JP2007071628A - Wheel bearing with sensor - Google Patents

Wheel bearing with sensor Download PDF

Info

Publication number
JP2007071628A
JP2007071628A JP2005257571A JP2005257571A JP2007071628A JP 2007071628 A JP2007071628 A JP 2007071628A JP 2005257571 A JP2005257571 A JP 2005257571A JP 2005257571 A JP2005257571 A JP 2005257571A JP 2007071628 A JP2007071628 A JP 2007071628A
Authority
JP
Japan
Prior art keywords
ring
contact
sensor
strain
wheel bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005257571A
Other languages
Japanese (ja)
Inventor
Takami Ozaki
孝美 尾崎
Tomoumi Ishikawa
智海 石河
Kentaro Nishikawa
健太郎 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005257571A priority Critical patent/JP2007071628A/en
Publication of JP2007071628A publication Critical patent/JP2007071628A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wheel bearing with a sensor capable of setting a sensor for load detection on a vehicle, capable of sensitively detecting the load on a wheel and the cost at the time of mass production is lowered. <P>SOLUTION: The bearing for wheel intervened with double raw rotation body 3 between the external member 1 and the internal member 2 is fixed with sensor unit 21. The sensor unit 21 is composed of the ring member 22 or sensor fixing member to be fixed on the internal surface of the external member 1 being the stationary member and a strain sensor 23 for measuring the strain of the member. The material of the ring member 22 is used titanium alloy, phosphor bronze or hardening steel being a highly durable material. If the internal material 2 is the stationary member the ring member 22 or the sensor fixing member is fixed on the internal side member 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを内蔵したセンサ付車輪用軸受に関する。   The present invention relates to a sensor-equipped wheel bearing with a built-in load sensor for detecting a load applied to a bearing portion of the wheel.

従来、自動車の安全走行のために、各車輪の回転速度を検出するセンサを車輪用軸受に設けたものがある。従来の一般的な自動車の走行安全性確保対策は、各部の車輪の回転速度を検出することで行われているが、車輪の回転速度だけでは十分でなく、その他のセンサ信号を用いてさらに安全面の制御が可能なことが求められている。   2. Description of the Related Art Conventionally, there is a wheel bearing provided with a sensor for detecting the rotational speed of each wheel for safe driving of an automobile. Conventional measures to ensure driving safety of general automobiles are carried out by detecting the rotational speed of the wheels of each part, but the rotational speed of the wheels is not sufficient, and it is further safer by using other sensor signals. It is required that the surface can be controlled.

そこで、車両走行時に各車輪に作用する荷重から姿勢制御を図ることも考えられる。例えばコーナリングにおいては外側車輪に大きな荷重がかかり、また左右傾斜面走行では片側車輪に、ブレーキングにおいては前輪にそれぞれ荷重が片寄るなど、各車輪にかかる荷重は均等ではない。また、積載荷重不均等の場合にも各車輪にかかる荷重は不均等になる。このため、車輪にかかる荷重を随時検出できれば、その検出結果に基づき、事前にサスペンション等を制御することで、車両走行時の姿勢制御(コーナリング時のローリング防止、ブレーキング時の前輪沈み込み防止、積載荷重不均等による沈み込み防止等)を行うことが可能となる。しかし、車輪に作用する荷重を検出するセンサの適切な設置場所がなく、荷重検出による姿勢制御の実現が難しい。   Therefore, it is conceivable to control the attitude from the load acting on each wheel during vehicle travel. For example, a large load is applied to the outer wheel in cornering, and the load applied to each wheel is not uniform. Further, even when the load is uneven, the load applied to each wheel becomes uneven. For this reason, if the load applied to the wheel can be detected at any time, based on the detection result, the suspension and the like are controlled in advance, thereby controlling the posture during vehicle travel (preventing rolling during cornering, preventing the front wheel from sinking during braking, It is possible to prevent subsidence due to uneven load capacity. However, there is no appropriate installation location of a sensor that detects a load acting on the wheel, and it is difficult to realize posture control by load detection.

また、今後ステアバイワイヤが導入されて、車軸とステアリングが機械的に結合しないシステムになってくると、車軸方向荷重を検出して運転手が握るハンドルに路面情報を伝達することが求められる。   In addition, when steer-by-wire is introduced in the future, and the system is such that the axle and the steering are not mechanically coupled, it is required to detect the axle direction load and transmit the road surface information to the handle held by the driver.

このような要請に応えるものとして、車輪用軸受の外輪に歪みゲージを貼り付け、歪みを検出するようにした車輪用軸受が提案されている(例えば特許文献1)。
特表2003−530565号公報
As a response to such a demand, a wheel bearing has been proposed in which a strain gauge is attached to the outer ring of the wheel bearing to detect the strain (for example, Patent Document 1).
Special table 2003-530565 gazette

車輪用軸受の外輪は、転走面を有し、強度が求められる部品であって、塑性加工や、旋削加工、熱処理、研削加工などの複雑な工程を経て生産される軸受部品である。そのため特許文献1のように外輪に歪みゲージを貼り付けるのでは、生産性が悪く、量産時のコストが高くなるという問題点がある。また、外輪の歪みを感度良く検出することが難しい。
そこで、歪みゲージを備えたセンサユニットを外輪の周面に取付けることにより、生産性の向上と検出感度の向上を図ることを試みた。その場合、上記センサユニットにおける、歪みゲージを外輪に取付ける部材について、検出感度をより一層向上させるにつき、材質は何が良く、どのような形状にするのが良いかということが課題となる。
An outer ring of a wheel bearing has a rolling surface and is a component that requires strength, and is a bearing component that is produced through complicated processes such as plastic working, turning, heat treatment, and grinding. Therefore, when a strain gauge is attached to the outer ring as in Patent Document 1, there is a problem that productivity is poor and the cost for mass production is high. Also, it is difficult to detect the outer ring distortion with high sensitivity.
Therefore, an attempt was made to improve productivity and detection sensitivity by attaching a sensor unit equipped with a strain gauge to the peripheral surface of the outer ring. In that case, in order to further improve the detection sensitivity of the member for attaching the strain gauge to the outer ring in the sensor unit, what is the best material and what shape should be used.

この発明の目的は、上記課題を解決して、車両にコンパクトに荷重検出用のセンサを設置できて、車輪にかかる荷重を感度良く検出でき、量産時のコストが安価となるセンサ付車輪用軸受を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and to install a sensor for detecting a load in a compact manner in a vehicle, to detect a load applied to the wheel with high sensitivity, and to reduce the cost at the time of mass production. Is to provide.

この発明における第1の発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、リング部材を、前記外方部材および内方部材のうちの固定側部材の周面に取付け、このリング部材の歪みを検出する歪みセンサを前記リング部材に取付け、前記リング部材の材質をチタンまたはリン青銅または焼入れ鋼としたことを特徴としている。   The sensor-equipped wheel bearing according to the first aspect of the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, and a rolling surface facing the rolling surface of the outer member. In a wheel bearing comprising an inner member and a double row rolling element interposed between both rolling surfaces and rotatably supporting the wheel with respect to the vehicle body, the ring member includes the outer member and the inner member. Among them, the fixing member is attached to the peripheral surface, a strain sensor for detecting strain of the ring member is attached to the ring member, and the material of the ring member is titanium, phosphor bronze, or hardened steel.

この発明における第2の発明のセンサ付車輪用軸受は、第1の発明において、前記リング部材を、前記外方部材および内方部材のうちの固定側部材の周面に取付け、このリング部材の横断面形状は、固定側部材の周面に対してそれぞれ接触、非接触となる接触リング部分および非接触リング部分を有し、非接触リング部分のうち、接触リング部分から遠い部位が他の部位よりも肉厚の厚い厚肉部となる形状とし、前記リング部材における前記接触リング部分と厚肉部との間に、このリング部材の軸方向の歪みを測定する歪みセンサを設けたものである。   According to a second aspect of the present invention, there is provided the sensor-equipped wheel bearing according to the first aspect, wherein the ring member is attached to a peripheral surface of a fixed-side member of the outer member and the inner member. The cross-sectional shape has a contact ring portion and a non-contact ring portion that are in contact with and non-contact with the peripheral surface of the fixed side member, respectively. Of the non-contact ring portion, a portion far from the contact ring portion is another portion. The thickness of the ring member is a thicker portion, and a strain sensor that measures the axial strain of the ring member is provided between the contact ring portion and the thick portion of the ring member. .

