JP2007074909A - Edible emulsion and method for producing the same - Google Patents

Edible emulsion and method for producing the same Download PDF

Info

Publication number
JP2007074909A
JP2007074909A JP2005263002A JP2005263002A JP2007074909A JP 2007074909 A JP2007074909 A JP 2007074909A JP 2005263002 A JP2005263002 A JP 2005263002A JP 2005263002 A JP2005263002 A JP 2005263002A JP 2007074909 A JP2007074909 A JP 2007074909A
Authority
JP
Japan
Prior art keywords
fatty acid
emulsion
oil
phospholipid
edible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005263002A
Other languages
Japanese (ja)
Other versions
JP4552198B2 (en
Inventor
Kazuo Tajima
和夫 田嶋
Yoko Imai
洋子 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa University
Original Assignee
Kanagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa University filed Critical Kanagawa University
Priority to JP2005263002A priority Critical patent/JP4552198B2/en
Publication of JP2007074909A publication Critical patent/JP2007074909A/en
Application granted granted Critical
Publication of JP4552198B2 publication Critical patent/JP4552198B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide new edible emulsion not requiring use of thickener, utilizing phospholipid and excellent in temporal stability: and to provide a method for producing the emulsion. <P>SOLUTION: The edible emulsion comprises an emulsification dispersant consisting mainly of a mixed liquid crystal obtained by mixing edible oil with phospholipid and fatty acid ester, as essential ingredient. The mixed liquid crystal preferably comprises such one as to be obtained by mixing soybean phospholipid with fatty acid sucrose ester, wherein mass fraction of the soybean phospholipid and the fatty acid sucrose ester are preferably set to 0.1≤Ws<0.8 assuming that the mass of the soybean phospholipid corresponds to M1, the mass of the fatty acid sucrose ester corresponds to M2, and the mass fraction Ws corresponds to M2/(M1+M2). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、種々の可食性油に対して得られる経時安定性に優れた可食性エマルションとその製造方法に関する。   The present invention relates to an edible emulsion excellent in temporal stability obtained for various edible oils and a method for producing the same.

食品用乳化剤は、生理的安全性が最重要視されるため、食品添加物としての指定を受ける必要があり、工業用乳化剤に比べて極めて大きな制約がある。現在、日本で許可されている主な食品添加物は、大別すると合成添加物のグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、天然添加物のレシチンの5種類である。   The emulsifier for food needs to be designated as a food additive since physiological safety is regarded as the most important, and has extremely large restrictions compared to an industrial emulsifier. Currently, the main food additives permitted in Japan are roughly classified into five types: synthetic additives glycerin fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, and natural additive lecithin. .

食品のような複合系での乳化剤の選定は、乳化剤の組み合わせ、共存物質が乳化に及ぼす影響、配合比率などを検討しなければならない。また、食品の乳化においては、多量の乳化剤が必要となる場合には風味を損なう可能性があり、また、可食性植物油の安定なエマルションの調製は一般的に困難とされている。そこで、通常、食品用エマルションは油の凝集・分離を抑制するために増粘剤を加えて見かけ上安定させている(非特許文献1)。   When selecting an emulsifier in a complex system such as food, the combination of emulsifiers, the influence of coexisting substances on emulsification, and the mixing ratio must be examined. Moreover, in the emulsification of food, when a large amount of emulsifier is required, the flavor may be impaired, and preparation of a stable emulsion of edible vegetable oil is generally difficult. Therefore, in general, food emulsions are apparently stabilized by adding a thickener in order to suppress oil aggregation and separation (Non-patent Document 1).

ところで、リン脂質は、生物の細胞や血液などの生体膜中に存在する代表的な脂質であり、生分解性、生理的温和性、乳化力に優れているため、食品のみならず、医薬品、農薬、化粧品などの分野で活用されている。リン脂質は有機溶媒に可溶性であり、水に不溶性である。これを水に分散させると、親水基部位と疎水基部位が規則正しく配向したリオトロピック液晶となり、ラメラ構造をとることが知られている。また、このリン脂質の二分子膜は乳化剤として利用され、超音波や溶媒置換などを行うとベシクルと呼ばれる球状の小胞体に変化する(非特許文献2)。このベシクルは、層状構造のラメラ液晶に比べて内包率が高いため、薬物運搬用(DDS)としても実用化が期待されている(非特許文献3)。
日本油化学会編 現代界面コロイド化学の基礎 丸善 寺田弘、吉田哲郎 リポソーム シュプリンガー・フェアラーク 山川民夫 他 油脂 共立出版
By the way, phospholipids are representative lipids present in biological membranes such as biological cells and blood, and are excellent in biodegradability, physiological mildness, and emulsifying power. Used in fields such as agricultural chemicals and cosmetics. Phospholipids are soluble in organic solvents and insoluble in water. It is known that when this is dispersed in water, a lyotropic liquid crystal in which a hydrophilic group site and a hydrophobic group site are regularly aligned is formed and a lamellar structure is formed. Further, this bilayer membrane of phospholipid is used as an emulsifier, and changes into spherical vesicles called vesicles when subjected to ultrasonic waves or solvent substitution (Non-patent Document 2). Since this vesicle has a higher encapsulation rate than lamellar liquid crystals having a layered structure, it is expected to be put to practical use as a drug delivery (DDS) (Non-patent Document 3).
Edited by Japan Oil Chemists' Society Hiroshi Terada, Tetsuro Yoshida Liposome Springer Fairlark Tamio Yamakawa and others

しかしながら、リン脂質のエマルションは、エマルション形成時の平均粒子径が800nmより大きくなると3ヶ月後には二分子膜液晶の状態変化、すなわちゲル化現象を起こして不安定となることが確認されており、可食性油の乳化材としての実用化は難しい。このため、可食性エマルションをリン脂質を利用して形成する場合には、エマルションを安定させる更なる工夫が必要となる。   However, it has been confirmed that the phospholipid emulsion becomes unstable due to a change in the state of the bilayer liquid crystal after 3 months, that is, a gelation phenomenon, when the average particle size at the time of emulsion formation is larger than 800 nm. It is difficult to put edible oil into practical use as an emulsifying material. For this reason, when forming an edible emulsion using a phospholipid, the further device which stabilizes an emulsion is needed.

本発明は、以上のような事情に鑑みてなされたものであり、増粘剤の使用を不要とし、リン脂質を利用した経時安定性に優れた新たな可食性エマルションとその製造方法を提供することを主たる課題としている。   The present invention has been made in view of the circumstances as described above, and provides a new edible emulsion that does not require the use of a thickener and has excellent temporal stability using a phospholipid, and a method for producing the same. This is the main issue.

一般の界面活性剤を用いた乳化法では、油と水との界面に界面活性剤が吸着し、その界面エネルギーを低下させることを乳化・分散法の基本としていたので、その界面張力を低下させるために多量の乳化分散剤を必要とするものであった。これに対して、本発明者らは、リン脂質が水に分子溶解せず、リン脂質自身が形成する二分子膜液晶がファンデルワールス力により油滴表面に付着することで油相、乳化剤相、水相の三相構造を形成し、経時安定性に優れたエマルションを形成すること、また、リン脂質の二分子膜に所定の界面活性剤を添加して混合液晶を形成することで粒子の細分化が図れ、ゲル化現象を避けることが可能になることを見出し、本発明を完成するに至った。   In the emulsification method using a general surfactant, the surfactant is adsorbed on the interface between oil and water, and the basic energy of the emulsification / dispersion method is to reduce the interfacial energy. Therefore, a large amount of an emulsifying dispersant is required. On the other hand, the present inventors do not dissolve the molecules of phospholipid in water, and the bilayer liquid crystal formed by the phospholipid itself adheres to the surface of the oil droplets by van der Waals force. , Forming a three-phase structure of an aqueous phase, forming an emulsion with excellent stability over time, and adding a predetermined surfactant to a phospholipid bilayer to form a mixed liquid crystal. It was found that it was possible to subdivide and avoid the gelation phenomenon, and the present invention was completed.

即ち、上記課題を達成するために、この発明に係る可食性エマルションは、可食性油にリン脂質と脂肪酸エステルとを混合させた混合液晶を主成分とする乳化分散剤を必須成分として含むことを特徴としている(請求項1)。   That is, in order to achieve the above object, the edible emulsion according to the present invention contains an emulsifying dispersant containing, as an essential component, a mixed liquid crystal obtained by mixing a phospholipid and a fatty acid ester in edible oil. It is characterized (claim 1).

