en) * 2004-07-16 2006-02-02 National Institute Of Advanced Industrial & Technology Highly active thermostable chitinase and gene encoding the same
JP2006262702A (en) * 2005-03-22 2006-10-05 National Institute Of Advanced Industrial & Technology Crystal and structure information of chitin-binding domain

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344160A (en) * 2003-02-27 2004-12-09 National Institute Of Advanced Industrial & Technology Heat-resistant chitinase derived from hyperthermophilic bacterium belonging to pyrococcus genus and gene encoding the same
JP2006025701A (en) * 2004-07-16 2006-02-02 National Institute Of Advanced Industrial & Technology Highly active thermostable chitinase and gene encoding the same
JP2006262702A (en) * 2005-03-22 2006-10-05 National Institute Of Advanced Industrial & Technology Crystal and structure information of chitin-binding domain

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804468B2 (en) * 2006-02-28 2011-11-02 パナソニック株式会社 Electret capacitor type composite sensor
WO2013094359A1 (en) * 2011-12-19 2013-06-27 独立行政法人産業技術総合研究所 Cellulose-/chitin-type polymeric light-emitting material
JPWO2013094359A1 (en) * 2011-12-19 2015-04-27 独立行政法人産業技術総合研究所 Cellulose / chitin polymer light emitting material

Also Published As

Publication number Publication date
JP4604185B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
Suzuki et al. Chitin binding protein (CBP21) in the culture supernatant of Serratia marcescens 2170
EP0850307B1 (en) Alkaliphilic and thermophilic microorganisms and enzymes obtained therefrom
JP4199422B2 (en) Polypeptide
CN108588052B (en) Mutant of PET degrading enzyme and application thereof
Hong et al. Assembling a novel bifunctional cellulase–xylanase from Thermotoga maritima by end-to-end fusion
Mai et al. Gene cloning and characterization of a novel salt-tolerant and glucose-enhanced β-glucosidase from a marine Streptomycete
CN109971734B (en) PH-insensitive high-temperature-tolerant HSL family lipid hydrolase and application thereof
Naz et al. Enhanced production and characterization of a β-glucosidase from Bacillus halodurans expressed in Escherichia coli
WO2023071267A1 (en) Protein complex based on dnases of colicin e family and application thereof in artificial protein scaffold
Umemoto et al. Improvement of alkaliphily of Bacillus alkaline xylanase by introducing amino acid substitutions both on catalytic cleft and protein surface
Gurumurthy et al. Molecular characterization of industrially viable extreme thermostable novel alpha-amylase of geobacillus sp Iso5 Isolated from geothermal spring
JP4604185B2 (en) Thermostable cellulose binding domain
CN111139229B (en) Novel GDSL family lipid hydrolase EII-2 and encoding gene and application thereof
JP4417608B2 (en) Mutant alkaline cellulase
Xiong et al. Directed evolution of a beta-galactosidase from Pyrococcus woesei resulting in increased thermostable beta-glucuronidase activity
JPH09173077A (en) Ultrathermoresistant acidic alpha-amylase and dna fragment containing gene for producing the alpha-amylase
CN111748542B (en) Endo-xylanase mutant S07A11, and preparation method and application thereof
Kobayashi et al. Gene analysis of trehalose-producing enzymes from hyperthermophilic archaea in Sulfolobales
CN108841805B (en) Lipase mutant with improved heat stability
Yaron et al. Expression, purification and crystallization of a cohesin domain from the cellulosome of Clostridium thermocellum
Singh et al. Overexpression and protein folding of a chimeric β-glucosidase constructed from Agrobacterium tumefaciens and Cellvibrio gilvus
JP4431694B2 (en) Highly active thermostable chitinase and gene encoding it
Li et al. Role of two amino acid residues’ insertion on thermal stability of thermophilic α-amylase AMY121 from a deep sea bacterium Bacillus sp. SCSIO 15121
JP5062730B2 (en) Improved thermostable cellulase
CN101392242B (en) Alpha-glucosidase, gene thereof, preparation method, vector and host cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Ref document number: 4604185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250