JP2007071863A - 光学式センサ及び流体測定方法 - Google Patents

光学式センサ及び流体測定方法 Download PDF

Info

Publication number
JP2007071863A
JP2007071863A JP2006054228A JP2006054228A JP2007071863A JP 2007071863 A JP2007071863 A JP 2007071863A JP 2006054228 A JP2006054228 A JP 2006054228A JP 2006054228 A JP2006054228 A JP 2006054228A JP 2007071863 A JP2007071863 A JP 2007071863A
Authority
JP
Japan
Prior art keywords
light
optical fiber
fluid
optical
bending deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006054228A
Other languages
English (en)
Inventor
Masashi Mori
森昌司
Kunito Okuyama
奥山邦人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2006054228A priority Critical patent/JP2007071863A/ja
Publication of JP2007071863A publication Critical patent/JP2007071863A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】簡単な構成で気相及び液相を判別可能な構造を有し、小型且つ安価に製造することができる光学式センサを提供する。
【解決手段】光ファイバ(1)を屈曲し又は光ファイバのコアを部分的に露出させ、感知部として働く曲げ変形部(5)又はコア露出部(10)を光ファイバに形成する。曲げ変形部に接する流体の屈折率の相違に相応して、光路内の光を曲げ変形部又はコア露出部から流体に出射するとともに、曲げ変形部又はコア露出部を通過して光量検出部(13)に到達する光量の変化を検出する。
【選択図】図2