この発明における第3の発明のセンサ付車輪用軸受は、第1の発明において、前記リング部材を、前記外方部材および内方部材のうちの固定側部材の周面に取付け、このリング部材の横断面形状は、固定側部材の周面に対してそれぞれ接触、非接触となる接触リング部分および非接触リング部分を有し、非接触リング部分のうち、接触リング部分から遠い部位にフランジ部を設け、前記リング部材における前記接触リング部分と前記フランジ部との間に、このリング部材の軸方向の歪みを測定する歪みセンサを設けたものである。   According to a third aspect of the present invention, there is provided the wheel bearing with sensor according to the first aspect, wherein the ring member is attached to a peripheral surface of a fixed side member of the outer member and the inner member. The cross-sectional shape has a contact ring portion and a non-contact ring portion that are in contact with and non-contact with the peripheral surface of the stationary member, and a flange portion is provided in a portion far from the contact ring portion of the non-contact ring portion. And a strain sensor for measuring the axial strain of the ring member is provided between the contact ring portion and the flange portion of the ring member.

この発明における第4の発明のセンサ付車輪用軸受は、第1の発明において、前記リング部材を、前記外方部材および内方部材のうちの固定側部材の周面に取付け、このリング部材の横断面形状は、互いに軸方向に離れて固定側部材に接触する一対の接触リング部分と、これら接触リング部分間に繋がり固定側部材と接触しない非接触リング部分とを有する形状とし、前記非接触リング部分を接触リング部分よりも肉厚が薄いものとし、前記非接触リング部分に、リング部材の軸方向歪みを測定する歪みセンサを設けたものである。   According to a fourth aspect of the present invention, there is provided the wheel bearing with sensor according to the first aspect, wherein the ring member is attached to a peripheral surface of a fixed side member of the outer member and the inner member. The cross-sectional shape is a shape having a pair of contact ring portions that are axially separated from each other and contact the fixed side member, and a non-contact ring portion that is connected between the contact ring portions and does not contact the fixed side member. The ring portion is thinner than the contact ring portion, and the non-contact ring portion is provided with a strain sensor for measuring the axial strain of the ring member.

この発明における第5の発明のセンサ付車輪用軸受は、第1の発明において、前記リング部材を、前記外方部材および内方部材のうちの固定側部材の周面に取付け、このリング部材の横断面形状は、互いに軸方向に離れて固定側部材に接触する一対の接触リング部分と、これら接触リング部分間に繋がり固定側部材と接触しない非接触リング部分とを有する形状とし、いずれか片方の接触リング部分をもう片方の接触リング部分および非接触リング部分よりも肉厚が薄いものとし、この肉厚を薄くした接触リング部分に、リング部材の曲げ歪みを測定する歪みセンサを設けたものである。   According to a fifth aspect of the present invention, there is provided the wheel bearing with sensor according to the first aspect, wherein the ring member is attached to a peripheral surface of a fixed side member of the outer member and the inner member. The cross-sectional shape is a shape having a pair of contact ring portions that are axially separated from each other and contact the fixed side member, and a non-contact ring portion that is connected between the contact ring portions and does not contact the fixed side member. The contact ring part of the contact ring part is thinner than the other contact ring part and the non-contact ring part, and the contact ring part with a reduced thickness is provided with a strain sensor that measures the bending strain of the ring member. It is.

この発明における第6の発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、センサ取付部材およびこのセンサ取付部材に取付けた歪みセンサからなるセンサユニットを、前記外方部材および内方部材のうちの固定側部材の周面に取付け、前記センサ取付部材は、前記固定側部材に対して少なくとも2箇所の接触固定部を有し、隣合う接触固定部の間で少なくとも1箇所に切欠部を有し、この切欠部に前記歪みセンサを配置したものであり、前記センサ取付部材の材質をチタンまたはリン青銅または焼入れ鋼としたことを特徴とする。   According to a sixth aspect of the present invention, the sensor-equipped wheel bearing includes an outer member having a double-row rolling surface formed on the inner periphery, and a rolling surface facing the rolling surface of the outer member. In a wheel bearing comprising an inner member and a double-row rolling element interposed between both rolling surfaces and rotatably supporting the wheel with respect to the vehicle body, the sensor mounting member and the strain attached to the sensor mounting member A sensor unit including a sensor is attached to a peripheral surface of a fixed side member of the outer member and the inner member, and the sensor mounting member has at least two contact fixing portions with respect to the fixed side member. In addition, at least one notch portion is provided between adjacent contact fixing portions, and the strain sensor is disposed in this notch portion, and the sensor mounting member is made of titanium, phosphor bronze, or hardened steel. It is characterized by.

第1ないし第6の発明において、例えば、外方部材が固定側部材、内方部材が回転側部材の場合、外方部材に前記リング部材または前記センサユニットを取付ける。   In the first to sixth inventions, for example, when the outer member is a stationary member and the inner member is a rotating member, the ring member or the sensor unit is attached to the outer member.

第1ないし第6の発明において、車両走行に伴い回転側部材に荷重が加わると、転動体を介して固定側部材が変形し、その変形はリング部材またはセンサ取付部材に歪みをもたらす。リング部材またはセンサ取付部材に設けられた歪みセンサは、リング部材またはセンサ取付部材の歪みを検出する。歪みと荷重の関係を予め実験やシミュレーションで求めておけば、歪みセンサの出力から車輪にかかる荷重等を検出することができる。すなわち、前記歪みセンサの出力によって、車輪用軸受に作用する外力、またはタイヤと路面間の作用力、または車輪用軸受の予圧量を推定することができる。また、この検出した荷重等を自動車の車両制御に使用することが出来る。
このセンサ付車輪用軸受は、固定側部材に取付けられるリング部材またはセンサ取付部材に歪みセンサを取付けるので、車両にコンパクトに荷重センサを設置できる。リング部材およびセンサ取付部材はいずれも、固定側部材に取付けられる簡易な部品であるため、これに歪みセンサを取付けることで、量産性に優れたものとでき、コスト低下が図れる。
In the first to sixth inventions, when a load is applied to the rotation side member as the vehicle travels, the fixed side member is deformed via the rolling elements, and the deformation causes distortion of the ring member or the sensor mounting member. The strain sensor provided on the ring member or the sensor mounting member detects the strain of the ring member or the sensor mounting member. If the relationship between strain and load is obtained in advance through experiments and simulations, the load applied to the wheel can be detected from the output of the strain sensor. That is, the external force acting on the wheel bearing, the acting force between the tire and the road surface, or the preload amount of the wheel bearing can be estimated from the output of the strain sensor. Further, the detected load or the like can be used for vehicle control of the automobile.
In this sensor-equipped wheel bearing, a strain sensor is attached to a ring member or a sensor attachment member that is attached to a fixed member, so that a load sensor can be installed in a compact vehicle. Since both the ring member and the sensor attachment member are simple parts that can be attached to the fixed side member, attaching a strain sensor to the ring member and the sensor attachment member can provide excellent mass productivity and reduce costs.

特に、これら第1ないし第6の発明において、リング部材またはセンサ取付部材の材質が、抗耐久材であるチタンまたはリン青銅または焼入れ鋼とされているので、センサリングの許容歪み量を大きくして、センシング感度を向上させることが可能である。   In particular, in the first to sixth inventions, the material of the ring member or sensor mounting member is titanium, phosphor bronze, or hardened steel, which is an anti-durable material, so that the allowable strain amount of the sensor ring is increased. Sensing sensitivity can be improved.

第2の発明においては、非接触リング部分のうち、接触リング部分から遠い部位が他の部位よりも肉厚の厚い厚肉部とされているから、剛性が高く変形しにくい。したがって、この厚肉部と接触リング部分との間で発生する歪みは、固定側部材の径方向歪みを転写しかつ拡大したものとなる。
また、第3の発明においては、非接触リング部分のうち、接触リング部分から遠い部位にはフランジ部が設けられているから、このフランジ部の剛性が高く変形しにくい。したがって、このフランジ部と接触リング部分との間で発生する歪みは、固定側部材の径方向歪みを転写しかつ拡大したものとなる。
そのため、第2、第3の発明のいずれも、固定側部材の歪みを感度良く検出することができ、検出精度を高めることができる。
In the second invention, since the portion far from the contact ring portion of the non-contact ring portion is a thick portion thicker than the other portions, it is highly rigid and difficult to deform. Therefore, the distortion generated between the thick wall portion and the contact ring portion is obtained by transferring and expanding the radial distortion of the stationary member.
In the third aspect of the invention, since the flange portion is provided in a portion of the non-contact ring portion that is far from the contact ring portion, the rigidity of the flange portion is high and hardly deformed. Therefore, the distortion generated between the flange portion and the contact ring portion is a transfer and enlargement of the radial distortion of the stationary member.
Therefore, both the second and third inventions can detect the distortion of the stationary member with high sensitivity, and can improve the detection accuracy.