ここで、可食性油は、大豆油、菜種油、オリーブ油、米絞り油、機能性添加油(トコフェロール(ビタミンE),リモネン(香料))などを想定しており(請求項5)、リン脂質は大豆リン脂質(大豆レシチン)や卵黄リン脂質(卵黄レシチン)などが適している。また、リン脂質と混合する脂肪酸エステルとしては、食品添加物である脂肪酸エステル(グリセリン脂肪酸エステル,ショ糖脂肪酸エステル,ソルビタン脂肪酸エステル,プロピレングリコール脂肪酸エステルなど)が適しており(請求項6)、一例として、大豆リン脂質と脂肪酸エステルを混合させて形成した混合液晶を用いるとよい(請求項2)。この場合に、脂肪酸エステルとして脂肪酸ショ糖エステルを用いると、大豆リン脂質と脂肪酸ショ糖エステルの質量分率は、前記大豆リン脂質の質量をM1、前記脂肪酸ショ糖エステルの質量をM2、質量分率WsをM2/(M1+M2)で表した場合、0.1≦Ws<0.8の範囲に設定されることが好ましい(請求項3)。 Here, edible oil is assumed to be soybean oil, rapeseed oil, olive oil, rice squeeze oil, functional additive oil (tocopherol (vitamin E), limonene (fragrance)), etc. (Claim 5), Soybean phospholipid (soybean lecithin) and egg yolk phospholipid (egg yolk lecithin) are suitable. As the fatty acid ester to be mixed with phospholipid, fatty acid esters (glycerin fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, etc.) which are food additives are suitable (Claim 6). A mixed liquid crystal formed by mixing soybean phospholipid and fatty acid ester may be used (claim 2). In this case, when fatty acid sucrose ester is used as the fatty acid ester, the mass fraction of soybean phospholipid and fatty acid sucrose ester is M1, the mass of the soybean phospholipid, and the mass of the fatty acid sucrose ester is M2. When the rate Ws is expressed by M2 / (M1 + M2), it is preferably set in a range of 0.1 ≦ Ws <0.8.

また、可食性エマルションの組成は、重量比が前記リン脂質0.05〜20%、前記脂肪酸エステル0.005〜8.0%、可食性油10〜90%、水バランスで組成することが可能である(請求項4)。   In addition, the composition of the edible emulsion may be such that the weight ratio is 0.05 to 20% of the phospholipid, 0.005 to 8.0% of the fatty acid ester, 10 to 90% of edible oil, and water balance. (Claim 4).

なお、上述した可食性エマルションの調製にあたっては、リン脂質と脂肪酸エステルとを所定の質量分率となるように混合し、リン脂質の重量比が所定の重量パーセントとなるように水を加えて分散させ、この分散液を水相とし、油相の重量比が所定の重量パーセントとなるようにエマルションを調製するとよい(請求項7)。この際、前記分散液は、該分散液の温度を高低させて攪拌する工程を繰り返し、その後熟成させて安定させるとよい。   In preparing the edible emulsion, the phospholipid and the fatty acid ester are mixed so as to have a predetermined mass fraction, and water is added so that the weight ratio of the phospholipid is a predetermined weight percent. Then, the dispersion is used as an aqueous phase, and an emulsion may be prepared so that the weight ratio of the oil phase is a predetermined weight percent (Claim 7). At this time, the dispersion is preferably stabilized by repeating the step of stirring the dispersion at a high temperature and then aging.

以上述べたように、この発明によれば、リン脂質と食品乳化剤、具体的には、大豆レシチンと脂肪酸エステルとの混合液晶からなる両親媒性物質を主成分とする乳化分散剤を可食性油に必須成分として含むようにしたので、ゲル化現象を生じない経時安定性に優れた可食性エマルションを形成することが可能となる。   As described above, according to the present invention, an emulsifying dispersant mainly composed of an amphiphilic substance composed of a mixed liquid crystal of phospholipid and a food emulsifier, specifically, soybean lecithin and a fatty acid ester is used as an edible oil. Therefore, it is possible to form an edible emulsion with excellent stability over time that does not cause a gelation phenomenon.

以下、この発明の最良の実施形態を説明する。   The best mode of the present invention will be described below.

[使用した試薬]
以下の実験においては、次の試薬を用いた。
1.非イオン界面活性剤
Polyoxyethylene alkylether (C1429(OCOH;分子量566.83g・mol−1)は合成品(NIKKOL)をそのまま用いた。
[Reagent used]
In the following experiments, the following reagents were used.
1. Nonionic surfactant
As a polyoxyethylene alkylether (C 14 H 29 (OC 2 H 4 ) 8 OH; molecular weight 566.83 g · mol −1 ), a synthetic product (NIKKOL) was used as it was.

2.リン脂質
リン脂質は、下記の化1で示す1,2-Dimyristoyl-sn-gloycero-3-phosphocholine(以下、DMPC;分子量677.94g・mol−1)で Avanti Polar Lipids の合成品をそのまま用いた。このリン脂質は、二鎖型の両イオン界面活性剤である。
2. Phospholipids As the phospholipids, 1,2-Dimyristoyl-sn-gloycero-3-phosphocholine (hereinafter, DMPC; molecular weight 677.94 g · mol −1 ) represented by the following chemical formula 1 was used as it was, and a synthetic product of Avanti Polar Lipids was used as it was. . This phospholipid is a two-chain zwitterionic surfactant.

3.食品用乳化剤
使用した食品乳化剤を表1に示す。また、化2に大豆レシチン(SLP)の分子構造を、化3にショ糖脂肪酸エステルの分子構造を、化4にソルビタン脂肪酸エステルの分子構造を、化5にポリグリセリン脂肪酸エステルの分子構造を、化6に脂肪酸プロピレングリコールエステルの分子構造をそれぞれ示す。
いずれも提供されたものをそのまま用いた。
3. Table 1 shows the food emulsifiers used. In addition, the chemical structure of soybean lecithin (SLP) in Chemical Formula 2, the molecular structure of sucrose fatty acid ester in Chemical Formula 3, the molecular structure of sorbitan fatty acid ester in Chemical Formula 4, the molecular structure of polyglycerin fatty acid ester in Chemical Formula 5, Chemical formula 6 shows the molecular structure of the fatty acid propylene glycol ester, respectively.
All provided were used as they were.

4.使用した水
水はイオン交換水(MILLPORE 超純粋装置 日本ミリポア社)で精製した後、さらに蒸留した水を使用した。pH7.0〜7.1(25℃)であった。
4). The water used was purified by ion-exchanged water (MILLPORE ultrapure equipment, Nihon Millipore) and then distilled water. The pH was 7.0 to 7.1 (25 ° C.).

5.使用した油
(1)ヘキサデカンは、ALDRICH社(純水99%以上、d=0.773 g・dm−3,分子量;226.45g・mol−1)の合成品をそのまま用いた。
(2)トリオレインは、(分子量;885.43g・mol−1)は和光純薬工業株式会社から購入したものをそのまま用いた。
(3)流動パラフィンは、和光純薬工業株式会社から購入したものをそのまま用いた。
(4)使用した植物油は、横浜油脂工業株式会社から提供されたものをそのまま用いた。組成は、大豆油(C18:F;52.6%,C18;F;24.2%,C16;10.7%),菜種油(C18;F;61.3%,C18:F;20.2%,C18:F;9.0%), 米ぬか油(C18;F;42.3%,C18:F;35.7%,C16;16.1%)である。Cは炭素鎖長、Fは不飽和数である。
5. Oil used
(1) As hexadecane, a synthetic product of ALDRICH (pure water 99% or more, d = 0.773 g · dm −3 , molecular weight; 226.45 g · mol −1 ) was used as it was.
(2) Triolein (molecular weight; 885.43 g · mol −1 ) was purchased from Wako Pure Chemical Industries, Ltd.
(3) The liquid paraffin used was purchased from Wako Pure Chemical Industries, Ltd.
(4) The vegetable oil used was the same as that provided by Yokohama Yushi Kogyo Co., Ltd. Composition is soybean oil (C18: F 2 ; 52.6%, C18; F 1 ; 24.2%, C16; 10.7%), rapeseed oil (C18; F 1 ; 61.3%, C18: F 2 20.2%, C18: F 3 ; 9.0%), rice bran oil (C18; F 1 ; 42.3%, C18: F 2 ; 35.7%, C16; 16.1%). C is the carbon chain length and F is the number of unsaturations.

[分散液の調製]
乳化剤として用いる混合液晶分散液の調製は以下の2つの方法で行った。
(1)当発明者が行ってきた混合液晶分散液の調製
DMPC、界面活性剤をそれぞれエタノールに均一に溶解させた。その後、所定の混合組成にするため、DMPC/エタノール溶液に界面活性剤/エタノール溶液を添加し、十分に攪拌した。次に、室温下で一晩エタノールを減圧除去し、DMPCと界面活性剤の混合結晶を作製した。この混合結晶にDMPCが0.5wt%となるように水を加え分散させた。次にVortexで5分間攪拌し、35℃の温水に5分間浸けた後、Vortexで5分間攪拌し、氷水に5分間浸け、最後にVortexで5分間攪拌した。この操作を3回繰り返し、リン脂質DMPCのラメラ液晶が熱的に安定な温度(29.5℃)以上である35℃の恒温槽に一昼夜熟成させ、安定な混合液晶状態にした。
(2)実用化に向けた混合液晶分散液の調製
食品用乳化剤のリン脂質SLPと各種食品用乳化剤を所定の質量分率となるように加え、SLPが0.5wt%になるように水を加え、分散させた。分散液は、Homogenizerで5分間攪拌し、60℃の温水に5分間浸け、Homogenizerで5分間攪拌し、氷水に5分間浸け、最後にHomogenizerで5分間攪拌した。これを3回繰り返し、室温で一昼夜熟成した。
[Preparation of dispersion]
The mixed liquid crystal dispersion used as an emulsifier was prepared by the following two methods.
(1) Preparation of Mixed Liquid Crystal Dispersion Performed by the Inventor DMPC and surfactant were each uniformly dissolved in ethanol. Thereafter, in order to obtain a predetermined mixed composition, the surfactant / ethanol solution was added to the DMPC / ethanol solution and sufficiently stirred. Next, ethanol was removed under reduced pressure overnight at room temperature to prepare a mixed crystal of DMPC and a surfactant. Water was added to the mixed crystal and dispersed so that DMPC was 0.5 wt%. Next, the mixture was stirred with Vortex for 5 minutes, immersed in warm water at 35 ° C. for 5 minutes, then stirred with Vortex for 5 minutes, immersed in ice water for 5 minutes, and finally stirred with Vortex for 5 minutes. This operation was repeated three times, and the mixture was aged in a constant temperature bath at 35 ° C. where the lamellar liquid crystal of phospholipid DMPC was thermally stable (29.5 ° C.) or higher to obtain a stable mixed liquid crystal state.
(2) Preparation of mixed liquid crystal dispersion for practical use Add phospholipid SLP of food emulsifier and various food emulsifiers to a predetermined mass fraction, and add water so that SLP is 0.5 wt%. In addition, it was dispersed. The dispersion was stirred with a homogenizer for 5 minutes, immersed in warm water at 60 ° C. for 5 minutes, stirred with a homogenizer for 5 minutes, immersed in ice water for 5 minutes, and finally stirred with a homogenizer for 5 minutes. This was repeated three times and aged overnight at room temperature.

