JP2007071423A - Secondary combustion device - Google Patents

Secondary combustion device Download PDF

Info

Publication number
JP2007071423A
JP2007071423A JP2005256841A JP2005256841A JP2007071423A JP 2007071423 A JP2007071423 A JP 2007071423A JP 2005256841 A JP2005256841 A JP 2005256841A JP 2005256841 A JP2005256841 A JP 2005256841A JP 2007071423 A JP2007071423 A JP 2007071423A
Authority
JP
Japan
Prior art keywords
exhaust gas
tower
gas
hot air
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005256841A
Other languages
Japanese (ja)
Other versions
JP4859416B2 (en
Inventor
Kiyoshi Shibata
清 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2005256841A priority Critical patent/JP4859416B2/en
Publication of JP2007071423A publication Critical patent/JP2007071423A/en
Application granted granted Critical
Publication of JP4859416B2 publication Critical patent/JP4859416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To surely prevent blockage of a combustion tower caused by attachment and growing of dust. <P>SOLUTION: This secondary combustion device comprises the combustion tower 3 to which an exhaust gas including an unburnt gas is sent, and a hot air blowing zone 4 is formed to blow hot air to the exhaust gas sent into the combustion tower 3 to burn the unburnt gas included in the exhaust gas. An inert gas blowing zone 11 for blowing an inert gas toward the inside of the combustion tower 3 through a porous brick tower wall member 12, is formed near a lower side of the hot air blowing zone 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば焼却残渣を溶融処理する溶融炉から排出された排ガスに含まれる未燃ガスを完全燃焼させる二次燃焼装置に関するものである。   The present invention relates to a secondary combustion apparatus that completely burns unburned gas contained in exhaust gas discharged from a melting furnace that melts incineration residues, for example.

近年、都市ごみ等の焼却処理に伴って発生する焼却残渣(焼却灰、ばいじん)の減容化および無害化を図るために、焼却残渣を溶融・固化して処理する方法が実用に供されている。この焼却残渣の溶融固化処理方法としては、プラズマ溶融炉やアーク溶融炉、電気抵抗炉等の電気式溶融炉を使用し、電気エネルギーによって焼却残渣を溶融した後に、これを水冷もしくは空冷により固化する方法と、表面溶融炉や旋回溶融炉、コークスベッド炉等の燃焼式溶融炉を使用し、燃料の燃焼エネルギーによって焼却残渣を溶融した後に、これを水冷もしくは空冷により固化する方法とが多く利用されている。なお、溶融処理時に発生する排ガスに気化状態で存在する溶融飛灰は、下流の低温域で集塵装置等により回収される。ここで、溶融飛灰(以下、「ダスト」と称する。)とは、焼却残渣に含まれている低沸点の重金属(例えば、鉛、亜鉛、カドミウム等)や塩化物等が溶融により揮散し、冷却固化により下流の集塵装置等で捕集される粉塵のことである。   In recent years, methods for melting and solidifying incineration residues have been put into practical use in order to reduce the volume and innocence of incineration residues (incineration ash and dust) generated by incineration treatment of municipal waste, etc. Yes. As a method for melting and solidifying the incineration residue, an electric melting furnace such as a plasma melting furnace, an arc melting furnace or an electric resistance furnace is used. After the incineration residue is melted by electric energy, it is solidified by water cooling or air cooling. Many methods are used, such as using a surface melting furnace, a swirl melting furnace, a coke bed furnace, etc., and melting the incineration residue with the combustion energy of the fuel and then solidifying it by water cooling or air cooling. ing. Note that the molten fly ash present in the vaporized state in the exhaust gas generated during the melting process is recovered by a dust collector or the like in the downstream low temperature region. Here, molten fly ash (hereinafter referred to as “dust”) means that low boiling point heavy metals (eg, lead, zinc, cadmium, etc.) and chlorides contained in the incineration residue are volatilized by melting, It is dust collected by a downstream dust collector or the like by cooling and solidification.