さらに、第4の発明においては、リング部材は、互いに軸方向に離れて固定側部材に接触する一対の接触リング部分と、これら接触リング部分間に繋がり固定側部材と接触しない非接触リング部分とを有する形状とされていて、接触リング部分は非接触リング部分よりも肉厚が厚く剛性が高くて変形し難いが、非接触リング部分は剛性が低くて変形し易い。したがって、非接触リング部分には軸方向の歪みが発生するが、この歪みは固定側部材の軸方向歪みを転写しかつ拡大したものとなる。そのため、非接触リング部分に設けられた歪みセンサにより、外方部材の変形を感度良く検出でき、検出精度を高めることができる。   Further, in the fourth invention, the ring member includes a pair of contact ring portions that are axially separated from each other and contact the fixed side member, and a non-contact ring portion that is connected between the contact ring portions and does not contact the fixed side member. The contact ring portion is thicker than the non-contact ring portion and has high rigidity and is difficult to deform, but the non-contact ring portion has low rigidity and is easily deformed. Therefore, although the axial distortion occurs in the non-contact ring portion, this distortion is a transfer and enlargement of the axial distortion of the stationary member. Therefore, the deformation sensor provided in the non-contact ring portion can detect the deformation of the outer member with high sensitivity, and the detection accuracy can be increased.

第5の発明においても、リング部材は、互いに軸方向に離れて固定側部材に接触する一対の接触リング部分と、これら接触リング部分間に繋がり固定側部材と接触しない非接触リング部分とを有する形状とされているが、いずれか片方の接触リング部分をもう片方の接触リング部分および非接触リング部分よりも肉厚が薄いものとしている。この場合、肉厚を薄くした接触リング部分は固定側部材の変形に従って変形するが、他方の接触リング部分および非接触リング部分は剛性が高くて変形し難い。したがって、肉厚を薄くした接触リング部分に曲げ歪みが発生するが、この歪みは外方部材の周面の軸方向歪みを転写し拡大したものになる。そのため、肉厚を薄くした接触リング部分に設けられた歪みセンサにより、外方部材の変形を感度良く検出でき、検出精度を高めることができる。   Also in the fifth aspect, the ring member includes a pair of contact ring portions that are axially separated from each other and contact the fixed side member, and a non-contact ring portion that is connected between the contact ring portions and does not contact the fixed side member. Although it has a shape, one of the contact ring parts is thinner than the other contact ring part and non-contact ring part. In this case, the contact ring portion having a reduced thickness is deformed in accordance with the deformation of the stationary member, but the other contact ring portion and the non-contact ring portion are highly rigid and difficult to deform. Therefore, a bending strain is generated in the contact ring portion having a reduced wall thickness, and this strain is an enlargement of the axial strain on the peripheral surface of the outer member. Therefore, the deformation of the outer member can be detected with high sensitivity by the strain sensor provided in the contact ring portion having a reduced thickness, and the detection accuracy can be increased.

第6の発明においては、センサ取付部材が、固定側部材に対して少なくとも2箇所の接触固定部を有し、隣合う接触固定部の間で少なくとも1箇所に切欠部を有するものとされ、この切欠部に歪みセンサが配置されているので、センサ取付部材の歪みセンサの配置箇所が、その剛性の低下により、固定側部材よりも大きな歪みを生じ、固定側部材の歪みを感度良く検出することができる。   In the sixth invention, the sensor mounting member has at least two contact fixing portions with respect to the fixed side member, and has at least one notch portion between adjacent contact fixing portions. Since the strain sensor is arranged in the notch, the strain sensor placement location of the sensor mounting member causes greater strain than the fixed side member due to its rigidity reduction, and the strain of the fixed side member is detected with high sensitivity. Can do.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、リング部材またはセンサ取付部材を、前記外方部材および内方部材のうちの固定側部材の周面に取付け、このリング部材またはセンサ取付部材の歪みを測定する歪みセンサを前記リング部材またはセンサ取付部材に取付けたものであるため、車両にコンパクトに荷重センサを設置できる。リング部材およびセンサ取付部材はいずれも、固定側部材に取付けられる簡易な部品であるため、これに歪みを測定するセンサを取付けることで、量産性に優れたものとでき、コスト低下が図れる。
また、リング部材またはセンサ取付部材の材質を、抗耐久材であるチタンまたはリン青銅または焼入れ鋼としたため、センサリングの許容歪み量を大きくして、センシング感度を向上させることができる。
さらに、第2ないし第6の発明においては、リング部材またはセンサ取付部材の形状が、固定側部材の歪みをリング部材またはセンサ取付部材における歪みセンサの取付箇所へ増幅して伝えることのできる形状とされているので、固定側部材の歪みを感度良く検出することができる。
The sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface facing the rolling surface of the outer member, A double-row rolling element interposed between both rolling surfaces, and a wheel bearing for rotatably supporting the wheel with respect to the vehicle body, wherein the ring member or the sensor mounting member is connected to the outer member and the inner member. A load sensor can be installed on the vehicle in a compact manner because it is mounted on the peripheral surface of the fixed member and a strain sensor for measuring the strain of the ring member or sensor mounting member is mounted on the ring member or sensor mounting member. . Since both the ring member and the sensor mounting member are simple parts that can be mounted on the fixed side member, by attaching a sensor for measuring distortion to the ring member and the sensor mounting member, the ring member and the sensor mounting member can be excellent in mass productivity, and the cost can be reduced.
Moreover, since the material of the ring member or the sensor mounting member is titanium, phosphor bronze, or hardened steel, which is an anti-durable material, the allowable strain amount of the sensor ring can be increased and the sensing sensitivity can be improved.
Furthermore, in the second to sixth inventions, the shape of the ring member or the sensor mounting member is a shape capable of amplifying and transmitting the strain of the fixed side member to the strain sensor mounting location on the ring member or the sensor mounting member. Therefore, the distortion of the fixed side member can be detected with high sensitivity.

この発明の第1の実施形態を図1ないし図3と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。
このセンサ付車輪用軸受は、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、各転走面3,4は接触角が外向きとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、密封手段7,8によりそれぞれ密封されている。
A first embodiment of the present invention will be described with reference to FIGS. This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.
This sensor-equipped wheel bearing includes an outer member 1 having a double row rolling surface 3 formed on the inner periphery, an inner member 2 having a rolling surface 4 opposed to each of the rolling surfaces 3, and these It is comprised by the double row rolling element 5 interposed between the rolling surfaces 3 and 4 of the outer member 1 and the inner member 2. This wheel bearing is a double-row angular ball bearing type, and the rolling elements 5 are made of balls and are held by a cage 6 for each row. The rolling surfaces 3 and 4 are arc-shaped in cross section, and each rolling surface 3 and 4 is formed so that the contact angle is outward. Both ends of the bearing space between the outer member 1 and the inner member 2 are sealed by sealing means 7 and 8, respectively.

外方部材1は固定側部材となるものであって、車体の懸架装置(図示せず)におけるナックルに取付けるフランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには、周方向の複数箇所に車体取付孔14が設けられている。
内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト(図示せず)の圧入孔15が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、ホイールおよび制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
The outer member 1 is a fixed side member, and has a flange 1a attached to a knuckle in a suspension device (not shown) of a vehicle body on the outer periphery, and the whole is an integral part. The flange 1a is provided with vehicle body mounting holes 14 at a plurality of locations in the circumferential direction.
The inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become. The hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows. An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12. A through hole 11 is provided at the center of the hub wheel 9. The hub flange 9a is provided with press-fitting holes 15 for hub bolts (not shown) at a plurality of locations in the circumferential direction. In the vicinity of the base portion of the hub flange 9a of the hub wheel 9, a cylindrical pilot portion 13 for guiding a wheel and a brake component (not shown) protrudes toward the outboard side.

外方部材1のアウトボード側端の内周に、センサユニット21が設けられている。センサユニット21の軸方向位置は、密封手段7と転走面3との間とされる。このセンサユニット21は、リング部材22と、このリング部材22に貼り付けられてリング部材22の歪みを測定する複数の歪みセンサ23とでなる。歪みセンサ23は、リング部材22の円周方向の複数箇所に等配され、この例では、車輪用軸受の上下と左右に対応する4箇所に設けられている。また、この例では、リング部材22の断面形状が長方形とされている。   A sensor unit 21 is provided on the inner periphery of the outer member 1 on the outboard side end. The axial position of the sensor unit 21 is between the sealing means 7 and the rolling surface 3. The sensor unit 21 includes a ring member 22 and a plurality of strain sensors 23 that are attached to the ring member 22 and measure the strain of the ring member 22. The strain sensors 23 are equally distributed at a plurality of locations in the circumferential direction of the ring member 22. In this example, the strain sensors 23 are provided at four locations corresponding to the upper and lower sides and the left and right sides of the wheel bearing. In this example, the cross-sectional shape of the ring member 22 is a rectangle.