[エマルションの調製]
エマルションの調製は、以下の2つの方法で行った。
(1)当発明者が行ってきたエマルションの調製
乳化剤相に所定組成になるように油を加え、フィンガー型超音波発生装置(OHTAKE WOEKS 5202 PZT)で3分間、浴槽型超音波発生装置(Elma TRANSSONIX 570)で2分間照射した。この操作を2回繰り返し、乳化した。
(2)実用化に向けたエマルションの調製
乳化剤相に所定の質量比となるように油相を加え(油相の重量比が所定の重量パーセントとなるように乳化剤相に加え)、Homogenizerで16000回転を5分間攪拌し、乳化した。
[Preparation of emulsion]
The emulsion was prepared by the following two methods.
(1) Preparation of Emulsion Performed by the Inventor Oil is added to the emulsifier phase so as to have a predetermined composition, and a bath-type ultrasonic generator (Elma) for 3 minutes with a finger-type ultrasonic generator (OHTAKE WOEKS 5202 PZT). Irradiated with TRANSSONIX 570) for 2 minutes. This operation was repeated twice to emulsify.
(2) Preparation of emulsion for practical use An oil phase is added to the emulsifier phase so as to have a predetermined mass ratio (added to the emulsifier phase so that the weight ratio of the oil phase becomes a predetermined weight percentage), and 16,000 with a homogenizer. The rotation was stirred for 5 minutes and emulsified.

[測定]
(1)混合二分子膜厚(d‐spacing)の測定
食品乳化剤と油の添加によるリン脂質二分子膜の長面間隔(001面、d‐spacing)の変化を調べるために、食品乳化剤の質量組成Wsを変化させた混合液晶分散液及び油の濃度を変化させたエマルションについて、散乱粉末型X線回折装置(RAD−rA;理学電機)で測定した。分散液またはエマルションをXRD測定専用のガラスセルに取り、乾燥させないように測定を行った。測定条件は、出力40KV 50mA、Cukα線測定角 2θ=0.2〜5.0°、スキャンスピード1.0°/min、スキャンステップ 0.002°、発散スリット1/2deg,散乱スリット1/6deg、受光スリット0.15mmで行った。
(2)混合二分子膜の相転移温度の測定
食品乳化剤の添加によるリン脂質二分子膜のゲル液晶転移温度Tmの変化を調べるために、食品乳化剤の質量組成Wsを変化させ、示差走査熱量測定(SEIKO;DSC6100)を行った。試料は容量70μlのアルミ製の密封セルに約50μlとり、正確に秤量し密封した。参照試料には測定試料とほぼ同量の水を使用した。測定条件は昇温速度2℃min−1で−5〜90℃の範囲で昇温過程を行った。
(3)粒子径の測定
乳化剤及びエマルションの粒子径を動的光散乱光度計(FPAR‐1000;大塚電子)により測定した。分散液は希薄系プローブ、エマルションに濃厚系プローブを用いて行った。測定温度は保存温度と同様に室温で行った。
(4)分散液の濁度測定
食品乳化剤の添加による分散液の濁度変化を調べるために、紫外・可視分光法(日光分光;V−570U best)で測定した。分散液はSLP0.5wt%一定とし、UV−visの測定条件は波長480nmで固定し吸光度を測定した。
(5)混合液晶の形状観察
乳化剤二分子膜の形状を調べるため、ネガティブ染色法を用いて透過型電子顕微鏡(JEOL;JEM−2000EX/FXII)により観察した。分散液を支持膜付きCuメッシュ上に滴下し、乾燥後モリブテン酸アンモニウムを滴下して1日乾燥させ、TEMにセットして観察した。ネガティブ染色法を用いることで、通常電子密度が低く観察が困難である有機物の組織体を無構造で高電子密度の分子化合物(モリブテン酸アンモニウム)で試料を取り囲み、試料と支持膜との間のコントラストをつけ、組織体の構造や形状を観測する。
(6)エマルションの安定性
調製したエマルションの安定性を静置法によって目視観察した。振とう、攪拌などの外力を加えないように室温で静置させた。経日変化をデジタルカメラで観察した。
[Measurement]
(1) Measurement of mixed bilayer film thickness (d-spacing) The mass of food emulsifier is used to examine the change in the long-face distance (001 plane, d-spacing) of phospholipid bilayers by the addition of food emulsifier and oil The mixed liquid crystal dispersion having the changed composition Ws and the emulsion having the changed oil concentration were measured with a scattering powder X-ray diffractometer (RAD-rA; Rigaku Corporation). The dispersion or emulsion was taken in a glass cell exclusively for XRD measurement and measured so as not to be dried. The measurement conditions are: output 40KV 50mA, Cukα measurement angle 2θ = 0.2 to 5.0 °, scan speed 1.0 ° / min, scan step 0.002 °, divergence slit 1/2 deg, scattering slit 1/6 deg. The light receiving slit was 0.15 mm.
(2) Measurement of phase transition temperature of mixed bilayer membrane In order to investigate the change of gel liquid crystal transition temperature Tm of phospholipid bilayer membrane by addition of food emulsifier, the mass composition Ws of food emulsifier was changed, and differential scanning calorimetry (SEIKO; DSC6100) was performed. About 50 μl of a sample was taken in a sealed cell made of aluminum having a volume of 70 μl, accurately weighed and sealed. The reference sample used approximately the same amount of water as the measurement sample. The measurement conditions were a temperature rising process at a temperature rising rate of 2 ° C. min −1 in a range of −5 to 90 ° C.
(3) Measurement of particle diameter The particle diameter of the emulsifier and the emulsion was measured with a dynamic light scattering photometer (FPAR-1000; Otsuka Electronics). The dispersion was performed using a dilute probe and a concentrated probe for the emulsion. The measurement temperature was room temperature similar to the storage temperature.
(4) Turbidity measurement of dispersion
In order to investigate the turbidity change of the dispersion due to the addition of the food emulsifier, it was measured by ultraviolet / visible spectroscopy (Nikko spectroscopy; V-570U best). The dispersion was fixed at 0.5 wt% SLP, and UV-vis measurement conditions were fixed at a wavelength of 480 nm, and the absorbance was measured.
(5) Shape observation of mixed liquid crystal In order to investigate the shape of the emulsifier bilayer, it was observed with a transmission electron microscope (JEOL; JEM-2000EX / FXII) using a negative staining method. The dispersion was dropped onto a Cu mesh with a support film, dried, and then ammonium molybdate was dropped and dried for 1 day, set on a TEM and observed. By using the negative staining method, the organic matter structure, which is usually difficult to observe due to the low electron density, is surrounded by an unstructured and high electron density molecular compound (ammonium molybdate), and the sample is placed between the sample and the support membrane. Add contrast and observe the structure and shape of the tissue.
(6) Stability of emulsion The stability of the prepared emulsion was visually observed by a stationary method. The mixture was allowed to stand at room temperature so as not to apply external force such as shaking and stirring. Changes over time were observed with a digital camera.

[DMPC−C14(EO)による乳化]
一般の界面活性剤はミセルや液晶を形成する。長鎖のアルカンは界面活性剤のミセルやラメラ液晶の疎水基部へ吸着し、可溶化することが知られている。さらにアルカンを過剰に添加すると飽和可溶化以上のアルカンは油滴を形成する。この際、界面活性剤は親水基を水相、疎水基を油滴相に配向してエマルションを形成する。しかし、今回用いたリン脂質の二分子膜に界面活性剤を添加した混合液晶からなるDMPC−C14(EO) は過剰の油剤によりリン脂質ラメラ液晶が油相、乳化剤相、水相からなる三相構造を形成し、低濃度で優れた安定性を示す。さらにリン脂質ラメラ液晶は、ヘキサデカン、オクタデカンなど油剤を変えても同様の乳化傾向を示すと報告されている。そこで、三相乳化機構と安定性についてこれらの知見が大豆油の乳化にも適応するかどうかを検討するために、飽和油及び不飽和油を用いて乳化性を調べた。
[Emulsification with DMPC-C 14 (EO) 8 ]
Common surfactants form micelles and liquid crystals. It is known that long-chain alkanes are adsorbed and solubilized by surfactant micelles and hydrophobic groups of lamellar liquid crystals. Furthermore, when an alkane is added excessively, the alkane more than saturation solubilization will form an oil droplet. At this time, the surfactant forms an emulsion by orienting the hydrophilic group to the aqueous phase and the hydrophobic group to the oil droplet phase. However, DMPC-C 14 (EO) 8 composed of a mixed liquid crystal obtained by adding a surfactant to a phospholipid bilayer membrane used this time is composed of an oil phase, an emulsifier phase, and an aqueous phase due to an excess oil agent. Forms a three-phase structure and exhibits excellent stability at low concentrations. Furthermore, it has been reported that phospholipid lamellar liquid crystals exhibit a similar emulsification tendency even when oil agents such as hexadecane and octadecane are changed. Therefore, in order to examine whether these findings about the three-phase emulsification mechanism and stability are also applicable to the emulsification of soybean oil, the emulsifiability was investigated using saturated oil and unsaturated oil.