Description

本発明は、光学式センサ及び流体測定方法に関するものであり、より詳細には、被測定流体の屈折率の相違を利用して被測定流体の判別、気泡検出、物性検出等を行う簡易な構成の光学式センサ及び流体測定方法に関するものである。
光の屈折特性を利用して気液を判別する光学式センサが知られている。この種のセンサは、液面レベルを検出する液面センサとして工業的に使用されている。図19及び図20は、光の屈折特性を利用した従来の液面センサの構成を概略的に示す正面図である。
図19には、液面センサを構成するプローブのセンサヘッド100を空気中に配置した状態が示されており、図20には、センサヘッド100を水面(WL)下に移動させた状態が示されている。
センサヘッド100は、光ファイバの保護管を構成する管体部分101と、管体部分101の先端部に配置された円筒状プリズム110とを備える。管体部分101及びプリズム110は、フッソ樹脂等の樹脂の一体成形品からなる。対をなす送光用光ファイバ102及び受光用光ファイバ103が管体部分101内に配置される。送光用光ファイバ102は、光源(図示せず)に接続され、受光用光ファイバ103は、光量検知器(図示せず)に接続される。光源が発光した光が、送光用光ファイバ102を伝播してセンサヘッド100に送光され、プリズム110のプリズム面に入射する。プリズム110は、液面センサの感知部を構成し、プリズム面に接する流体の屈折率の相違に相応して、プリズム面に入射した光を全反射し(図19)、或いは、プリズム面に入射した光を少なくとも部分的に流体内に出射する(図20)。
図19に示す如くセンサヘッド100が空気中に位置するとき、プリズム110に入射した光は、プリズム面で全反射し、受光用光ファイバ103の光路内を伝播して光量検知器(図示せず)に到達し、光量検知器は、到達した光の光量を検出する。他方、図20に示すようにセンサヘッド100を水に浸漬し、プリズム110を水中に移動すると、プリズム面の臨界角が変化し、プリズム面に入射する光の多くは全反射せず、プリズム面を透過して水中に直線的に放射する。従って、受光用光ファイバ103の光路に伝播する光量は減少し、光量検知器は光量の低下を検出する。即ち、従来の液面センサは、プリズム110に接触する流体(気体又は液体)の屈折率の相違(従って、臨界角の変化)を利用して気相又は液相を判別するように構成されており、センサヘッド100は、適切な角度に設計されたプリズム面を有するプリズム110を必須の構成要素として備える。
このような構成を有する液面センサは、例えば、特開平7−92004号公報、特開平7−120293号公報、特開平10−318819号公報、特開2001−183219号公報、特開2003−214926号公報、特開2000−266585号公報に開示されている。
他の形式の光学式センサとして、液体にレーザ光を照射する光ファイバを備えた気液二相流計測システムが知られている。気液二相流計測システムを構成するプローブの構成が、図21に概略的に示されている。
気液二相流計測システムのプローブ200は、出射端面201を備えた光ファイバを有する。プローブ200は、出射端面201からレーザ光202を液中に照射するとともに、反射光を測定する光強度計測部(図示せず)に反射光を導く。光強度計測部は、反射光203の強度を測定し、気相又は液相を判別する。光強度計測部の測定結果に基づき、気液二相流のボイド率、気泡数、気泡速度、気泡通過時間等の情報が得られる。この種の計測システムとして、一対の光ファイバの先端部を互いに所定の角度をなして配向し、一方の光ファイバが照射した光を他方の光ファイバによって受光するように構成された光学式センサが、特開平8−297011号公報に開示されている。同公報に記載されたセンサでは、各ファイバの先端部が所定の角度をなして配向され、受光側の光ファイバは、光強度検出手段に接続される。光強度検出手段は、反射光の強度を測定し、物体との距離、或いは、物体の物理的性質を検出する。
特開平7−92004号公報 特開平7−120293号公報 特開平10−318819号公報 特開2001−183219号公報 特開2003−214926号公報 特開2000−266585号 特開平8−297011号公報
しかしながら、先端部にプリズムを備えた従来の液面センサは、高い製造コストを要するばかりでなく、少なくとも6mm程度の直径を有し、狭小領域に収容した静止流体や、ミクロン単位の寸法の狭小流路等を流通する流動流体を計測するセンサとしては、使用することができない。例えば、狭小領域の液面レベルの多点計測等に関しては、極めて細い液面センサを狭小領域に配設する必要が生じるが、センサの製造困難性、或いは、製造コストの非現実的な高額化等の理由により、ユーザーの要望に応えることができない。
他方、前述の気液二相流計測システムは、光ファイバの先端部にプリズムを備えていないことから、検出端をある程度まで小型化し得るかもしれない。しかし、気液二相流計測システムは、複雑な情報処理手段を必要とするので、システム全体の構成が複雑化するとともに、システム全体の製造コストがかなり高額化する。また、従来の気液二相流計測システムでは、図21に示す如く気泡Vが出射端面201に接近すると、気泡Vの気液界面の反射光203による計測ノイズが発生する傾向があり、このようなノイズを除去する複雑な制御手段をシステムに組込む必要が生じる。
本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、簡単な構成で気相又は液相の判別等を行うことができる構造を有し、小型且つ安価に製造することができる光学式センサを提供することにある。
本発明は又、比較的簡易且つ小型の装置構成により、気相又は液相の判別等を行うことができる流体測定方法を提供することを目的とする。
本発明は、上記目的を達成すべく、光源、光ファイバ、感知部及び光量検出部を備え、感知部に接する流体の屈折率の相違に相応して、前記光ファイバの光路内を伝播する前記光源の光を少なくとも部分的に前記流体内に出射し、前記感知部から前記光ファイバの光路内を伝播して前記光量検出部に到達する光の光量を検出する光学式センサにおいて、
前記光ファイバを屈曲し、前記感知部として働く前記光ファイバの曲げ変形部を形成し、
該曲げ変形部に接する流体の屈折率の相違に相応して、前記光路内の光を少なくとも部分的に前記曲げ変形部から前記流体に出射するとともに、前記曲げ変形部から前記光ファイバの光路内を伝播して前記光量検出部に到達する光量の変化を検出するようにしたことを特徴とする光学式センサを提供する。
本発明は又、光源、光ファイバ、感知部及び光量検出部を備え、感知部に接する流体の屈折率の相違に相応して、前記光ファイバの光路内を伝播する前記光源の光を少なくとも部分的に前記流体内に出射し、前記感知部から前記光ファイバの光路内を伝播して前記光量検出部に到達する光の光量を検出する光学式センサにおいて、
前記光ファイバのクラッドを部分的に除去し又は喪失せしめることにより、該光ファイバのコアを部分的に露出させて、前記感知部として働くコア露出部を前記光ファイバに形成し、
該コア露出部に接する流体の屈折率の相違に相応して、前記光路内の光を少なくとも部分的に前記コア露出部から前記流体に出射し、前記コア露出部から前記光ファイバの光路内を伝播して前記光量検出部に到達する光量の変化を検出するようにしたことを特徴とする光学式センサを提供する。
本発明の上記構成によれば、曲げ変形部又はコア露出部が光ファイバに局所的に形成される。曲げ変形部又はコア露出部の臨界角は直線光路の臨界角と相違する。光路内を伝播する光を全反射させて光路内に閉じ込める機能は、曲げ変形部又はコア露出部において失われ、光路内の光の少なくとも一部が、曲げ変形部又はコア露出部から外界に出射する。曲げ変形部又はコア露出部から出射する光の光量は、曲げ変形部又はコア露出部に接する流体の物性及び種類により相違するので、曲げ変形部又はコア露出部を通過して光量検出部に到達する光の光量は、曲げ変形部又はコア露出部に接する流体の物性及び種類に相応して変化する。従って、本発明の光学式センサによれば、流体を曲げ変形部又はコア露出部に接触させることより、気相又は液相の判別、流体の種類、或いは、流体の物性等を検出することが可能となる。