リング部材22は、外方部材1の内周部に圧入固定される。場合によっては、圧入した後、ボルト、接着剤等により固定されることもある。リング部材22は、この圧入の際に塑性変形を起こさず、かつ車輪用軸受に作用する外力、またはタイヤと路面間の作用力の予想される最大値において、塑性変形しないものであることが好ましく、かつ許容歪み量が大きいことが好ましい。これらのことを満足させるために、リング部材22の材質は、耐力の大きい材料であるチタン、リン青銅、および焼入れ鋼のいずれとかとする。   The ring member 22 is press-fitted and fixed to the inner peripheral portion of the outer member 1. In some cases, after press-fitting, it may be fixed with a bolt, an adhesive or the like. The ring member 22 preferably does not undergo plastic deformation during the press-fitting and does not undergo plastic deformation at the maximum expected external force acting on the wheel bearing or the acting force between the tire and the road surface. In addition, it is preferable that the allowable strain amount is large. In order to satisfy these matters, the material of the ring member 22 is any one of titanium, phosphor bronze, and hardened steel, which are materials having a high yield strength.

なお、インボード側の密封手段8は、外方部材1の内周面に取付けられた芯金付きのゴム等の弾性体からなるシール8aと、内輪10の外周面に取付けられて前記シール8aが接触するスリンガ8bとでなり、スリンガ8bに、円周方向に交互に磁極を有する多極磁石からなる回転検出用の磁気エンコーダ16が設けられている。磁気エンコーダ16に対向して、外方部材1に磁気センサ(図示せず)が取付けられる。   The inboard side sealing means 8 includes a seal 8a made of an elastic body such as rubber with a core attached to the inner peripheral surface of the outer member 1, and the seal 8a attached to the outer peripheral surface of the inner ring 10. The slinger 8b is in contact with the slinger 8b. The slinger 8b is provided with a magnetic encoder 16 for rotation detection, which is composed of a multipolar magnet having magnetic poles alternately in the circumferential direction. A magnetic sensor (not shown) is attached to the outer member 1 so as to face the magnetic encoder 16.

図4に示すように、外力計算手段31、路面作用力計算手段32、軸受予圧量計算手段33、および異常判定手段34により、歪みセンサ23の出力を処理して荷重等をする検出する荷重検出系が構成されている。これら各手段31〜34は、この車輪用軸受の外方部材1等に取付けられた回路基板等の電子回路装置(図示せず)に設けられたものであっても、また自動車の電気制御ユニット(ECU)に設けられたものであっても良い。   As shown in FIG. 4, load detection is performed by detecting the load or the like by processing the output of the strain sensor 23 by the external force calculation means 31, the road surface force calculation means 32, the bearing preload amount calculation means 33, and the abnormality determination means 34. The system is configured. These means 31 to 34 may be provided in an electronic circuit device (not shown) such as a circuit board attached to the outer member 1 or the like of the wheel bearing, or may be an electric control unit of an automobile. (ECU) may be provided.

上記構成のセンサ付車輪用軸受の作用を説明する。ハブ輪9に荷重が印加されると、転動体5を介して外方部材1が変形し、その変形は外方部材1の内周に取付けられたリング部材22に伝わり、リング部材22が変形する。このリング部材22の歪みを、歪みセンサ23により測定する。リング部材22の材質が、抗耐久材であるチタンまたはリン青銅または焼入れ鋼とされているので、センサリングの許容歪み量を大きくして、センシング感度を向上させることが可能である。
荷重の方向や大きさによって歪みの変化が異なるため、予め歪みと荷重の関係を実験やシミュレーションにて求めておけば、車輪用軸受に作用する外力、またはタイヤと路面間の作用力を算出することができる。外力計算手段31および路面作用力計算手段32は、それぞれ、このように実験やシミュレーションにより予め求めて設定しておいた歪みと荷重の関係から、歪センサ23の出力により、車輪用軸受に作用する外力およびタイヤと路面間の作用力をそれぞれ算出する
The operation of the sensor-equipped wheel bearing with the above configuration will be described. When a load is applied to the hub wheel 9, the outer member 1 is deformed via the rolling elements 5, and the deformation is transmitted to the ring member 22 attached to the inner periphery of the outer member 1, and the ring member 22 is deformed. To do. The strain of the ring member 22 is measured by the strain sensor 23. Since the material of the ring member 22 is titanium, phosphor bronze, or hardened steel, which is an anti-durable material, it is possible to increase the allowable strain amount of the sensor ring and improve the sensing sensitivity.
Since the strain changes depending on the direction and magnitude of the load, if the relationship between the strain and the load is obtained in advance through experiments and simulations, the external force acting on the wheel bearing or the acting force between the tire and the road surface is calculated. be able to. The external force calculating means 31 and the road surface acting force calculating means 32 each act on the wheel bearing by the output of the strain sensor 23 based on the relationship between the strain and the load obtained and set in advance through experiments and simulations. Calculate external force and acting force between tire and road surface

異常判定手段34は、このように算出した車輪用軸受に作用する外力、またはタイヤと路面間の作用力が、設定された許容値を超えたと判断される場合に、外部に異常信号を出力する。この異常信号を、自動車の車両制御に使用することが出来る。
また、外力計算手段31および路面作用力計算手段32により、リアルタイムで車輪用軸受に作用する外力、またはタイヤと路面間の作用力を出力すると、よりきめ細やかな車両制御が可能となる。
The abnormality determining unit 34 outputs an abnormality signal to the outside when it is determined that the external force acting on the wheel bearing calculated in this way or the acting force between the tire and the road surface exceeds a set allowable value. . This abnormal signal can be used for vehicle control of an automobile.
If the external force calculating means 31 and the road surface acting force calculating means 32 output the external force acting on the wheel bearing in real time or the acting force between the tire and the road surface, finer vehicle control becomes possible.

また、車輪用軸受は内輪10によって予圧が付加されるが、その予圧によってもリング部材22は変形する。このため、予め歪みと予圧の関係を実験やシミュレーションにて求めておけば、車輪用軸受の予圧の状態を知ることが出来る。軸受予圧量計算手段33は、上記のように実験やシミュレーションにより予め求めて設定しておいた歪みと予圧の関係から、歪みンサ23の出力により、軸受予圧量を出力する。また、軸受予圧量計算手段33から出力される予圧量を用いることで、車輪用軸受の組立時における予圧の調整が容易になる。   Further, a preload is applied to the wheel bearing by the inner ring 10, and the ring member 22 is also deformed by the preload. For this reason, if the relationship between strain and preload is obtained in advance through experiments and simulations, the preload state of the wheel bearing can be known. The bearing preload amount calculation means 33 outputs the bearing preload amount by the output of the strain sensor 23 based on the relationship between the strain and the preload obtained and set in advance through experiments and simulations as described above. Further, by using the preload amount output from the bearing preload amount calculation means 33, it becomes easy to adjust the preload when the wheel bearing is assembled.

図5ないし図7は第2の実施形態を示す。この実施形態は、センサユニット21を構成するリング部材22の形状が第1の実施形態と異なるが、他の構成は第1の実施形態と同様であるので、共通部分に同一の符号を付してその説明を省略する。リング部材22の材質は、チタン、リン青銅、および焼入れ鋼のいずれとかとする。
この実施形態のリング部材22の横断面形状は、図7に示すように、外方部材1の内周面に対してそれぞれ接触、非接触となる接触リング部分22aおよび非接触リング部分22bを有し、非接触リング部分22bのうち、接触リング部分22aから遠い部位が他の部位よりも肉厚の厚い厚肉部22cとなる形状とする。
前記接触リング部分22aと厚肉部22cとの間の非接触リング部分22bの外周面(接触リング部分22aと厚肉部22cとの間の凹溝形状部の底部)に、このリング部材22の軸方向の歪を測定する歪センサ23が貼り付けられている。
5 to 7 show a second embodiment. Although this embodiment is different from the first embodiment in the shape of the ring member 22 constituting the sensor unit 21, the other components are the same as those in the first embodiment, and thus the same reference numerals are given to common portions. The description is omitted. The material of the ring member 22 is any of titanium, phosphor bronze, and hardened steel.
As shown in FIG. 7, the cross-sectional shape of the ring member 22 of this embodiment has a contact ring portion 22a and a non-contact ring portion 22b that are in contact and non-contact with the inner peripheral surface of the outer member 1, respectively. In the non-contact ring portion 22b, a portion far from the contact ring portion 22a is a thick portion 22c that is thicker than other portions.
On the outer peripheral surface of the non-contact ring portion 22b between the contact ring portion 22a and the thick portion 22c (the bottom of the concave groove shape portion between the contact ring portion 22a and the thick portion 22c), A strain sensor 23 for measuring axial strain is attached.