[三相乳化機構と安定性]
図1は、DMPC−C14(EO)とヘキサデカンのエマルションと粒子径を示す。乳化剤として用いたリン脂質に対するヘキサデカンのモル分率をXとして表すと、X≦0.5でヘキサデカンはDMPC−C14(EO)混合液晶膜に可溶化し、飽和可溶化状態になる。X>0.5ではヘキサデカンは過剰の油となり、DMPC−C14(EO)ベシクル粒子がヘキサデカンの油滴表面に付着し、油相、乳化剤相、水相からなる三相エマルションを形成すると考えられている。DMPC−C14(EO)とヘキサデカンのエマルションは三相乳化機構によりX≦0.5で白濁するが、X>0.5で透明になり、極めて小さな粒子のエマルションを形成することが報告されている。
一般に食品で使用されている油は、多くの混合物を含む天然の植物油である。これらは三鎖型の不飽和油である。そこで、トリオレインを用いて、ヘキサデカン同様に三相乳化機構を示すかどうかを検討した。
[Three-phase emulsification mechanism and stability]
FIG. 1 shows the emulsion and particle size of DMPC-C 14 (EO) 8 and hexadecane. Expressing the molar fraction of the hexadecane to phospholipid used as emulsifier as X H, hexadecane at X H ≦ 0.5 is solubilized in DMPC-C 14 (EO) 8 mixed crystal layer, becomes saturated solubilization state . When X H > 0.5, hexadecane becomes excess oil and DMPC-C 14 (EO) 8 vesicle particles adhere to the surface of hexadecane oil droplets to form a three-phase emulsion consisting of an oil phase, an emulsifier phase, and an aqueous phase. It is considered. DMPC-C 14 (EO) 8 and hexadecane emulsions become cloudy when X H ≦ 0.5 due to the three-phase emulsification mechanism, but become transparent when X H > 0.5 and form an emulsion of very small particles. It has been reported.
Oils commonly used in food are natural vegetable oils that contain many mixtures. These are three-chain unsaturated oils. Therefore, it was investigated whether triolein was used to show a three-phase emulsification mechanism like hexadecane.

[油による影響]
図2は、DMPC−C14(EO)によるトリオレインのエマルションと粒子径を示す。リン脂質に対するトリオレインのモル分率をXとして表すと、X<0.7でトリオレインはDMPC−C14(EO)混合液晶膜に可溶化し、飽和可溶化状態になる。X>0.7では過剰の油によるDMPC−C14(EO)の単粒子が油滴表面に付着する三相エマルションを形成することが明らかとなった。
トリオレインのエマルションもヘキサデカン同様に三相乳化法によって、安定なエマルションを形成し、外観はX<0.7、X>0.8で白濁するが、X=0.7で青白い干渉光が現れ、粒子径が10nm以下となり極めて小さくなった。
ヘキサデカンと異なり、トリオレインはX<0.7でエマルションの粒子径が大きくなり、光の散乱が増加し、外観に濁りが生じた。しかし、飽和可溶化状態で極めて小さな粒子を形成し、ヘキサデカン同様に安定なナノエマルションを調製することができた。
[Effect of oil]
FIG. 2 shows the emulsion and particle size of triolein with DMPC-C 14 (EO) 8 . Expressing the molar fraction of triolein to phospholipid as X 0, triolein with X 0 <0.7 is solubilized in DMPC-C 14 (EO) 8 mixed crystal layer, becomes saturated solubilization conditions. When X 0 > 0.7, it was revealed that DMPC-C 14 (EO) 8 single particles due to excess oil form a three-phase emulsion that adheres to the surface of the oil droplets.
The emulsion of triolein also forms a stable emulsion by the three-phase emulsification method like hexadecane, and the appearance becomes cloudy with X 0 <0.7 and X 0 > 0.8, but pale interference with X 0 = 0.7 Light appeared, and the particle size became very small with 10 nm or less.
Unlike hexadecane, triolein had an emulsion particle size of X 0 <0.7, the light scattering increased, and the appearance was turbid. However, very small particles were formed in a saturated solubilized state, and a nanoemulsion that was as stable as hexadecane could be prepared.

[リン脂質−食品用乳化剤による可食性製乳化剤の調製]
以上により、リン脂質−界面活性剤の混合乳化剤は油の種類によらず、安定なナノエマルションを調製できることが明らかになった。そこで、界面活性剤の代わりに可食性乳化剤を用い、リン脂質と食品乳化剤との混合膜ベシクルを形成し、透明でナノサイズの乳化剤として用いることができるような分散液の調製を試みた。
[Phospholipids-Preparation of edible emulsifiers using food emulsifiers]
From the above, it has been clarified that the mixed emulsifier of phospholipid-surfactant can prepare a stable nanoemulsion regardless of the type of oil. Therefore, an edible emulsifier was used instead of a surfactant to form a mixed membrane vesicle of phospholipid and food emulsifier, and an attempt was made to prepare a dispersion that can be used as a transparent nano-sized emulsifier.

[添加する食品乳化剤の決定]
使用するリン脂質SLPは、DLS,TEM観察から水中で363nmのベシクルを形成し、外観は黄濁色であった。そこで、透明でナノサイズの分散液を調製するため、厚生省で認可された食品乳化剤の中から適切な添加物の検討を行った。
現在、食品乳化物は、脂肪酸グリセリンエステル、脂肪酸プロピレングリコールエステル、脂肪酸ソルビタンエステル、脂肪酸ショ糖エステル、大豆リン脂質の5種類が認められている。表2は、今回使用した食品乳化剤の物性を示す。
[Determination of food emulsifier to be added]
The phospholipid SLP to be used formed 363 nm vesicles in water from DLS and TEM observation, and the appearance was yellow. Therefore, in order to prepare transparent and nano-sized dispersions, we examined suitable additives from food emulsifiers approved by the Ministry of Health and Welfare.
Currently, five types of food emulsions are recognized: fatty acid glycerin ester, fatty acid propylene glycol ester, fatty acid sorbitan ester, fatty acid sucrose ester, and soybean phospholipid. Table 2 shows the physical properties of the food emulsifiers used this time.

図3は、SLP−食品乳化剤混合系の外観を示す。分散液の外観は、食品乳化剤の種類に依存し、変化した。グリセリンエステルは外観に変化はなく、ソルビタンエステルは濁度が増加した。しかし、SLP−MSE系では、Ws=0.6とWs=0.7との間で著しく外観が変化し、透明になった。MSEは他の乳化剤に比べて最も親水性が高く、水中で完全に溶解するため、SLP二分子膜との相溶性が高くなると考えられる。そこで、透明性のあるナノエマルションを調製する場合は食品乳化剤としてMSEを用いることに決定した。 FIG. 3 shows the appearance of the SLP-food emulsifier mixed system. The appearance of the dispersion varied depending on the type of food emulsifier. The glycerin ester did not change in appearance, and the sorbitan ester increased in turbidity. However, in the SLP-MSE system, the appearance changed significantly between Ws = 0.6 and Ws = 0.7, and it became transparent. MSE has the highest hydrophilicity compared to other emulsifiers, and is completely dissolved in water, so it is considered that compatibility with the SLP bilayer increases. Therefore, when preparing a transparent nanoemulsion, it was decided to use MSE as a food emulsifier.