本発明の光学式センサは、光ファイバを局部的に曲げ変形し、或いは、光ファイバのクラッドを局部的に除去し又は喪失せしめることによって光ファイバに感知部を形成するにすぎない簡易な構造を有する。従って、本発明の光学式センサは、従来の液面センサのようにプリズムを備える必要がなく、小型且つ安価に製造することができる。また、本発明の光学式センサによれば、光量検知器に到達する光量を検出することによって気相又は液相の判別等を行うことができるので、従来の気液二相流計測システムのように複雑且つ高価な情報処理システムを備える必要がなく、しかも、曲げ変形部又はコア露出部がプリズムの役目を果たすので、ノイズ発生を防止することができる。従って、本発明の構成は、システム全体の構成を簡素化する上で極めて有利である。
本発明は更に、光ファイバに設けられた感知部を流体に接触させ、感知部に接する流体の屈折率の相違に相応して、前記光ファイバの光路内を伝播する光を少なくとも部分的に前記流体内に出射し、前記感知部を通過して前記光ファイバの光路内を伝播して前記光量検出部に到達する光の光量を検出する流体測定方法において、
前記光ファイバの屈曲、及び/又は、前記光ファイバのクラッドの局部的な除去又は欠損により、前記感知部を前記光ファイバに形成し、
該感知部を流体に接触させた状態で前記光ファイバの送光用光路を介して光源の光を前記感知部に送光し、
前記感知部を通過して前記光ファイバの受光用光路に伝播する光の光量を測定することを特徴とする流体測定方法を提供する。
本発明の上記構成によれば、光ファイバに局所的に形成した曲げ変形部又はコア露出部を感知部として使用し、光量の変化を検出することによって流体の気相又は液相を判別することができる。
なお、「流体」は、一般に気体及び液体を総称する用語として使用されるが、本明細書において、「流体」は、静止流体及び流動流体を含み、気体及び液体、気液混合流体、スラリー、流動可能な半固体、固体粒子が混入した流体等を含む概念を意味するものとして理解すべきである。
本発明の光学式センサは、簡単な構成で気相又は液相の判別等を行うことができる構造を有し、しかも、小型且つ安価に製造することができる。
本発明の流体測定方法によれば、比較的簡易且つ小型の装置構成により、気相又は液相の判別等を行うことができる。
本発明の好適な実施形態によれば、光量検出部は、曲げ変形部又はコア露出部からなる感知部が静止流体中を移動する際に生じる光量の変化を検出する。光量検出部は、光量の変化により、流体の気相又は液相を判別し、流体の種類を検出し、或いは、流体の物性を検出することができる。
本発明の他の実施形態では、光量検出部は、流体の流動によって生じる光量の変化を検出する。光量の変化により、流体の流速、気泡数、気泡の移動速度、気泡の通過頻度、気泡の密度、気泡のサイズ及び/又は気泡の物性等を検出することができる。気泡の移動等を検出するために、複数の感知部が流動流体内に位置決めされ、光量検出器は、各々の感知部を通過して受光用光路内を伝播する光の光量を検出する。所望により、複数の感知部を一本光ファイバに形成しても良く、或いは、感知部を形成した複数の光ファイバを流動流体内に位置決めしても良い。
本発明の或る実施形態では、曲げ変形部のクラッドが少なくとも部分的に除去され又は欠損し、曲げ変形部のコアは、被検出流体に接する。
曲げ変形部の曲げ半径は、好ましくは、光ファイバの直径の5倍以下、更に好ましくは、光ファイバの直径の4倍以下に設定される。
好適には、曲げ変形部又はコア露出部は、二種の流体に接する際に4%以上、望ましくは、5%以上の光量減衰割合が得られるように設計される。
本発明の光学式センサ及び流体測定方法は、液体の液面変化の測定に好適に使用し得る。本発明の好ましい実施形態において、上記流体は、液体及び気体であり、複数の感知部を夫々備えた単一の光ファイバが使用され、或いは、感知部を夫々備えた複数の光ファイバが使用される。
単一の光ファイバに設けられた複数の感知部は、液体の液面に対して異なる相対位置に位置決めされ、光量検出部は、複数の感知部を通過した光の光量変化を測定し、これにより、液面の変化を検出する。
複数の光ファイバに夫々設けられた感知部は、液面に対して異なる相対位置に位置決めされる。光量検出部は、各光ファイバにおける光の光量変化を測定し、液面の変化を検出する。
所望により、光量検出部は、光量の時間変化を検出する手段を更に備え、液面の変化速度を検出する。
本発明の他の実施形態において、本発明は、流体の濃度検出等に適用される。即ち、多くの流体の屈折率と流体の物性との関係は、予め知られていることから、このような既知の情報に基づいて、光量の測定結果から流体の物性を検出することができる。検出すべき流体の物性が流体の濃度である場合、流体の濃度及び屈折率の相関関係に関する既知の情報に基づき、流体の濃度(例えば、溶液に溶解した物質の濃度)を光量の測定結果によって検出することができる。
以下、添付図面を参照して、本発明の好適な実施例について詳細に説明する。
図1は、一般的な光ファイバの構造を示す断面図であり、図2は、本発明に係るセンサの感知部の構成を示す断面図である。
図1に示す如く、光ファイバ1は、石英ガラス又は樹脂等で形成されるコア2及びクラッド3から構成される。光ファイバ1は、高屈折率のコア2の外周を低屈折率のクラッド3で被覆した二重構造を有し、コア2は、光の光路を構成する。光ファイバ1として、例えば、ポリメチルメタクリレート樹脂(屈折率1.49)のコア2と、フッソ樹脂(屈折率1.42)のクラッド3とからなり、ファイバ直径0.25mm、コア直径/ファイバ直径=98%、保存温度範囲=−55〜77℃の性質を有する光ファイバ(三菱レイヨン株式会社製品「スーパーエスカ」)を例示し得る。
図1(C)に示す如く、比較的大きな進入角(入射角)θ1でコア2及びクラッド3の間の境界面4に入射した光Lは、境界面4で屈折して境界面4を透過し、クラッド3内に進入する。臨界角θ2で境界面4に入射した光Lは、境界面4に平行な方向に境界面4で屈折する。臨界角θ2よりも小さい進入角θ3で境界面4に入射した光Lは、クラッド3内に透過せず、境界面4において全反射する。光ファイバ1は、このような光Lの全反射を利用し、光Lを光路内(コア2内)に閉じこめた状態で伝搬する。このような光ファイバの原理又は現象は、既に知られた原理又は現象であるので、更なる詳細な説明は、省略する。
図2(A)には、本発明のセンサを構成する感知部の構成が示されている。
光ファイバ1は、曲率中心Cを中心とした所定の曲率半径Rに曲げ変形され、曲げ変形部5において屈曲した形態を有する。曲げ変形部5は、光路内の光を周辺流体に出射する感知部を構成する。
曲げ変形部5の一方の側に位置する光ファイバ1の部分は、送光用光ファイバ6を構成し、曲げ変形部5の他方の側に位置する光ファイバ1の部分は、受光用光ファイバ7を構成する。図2(A)に示す如く、送光用光ファイバ6の光Lは、臨界角θ2よりも小さい進入角θ3で全反射を繰返しながら光路内(コア2内)を伝播し、曲げ変形部5に到達する。曲げ変形部5に到達した光Lの一部は、臨界角θ2よりも小さい進入角θ3 で境界面4に入射し、境界面4によって全反射し、反射光L1として曲げ変形部5を通過し、同様な全反射を繰返しながら受光用光ファイバ7の光路内を伝播する。しかしながら、境界面4の湾曲により、光Lの残部は、臨界角θ2よりも大きな進入角θ1で境界面4に入射し、屈折光L2として境界面4を透過する。境界面4を透過した屈折光L2は、クラッド3内に透過する。
屈折光L2は、クラッド3と外界(外部流体)との間の境界面8において屈折する。境界面8の臨界角は、クラッド3と外部流体との屈折率の相違によって決定される。臨界角以上の入射角で境界面8に入射した光は、光路内に反射し、臨界角を超える入射角で境界面8に入射した光は、外部流体に射出する。従って、光路内に反射する光量は、外部流体の屈折率の変化に相応して変化する。
曲げ変形部5が光を出射する現象は、主として、光路の屈曲又は湾曲によってクラッド3に入射する光の進入角が変化することに起因するが、副次的な要因として、光ファイバ1の曲げ変形によって生じるクラッド3の部分欠損又は喪失に起因する光の屈折の変化が考えられる。このようなクラッド3の欠落又は喪失を積極的に利用した構成を有する光ファイバ1の感知部が、図2(B)に示されている。
図2(B)に示す曲げ変形部5は、コア2を被覆するクラッド3を局部的に除去し又は喪失せしめ、コア2を曲げ変形部5の外側面において露出させた構成を有する。コア2は、曲率中心Cを中心とした角度αの範囲内で周囲の流体(気体又は液体)に露出する。曲げ変形部5に到達した光Lの一部は、臨界角θ2’よりも小さい進入角θ3’で境界面9に入射し、境界面9で全反射する。全反射した光は、反射光L1として受光用光ファイバ7の光路内を伝播する。しかしながら、境界面9の湾曲により、光Lの多くは、臨界角θ2’よりも大きな進入角θ1’で境界面9に入射し、屈折光L2として境界面9を透過する。境界面9を透過した屈折光L2は、光ファイバ1の外部に出射する。