この実施形態の場合も、上記同様、ハブ輪9に荷重が印加されると、転動体5を介して外方部材1が変形し、その変形は外方部材1の内周に取付けられたリング部材22に伝わり、リング部材22が変形する。このリング部材22の歪みを、歪みセンサ23により測定する。この実施形態のセンサユニット21においては、リング部材22の接触リング部分22aから遠い部位の非接触部分22bが他の部位よりも肉厚の厚い厚肉部22cとされているから、この部分は剛性が高く変形しにくい。したがって、この厚肉部22cと接触リング部分22aとの間で発生する歪みは、外方部材1の径方向歪みを転写しかつ拡大したものとなる。これによって、歪みセンサ23によって外方部材1の変形を感度良く検出でき、歪み測定精度が高くなる。
この実施形態においても、図4に示す荷重検出系により、上記同様に歪みセンサ23の出力を処理することができる。
Also in this embodiment, when a load is applied to the hub wheel 9 as described above, the outer member 1 is deformed via the rolling elements 5, and the deformation is a ring attached to the inner periphery of the outer member 1. It is transmitted to the member 22 and the ring member 22 is deformed. The strain of the ring member 22 is measured by the strain sensor 23. In the sensor unit 21 of this embodiment, the non-contact part 22b of the part far from the contact ring part 22a of the ring member 22 is a thick part 22c that is thicker than other parts. Is difficult to deform. Therefore, the distortion generated between the thick wall portion 22c and the contact ring portion 22a is obtained by transferring and expanding the radial distortion of the outer member 1. Thereby, the deformation of the outer member 1 can be detected with high sensitivity by the strain sensor 23, and the strain measurement accuracy is increased.
Also in this embodiment, the output of the strain sensor 23 can be processed in the same manner as described above by the load detection system shown in FIG.

図8ないし図10は第3の実施形態を示す。この実施形態も、センサユニット21を構成するリング部材22の形状が第1、第2の実施形態と異なるが、他の構成は第1、第2の実施形態と同様であるので、共通部分に同一の符号を付してその説明を省略する。リング部材22の材質は、チタン、リン青銅、および焼入れ鋼のいずれとかとする。
この実施形態のリング部材22の横断面形状は、図10に示すように、外方部材1の内周面に対してそれぞれ接触、非接触となる接触リング部分22aおよび非接触リング部分22bを有する点は第1の実施形態と同様であるが、非接触リング部分22bのうち、接触リング部分22aから遠い部位に内向きのフランジ部22dを設けている点で異なる。この場合、接触リング部分22aとフランジ部22dとの間の非接触リング部分22bの外周面(接触リング部分22aと厚肉部22cとの間の円筒部外周面)に、このリング部材22の軸方向の歪を測定する歪センサ23が貼り付けられている。
8 to 10 show a third embodiment. This embodiment is also different from the first and second embodiments in the shape of the ring member 22 constituting the sensor unit 21, but the other configurations are the same as those in the first and second embodiments. The same reference numerals are given and description thereof is omitted. The material of the ring member 22 is any of titanium, phosphor bronze, and hardened steel.
As shown in FIG. 10, the cross-sectional shape of the ring member 22 of this embodiment has a contact ring portion 22a and a non-contact ring portion 22b that are in contact and non-contact with the inner peripheral surface of the outer member 1, respectively. The point is the same as that of the first embodiment, but differs in that an inward flange portion 22d is provided in a portion far from the contact ring portion 22a in the non-contact ring portion 22b. In this case, the shaft of the ring member 22 is arranged on the outer peripheral surface of the non-contact ring portion 22b between the contact ring portion 22a and the flange portion 22d (the outer peripheral surface of the cylindrical portion between the contact ring portion 22a and the thick portion 22c). A strain sensor 23 for measuring the strain in the direction is attached.

この実施形態の場合も、ハブ輪9に荷重が印加されると、転動体5を介して外方部材1が変形し、その変形は外方部材1の内周に取付けられたリング部材22に伝わり、リング部材22が変形する。この実施形態のセンサユニット21においては、非接触リング部分22bのうち、接触リング部分22aから遠い部位には内向フランジ部22dが設けられているから、このフランジ部22dの剛性が高く変形しにくい。したがって、このフランジ部22dと接触リング部分22aとの間で発生する歪みは、外方部材1の径方向歪みを転写しかつ拡大したものとなり、上記同様高精度の歪み測定が期待される。
この実施形態においても、図4に示す荷重検出系により、上記同様に歪みセンサ23の出力を処理することができる。
Also in this embodiment, when a load is applied to the hub wheel 9, the outer member 1 is deformed via the rolling elements 5, and the deformation is applied to the ring member 22 attached to the inner periphery of the outer member 1. The ring member 22 is deformed. In the sensor unit 21 of this embodiment, since the inward flange portion 22d is provided in a portion of the non-contact ring portion 22b far from the contact ring portion 22a, the rigidity of the flange portion 22d is high and hardly deformed. Therefore, the distortion generated between the flange portion 22d and the contact ring portion 22a is a transfer and enlargement of the radial distortion of the outer member 1, and high-precision distortion measurement is expected as described above.
Also in this embodiment, the output of the strain sensor 23 can be processed in the same manner as described above by the load detection system shown in FIG.

図11ないし図13は第4の実施形態を示す。この実施形態も、センサユニット21を構成するリング部材22を除いては、第1ないし第3の実施形態を同じ構成であり、共通部分に同一の符号を付してその説明を省略する。リング部材22の材質は、チタン、リン青銅、および焼入れ鋼のいずれとかとする。
図13に示すように、この実施形態のリング部材22の横断面形状は、外方部材1の内周面に対してそれぞれ接触、非接触となる接触リング部分22aA,22aBおよび非接触リング部分22bを有する溝形の形状とされていて、非接触リング部分22bはその溝形形状の底壁部分、接触リング部分22aA,22aBは上記溝形形状の両側の側壁部分を構成する。両側の接触リング部分22aA,22aBは、非接触リング部分22bより肉厚が厚くされている。ここで言う肉厚は、非接触リング部分22bについては半径方向の厚さ、接触リング部分22aA,22aBについては軸方向の厚さのことである。
非接触リング部分22bにおける外周面、つまりリング部材22の内底面に、このリング部材22の軸方向の歪を測定する歪センサ23が貼り付けられている。
11 to 13 show a fourth embodiment. This embodiment also has the same configuration as that of the first to third embodiments except for the ring member 22 constituting the sensor unit 21, and the same reference numerals are given to common portions and the description thereof is omitted. The material of the ring member 22 is any of titanium, phosphor bronze, and hardened steel.
As shown in FIG. 13, the cross-sectional shape of the ring member 22 of this embodiment is such that the contact ring portions 22aA and 22aB and the non-contact ring portion 22b are in contact and non-contact with the inner peripheral surface of the outer member 1, respectively. The non-contact ring portion 22b constitutes a bottom wall portion of the groove shape, and the contact ring portions 22aA and 22aB constitute side wall portions on both sides of the groove shape. The contact ring portions 22aA and 22aB on both sides are thicker than the non-contact ring portion 22b. The thickness mentioned here is the thickness in the radial direction for the non-contact ring portion 22b, and the thickness in the axial direction for the contact ring portions 22aA and 22aB.
A strain sensor 23 for measuring the axial strain of the ring member 22 is attached to the outer peripheral surface of the non-contact ring portion 22b, that is, the inner bottom surface of the ring member 22.