[SLP−MSE混合膜分散液の物性の検討]
(XRD測定結果)
図4は、SLP−MSE混合系のX線強度をMSEの質量分率(Ws)を変化させて測定した結果であり、図5は、乳化剤中のMSEの質量分率(Ws)とSLPの二分子膜厚の関係を示す。SLPの二分子膜厚はWs=0.7まで連続的に減少し、0.7<Ws<0.8で不連続となり、Ws=0.8でピークが二つに割れた。このように、膜組成によって膜厚dが変化する理由は、次のように考えられる。すなわち、MSEがリン脂質の二分子膜に可溶化し、疎水基部の鎖長の差異によって空間が生じ分子間力が働くことによってd-spacing が約5.3nmから約4.3nmまで減少すると考えた。その後、混合膜は、Ws=0.7で飽和混合結晶を形成し、粒子径はほぼ一定の100nmになり、Ws>0.7でMSEが過剰に存在し、維持できなくなった二分子膜はWs=0.8で二つの膜状態となりそれぞれのピークを与えた。
(DLS測定結果)
図6は、乳化剤中のMSEの質量分率(Ws)と分散液の粒子径の関係を示す。粒子径はMSEの添加量にともないWs<0.6で363nmから99.0nmまで減少し、Ws>0.7で二つのピークが観測された。二分子膜へのMSEの可溶化は膜の構造変化により、粒子の小さい混合膜ベシクルを形成することがわかった。また、Ws≧0.7の粒子径は、動的光散乱法により測定した結果、2つのピークは約4nmと約100nmであるため、ベシクルの一部が棒状へ状態変化すると考えられる。
以上から、SLP−MSE分散液は、Ws≦0.7でSLPの二分子膜が維持されているためWs≦0.6で混合ベシクル、0.6<Ws≦0.7で混合膜ラメラ液晶を形成することが確認された。
(TEM観察)
さらに、分散液粒子の観察をするため、図7〜図10にTEM写真を示す。SLP単独の分散液は、DLS測定で363nmの粒子を確認したが、TEM観察によると大きさに分布を持つべシクルを形成することがわかった。MSEを添加することにより、Ws≦0.5でSLPを規範とするベシクルが確認され、0.5<Ws≦0.7でベシクルとラメラ液晶、Ws>0.7でラメラ液晶が形成された。MSEの親水基部はSLPに比べて大きいため、二分子膜内に親水基部が入り込めない。一方、SLPは多重層を形成し、MSEを添加すると始めに外側の膜が最密構造をとり、さらに添加すると表面積を広げるために粒子が細分化し、小さなベシクルを形成する。SLPの膜が飽和状態になると、曲率を保てなくなり、棒状のラメラ液晶を形成すると考えられる。
(濁度と外観)
図11に質量パーセント組成と濁度との関係を示す。MSEは単独で水に溶解するため、水に対するSLPの分散濃度を常に0.5wt%で一定とし、480nm固定波長で濁度測定を行った。分散液の濁度は0.4<Ws<0.7で著しく減少し、Ws≧0.7で一定となった。TEM写真より、混合膜ベシクルから混合膜ラメラ液晶へ形状変化する領域と一致するため、濁度はSLPに由来するものと考えられる。
以上から、SLP二分子膜はMSEを添加することにより、構造変化が生じ、混合膜ベシクルは細分化し、さらに添加すると混合膜ラメラ液晶を形成することがわかった。その結果、図12に示すように、透明なSLP−MSEによるナノサイズの粒子を形成する分散液を調製できた。
[Examination of physical properties of SLP-MSE mixed membrane dispersion]
(XRD measurement results)
FIG. 4 shows the results of measuring the X-ray intensity of the SLP-MSE mixed system while changing the mass fraction (Ws) of MSE. FIG. 5 shows the mass fraction (Ws) of MSE in the emulsifier and the SLP. The relationship of bimolecular film thickness is shown. The bilayer thickness of SLP decreased continuously to Ws = 0.7, became discontinuous when 0.7 <Ws <0.8, and the peak was broken into two when Ws = 0.8. Thus, the reason why the film thickness d varies depending on the film composition is considered as follows. That is, MSE is solubilized in the bilayer membrane of phospholipid, and a space is generated due to the difference in chain length of the hydrophobic group, and d-spacing is considered to decrease from about 5.3 nm to about 4.3 nm due to the action of intermolecular force. It was. After that, the mixed film forms a saturated mixed crystal at Ws = 0.7, the particle diameter becomes almost constant 100 nm, MSE is excessively present at Ws> 0.7, and the bilayer film that cannot be maintained is When Ws = 0.8, two film states were obtained, and respective peaks were given.
(DLS measurement result)
FIG. 6 shows the relationship between the mass fraction (Ws) of MSE in the emulsifier and the particle diameter of the dispersion. The particle diameter decreased from 363 nm to 99.0 nm when Ws <0.6 with the addition amount of MSE, and two peaks were observed when Ws> 0.7. It was found that the solubilization of MSE in the bilayer film formed a mixed film vesicle with small particles due to the change in the structure of the film. The particle diameter of Ws ≧ 0.7 is measured by the dynamic light scattering method. As a result, the two peaks are about 4 nm and about 100 nm. Therefore, it is considered that a part of the vesicle changes to a rod shape.
From the above, the SLP-MSE dispersion has a mixed vesicle when Ws ≦ 0.6 and a mixed film lamellar liquid crystal when 0.6 <Ws ≦ 0.7 because the SLP bilayer is maintained when Ws ≦ 0.7. Was confirmed to form.
(TEM observation)
Furthermore, in order to observe the dispersion particles, FIGS. 7 to 10 show TEM photographs. The dispersion of SLP alone confirmed 363 nm particles by DLS measurement, but TEM observation revealed that vesicles having a distribution in size were formed. By adding MSE, vesicles based on SLP were confirmed when Ws ≦ 0.5, and vesicles and lamellar liquid crystals were formed when 0.5 <Ws ≦ 0.7, and lamellar liquid crystals were formed when Ws> 0.7. . Since the hydrophilic base of MSE is larger than SLP, the hydrophilic base cannot enter the bilayer membrane. On the other hand, SLP forms a multi-layer, and when MSE is added, the outer membrane has a close-packed structure first, and when further added, the particles are subdivided to increase the surface area and form small vesicles. It is considered that when the SLP film is saturated, the curvature cannot be maintained and a rod-like lamellar liquid crystal is formed.
(Turbidity and appearance)
FIG. 11 shows the relationship between the mass percent composition and turbidity. Since MSE was dissolved in water alone, the dispersion concentration of SLP in water was always kept constant at 0.5 wt%, and turbidity measurement was performed at a fixed wavelength of 480 nm. The turbidity of the dispersion decreased significantly when 0.4 <Ws <0.7 and became constant when Ws ≧ 0.7. From the TEM photograph, the turbidity is considered to be derived from SLP because it matches the region where the shape of the mixed film vesicle changes to the mixed film lamella liquid crystal.
From the above, it was found that the addition of MSE causes a structural change in the SLP bilayer film, the mixed film vesicles are subdivided, and when further added, a mixed film lamellar liquid crystal is formed. As a result, as shown in FIG. 12, a dispersion liquid forming nano-sized particles by transparent SLP-MSE could be prepared.

[三相乳化の検討]
以上で調製した分散液を用いて三相乳化法による可食性エマルションの創製を試みた。用いた分散液は、形状の異なるSLP0.5wt%でWs=0.5のベシクル領域、Ws=0.6のベシクルとラメラ液晶領域、Ws=0.7のラメラ領域とした。
表3及び4に、比較のために、SLP単独系による大豆油の乳化例を乳化温度を室温と50℃に設定した場合を示す。また、表5〜表7において、SLP−MSE混合系による大豆油の乳化例を、Ws=0.5のベシクル領域、Ws=0.6のベシクルとラメラ液晶領域、Ws=0.7のラメラ領域のそれぞれにおいて、乳化温度を室温に設定した場合を示す。
[Examination of three-phase emulsification]
An attempt was made to create an edible emulsion by the three-phase emulsification method using the dispersion prepared above. The dispersions used were SLP 0.5 wt% having different shapes, Ws = 0.5 vesicle region, Ws = 0.6 vesicle and lamellar liquid crystal region, and Ws = 0.7 lamella region.
Tables 3 and 4 show, for comparison, an example of emulsification of soybean oil using an SLP-only system when the emulsification temperature is set to room temperature and 50 ° C. In Tables 5 to 7, emulsification examples of soybean oil by the SLP-MSE mixed system are as follows: vesicle region of Ws = 0.5, vesicle and lamellar liquid crystal region of Ws = 0.6, lamella of Ws = 0.7 In each of the areas, the case where the emulsification temperature is set to room temperature is shown.

図13〜17は、静置法によるエマルションの安定性をエマルションの外観で示す。SLP単独系では調製後経日3日で油相の多いものから分離した。しかし、SLP−MSE混合膜液晶によるエマルションは経日1日でコアセルベーションが起こり、経日120日においても遊離した油相が確認されず安定なエマルションを維持した。 13-17 shows the stability of the emulsion by a stationary method with the external appearance of an emulsion. In the SLP alone system, the oil was separated from the oily phase 3 days after preparation. However, in the emulsion using the SLP-MSE mixed film liquid crystal, coacervation occurred in 1 day, and a stable oil emulsion was maintained even after 120 days without a free oil phase.

コアセルベーション下においても、三相乳化法では乳化剤のナノ粒子が油滴界面に安定に付着しているので、エマルションの油滴間は距離があり、油滴同士に分子間力が働かず、合一は起こりにくく、エマルションは安定に存在する。したがって、SLP−MSE混合液晶で調製するエマルションは三相乳化法により、経日1日でコアセルベーション現象が起こっても、経日120日間油滴は安定にエマルション状態を維持した。SLP単独よりSLP−MSEの混合液晶の方が安定になるのは、MSEの共存により二分子膜内の分子凝集力が強くなり、疎水化して膜が安定化するためであると考えられる。   Even under coacervation, the emulsifier nanoparticles adhere stably to the oil droplet interface in the three-phase emulsification method, so there is a distance between the oil droplets in the emulsion, and intermolecular force does not work between the oil droplets, Coalescence hardly occurs and the emulsion exists stably. Therefore, the emulsion prepared with the SLP-MSE mixed liquid crystal was stably maintained in the emulsion state for 120 days after the occurrence of the coacervation phenomenon by the three-phase emulsification method. The reason why the mixed liquid crystal of SLP-MSE becomes more stable than SLP alone is thought to be because the cohesive force of the molecules in the bilayer film becomes stronger due to the coexistence of MSE, and the film becomes hydrophobic and stabilized.