臨界角θ2’以下の入射角θ3’で境界面9に入射した光は、光路内に全反射し、臨界角θ2’を超える入射角θ1’で境界面に入射した光は、外部流体に射出する。角度範囲αにおける臨界角θ2’は、コア2と周辺流体との屈折率の相違によって決定されるので、受光用光ファイバ7の光路内を伝播する光の光量は、外部流体の屈折率の変化に相応して変化する。従って、光量の変化を検出することにより、外部流体の変化を検出することができる。
図3には、図2(A)に示す曲げ変形部5を備えたセンサの基本構成が示されている。
光ファイバ1は、光源12及び光量検知器13を備えた制御部11に接続される。送光用光ファイバ6は光源12に接続され、受光用光ファイバ7は光量検出器13の受光素子に接続される。光源12が発光する光は、光ファイバ1の光路内を伝播し、曲げ変形部5に到達する。曲げ変形部5は、図3(A)において空気中に位置し、図3(B)において液中に位置する。いずれの場合であっても、曲げ変形部5における光路の変形により、光L2が曲げ変形部5から空気中又は液中に放射する。しかしながら、放射する光L2の光量は、曲げ変形部5の位置の相違(空気中に位置するか、液中に位置するか)に相応して変化する。曲げ変形部5において光路内に反射した光は、受光用光ファイバ7の光路を伝搬して光量検知器13の受光素子に到達し、光の光量が光量検知器13によって測定される。
図3(A)に示す空気中位置では、曲げ変形部5は、空気中に位置し、空気とコア2又はクラッド3との屈折率の差が比較的大きく、比較的少量の光L2が曲げ変形部5から空気中に放射する。このため、比較的多量の光が光量検出器13によって検出される。他方、図3(B)に示す水中位置では、曲げ変形部5は、水中に位置し、外部流体とコア2又はクラッド3との屈折率の差が減少するので、比較的多量の光L2が水中に射出する。このため、光量検出器13は、比較的少ない光量を検出するにすぎない。
図4は、図3に示すセンサの作動試験結果を示す線図である。
図4には、曲げ変形部5を水(水道水)に繰返し浸漬した際に得られる光量検出値の時間変動特性が示されている。図4に示す受光量は、受光素子の出力電圧によって示されている。
光量検知器13によって光量を継続的に検出しながら、図3(B)に示すように曲げ変形部5を10秒間に7回、水中に浸漬した結果、光量検知器13の光量検出値は、空気中位置(図3(A))及び水中位置(図3(B))の変化に応答して明確に変化することが判明した。図4には、光量検出値の時間変化が示されている。曲げ変形部5が空気中に位置するとき、光量検知器13の光量検出値は増大し、曲げ変形部5が水中に位置するとき、光量検知器13の光量検出値は減少する。
図5は、図3に示すセンサの他の作動試験結果を示す線図である。図5(A)には、曲げ変形部5を水及び塩水に交互に浸漬した場合に得られる光量検出値の時間変動特性が示されている。図5(A)に示す受光量は、受光素子の出力電圧によって示されている。
光量検出器13によって光量を継続的に検出しながら、曲げ変形部5を10秒間に4回、液中に浸漬した結果、光量検知器13の光量検出値は、図4に示す試験結果と同じく、空気中位置(図3(A))及び液中位置(図3(B))の変化に相応して明確に変化する。曲げ変形部5の空気中位置における光量検出値は、図4に示す試験結果と同様、実質的に一定の値を示すが、曲げ変形部5の液中位置における光量検出値は、図4に示す試験結果と異なり、液の種類(水及び塩水)に相応して相違する。曲げ変形部5を塩水に浸漬した際に得られる光量検出値は、曲げ変形部5を水に浸漬した際に得られる光量検出値よりも小さい。即ち、光量検出器13が検出する光量検出値は、気相又は液相の相違のみならず、流体濃度等の物性の相違によって生じる微妙な屈折率の変化によっても変化する。
図5(B)には、図3に示すセンサの曲げ変形部5をショ糖水溶液に浸漬した場合に得られる光量検出値と、ショ糖水溶液の屈折率との関係が示されている。
試験に用いた光ファイバ1は、ポリメチルメタクリレート樹脂(屈折率1.49)のコア2と、フッソ樹脂(屈折率1.42)のクラッド3とからなる直径0.25mmの光ファイバであり、曲げ半径=約0.1mmの曲げ変形部5を有する。図5(C)に示すように0〜50%のショ糖濃度(wt%)を有する6種類のショ糖水溶液が用意された。予め測定された各ショ糖水溶液の屈折率が、図5(C)に示されている。なお、ショ糖濃度60wt%以上のショ糖水溶液では、濃度分布が安定せずに一様な屈折率のショ糖水溶液が得られなかったことから、流動パラフィン(屈折率1.4775)が、ショ糖水溶液の代わりに使用された。
光ファイバ1の曲げ変形部5が、各水溶液(及び流動パラフィン)に浸漬され、受光素子に到達する光の光量が光量検知器13によって測定された。光量検出値(P/Pwater)は、ショ糖濃度30%以下のショ糖水溶液(屈折率約1.38以下の範囲)では、ショ糖濃度の変化に対して概ね線型変化し、ショ糖濃度との相関関係を示した。しかしながら、ショ糖濃度40%以上のショ糖水溶液(及び流動パラフィン)では、ショ糖濃度の変化に相応した光量検出値(P/Pwater)の変化は、観られなかった。これは、ショ糖水溶液の屈折率がクラッド3の屈折率(1.42)に近似し又はこれを超える範囲にあることに起因すると考えられる。なお、光量検出値(P/Pwater)は、曲げ変形部5を水に浸漬した状態で制御部11によって測定した光量測定値(Pwater)を基準にした指標であり、基準の光量測定値(Pwater)に対する光量測定値(P)の比として示される。
かくして、水溶液の屈折率がこのような範囲に達しない場合であれば、図3に示すセンサによって水溶液濃度をかなり正確に測定し得ることが判明した。
なお、図4及び図5に示す試験結果は、図2(A)に示す曲げ変形部5を備えたセンサの試験結果であるが、図2(B)に示す曲げ変形部を備えたセンサについても、同様の試験結果が得られる。
図6は、空気中位置及び水中位置の相違による受光量の変化と、光ファイバ1の曲げ直径2Rとの関係を示す線図である。図6において、受光量は、受光素子の出力電圧として示されている。
本発明のセンサの流体測定能力は、光量検知器13自体の感度に依存するのみならず、曲げ変形部5の感度にも依存する。曲げ変形部13の感度を決定する主要因として、曲げ変形部5の空気中位置において光量検知器13が検出する受光量PGと、曲げ変形部5の水中位置において光量検知器13が検出する受光量PLとの差η=PG−PLを挙げることができる。図6(A)には、直径0.5mmの光ファイバ1の曲げ変形部5を空気中から水中に移動させた際に得られる受光量の変化が、受光素子の出力電圧の変化として示されている。受光量PG、PLの差 ΔP(=PG−PL)を初期受光量(PG)の減衰量として定義し、初期受光量(PG)に対する減衰量ΔPの割合ΔP/PG を光量減衰割合ηとして定義することができる。光量減衰割合ηは、曲げ変形部5の感度を示す指標として把握し得る。
図6(B)には、曲げ変形部5の曲げ直径2Rと、光量減衰割合ηとの関係が示されている。図6(B)に示す如く、曲げ直径2Rが増大するにつれて、光量減衰割合ηが低下する。一般に、曲げ変形部5が所望の検知機能を発揮するには、約4%以上、好ましくは、5%以上の光量減衰割合ηが得られることが望ましい。図6に示す直径0.5mmの光ファイバ1の事例においては、曲げ直径2Rを5mm以下(曲げ半径Rを2.5mm以下)に設定することによって、4%以上の光量減衰割合ηが得られ、曲げ直径2Rを4mm以下(曲げ半径Rを2mm以下)に設定することによって、6%以上の光量減衰割合ηが得られる。5mm以下の曲げ直径2Rは、直径Dの5倍以下の曲げ半径R(即ち、R≦5×D)に相当し、4mm以下の曲げ直径2Rは、直径Dの4倍以下の曲げ半径R(即ち、R≦4×D)に相当する。
図7は、本発明に係るセンサの他の実施例を示す断面図である。
センサを構成する光ファイバ1は、図2(A)に示す如く、所定の曲率半径Rで湾曲した曲げ変形部5を備え、或いは、図2(B)に示す如く、曲げ変形部5の外側面のクラッド3を除去した構成を有する。図7に示すセンサは、このような曲げ変形部5を備えるとともに、光ファイバ1の直線部分のクラッド3を長さ範囲βに亘って除去したコア露出部10を送光用光ファイバ6に備える。
図8には、図7に示す曲げ変形部5及びコア露出部10を備えた本発明のセンサの基本構成が示されている。