この実施形態の場合も、ハブ輪9に荷重が印加されると、転動体5を介して外方部材1が変形し、その変形は外方部材1の内周に取付けられたリング部材22に伝わり、リング部材22が変形する。このリング部材22の歪みを、歪センサ23により測定する。この場合、非接触リング部分22bは、外方部材1の主に軸方向の変形に従って変形する。一方、接触リング部分22aA、22aBは非接触リング部分22bより肉厚が厚くされているから、この部分は剛性が高く変形しにくい。従って、非接触リング部分22bには軸方向の歪みが発生するが、この歪みは外方部材1の内周の軸方向歪みを転写し且つ拡大したものとなり、これによって、センサ23による歪みの測定精度が高くなる。
この実施形態においても、図4に示す荷重検出系により、上記同様に歪みセンサ23の出力を処理することができる。
Also in this embodiment, when a load is applied to the hub wheel 9, the outer member 1 is deformed via the rolling elements 5, and the deformation is applied to the ring member 22 attached to the inner periphery of the outer member 1. The ring member 22 is deformed. The strain of the ring member 22 is measured by the strain sensor 23. In this case, the non-contact ring portion 22b is deformed according to the deformation of the outer member 1 mainly in the axial direction. On the other hand, since the contact ring portions 22aA and 22aB are thicker than the non-contact ring portion 22b, these portions are highly rigid and difficult to deform. Therefore, although the axial distortion occurs in the non-contact ring portion 22b, this distortion is a transfer and enlargement of the axial distortion of the inner periphery of the outer member 1, thereby measuring the distortion by the sensor 23. Increases accuracy.
Also in this embodiment, the output of the strain sensor 23 can be processed in the same manner as described above by the load detection system shown in FIG.

図14ないし図16は第5の実施形態を示す。この実施形態も、センサユニット21を構成するリング部材22を除いては、第1ないし第3の実施形態を同じ構成であり、共通部分に同一の符号を付してその説明を省略する。リング部材22の材質は、チタン、リン青銅、および焼入れ鋼のいずれとかとする。
この実施形態のリング部材22の横断面形状は、図16に示すように、外方部材1の内周面に対してそれぞれ接触、非接触となる接触リング部分22aC,22aDおよび非接触リング部分22bを有し、溝形とされている点では、第4の実施形態と同様である。しかし、この実施形態のリング部材22は、両側の接触リング部分22aC,22aDのうち、一方の接触リング部分22aCの肉厚を他方の接触リング部分22aDより厚くすると共に、非接触リング部分22bの肉厚をこれらよりも更に厚くしている。
上記の肉厚の薄い方の接触リング部分22aDの内面に、つまり接触リング部分22aCに対向する側の面に、このリング部材22の曲げ方向の歪みを測定する歪センサ23が貼り付けられている。
14 to 16 show a fifth embodiment. This embodiment also has the same configuration as that of the first to third embodiments except for the ring member 22 constituting the sensor unit 21, and the same reference numerals are given to common portions and the description thereof is omitted. The material of the ring member 22 is any of titanium, phosphor bronze, and hardened steel.
As shown in FIG. 16, the cross-sectional shape of the ring member 22 of this embodiment is such that the contact ring portions 22aC and 22aD and the non-contact ring portion 22b are in contact and non-contact with the inner peripheral surface of the outer member 1, respectively. It is the same as that of 4th Embodiment in having a groove shape. However, in the ring member 22 of this embodiment, among the contact ring portions 22aC and 22aD on both sides, the thickness of one contact ring portion 22aC is thicker than that of the other contact ring portion 22aD, and the thickness of the non-contact ring portion 22b. The thickness is made even thicker than these.
A strain sensor 23 for measuring the strain in the bending direction of the ring member 22 is affixed to the inner surface of the thinner contact ring portion 22aD, that is, the surface facing the contact ring portion 22aC. .

この実施形態においても、ハブ輪9に荷重が印加されると、転動体5を介して外方部材1が変形し、その変形は外方部材1の内周に取付けられたリング部材22に伝わり、リング部材22が変形する。この実施形態のセンサユニット21においては、歪センサ23が貼り付けられた接触リング部分22aDは、外方部材1の主に軸方向の変形に従って変形するが、片方の接触リング部分22aCおよび非接触リング部分22bはその肉厚を厚くしているから、剛性が高く変形しにくく、薄い方の接触リング部分22aDに曲げ歪が発生する。この歪みは外方部材1の内周の軸方向歪みを転写しかつ拡大したものとなる。これにより、第4の実施形態と同様に、高精度の歪測定が期待される。
この実施形態においても、図4に示す荷重検出系により、上記同様に歪みセンサ23の出力を処理することができる。
Also in this embodiment, when a load is applied to the hub wheel 9, the outer member 1 is deformed via the rolling elements 5, and the deformation is transmitted to the ring member 22 attached to the inner periphery of the outer member 1. The ring member 22 is deformed. In the sensor unit 21 of this embodiment, the contact ring portion 22aD to which the strain sensor 23 is attached is deformed mainly according to the axial deformation of the outer member 1, but the one contact ring portion 22aC and the non-contact ring Since the thickness of the portion 22b is increased, the portion 22b is highly rigid and hardly deformed, and bending strain is generated in the thinner contact ring portion 22aD. This distortion is obtained by transferring and expanding the axial distortion of the inner periphery of the outer member 1. Thereby, similarly to the fourth embodiment, highly accurate strain measurement is expected.
Also in this embodiment, the output of the strain sensor 23 can be processed in the same manner as described above by the load detection system shown in FIG.

図17ないし図19は第6の実施形態を示す。この実施形態は、センサユニット21の構成が第1ないし第5の実施形態と異なり、センサユニット21は、外方部材1の円周方向の一部に取付けられるセンサ取付部材24と、このセンサ取付部材24に貼り付けられてセンサ取付部材22の歪みを測定する歪みセンサ23とでなる。それ以外は第1ないし第5の実施形態と同じ構成であり、共通部分に同一の符号を付してその説明を省略する。センサ取付部材24の材質は、チタン、リン青銅、および焼入れ鋼のいずれとかとする。
図19に示すように、前記センサ取付部材24は、外方部材1の内周面に沿う周方向に細長い略円弧状とされ、その両端部に円弧の外周側に張り出した接触固定部24a,224が形成されている。また、センサ取付部材24の中央部には円弧の外周側に開口する切欠部24cが形成され、この切欠部24cの背面に位置する円弧の内周側の面に歪みセンサ24が貼り付けられている。センサ取付部材24の断面形状は、例えば矩形状とされるが、この他に各種の形状とすることができる。
17 to 19 show a sixth embodiment. This embodiment is different from the first to fifth embodiments in the configuration of the sensor unit 21, and the sensor unit 21 includes a sensor attachment member 24 attached to a part of the outer member 1 in the circumferential direction, and the sensor attachment A strain sensor 23 is attached to the member 24 and measures the strain of the sensor mounting member 22. Other than that, the configuration is the same as that of the first to fifth embodiments, and the same reference numerals are given to common portions, and the description thereof is omitted. The sensor mounting member 24 is made of titanium, phosphor bronze, or hardened steel.
As shown in FIG. 19, the sensor mounting member 24 has a substantially arc shape elongated in the circumferential direction along the inner peripheral surface of the outer member 1, and contact fixing portions 24a projecting to the outer peripheral side of the arc at both ends thereof. 224 is formed. In addition, a notch 24c that opens to the outer peripheral side of the arc is formed at the center of the sensor mounting member 24, and the strain sensor 24 is attached to the inner peripheral surface of the arc located on the back of the notch 24c. Yes. The cross-sectional shape of the sensor mounting member 24 is, for example, a rectangular shape, but can be various other shapes.

このセンサユニット21は、センサ取付部材24の長手方向が外方部材1の周方向を向くように、センサ取付部材24の接触固定部24a,24bによって外方部材1の内周に固定される。これら接触固定部24a,24bの外方部材1への固定は、ボルトによる固定や、接着剤による接着等で行われる。センサ取付部材22の接触固定部24a,24b以外の箇所では、外方部材1の内周面との間に隙間を生じている。接触固定部24a,24bのいずれか一方である第1の接触固定部24aは、外方部材1に作用する荷重により外方部材1がラジアル方向に最も大きく変形する周方向箇所で外方部材1に固定される。第2の接触固定部24bは、前記固定箇所よりもラジアル方向の変形が少ない箇所で固定される。   The sensor unit 21 is fixed to the inner periphery of the outer member 1 by the contact fixing portions 24 a and 24 b of the sensor mounting member 24 so that the longitudinal direction of the sensor mounting member 24 faces the circumferential direction of the outer member 1. The contact fixing portions 24a and 24b are fixed to the outer member 1 by fixing with bolts or bonding with an adhesive. At locations other than the contact fixing portions 24 a and 24 b of the sensor mounting member 22, a gap is generated between the sensor mounting member 22 and the inner peripheral surface of the outer member 1. The first contact fixing portion 24a, which is one of the contact fixing portions 24a and 24b, is the outer member 1 at a circumferential location where the outer member 1 is most greatly deformed in the radial direction by a load acting on the outer member 1. Fixed to. The second contact fixing portion 24b is fixed at a location where there is less deformation in the radial direction than the fixed location.