一般の界面活性剤によるエマルションは、油の分量が増大すると、界面活性剤の液晶は疎水基が油滴に配向し、界面活性剤が形成する液晶のピークは消滅する。しかし、三相乳化法によるエマルションは、油の添加後も二分子膜は液晶のピークが維持されていることが報告されている。そこで、SLP−MSEによるエマルションが三相構造を形成していることを確認するため、図18〜20にWs=0.5、Ws=0.6、Ws=0.7のXRD測定の結果を示した。SLP−MSE混合膜液晶の二分子膜厚はWs=0.5で4.52nmがエマルションでは4.55nmに、Ws=0.6で4.37nmがエマルションでは4.72nmに、Ws=0.7で4.26nmがエマルションでは4.33nmに変化した。分散液よりもエマルションの二分子膜厚が僅かに広がったことから二分子膜内に油は可溶化し、油の添加後も液晶二分子膜が維持されていることを確認することができた。図21は、SLP−MSEのWs=0.6によるエマルションを用いて、油の濃度とSLP−MSE混合液晶膜厚との関係を示す。分散液のSLP−MSE混合液晶膜厚は約4.3nmであり、油を加えていくと徐々に広がり、10wt%以降で約4.5nmになる。その後、油成分の増加にも関わらずエマルション状態で変化はなかった。
以上の結果、SLP−MSE混合液晶を用いた三相乳化法により、従来の界面活性剤による乳化技術より乳化調製が簡単であり、しかも安定な可食性エマルションの創製に成功した。
In the emulsion with a general surfactant, when the amount of oil increases, the liquid crystal peak of the liquid crystal formed by the surfactant disappears because the liquid crystal of the surfactant has the hydrophobic groups aligned in the oil droplets. However, it has been reported that the emulsion by the three-phase emulsification method maintains the liquid crystal peak in the bilayer film even after the addition of oil. Therefore, in order to confirm that the emulsion by SLP-MSE forms a three-phase structure, the results of XRD measurement of Ws = 0.5, Ws = 0.6, Ws = 0.7 are shown in FIGS. Indicated. The bilayer thickness of the SLP-MSE mixed film liquid crystal is Ws = 0.5 and 4.52 nm is 4.55 nm in the emulsion, Ws = 0.6 and 4.37 nm is 4.72 nm in the emulsion, and Ws = 0. 7 changed 4.26 nm to 4.33 nm in the emulsion. Since the bilayer thickness of the emulsion was slightly wider than that of the dispersion, the oil was solubilized in the bilayer membrane, and it was confirmed that the liquid crystal bilayer membrane was maintained after the oil was added. . FIG. 21 shows the relationship between oil concentration and SLP-MSE mixed liquid crystal film thickness using an emulsion of SLP-MSE with Ws = 0.6. The SLP-MSE mixed liquid crystal film thickness of the dispersion is about 4.3 nm, and gradually spreads as oil is added, and becomes about 4.5 nm after 10 wt%. Thereafter, there was no change in the emulsion state despite the increase in the oil component.
As a result, the three-phase emulsification method using SLP-MSE mixed liquid crystal has succeeded in creating an edible emulsion that is easier to prepare and more stable than conventional emulsification techniques using surfactants.

[分散液の形状変化によるエマルションの違い]
前述したように、SLP−MSEの混合比によって、分散液の形状が異なることが確認されたが、この形状変化がエマルションの安定性や乳化法に影響するかを検討するために、粒子径測定を行った。
図22は分散液の形状の違いによる油の濃度と粒子径の変化を示す。Ws=0.5のベシクル領域は、40wt%以降粒子径が大きくなった。Ws=0.6のラメラ型領域は、約200nmで一定となり、Ws=0.7のラメラ領域は、不連続であった。このため、分散液の形状に依存する可能性があることが示唆された。
[Difference of emulsion due to shape change of dispersion]
As described above, it was confirmed that the shape of the dispersion was different depending on the mixing ratio of SLP-MSE. In order to investigate whether this change in shape affects the stability of the emulsion or the emulsification method, particle size measurement was performed. Went.
FIG. 22 shows changes in oil concentration and particle size due to differences in the shape of the dispersion. In the vesicle region where Ws = 0.5, the particle diameter increased after 40 wt%. The lamellar region with Ws = 0.6 was constant at about 200 nm, and the lamellar region with Ws = 0.7 was discontinuous. For this reason, it was suggested that it may depend on the shape of the dispersion.

[リン脂質−食品用乳化剤による可食性エマルションの安定性]
一般の界面活性剤は油・pH・温度によって安定性が異なる。そこで、上述のように創製したSLP−MSEによる可食性エマルションの安定性を検討するために、油,pH,保存温度を変えた。図23〜25に静置法による安定性をエマルションの外観で示す。油はこれまでに検討してきた大豆油の他に、オリーブ油、米ぬか油、菜種油の各植物油、その他一般の油脂である流動パラフィン,油性機能性物質であるトコフェロール(ビタミンE),リモネンを乳化した。
表8に結果を示す。いずれの油もコアセルベーションが起こり、その後、150日間安定であった。pH変化は食品に使用されているpH5以下で安定性を調べた。添加物のないエマルションと同様に経日150日間安定であった。
[Phospholipids-Stability of edible emulsions with food emulsifiers]
General surfactants have different stability depending on oil, pH and temperature. Therefore, in order to examine the stability of the edible emulsion by SLP-MSE created as described above, the oil, pH, and storage temperature were changed. 23 to 25 show the stability of the emulsion method by the appearance of the emulsion. In addition to soybean oil that has been studied so far, olive oil, rice bran oil, vegetable oil such as rapeseed oil, and other common oils such as liquid paraffin, oily functional substances tocopherol (vitamin E), and limonene were emulsified.
Table 8 shows the results. All oils were coacervated and then stable for 150 days. As for the pH change, the stability was examined at pH 5 or less used in foods. Similar to the emulsion without additives, it was stable for 150 days.

温度変化は、−20℃、室温、50℃で行った。50℃で保存したものは、30日後に油の凝集が起こった。図26,27にSLP−MSE混合液晶膜変化を調べるためのXRD測定の結果を示す。図27に示されるように、経日30日では50℃保存の系は3つのピークになった。これはSLP−MSE混合液晶膜由来のピークがSLPに由来する2つのピークとMSEのピークとに分かれたためと推測される。すなわち,混合液晶膜が壊れたために油の凝集が起こったことを示し,エマルションの安定性は本質的にはSLP−MSE混合液晶膜の安定性に依存すると推測できる。   The temperature change was performed at −20 ° C., room temperature, and 50 ° C. Those stored at 50 ° C. had oil agglomeration after 30 days. FIGS. 26 and 27 show the results of XRD measurement for examining changes in the SLP-MSE mixed liquid crystal film. As shown in FIG. 27, at 30 days, the system stored at 50 ° C. had three peaks. This is presumably because the peak derived from the SLP-MSE mixed liquid crystal film was divided into two peaks derived from SLP and an MSE peak. That is, it shows that oil aggregation occurred because the mixed liquid crystal film was broken, and it can be assumed that the stability of the emulsion essentially depends on the stability of the SLP-MSE mixed liquid crystal film.

[希釈エマルションの安定性]
食品用乳化剤は、低濃度で安定なエマルションを形成することが求められている。そこで、本研究で創製した可食性エマルションを希釈することにより、低濃度の乳化剤で安定なエマルションを形成するかどうかを検討した。
図28は図16で創製したエマルションを10倍に希釈し、粒子径と外観観察を行った結果を示す。粒子径は、いずれの濃度も約200nm一定で、希釈する前のエマルションとほぼ変わらず、安定なエマルションを形成した。一般の界面活性剤では、水で希釈すると水溶液中の界面活性剤濃度の低下により,油滴表面に吸着した界面活性剤分子が脱離するため,油が分離する。しかし、三相乳化法によって創製した可食性エマルションは、微粒子付着によって油を乳化しているため、油滴と乳化剤相が水に安定に分散する。このため、希釈することで安定性に影響することはなく、低濃度な半透明の可食性エマルションを創製することができた。
[Stability of diluted emulsion]
Food emulsifiers are required to form stable emulsions at low concentrations. Therefore, we examined whether to dilute the edible emulsion created in this study to form a stable emulsion with a low concentration of emulsifier.
FIG. 28 shows the results of diluting the emulsion created in FIG. 16 10 times and observing the particle size and appearance. The particle size was constant at about 200 nm in all concentrations, and was almost the same as the emulsion before dilution, forming a stable emulsion. In general surfactants, when diluted with water, surfactant molecules adsorbed on the surface of the oil droplets are released due to a decrease in the surfactant concentration in the aqueous solution, so that the oil is separated. However, since the edible emulsion created by the three-phase emulsification method emulsifies oil by adhering fine particles, the oil droplets and the emulsifier phase are stably dispersed in water. Therefore, the dilution did not affect the stability, and a low-concentration translucent edible emulsion could be created.

[脂肪酸エステルの炭素鎖長の違いによる安定性]
上述のショ糖脂肪酸エステルは、炭素鎖長が14である場合の例を示したが、炭素鎖長が異なるショ糖脂肪酸エステルを用いて乳化した結果を表9示す。炭素鎖長が異なることで安定性に影響することはなく、安定したエマルションを形成することができた。
[Stability due to difference in carbon chain length of fatty acid ester]
Although the above-mentioned sucrose fatty acid ester showed the example in case carbon chain length is 14, Table 9 shows the result emulsified using sucrose fatty acid ester from which carbon chain length differs. Different carbon chain lengths did not affect stability, and a stable emulsion could be formed.