送光用光ファイバ6は制御部11の光源12に接続され、受光用光ファイバ7は制御部11の光量検出器13に接続される。光源12が発光する光は、光ファイバ1の光路内を伝播し、コア露出部10及び曲げ変形部5に到達する。曲げ変形部5及びコア露出部10においてコア2内に反射した光は、受光用光ファイバ7の光路を伝搬して光量検知器13に到達し、光量検知器13によって測定される。
曲げ変形部5は、図8(A)において空気中に位置し、図8(B)において液中に位置する。コア露出部10は、図8(A)及び図8(B)において空気中に位置し、図8(C)において液中に位置する。いずれの場合であっても、比較的多量の光が曲げ変形部5及びコア露出部10から空気中又は液中に放射する。しかしながら、放射する光量は、曲げ変形部5及びコア露出部10の位置(空気中又は液中)によって相違する。
図9は、図8に示すセンサの作動試験結果を示す線図である。図9には、曲げ変形部5のみを水(水道水)に繰返し浸漬した際に得られる光量検出値の時間変動特性が、受光素子の出力電圧の変化として示されている。この作動試験は、コア露出部10を水中に浸漬せずに行われた。
光量検知器13によって光量を継続的に検出しながら、曲げ変形部5のみを4秒間に5回、水中に浸漬した場合、光量検知器13の光量検出値は、空気中位置(図8(A))及び水中位置(図8(B))の変化に相応して明確に変化する。
図10は、図8に示すセンサの他の作動試験結果を示す線図である。図9には、曲げ変形部5及びコア露出部10を水に繰返し浸漬した際に得られる光量検出値の時間変化が示されている。
光量検知器13によって光量を継続的に検出しながら、曲げ変形部5及びコア露出部10を5秒間に3回、水中に浸漬した場合、光量検知器13の光量検出値は、図8に示す試験結果と同様、空気中位置(図8(A))及び水中位置(図8(C))の変化に相応して明確に変化する。曲げ変形部5は、コア露出部10よりも早期に水中に浸漬し、コア露出部10は、若干の時間遅れをもって水中に浸漬するので、曲げ変形部5のみが水中に浸漬した状態で得られる光量値の特性aと、曲げ変形部5及びコア露出部10の双方が水中に浸漬した状態で得られる光量値の特性bとは、図10に示すように相違する。これは、曲げ変形部5のみならず、コア露出部10も又、気液判別手段として機能することを意味する。
図11は、図10に示す変化特性を模式的に示す線図である。
曲げ変形部5のみを水中に浸漬した状態の特性aと、曲げ変形部5及びコア露出部10の双方を水中に浸漬した状態の特性bとを対比すると、曲げ変形部5及びコア露出部10の距離H(図7及び図8)だけコア露出部10が水面WLに対して移動する時間ΔT1、ΔT2の間、光量値ΔP1、ΔP2の変化が生じる。従って、時間ΔT1、ΔT2及び距離Hより、センサと水面WLとの相対速度が得られる。
曲げ変形部5及びコア露出部10の双方が液体流に浸漬した状態において、液体流に随伴され又は連行された気泡Vが、図8に示す如く、曲げ変形部5に到達すると、境界面9aの臨界角が変化する。この結果、反射光L1として曲げ変形部5から受光用光ファイバ7に伝播する光量は増加し、光量検知器13は、受光量の増大を検出する。液体流によって気泡Vが随伴され、曲げ変形部5から離間すると、境界面9aの臨界角が変化し、反射光L1として曲げ変形部5から受光用光ファイバ7に伝播する光量は低減する。この結果、光量検知器13は、受光量の減衰を検出する。気泡Vがコア露出部5に到達すると、コア露出部10の境界面9bの臨界角が変化し、反射光L1として曲げ変形部5から受光用光ファイバ7に伝播する光量は増加し、この結果、光量検知器13は、受光量の増大を検出する。液体流によって気泡Vが随伴され、コア露出部10から離間すると、境界面9bの臨界角が変化し、反射光L1として曲げ変形部5から受光用光ファイバ7に伝播する光量は低減する。この結果、光量検知器13は、受光量の減衰を検出する。このように複数の感知部を備えた本発明のセンサによれば、流体の物性の相違のみならず、流体中を移動する気泡Vを感知し、流体中の気泡Vの個数、気泡Vの移動速度、気泡Vの分布等を検出することができる。
図12は、本発明に係るセンサの更に他の実施例を示す断面図である。
センサは、一対の光ファイバ1a、1bを有し、光ファイバ1a、1bは、光源及び光量検知器を備えた制御部11に接続される。光ファイバ1aには、所定の曲率半径で湾曲した曲げ変形部5aが形成される。曲げ変形部5aの一方の側に位置する光ファイバ1aの部分は、送光用光ファイバ6aを構成し、曲げ変形部5aの他方の側に位置する光ファイバ1aの部分は、受光用光ファイバ7aを構成する。送光用光ファイバ6aは制御部11の光源に接続され、受光用光ファイバ7aは制御部11の光量検出器に接続される。同様に、光ファイバ1bには、所定の曲率半径で湾曲した曲げ変形部5bが形成される。曲げ変形部5bの一方の側に位置する光ファイバ1bの部分は、送光用光ファイバ6bを構成し、曲げ変形部5bの他方の側に位置する光ファイバ1bの部分は、受光用光ファイバ7bを構成する。送光用光ファイバ6bは制御部11の光源に接続され、受光用光ファイバ7bは制御部11の光量検出器に接続される。光ファイバ1a、1bは、曲げ変形部5a、5bを鉛直上方に差し向けた状態で水中に配置され、鉛直距離Eだけ上下方向に離間する。
曲げ変形部5a、5bの双方が水中に浸漬した状態が図12(A)に示されている。水面WLが降下して曲げ変形部5aが空気中に露出すると、光ファイバ1aと関連した光量検知器の光量検出値が変化し、制御部11は、水面位置(水面降下)を検出する。図12(B)に示すように水面WLが更に降下し、曲げ変形部5bが空気中に露出すると、光ファイバ1bと関連した光量検知器の光量検出値が変化し、制御部11は、水面位置(水面降下)を検出する。制御部11は、光ファイバ1aが水面WLのレベルを検出した時刻と、光ファイバ1bが水面WLのレベルを検出した時刻とを夫々記憶し、検出時間差及び鉛直距離Eに基づいて水面WLの変化の速度を演算する。
図13〜16は、本発明に係るセンサの他の実施例を示す断面図である。
センサは、複数(本例では3箇所)の曲げ変形部5a、5b、5cを備えた光ファイバ1と、光源及び光量検知器を備えた制御部11とから構成される。曲げ変形部5aと制御部11の光源との間に位置する光ファイバ1の部分は、送光用光ファイバ6を構成し、曲げ変形部5cと制御部11の光量検出器との間に位置する光ファイバ1の部分は、受光用光ファイバ7を構成する。曲げ変形部5a、5bの間に延びる光ファイバ1の部分は、曲げ変形部5aにおいて光路内に反射した光を曲げ変形部5bに伝播させる中継用光ファイバ15を構成し、曲げ変形部5b、5cの間に延びる光ファイバ1の部分は、曲げ変形部5bにおいて光路内に反射した光を曲げ変形部5cに伝播させる中継用光ファイバ16を構成する。
曲げ変形部5a、5b、5cは、互いに異なるレベルに配置される。本例では、曲げ変形部5cは、最も水面WLに接近した最下位レベルに配置され、曲げ変形部5aは、最も水面WLから離間した最上位レベルに配置され、曲げ変形部5bは、曲げ変形部5a、5cの間の中間高さに配置される。図13には、曲げ変形部5a、5bのレベル差が鉛直距離E1として示され、曲げ変形部5b、5cのレベル差が鉛直距離E2として示されている。
送光用光ファイバ6は制御部11の光源に接続され、受光用光ファイバ7は制御部11の光量検出器に接続される。光源12が発光する光は、送光用光ファイバ6の光路内を伝播し、曲げ変形部5aに到達する。前述の如く、光の一部は、曲げ変形部5aにおける光路の変形により、曲げ変形部5aから空気中又は液中に部分的に放射し、光の残部は、曲げ変形部5aにおいて中継用光ファイバ15の光路内に反射し、中継用光ファイバ15の光路を伝搬して曲げ変形部5bに到達する。曲げ変形部5bにおける光路の変形により、光の一部が曲げ変形部5bから空気中又は液中に部分的に放射し、光の残部は、曲げ変形部5bにおいて中継用光ファイバ16の光路内に反射して中継用光ファイバ15の光路を伝搬し、曲げ変形部5cに到達する。曲げ変形部5cにおける光路の変形により、光の一部が曲げ変形部5cから空気中又は液中に部分的に放射し、光の残部は、曲げ変形部5cにおいて受光用光ファイバ7の光路内に反射して受光用光ファイバ7の光路を伝搬し、制御部11の光量検出器に到達する。制御部11は、光量検出器の受光素子に到達した光の光量を測定する。
図13には、全ての曲げ変形部5a、5b、5cが空気中に位置する状態が示されている。水面WLとセンサとの相対位置が変化し、例えば、水面WLが上昇し、この結果、曲げ変形部5cのみが水中に浸漬した状態が、図14に示されている。水面WL及びセンサの相対位置が更に変化し、曲げ変形部5b、5cが水中に浸漬した状態が、図15に示されている。水面WL及びセンサの更なる相対位置変化により、全ての曲げ変形部5a、5b、5cが水中に浸漬した状態が、図16に示されている。