この実施形態の場合、ハブ輪9に荷重が印加されると、転動体5を介して外方部材1が変形し、その変形は外方部材1の内周に取付けられたセンサ取付部材24に伝わり、センサ取付部材24が変形する。このセンサ取付部材24の歪みを、歪センサ23により測定する。この際、センサ取付部材24は外方部材1におけるセンサ取付部材24の固定箇所のラジアル方向の変形に従って変形するが、外方部材1と比べてセンサ取付部材24は円弧状であり、かつ切欠部24cが設けられてこの切欠部24cの箇所で剛性が低下しているので、外方部材1の歪みよりも大きな歪みがセンサ取付部材24の歪みセンサ取付箇所に現れる。このため、外方部材1のわずかな歪みも歪みセンサ23で正確に検出することができる。
この実施形態においても、図4に示す荷重検出系により、上記同様に歪みセンサ23の出力を処理することができる。
In the case of this embodiment, when a load is applied to the hub wheel 9, the outer member 1 is deformed via the rolling elements 5, and the deformation is applied to the sensor mounting member 24 mounted on the inner periphery of the outer member 1. The sensor mounting member 24 is deformed. The strain of the sensor mounting member 24 is measured by the strain sensor 23. At this time, the sensor mounting member 24 is deformed in accordance with the radial deformation of the fixing portion of the sensor mounting member 24 in the outer member 1, but the sensor mounting member 24 has an arc shape compared to the outer member 1 and has a notch portion. Since 24c is provided and the rigidity is reduced at the position of the notch 24c, a strain larger than the strain of the outer member 1 appears at the strain sensor mounting portion of the sensor mounting member 24. For this reason, even a slight distortion of the outer member 1 can be accurately detected by the distortion sensor 23.
Also in this embodiment, the output of the strain sensor 23 can be processed in the same manner as described above by the load detection system shown in FIG.

なお、上記各実施形態では、センサユニット21を外方部材1の内周に設けたが、センサユニット21を外方部材1の外周に設けても良い。
また、上記各実施形態は、外方部材が固定側部材である場合につき説明したが、この発明は、内方部材が固定側部材である車輪用軸受にも適用することができ、その場合、センサユニット21は内方部材の外周または内周となる周面に設ける。
また、上記各実施形態では第3世代型の車輪用軸受に適用した場合につき説明したが、この発明は、軸受部分とハブとが互いに独立した部品となる第1または第2世代型の車輪用軸受や、内方部材の一部が等速ジョイントの外輪で構成される第4世代型の車輪用軸受も適用することができる。また、この車輪用軸受は、従動輪用の車輪用軸受にも適用でき、さらに各世代形式のテーパころタイプの車輪用軸受にも適用することができる。
In each of the above embodiments, the sensor unit 21 is provided on the inner periphery of the outer member 1, but the sensor unit 21 may be provided on the outer periphery of the outer member 1.
Moreover, although each said embodiment demonstrated about the case where an outer member is a stationary member, this invention can be applied also to the wheel bearing in which an inner member is a stationary member, in that case, The sensor unit 21 is provided on a peripheral surface that is an outer periphery or an inner periphery of the inner member.
Moreover, although each said embodiment demonstrated about the case where it applied to the bearing for 3rd generation type wheels, this invention is for 1st or 2nd generation type wheels from which a bearing part and a hub become mutually independent components. A bearing or a fourth generation type wheel bearing in which a part of the inner member is constituted by an outer ring of a constant velocity joint can also be applied. Further, the wheel bearing can be applied to a wheel bearing for a driven wheel, and can also be applied to a tapered roller type wheel bearing of each generation type.

この発明の第1の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning 1st Embodiment of this invention. 同センサ付車輪用軸受の外方部材とセンサユニットとを示す正面図である。It is a front view which shows the outward member and sensor unit of the wheel bearing with a sensor. 同センサユニットの正面図である。It is a front view of the sensor unit. 荷重検出系の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of a load detection system. この発明の第2の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning 2nd Embodiment of this invention. 同センサ付車輪用軸受の外方部材とセンサユニットとを示す部分断面正面図である。It is a fragmentary sectional front view which shows the outward member and sensor unit of the wheel bearing with a sensor. (a)は同センサユニットの横断面図であり、(b)はその要部の拡大図である。(A) is a cross-sectional view of the sensor unit, and (b) is an enlarged view of the main part thereof. この発明の第3の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning 3rd Embodiment of this invention. 同センサ付車輪用軸受の外方部材とセンサユニットとを示す部分断面正面図である。It is a fragmentary sectional front view which shows the outward member and sensor unit of the wheel bearing with a sensor. (a)は同センサユニットの横断面図であり、(b)はその要部の拡大図である。(A) is a cross-sectional view of the sensor unit, and (b) is an enlarged view of the main part thereof. この発明の第4の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the wheel bearing with a sensor concerning 4th Embodiment of this invention. 同センサ付車輪用軸受の外方部材とセンサユニットとを示す部分断面正面図である。It is a fragmentary sectional front view which shows the outward member and sensor unit of the wheel bearing with a sensor. (a)は同センサユニットの横断面図であり、(b)はその要部の拡大図である。(A) is a cross-sectional view of the sensor unit, and (b) is an enlarged view of the main part thereof. この発明の第5の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the wheel bearing with a sensor concerning 5th Embodiment of this invention. 同センサ付車輪用軸受の外方部材とセンサユニットとを示す部分断面正面図である。It is a fragmentary sectional front view which shows the outward member and sensor unit of the wheel bearing with a sensor. (a)は同センサユニットの横断面図であり、(b)はその要部の拡大図である。(A) is a cross-sectional view of the sensor unit, and (b) is an enlarged view of the main part thereof. この発明の第6の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the wheel bearing with a sensor concerning 6th Embodiment of this invention. 同センサ付車輪用軸受の外方部材とセンサユニットとを示す正面図である。It is a front view which shows the outward member and sensor unit of the wheel bearing with a sensor. (a)は同センサユニットの正面図であり、(b)はその底面図である。(A) is a front view of the sensor unit, and (b) is a bottom view thereof.

符号の説明Explanation of symbols

1…外方部材(固定側部材)
2…内方部材(回転側部材)
3,4…転走面
5…転動体
7,8…密封手段
21…センサユニット
22…リング取付部材
22a,22aA,22aB,22aC,22aD…接触リング部分
22b…非接触リング部分
23…歪みセンサ
24…センサ取付部材
24a,24b…接触固定部
1 ... Outer member (fixed side member)
2 ... Inward member (rotary member)
3, 4 ... rolling surface 5 ... rolling elements 7, 8 ... sealing means 21 ... sensor unit 22 ... ring mounting members 22a, 22aA, 22aB, 22aC, 22aD ... contact ring portion 22b ... non-contact ring portion 23 ... strain sensor 24 ... Sensor mounting members 24a, 24b ... Contact fixing parts

Claims (7)