[レシチンの種類による安定性]
上述においては、大豆レシチン(SLP)を用いた例を示したが、卵黄レシチンとショ糖ミリスチン酸エステルの混合系による大豆油の乳化例を表10に示す。卵黄レシチンにおいても安定したエマルションを形成することができた。
[Stability by type of lecithin]
In the above description, an example using soybean lecithin (SLP) was shown, but Table 10 shows an example of emulsification of soybean oil by a mixed system of egg yolk lecithin and sucrose myristic acid ester. A stable emulsion could be formed even in egg yolk lecithin.

[食品用乳化剤の種類による可食性エマルションの安定性]
上述においては、大豆レシチン(SLP)と混合させる食品乳化剤としてショ糖脂肪酸エステルを用いた場合を示したが、大豆レシチン(SLP)と混合させる食品乳化剤(脂肪酸エステル種)を異ならせて大豆油の乳化した例を表11に示す。いずれの食品乳化剤においても、安定した可食性エマルションを形成することができた。
[Stability of edible emulsions depending on the type of emulsifier for food]
In the above, the case where sucrose fatty acid ester is used as a food emulsifier to be mixed with soybean lecithin (SLP) has been shown, but the food emulsifier (fatty acid ester species) to be mixed with soybean lecithin (SLP) is made different so that the soybean oil An example of emulsification is shown in Table 11. In any food emulsifier, a stable edible emulsion could be formed.

尚、以上においては、リン脂質と脂肪酸エステルとを混合させた混合液晶を主成分とする乳化分散剤を用いて可食性エマルションを形成した例を示したが、上述した混合液晶に代えて、でんぷんやキトサン等の糖ポリマーを用いて乳化しても安定した可食性エマルションを形成することが可能であった。でんぷんによる大豆油、菜種油、オリーブ油、米絞り油の乳化例を表12に、キトサンによる大豆油の乳化例を表13に示す。   In the above, an example has been shown in which an edible emulsion is formed using an emulsifying dispersant containing a mixed liquid crystal in which a phospholipid and a fatty acid ester are mixed as a main component, but instead of the mixed liquid crystal described above, starch is used. It was possible to form a stable edible emulsion even when emulsified with a sugar polymer such as or chitosan. Table 12 shows emulsification examples of soybean oil, rapeseed oil, olive oil and rice squeeze oil by starch, and Table 13 shows emulsification examples of soybean oil by chitosan.

[結論]
以上述べたように、可食性植物油の安定なエマルションは、従来調製することが困難であったが、本手法により以下の結果を得ることができた。
1.大豆レシチンと脂肪酸エステルを混合液晶にすることで、良好な微粒子乳化剤にすることができた。
2.混合液晶の微粒子乳化剤は、可食性植物油を油成分90wt%まで安定に乳化することができた。
3.調製した可食性エマルションは、三相エマルションの構造をしている。
4.大豆油で調製したエマルションは、約150nmのサイズの半透明なエマルションになり、乳化技術の新しい実用化の可能性が期待される。
[Conclusion]
As described above, a stable emulsion of edible vegetable oil has been difficult to prepare conventionally, but the following results could be obtained by this method.
1. By making soy lecithin and fatty acid ester into a mixed liquid crystal, an excellent fine particle emulsifier could be obtained.
2. The mixed liquid crystal fine particle emulsifier was able to stably emulsify edible vegetable oil up to 90 wt% of the oil component.
3. The prepared edible emulsion has a three-phase emulsion structure.
4). The emulsion prepared with soybean oil becomes a translucent emulsion having a size of about 150 nm, and a new practical application of the emulsification technique is expected.

図1は、DMPC−C14(EO)とヘキサデカンのエマルションと粒子径を示す図である。FIG. 1 is a diagram showing the emulsion and particle size of DMPC-C 14 (EO) 8 and hexadecane. 図2は、DMPC−C14(EO)によるトリオレインのエマルションと粒子径を示す図である。FIG. 2 is a diagram showing the emulsion and particle diameter of triolein with DMPC-C 14 (EO) 8 . 図3は、SLP−食品乳化剤混合系の外観を示す写真である。FIG. 3 is a photograph showing the appearance of the SLP-food emulsifier mixed system. 図4、SLP−MSE混合系のXRD測定をMSEの質量分率(Ws)を変化させて測定した結果を示す図である。FIG. 4 is a diagram showing the results of XRD measurement of a mixed SLP-MSE system by changing the mass fraction (Ws) of MSE. 図5は、乳化剤中のMSEの質量分率(Ws)とSLPの二分子膜厚の関係を示す図である。FIG. 5 is a graph showing the relationship between the mass fraction (Ws) of MSE in the emulsifier and the bilayer thickness of SLP. 図6は、乳化剤中のMSEの質量分率(Ws)と分散液の粒子径の関係を示す図である。FIG. 6 is a graph showing the relationship between the mass fraction (Ws) of MSE in the emulsifier and the particle diameter of the dispersion. 図7は、分散液粒子を観察したTEM写真である。FIG. 7 is a TEM photograph observing the dispersion particles. 図8は、分散液粒子を観察したTEM写真である。FIG. 8 is a TEM photograph observing the dispersion particles. 図9は、分散液粒子を観察したTEM写真である。FIG. 9 is a TEM photograph observing the dispersion particles. 図10は、分散液粒子を観察したTEM写真である。FIG. 10 is a TEM photograph in which the dispersion particles are observed. 図11は、質量パーセント組成と濁度との関係を示す図である。FIG. 11 is a diagram showing the relationship between the mass percent composition and turbidity. 図12は、SLP−MSE混合系をSLPとMSEとの質量分率(Ws)を変化させて観察した写真である。FIG. 12 is a photograph of the SLP-MSE mixed system observed with the mass fraction (Ws) of SLP and MSE changed. 図13、静置法によるエマルションの安定性をエマルションの外観で示す写真である。FIG. 13 is a photograph showing the stability of the emulsion by the standing method in the appearance of the emulsion. 図14は、静置法によるエマルションの安定性をエマルションの外観で示す写真である。FIG. 14 is a photograph showing the stability of the emulsion by the standing method as the appearance of the emulsion. 図15は、静置法によるエマルションの安定性をエマルションの外観で示す写真である。FIG. 15 is a photograph showing the stability of the emulsion by the standing method as the appearance of the emulsion. 図16は、静置法によるエマルションの安定性をエマルションの外観で示す写真である。FIG. 16 is a photograph showing the stability of the emulsion by the standing method as the appearance of the emulsion. 図17は、静置法によるエマルションの安定性をエマルションの外観で示す写真である。FIG. 17 is a photograph showing the stability of the emulsion by the standing method as the appearance of the emulsion. 図18は、SLPとMSEとの質量分率(Ws)を0.5とした場合のXRD測定の結果を示す図である。FIG. 18 is a diagram showing the results of XRD measurement when the mass fraction (Ws) between SLP and MSE is 0.5. 図19は、SLPとMSEとの質量分率(Ws)を0.6とした場合のXRD測定の結果を示す図である。FIG. 19 is a diagram showing the results of XRD measurement when the mass fraction (Ws) between SLP and MSE is 0.6. 図20は、SLPとMSEとの質量分率(Ws)を0.7とした場合のXRD測定の結果を示す図である。FIG. 20 is a diagram showing the results of XRD measurement when the mass fraction (Ws) between SLP and MSE is 0.7. 図21は、SLP−MSEのWs=0.6によるエマルションを用いた場合の油の濃度とSLP−MSE混合液晶膜厚との関係を示す図である。FIG. 21 is a diagram showing the relationship between the oil concentration and the SLP-MSE mixed liquid crystal film thickness when an emulsion of SLP-MSE with Ws = 0.6 is used. 図22は、分散液の形状の違いによる油の濃度と粒子径の変化を示す図である。FIG. 22 is a diagram showing changes in oil concentration and particle size due to differences in the shape of the dispersion. 図23は、静置法による安定性をエマルションの外観で示す写真である。FIG. 23 is a photograph showing the stability of the emulsion by the standing method in the appearance of the emulsion. 図24は、静置法による安定性をエマルションの外観で示す写真である。FIG. 24 is a photograph showing the stability of the emulsion by the standing method in the appearance of the emulsion. 図25は、静置法による安定性をエマルションの外観で示す写真である。FIG. 25 is a photograph showing the stability of the emulsion by the standing method with the appearance of the emulsion. 図26は、SLP−MSE混合液晶膜変化を調べるためのXRD測定の結果を示す図である。FIG. 26 is a diagram showing the result of XRD measurement for examining the SLP-MSE mixed liquid crystal film change. 図27は、経日30日のXRD測定の結果を示す図である。FIG. 27 is a diagram showing the results of XRD measurement on the 30th day. 図28は、図16で創製したエマルションを10倍に希釈し、粒子径と外観観察を行った結果を示す図である。FIG. 28 is a diagram showing the results of diluting the emulsion created in FIG. 16 ten times and observing the particle size and appearance.