図17は、図13〜16に示すセンサの作動試験結果を示す線図である。作動試験では、図13〜16に示す順番で曲げ変形部5c、5b、5aを水に順次浸漬した後、逆の順番で曲げ変形部5a、5b、5cを空気中に順次移動させた。この間に得られる光量検出値(P/Pwater)の時間変化が、図17に示されている。
図17に示すように、全ての曲げ変形部5a、5b、5cが空気中に位置する状態(図13)では、光量レベルp1が得られ、曲げ変形部5cのみが水中に浸漬した状態(図14)では、光量レベルp2が得られた。また、曲げ変形部5b、5cが水中に位置する状態(図15)では、光量レベルp3が得られ、全ての曲げ変形部5a、5b、5cが水中に浸漬した状態(図16)では、光量レベルp4が得られた。即ち、光量検出値は、水に接する曲げ変形部の数に相応して段階的に変化する。従って、曲げ変形部5a、5b、5cを単一の光ファイバ1に形成した構成を有する本例のセンサは、水面WLとセンサとの相対位置の変化(例えば、水面WLの変化)を光量検出値(P/Pwater)の変化によって検出することができる。しかも、光ファイバ1に接続された制御部11は、鉛直距離E1、E2と、光量検出値(P/Pwater)の時間変化とに基づいて、水面WL及びセンサの相対位置の変化速度、例えば、水面WLの変動速度を検出することができる。
前述の各実施例において、曲げ変形部5は、室温又は大気温度で光ファイバ1を曲げ変形させる常温曲げ加工によって形成し、或いは、加熱状態で光ファイバ1を曲げ変形させる加熱・曲げ加工によって形成しても良い。また、加熱・曲げ加工においては、光ファイバ1を張力下に曲げ変形させても良い。図18には、加熱・曲げ加工によって形成された光ファイバ1の構造が示されている。曲げ変形部5、光ファイバ部分6c、7cは、光ファイバ1を張力下に局所加熱することよって曲げ変形させた部分であり、この部分の直径は、光ファイバ部分6d、7dの直径(光ファイバ1の素線径)に比べ、大きく縮小している。ポリメチルメタクリレート樹脂のコア2と、フッソ樹脂のクラッド3とからなる光ファイバや、その他の熱可塑性樹脂のコア及びクラッドからなる光ファイバをこのような加工法で曲げ加工することができる。なお、加熱温度は、光ファイバ1を構成する素材の軟化温度を基準に適宜設定される。このように曲げ変形部5を細径化することにより、本発明のセンサをマイクロバブル等の微小気泡の検出に用いることが可能となる。また、このような加工法に従って曲げ変形部5を形成した場合、光ファイバ1の直径は漸減するので、比較的大きな直径を有する光ファイバ部分6d、7dと、細径化した光ファイバ部分6c、7cとの境界に段差が形成されず、従って、大径の光ファイバと小径の光ファイバとを接続した場合に生じ得る光の漏れ等を防止し、光ファイバの接続に伴う接続損失を抑制することができる。
以上、本発明の好適な実施例について詳細に説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。
例えば、光量検知器13の検出値をコンピュータ等の情報処理装置に出力し、数値処理プログラム又はデータ処理プログラム等によって所望のデータに変換することができる。
また、光ファイバの素線径及び素材は、光学式センサの使用目的に応じて適宜設定することがてきる。
更に、上記実施例においては、コア露出部10は、送光用光ファイバ6に配置されているが、コア露出部10を受光用光ファイバ7に配置しても良い。
また、本発明に従って複数の曲げ変形部5又はコア露出部10を光ファイバ1に形成し、或いは、複数のセンサを組み合わせた流体測定シテスムを設計しても良い。
本発明の光学式センサは、簡単な構成で気相及び液相を判別可能な構造を有し、小型且つ安価に製造することができる。本発明によれば、素線径が小さい光ファイバを使用することにより、マイクロスケールの感知部を有する光学式センサを容易に製造することができる。また、耐熱性を有する光ファイバを使用することにより、耐熱性を有する小型の感知部を備えた光学式センサを製造することができ、更には、半透明のテフロン(登録商標)等の耐酸性樹脂によって光ファイバを被覆することにより、耐酸性を有する光学式センサを製造することができる。
本発明に従って、静止流体の気液判別、流体の種類の検出又は流体の物性(濃度、屈折率等)の検出を行う光学式センサを製造し得るのみならず、流動する流体の流速、気泡数、気泡の移動速度、気泡の通過頻度、気泡の密度、気泡のサイズ(直径等)及び/又は気泡の物性等の検出を行う光学式センサを製造することができる。例えば、流体のボイド率等を検出するボイドセンサを本発明に従って製造することができる。
本発明の光学式センサは、電気的方式のセンサでは測定困難な非導電性流体(フレオンガス、液化天然ガス、石油、炭化水素系燃料等)の検出又は物性測定に好適に使用し得る。また、本発明の光学式センサは、電磁誘導ノイズの影響を受けないので、大電流の電力を使用する工場又は電力施設に使用可能なセンサとして好ましく使用し得る。
本発明の構成は、濁度計、光温度センサ、臭気センサ又は各種流速計等に適用することができる。また、本発明の構成は、液晶の屈折率変化を利用することにより、圧力センサの製造を可能にする。
本発明に従って、複数の感知部を備えた光学式センサを構成することができる。また、本発明に従って、複数の光学式センサを同一領域で使用しても良い。複数の感知部又は複数の光学式センサを使用することにより、流体中の気泡のボイド分布、流体の濃度分布、流体の濁度分布、流体の流速、流体の流速分布、流体の温度分布等を計測する計測システムを構成することができる。
本発明の構成は、マイクロスケールの感知部を備えた光学式センサの製造を可能にするので、生体メカニズムの工学的解析のための各種センサ、血液又は生体組織を医療的に検査するための各種センサ、植物、微生物又は細菌等の研究に使用可能な各種センサ、更には、材料又は土質等の力学的解析に使用可能な各種センサなどの用途に応用することができ、本発明の適用範囲又は応用範囲は、極めて広範な分野に及ぶであろう。
一般的な光ファイバの構造を示す断面図である。 本発明に係るセンサの感知部の構成を示す断面図である。 図2(A)に示す曲げ変形部を備えたセンサの基本構成を示すブロック図である。 図3に示すセンサの作動試験結果を示す線図であり、曲げ変形部を水に繰返し浸漬した際に得られる光量検出値の時間変動特性が受光素子の出力電圧の変化として示されている。 図3に示すセンサの他の作動試験結果を示す線図である。 空気中位置及び水中位置の相違による受光量の変化と、光ファイバの曲げ直径との関係を示す線図である。 本発明に係るセンサの他の実施例を示す断面図であり、感知部の構成が示されている。 図7に示す感知部を備えたセンサの基本構成を示すブロック図である。 図8に示すセンサの作動試験結果を示す線図であり、曲げ変形部のみを水に繰返し浸漬した際に得られる光量検出値の時間変動特性が受光素子の出力電圧の変化として示されている。 図8に示すセンサの他の作動試験結果を示す線図であり、曲げ変形部及びコア露出部を水に繰返し浸漬した際に得られる光量検出値の時間変化が受光素子の出力電圧の変化として示されている。 図10に示す光量検出値の変化特性を模式的に示す線図である。 本発明に係るセンサの更に他の実施例を示す断面図である。 本発明に係るセンサの他の実施例を示す断面図であり、複数の曲げ変形部を備えた単一の光ファイバを有するセンサが示されている。 図13に示すセンサの断面図であり、最下位の曲げ変形部を水に浸漬した状態が示されている。 図13に示すセンサの断面図であり、最下位及び中間レベルの曲げ変形部を水に浸漬した状態が示されている。 図13に示すセンサの断面図であり、全ての曲げ変形部を水に浸漬した状態が示されている。 図13〜16に示すセンサの作動試験結果を示す線図である。 曲げ変形部を加熱・曲げ加工によって形成した光ファイバの構造を示す正面図である。 光の屈折特性を利用した従来の液面センサの構成を概略的に示す正面図である。 図12に示す液面センサを水中に浸漬した状態を示す正面図である。 従来の気液二相流計測システムを構成するプローブの構成を概念的に示すブロック図である。
符号の説明
1 光ファイバ
2 コア
3 クラッド
4、8、9 境界面
5、5a、5b、5c、 曲げ変形部
6、6a、6b 送光用光ファイバ
7、7a、7b 受光用光ファイバ
10 コア露出部
11 制御部
12 光源
13 光量検知器
15、16 中継用光ファイバ