複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
リング部材を、前記外方部材および内方部材のうちの固定側部材の周面に取付け、このリング部材の歪みを検出する歪みセンサを前記リング部材に取付け、前記リング部材の材質をチタンまたはリン青銅または焼入れ鋼としたことを特徴とするセンサ付車輪用軸受。
An outer member in which a double row rolling surface is formed on the inner periphery, an inner member having a rolling surface opposite to the rolling surface of the outer member, and a double row interposed between both rolling surfaces In a wheel bearing for supporting a wheel rotatably with respect to the vehicle body,
A ring member is attached to the peripheral surface of the fixed member of the outer member and the inner member, a strain sensor for detecting the strain of the ring member is attached to the ring member, and the material of the ring member is titanium or phosphorus. A wheel bearing with sensor, characterized by being made of bronze or hardened steel.
複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
リング部材を、前記外方部材および内方部材のうちの固定側部材の周面に取付け、このリング部材の横断面形状は、固定側部材の周面に対してそれぞれ接触、非接触となる接触リング部分および非接触リング部分を有し、非接触リング部分のうち、接触リング部分から遠い部位が他の部位よりも肉厚の厚い厚肉部となる形状とし、前記リング部材における前記接触リング部分と厚肉部との間に、このリング部材の軸方向の歪みを測定する歪みセンサを設け、前記リング部材の材質をチタンまたはリン青銅または焼入れ鋼としたことを特徴とするセンサ付車輪用軸受。
An outer member in which a double row rolling surface is formed on the inner periphery, an inner member having a rolling surface opposite to the rolling surface of the outer member, and a double row interposed between both rolling surfaces In a wheel bearing for supporting a wheel rotatably with respect to the vehicle body,
A ring member is attached to the peripheral surface of the fixed side member of the outer member and the inner member, and the cross-sectional shape of the ring member is a contact that is in contact with or not in contact with the peripheral surface of the fixed side member. A ring portion and a non-contact ring portion, and a portion of the non-contact ring portion that is far from the contact ring portion is a thicker portion thicker than other portions, and the contact ring portion in the ring member A sensor-equipped wheel bearing, wherein a strain sensor for measuring the axial strain of the ring member is provided between the ring member and the thick part, and the material of the ring member is titanium, phosphor bronze, or hardened steel .
複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
リング部材を、前記外方部材および内方部材のうちの固定側部材の周面に取付け、このリング部材の横断面形状は、固定側部材の周面に対してそれぞれ接触、非接触となる接触リング部分および非接触リング部分を有し、非接触リング部分のうち、接触リング部分から遠い部位にフランジ部を設け、前記リング部材における前記接触リング部分と前記フランジ部との間に、このリング部材の軸方向の歪みを測定する歪みセンサを設け、前記リング部材の材質をチタンまたはリン青銅または焼入れ鋼としたことを特徴とするセンサ付車輪用軸受。
An outer member in which a double row rolling surface is formed on the inner periphery, an inner member having a rolling surface opposite to the rolling surface of the outer member, and a double row interposed between both rolling surfaces In a wheel bearing for supporting a wheel rotatably with respect to the vehicle body,
A ring member is attached to the peripheral surface of the fixed side member of the outer member and the inner member, and the cross-sectional shape of the ring member is a contact that is in contact with or not in contact with the peripheral surface of the fixed side member. A ring portion and a non-contact ring portion are provided, and a flange portion is provided in a portion of the non-contact ring portion far from the contact ring portion, and the ring member is provided between the contact ring portion and the flange portion in the ring member. A sensor-equipped wheel bearing, comprising a strain sensor for measuring the axial strain of the ring member, wherein the ring member is made of titanium, phosphor bronze, or hardened steel.
複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
リング部材を、前記外方部材および内方部材のうちの固定側部材の周面に取付け、このリング部材の横断面形状は、互いに軸方向に離れて固定側部材に接触する一対の接触リング部分と、これら接触リング部分間に繋がり固定側部材と接触しない非接触リング部分とを有する形状とし、前記非接触リング部分を接触リング部分よりも肉厚が薄いものとし、前記非接触リング部分に、リング部材の軸方向歪みを測定する歪みセンサを設け、前記リング部材の材質をチタンまたはリン青銅または焼入れ鋼としたことを特徴とするセンサ付車輪用軸受。
An outer member in which a double row rolling surface is formed on the inner periphery, an inner member having a rolling surface opposite to the rolling surface of the outer member, and a double row interposed between both rolling surfaces In a wheel bearing for supporting a wheel rotatably with respect to the vehicle body,
A ring member is attached to the peripheral surface of the fixed member of the outer member and the inner member, and the cross-sectional shape of the ring member is a pair of contact ring portions that are axially separated from each other and contact the fixed member And a shape having a non-contact ring portion that is connected between these contact ring portions and does not contact the fixed side member, the non-contact ring portion is thinner than the contact ring portion, and the non-contact ring portion, A sensor-equipped wheel bearing, comprising a strain sensor for measuring axial strain of a ring member, wherein the ring member is made of titanium, phosphor bronze, or hardened steel.
複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
リング部材を、前記外方部材および内方部材のうちの固定側部材の周面に取付け、このリング部材の横断面形状は、互いに軸方向に離れて固定側部材に接触する一対の接触リング部分と、これら接触リング部分間に繋がり固定側部材と接触しない非接触リング部分とを有する形状とし、いずれか片方の接触リング部分をもう片方の接触リング部分および非接触リング部分よりも肉厚が薄いものとし、この肉厚を薄くした接触リング部分に、リング部材の曲げ歪みを測定する歪みセンサを設け、前記リング部材の材質をチタンまたはリン青銅または焼入れ鋼としたことを特徴とするセンサ付車輪用軸受。
An outer member in which a double row rolling surface is formed on the inner periphery, an inner member having a rolling surface opposite to the rolling surface of the outer member, and a double row interposed between both rolling surfaces In a wheel bearing for supporting a wheel rotatably with respect to the vehicle body,
A ring member is attached to the peripheral surface of the fixed member of the outer member and the inner member, and the cross-sectional shape of the ring member is a pair of contact ring portions that are axially separated from each other and contact the fixed member And a non-contact ring portion that is connected between the contact ring portions and does not contact the fixed side member, and one of the contact ring portions is thinner than the other contact ring portion and the non-contact ring portion. A wheel with a sensor, characterized in that a strain sensor for measuring the bending strain of the ring member is provided on the contact ring portion having a reduced wall thickness, and the ring member is made of titanium, phosphor bronze, or hardened steel. Bearings.
複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
センサ取付部材およびこのセンサ取付部材に取付けた歪みセンサからなるセンサユニットを、前記外方部材および内方部材のうちの固定側部材の周面に取付け、前記センサ取付部材は、前記固定側部材に対して少なくとも2箇所の接触固定部を有し、隣合う接触固定部の間で少なくとも1箇所に切欠部を有し、この切欠部に前記歪みセンサを配置したものであり、前記センサ取付部材の材質をチタンまたはリン青銅または焼入れ鋼としたことを特徴とするセンサ付車輪用軸受。
An outer member in which a double row rolling surface is formed on the inner periphery, an inner member having a rolling surface opposite to the rolling surface of the outer member, and a double row interposed between both rolling surfaces In a wheel bearing for supporting a wheel rotatably with respect to the vehicle body,
A sensor unit comprising a sensor mounting member and a strain sensor mounted on the sensor mounting member is mounted on a peripheral surface of a fixed side member of the outer member and the inner member, and the sensor mounting member is mounted on the fixed side member. On the other hand, it has at least two contact fixing portions, and has at least one notch portion between adjacent contact fixing portions, and the strain sensor is arranged in this notch portion, and the sensor mounting member A wheel bearing with sensor, characterized in that the material is titanium, phosphor bronze or hardened steel.
請求項1ないし請求項6のいずれか1項において、前記固定側部材が外方部材であるセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to any one of claims 1 to 6, wherein the stationary member is an outer member.
JP2005257571A 2005-09-06 2005-09-06 Wheel bearing with sensor Pending JP2007071628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005257571A JP2007071628A (en) 2005-09-06 2005-09-06 Wheel bearing with sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005257571A JP2007071628A (en) 2005-09-06 2005-09-06 Wheel bearing with sensor

Publications (1)

Publication Number Publication Date
JP2007071628A true JP2007071628A (en) 2007-03-22

Family

ID=37933197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005257571A Pending JP2007071628A (en) 2005-09-06 2005-09-06 Wheel bearing with sensor

Country Status (1)

Country Link
JP (1) JP2007071628A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106415037A (en) * 2014-05-26 2017-02-15 Ntn株式会社 Wheel bearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106415037A (en) * 2014-05-26 2017-02-15 Ntn株式会社 Wheel bearing device

Similar Documents

Publication Publication Date Title
JP5089041B2 (en) Wheel bearing with sensor
JP4925624B2 (en) Wheel bearing with sensor
JP4864441B2 (en) Wheel bearing with sensor
JP2007071280A (en) Wheel bearing with sensor
WO2007029512A1 (en) Sensor-equipped bearing for wheel
JP2007046635A (en) Bearing for wheel with sensor
WO2007023785A1 (en) Sensor-equipped bearing for wheel
JP4925625B2 (en) Wheel bearing with sensor
JP2007057259A (en) Wheel bearing with sensor
JP2007057258A (en) Wheel bearing with sensor
JP2007057302A (en) Wheel bearing with sensor
JP2007078615A (en) Bearing with sensor for wheel
JP2008051283A (en) Wheel bearing with sensor
JP2007057257A (en) Wheel bearing with sensor
JP2006258241A (en) Wheel bearing with sensor
JP2007064778A (en) Bearing for wheel with sensor
JP4879529B2 (en) Wheel bearing with sensor
JP2007071652A (en) Wheel bearing with sensor
JP2007078597A (en) Bearing with sensor for wheel
JP2007071628A (en) Wheel bearing with sensor
JP4911967B2 (en) Wheel bearing with sensor
JP2007057301A (en) Wheel bearing with sensor
JP2007078129A (en) Bearing for wheel with sensor
JP4493569B2 (en) Wheel bearing with sensor
JP5334370B2 (en) Wheel bearing with sensor