Claims (7)

可食性油にリン脂質と脂肪酸エステルとを混合させた混合液晶を主成分とする乳化分散剤を必須成分として含むことを特徴とする可食性エマルション。 An edible emulsion comprising, as an essential component, an emulsifying dispersant mainly composed of a mixed liquid crystal obtained by mixing phospholipid and fatty acid ester in edible oil. 前記混合液晶は、大豆リン脂質と脂肪酸エステルを混合させて形成されるものであることを特徴とする請求項1記載の可食性エマルション。 The edible emulsion according to claim 1, wherein the mixed liquid crystal is formed by mixing soybean phospholipid and a fatty acid ester. 前記脂肪酸エステルは脂肪酸ショ糖エステルであり、前記大豆リン脂質と前記脂肪酸ショ糖エステルの質量分率は、前記大豆リン脂質の質量をM1、前記脂肪酸ショ糖エステルの質量をM2、質量分率WsをM2/(M1+M2)とすると、0.1≦Ws<0.8の範囲に設定されることを特徴とする請求項2記載の可食性エマルション。 The fatty acid ester is a fatty acid sucrose ester, and the mass fraction of the soybean phospholipid and the fatty acid sucrose ester is M1, the mass of the soybean phospholipid is M1, the mass of the fatty acid sucrose ester is M2, and the mass fraction is Ws. 3 is M2 / (M1 + M2), the edible emulsion according to claim 2, wherein 0.1 ≦ Ws <0.8 is set. 重量比が前記リン脂質0.05〜20%、前記糖エステル0.005〜8.0%、可食性油10〜90%、水バランスで組成されることを特徴とする請求項1記載の可食性エマルション。 The weight ratio is composed of 0.05 to 20% of the phospholipid, 0.005 to 8.0% of the sugar ester, 10 to 90% of edible oil, and a water balance. Edible emulsion. 前記可食性油は、大豆油、米絞り油、オリーブ油、菜種油、機能性添加油であることを特徴とする請求項1記載の可食性エマルション。 The edible emulsion according to claim 1, wherein the edible oil is soybean oil, rice squeeze oil, olive oil, rapeseed oil, or a functional additive oil. 前記脂肪酸エステルは、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、又はプロピレングリコール脂肪酸エステルであることを特徴とする請求項2記載の可食性エマルション。 The edible emulsion according to claim 2, wherein the fatty acid ester is glycerin fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, or propylene glycol fatty acid ester. リン脂質と脂肪酸エステルとを所定の質量分率となるように混合し、リン脂質の重量比が所定の重量パーセントとなるように水を加えて分散させ、この分散液を水相とし、油相の重量比が所定の重量パーセントとなるようにエマルションを調製することを特徴とする可食性エマルションの製造方法。 A phospholipid and a fatty acid ester are mixed so as to have a predetermined mass fraction, and water is added and dispersed so that the weight ratio of the phospholipid is a predetermined weight percent. A method for producing an edible emulsion, characterized in that the emulsion is prepared so that the weight ratio thereof is a predetermined weight percent.
JP2005263002A 2005-09-09 2005-09-09 Edible emulsion and method for producing the same Active JP4552198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005263002A JP4552198B2 (en) 2005-09-09 2005-09-09 Edible emulsion and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263002A JP4552198B2 (en) 2005-09-09 2005-09-09 Edible emulsion and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007074909A true JP2007074909A (en) 2007-03-29
JP4552198B2 JP4552198B2 (en) 2010-09-29

Family

ID=37935842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263002A Active JP4552198B2 (en) 2005-09-09 2005-09-09 Edible emulsion and method for producing the same

Country Status (1)

Country Link
JP (1) JP4552198B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081546A1 (en) * 2010-12-13 2012-06-21 ミヨシ油脂株式会社 Powdered oil composition and production method thereof, and method of improving the functionality of the oil-in-water emulsion
JP2012125155A (en) * 2010-12-13 2012-07-05 Taiyo Kagaku Co Ltd Method for producing edible oil and fat emulsified product, the edible oil and fat emulsified product, and food and drink using the edible oil and fat emulsified product
JP2012170449A (en) * 2011-02-24 2012-09-10 Taiyo Kagaku Co Ltd Palatable food
WO2013146387A1 (en) * 2012-03-28 2013-10-03 味の素株式会社 Emulsified dispersant and emulsified composition
JP2014003974A (en) * 2012-05-29 2014-01-16 Univ Kanagawa Dressing and manufacturing method thereof
WO2015152199A1 (en) * 2014-03-31 2015-10-08 味の素株式会社 Oil-in-water dispersion type emulsified composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124052A (en) * 1988-11-02 1990-05-11 Kao Corp Quality improver for starchy food
JPH05161446A (en) * 1991-12-10 1993-06-29 Kanegafuchi Chem Ind Co Ltd Dough improver for making bread and bread making using the same
JPH07115890A (en) * 1993-10-22 1995-05-09 Kao Corp Emulsified oil and fat composition for puff, puff case and preparation of puff case
JPH09173003A (en) * 1995-12-25 1997-07-08 Amacos:Kk Defoaming emulsified oil and fat composition for food
JPH1088184A (en) * 1996-09-18 1998-04-07 Kanegafuchi Chem Ind Co Ltd Foamable emulsified oil and fat composition
JP2003250445A (en) * 2001-12-27 2003-09-09 Kao Corp Creamy composition for bread making

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124052A (en) * 1988-11-02 1990-05-11 Kao Corp Quality improver for starchy food
JPH05161446A (en) * 1991-12-10 1993-06-29 Kanegafuchi Chem Ind Co Ltd Dough improver for making bread and bread making using the same
JPH07115890A (en) * 1993-10-22 1995-05-09 Kao Corp Emulsified oil and fat composition for puff, puff case and preparation of puff case
JPH09173003A (en) * 1995-12-25 1997-07-08 Amacos:Kk Defoaming emulsified oil and fat composition for food
JPH1088184A (en) * 1996-09-18 1998-04-07 Kanegafuchi Chem Ind Co Ltd Foamable emulsified oil and fat composition
JP2003250445A (en) * 2001-12-27 2003-09-09 Kao Corp Creamy composition for bread making

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081546A1 (en) * 2010-12-13 2012-06-21 ミヨシ油脂株式会社 Powdered oil composition and production method thereof, and method of improving the functionality of the oil-in-water emulsion
JP2012125155A (en) * 2010-12-13 2012-07-05 Taiyo Kagaku Co Ltd Method for producing edible oil and fat emulsified product, the edible oil and fat emulsified product, and food and drink using the edible oil and fat emulsified product
JP2012170449A (en) * 2011-02-24 2012-09-10 Taiyo Kagaku Co Ltd Palatable food
WO2013146387A1 (en) * 2012-03-28 2013-10-03 味の素株式会社 Emulsified dispersant and emulsified composition
JPWO2013146387A1 (en) * 2012-03-28 2015-12-10 味の素株式会社 Emulsifying dispersant and emulsifying composition
JP2014003974A (en) * 2012-05-29 2014-01-16 Univ Kanagawa Dressing and manufacturing method thereof
WO2015152199A1 (en) * 2014-03-31 2015-10-08 味の素株式会社 Oil-in-water dispersion type emulsified composition

Also Published As

Publication number Publication date
JP4552198B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
RU2397754C2 (en) Oil-in-water emulsion as delivery means
RU2417618C2 (en) Method for production of oil-in-water emulsion, oil-in-water emulsion and easily dispersible lipidic phase for it, kit for production of said emulsion (versions)
Jiao et al. Rheology and stability of water-in-oil-in-water multiple emulsions containing Span 83 and Tween 80
JP5933709B2 (en) Method of forming an encapsulated composition having enhanced solubility and stability
Pichot Stability and characterisation of emulsions in the presence of colloidal particles and surfactants.
JP5620111B2 (en) Method for producing nanoemulsion
JP4552198B2 (en) Edible emulsion and method for producing the same
JP2014532051A (en) Water-in-oil emulsion and preparation method thereof
Miller et al. Phase inversion of W/O emulsions by adding hydrophilic surfactant—a technique for making cosmetics products
US9302241B2 (en) Method of preparing lipid nanoparticles
de Oca-Ávalos et al. Colloidal properties of sodium caseinate-stabilized nanoemulsions prepared by a combination of a high-energy homogenization and evaporative ripening methods
JP5371030B2 (en) Method for producing vesicle, vesicle obtained by this production method, and W / O / W emulsion for producing vesicle
JP2010104946A (en) Water-in-oil (w/o) emulsion formed using reverse vesicle
Zhang et al. Highly concentrated oil-in-water (O/W) emulsions stabilized by catanionic surfactants
JP5374690B2 (en) Alcohol-resistant emulsion and method for producing the same
Barauskas et al. Structure of lyotropic self-assembled lipid nonlamellar liquid crystals and their nanoparticles in mixtures of phosphatidyl choline and α-tocopherol (vitamin E)
Nabi et al. Phase behaviour and vesicle formation in catanionic mixtures of Na oleate and alkyl trimethyl ammonium bromide and its salt-free version
Hashizaki et al. Highly viscoelastic reverse wormlike micellar systems from a mixture of lecithin, polyglycerol fatty acid monoesters, and an oil
JP2016163851A (en) Composite type solubilized nanoliposome and method for producing the same
US20190388307A1 (en) Process For Formation of Emulsion Containing Liquid Crystal Structure
Yamashita Recent dispersion technology using liquid crystal
CN111372462A (en) Double emulsions
XU et al. Factors affecting the properties of ethanol-in-oil emulsions
Shahripoddin Development of Alkyl Polyglucosides (APG) Nanoemulsions Containing Ibuprofen as a Delivery System for Pharmaceutics
Herrera et al. Nano and micro food emulsions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4552198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250