Claims (15)

  1. 光源、光ファイバ、感知部及び光量検出部を備え、感知部に接する流体の屈折率の相違に相応して、前記光ファイバの光路内を伝播する前記光源の光を少なくとも部分的に前記流体内に出射し、前記感知部から前記光ファイバの光路内を伝播して前記光量検出部に到達する光の光量を検出する光学式センサにおいて、
    前記光ファイバを屈曲し、前記感知部として働く前記光ファイバの曲げ変形部を形成し、
    該曲げ変形部に接する流体の屈折率の相違に相応して、前記光路内の光を少なくとも部分的に前記曲げ変形部から前記流体に出射するとともに、前記曲げ変形部から前記光ファイバの光路内を伝播して前記光量検出部に到達する光の変化を検出するようにしたことを特徴とする光学式センサ。
  2. 光源、光ファイバ、感知部及び光量検出部を備え、感知部に接する流体の屈折率の相違に相応して、前記光ファイバの光路内を伝播する前記光源の光を少なくとも部分的に前記流体内に出射し、前記感知部から前記光ファイバの光路内を伝播して前記光量検出部に到達する光の光量を検出する光学式センサにおいて、
    前記光ファイバのクラッドを部分的に除去し又は喪失せしめることにより、該光ファイバのコアを部分的に露出させて、前記感知部として働くコア露出部を前記光ファイバに形成し、
    該コア露出部に接する流体の屈折率の相違に相応して、前記光路内の光を少なくとも部分的に前記コア露出部から前記流体に出射し、前記コア露出部から前記光ファイバの光路内を伝播して前記光量検出部に到達する光の変化を検出するようにしたことを特徴とする光学式センサ。
  3. 前記曲げ変形部のクラッドを部分的に除去し又は喪失せしめたことを特徴とする請求項1に記載の光学式センサ。
  4. 複数の前記曲げ変形部が所定距離を隔てて前記光ファイバに形成されることを特徴とする請求項1又は3に記載の光学式センサ。
  5. 複数の前記コア露出部が所定距離を隔てて前記光ファイバに形成されることを特徴とする請求項2に記載の光学式センサ。
  6. 前記光ファイバのクラッドを部分的に除去し又は喪失せしめることにより、該光ファイバのコアを部分的に露出させて、コア露出部を前記光ファイバに形成し、該コア露出部を前記曲げ変形部から所定間隔を隔てた位置に配置することを特徴とする請求項1又は3に記載の光学式センサ。
  7. 光ファイバに設けられた感知部を流体に接触させ、感知部に接する流体の屈折率の相違に相応して、前記光ファイバの光路内を伝播する光を少なくとも部分的に前記流体内に出射し、前記感知部を通過して前記光ファイバの光路内を伝播して前記光量検出部に到達する光の光量を検出する流体測定方法において、
    前記光ファイバの屈曲、及び/又は、前記光ファイバのクラッドの局部的な除去又は欠損により、前記感知部を前記光ファイバに形成し、
    該感知部を流体に接触させた状態で前記光ファイバの送光用光路を介して光源の光を前記感知部に送光し、
    前記感知部を通過して前記光ファイバの受光用光路内を伝播する光の光量を測定することを特徴とする流体測定方法。
  8. 流体に対して前記感知部を相対移動させて、前記光量の変化を検出し、該光量の変化に基づいて流体の気相又は液相を判別し、流体の種類を検出し、或いは、流体の物性を検出することを特徴とする請求項7に記載の流体測定方法。
  9. 前記感知部を流体内に位置決めし、該流体の流速、気泡数、気泡の移動速度、気泡の通過頻度、気泡の密度、気泡のサイズ及び/又は気泡の物性を前記光量の変化によって検出することを特徴とする請求項7に記載の流体測定方法。
  10. 前記流体は、液体及び気体であり、前記感知部を夫々備えた複数の光ファイバが使用され、複数の前記感知部が液体の液面に対して異なる相対位置に位置決めされ、各感知部を通過した光量の変化を夫々測定することによって前記液面の変化が検出されることを特徴とする請求項7に記載の流体測定方法。
  11. 前記流体は、液体及び気体であり、複数の前記感知部を夫々備えた単一の光ファイバが使用され、該感知部は、液体の液面に対して異なる相対位置に位置決めされ、前記光量の変化を測定することによって前記液面の変化が検出されることを特徴とする請求項7に記載の流体測定方法。
  12. 前記液面の時間変化によって該液面の変化速度が検出されることを特徴とする請求項10又は11に記載の流体測定方法。
  13. 前記流体の物性と前記光量の測定値との関係が予め求められ、測定すべき流体の物性が光量の測定結果によって検出されることを特徴とする請求項7に記載の流体測定方法。
  14. 前記流体の物性が該流体の濃度であり、測定すべき流体の濃度が前記光量の測定結果によって検出されることを特徴とする請求項13に記載の流体測定方法。
  15. 前記流体が溶液であり、溶液に溶解した物質の濃度が前記光量の測定結果によって検出されることを特徴とする請求項14に記載の流体測定方法。

JP2006054228A 2005-08-10 2006-02-28 光学式センサ及び流体測定方法 Withdrawn JP2007071863A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054228A JP2007071863A (ja) 2005-08-10 2006-02-28 光学式センサ及び流体測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005232656 2005-08-10
JP2006054228A JP2007071863A (ja) 2005-08-10 2006-02-28 光学式センサ及び流体測定方法

Publications (1)

Publication Number Publication Date
JP2007071863A true JP2007071863A (ja) 2007-03-22

Family

ID=37933403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054228A Withdrawn JP2007071863A (ja) 2005-08-10 2006-02-28 光学式センサ及び流体測定方法

Country Status (1)

Country Link
JP (1) JP2007071863A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009005063A1 (ja) * 2007-07-05 2009-01-08 Hamamatsu Photonics K.K. 光ファイバプローブ、流動現象計測装置および流動現象計測方法
JP2013504052A (ja) * 2009-09-04 2013-02-04 アストン ユニバーシティ 燃料中の水分センサ
CN104482984A (zh) * 2014-12-13 2015-04-01 中北大学 基于pof光纤宏弯的液位传感器
JP2018119896A (ja) * 2017-01-27 2018-08-02 大陽日酸株式会社 液面測定方法
JP2020134346A (ja) * 2019-02-21 2020-08-31 三菱自動車工業株式会社 電池パックの異変検出装置
WO2022059791A1 (ja) * 2020-09-17 2022-03-24 日本ゼオン株式会社 物体検出装置
JP7381430B2 (ja) 2020-10-21 2023-11-15 日立Geニュークリア・エナジー株式会社 液滴・液膜検出システム、および液滴・液膜検出方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009005063A1 (ja) * 2007-07-05 2009-01-08 Hamamatsu Photonics K.K. 光ファイバプローブ、流動現象計測装置および流動現象計測方法
JP2009014564A (ja) * 2007-07-05 2009-01-22 Hamamatsu Photonics Kk 光ファイバプローブ、流動現象計測装置および流動現象計測方法
JP2013504052A (ja) * 2009-09-04 2013-02-04 アストン ユニバーシティ 燃料中の水分センサ
US8873060B2 (en) 2009-09-04 2014-10-28 Aston University Water-in-fuel sensor
CN104482984A (zh) * 2014-12-13 2015-04-01 中北大学 基于pof光纤宏弯的液位传感器
JP2018119896A (ja) * 2017-01-27 2018-08-02 大陽日酸株式会社 液面測定方法
JP2020134346A (ja) * 2019-02-21 2020-08-31 三菱自動車工業株式会社 電池パックの異変検出装置
WO2022059791A1 (ja) * 2020-09-17 2022-03-24 日本ゼオン株式会社 物体検出装置
JP7381430B2 (ja) 2020-10-21 2023-11-15 日立Geニュークリア・エナジー株式会社 液滴・液膜検出システム、および液滴・液膜検出方法

Similar Documents

Publication Publication Date Title
JP2007071863A (ja) 光学式センサ及び流体測定方法
Gupta et al. Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications
Cartellier et al. Monofiber optical probes for gas detection and gas velocity measurements: conical probes
US3448616A (en) Liquid level detector
JP3816072B2 (ja) 光導波路型センサおよびそれを用いた測定装置
EP0027099A1 (en) Refractive-index responsive light-signal system
JP6276379B2 (ja) 光学手段によって、可動部品なしに、液体および液化生成物のタンクおよびリザーバの充填レベル、屈折率、ならびにイメージ解析を測定するためのマルチパラメータデバイス
JPS5918654B2 (ja) 流体の屈折率に相応する光信号の発生装置
US5946084A (en) Hemispherical double reflection optical sensor
KR20120052219A (ko) 광섬유 액 레벨 검출기
Yeoh et al. Plastic fiber evanescent sensor in measurement of turbidity
CN105424604A (zh) 一种基于嵌套波导管的传感器
US7831126B2 (en) Waveguide core and biosensor
EP2431730B1 (en) Device for discriminating between different fluids based on their refractive index
JPH04215020A (ja) 光ファイバ燃料および液体ゲージ
EP3025155B1 (en) Systems and methods for analyzing a multiphase fluid
US20200033272A1 (en) Apparatus and method for analyzing particles
Rodrigues et al. Investigation of different shapes of plastic optical fiber sensor for refractometry and detection of bacteria
Ma et al. Investigation of the characteristics of a fiber-optic gas–liquid two-phase flow sensor
Borecki et al. Light transmission characteristics of silica capillaries
CN212301323U (zh) 一种反射式tfbg-spr折射率传感器
JP2008298510A (ja) 液面計
Fabian Optical Fibre Sensor for fuel cell and other fluid concentration measurement
Ajchareeyasoontorn et al. A low-cost gold-coated optical fiber sensor for in-situ microplastic detection in water
Ma et al. Optimization of PMMA fiber optic sensor technique in gas-liquid flow measurement

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512