従来、前記電気式溶融炉や燃焼式溶融炉には、当該溶融炉から排出される排ガスに含まれる未燃ガス(CO,H等)を完全燃焼させるために、また同排ガスに含まれるダイオキシン類を分解するために、二次燃焼装置が付設されている。この従来の二次燃焼装置について、プラズマ溶融炉に付設されるものを例に、図4を用いて以下に説明することとする。 Conventionally, in the electric melting furnace and the combustion type melting furnace, in order to completely burn unburned gas (CO, H 2, etc.) contained in the exhaust gas discharged from the melting furnace, the dioxin contained in the exhaust gas is also included. A secondary combustion device is attached to decompose the components. This conventional secondary combustion apparatus will be described below using FIG. 4 as an example attached to a plasma melting furnace.

図4に示される二次燃焼装置101は、プラズマ溶融炉102内での被溶融物(焼却残渣)の溶融によって発生した排ガスが送り込まれる燃焼塔103を備え、この燃焼塔103内に送り込まれた排ガスに対して熱風を吹き込む熱風吹込みゾーン104を形成することにより、その排ガスに含まれる未燃ガスを燃焼させるように構成されている。すなわち、この二次燃焼装置101において、前記燃焼塔103には、プラズマ溶融炉102からの排ガスを受け入れる排ガス受入口105と、熱風炉106からの熱風を吹き込む熱風吹込口107と、排ガスを排出する排ガス排出口108とが、下側から上側に向かって順に設けられている。プラズマ溶融炉102からの排ガスは、排ガス受入口105を通って燃焼塔103の下部に送り込まれる。燃焼塔103の下部から熱風吹込口107の高さ位置にまで上昇した排ガスに対して、言い換えれば熱風吹込みゾーン104に入ってきた排ガスに対して、熱風炉106からの熱風が吹き込まれることにより、排ガスに含まれる未燃ガスが二次燃焼される。こうして、排ガスに含まれる未燃ガスは、燃焼塔103内において十分な滞留時間と温度をもって完全燃焼される。なお、燃焼塔103内において二次燃焼処理が施された排ガスは、燃焼塔103の上部に設けられる排ガス排出口108から排出されて減温塔109に送り込まれ、この減温塔109で冷却された後に、図示省略される排ガス処理装置等を経て大気中に放出される。   A secondary combustion apparatus 101 shown in FIG. 4 includes a combustion tower 103 to which exhaust gas generated by melting of a material to be melted (incineration residue) in the plasma melting furnace 102 is sent, and is sent into the combustion tower 103. By forming the hot air blowing zone 104 for blowing hot air into the exhaust gas, the unburned gas contained in the exhaust gas is combusted. That is, in the secondary combustion apparatus 101, the combustion tower 103 discharges exhaust gas into the combustion tower 103, an exhaust gas inlet 105 that receives exhaust gas from the plasma melting furnace 102, a hot air inlet 107 that blows hot air from the hot air furnace 106, and the exhaust gas. An exhaust gas discharge port 108 is provided in order from the lower side to the upper side. The exhaust gas from the plasma melting furnace 102 is sent to the lower part of the combustion tower 103 through the exhaust gas inlet 105. The hot air from the hot air furnace 106 is blown into the exhaust gas that has risen from the lower part of the combustion tower 103 to the height of the hot air inlet 107, in other words, the exhaust gas that has entered the hot air blowing zone 104. The unburned gas contained in the exhaust gas is secondarily burned. Thus, the unburned gas contained in the exhaust gas is completely burned in the combustion tower 103 with sufficient residence time and temperature. The exhaust gas that has been subjected to the secondary combustion treatment in the combustion tower 103 is discharged from an exhaust gas outlet 108 provided in the upper part of the combustion tower 103 and sent to the temperature reducing tower 109, where it is cooled by the temperature reducing tower 109. After that, it is discharged into the atmosphere through an exhaust gas treatment device (not shown).

前記燃焼塔103において、熱風吹込みゾーン104の下側近傍のゾーン110では、1)塔壁に衝突した熱風の巻き返し風が吹き込んでくる、2)還元性雰囲気から酸化性雰囲気に移行しつつある、3)ダストの溶融点付近の温度になっている、状態にある。このため、熱風吹込みゾーン104の下側近傍のゾーン110を取り囲む塔壁部分にダストが付着・成長していき、最終的には燃焼塔103を閉塞させてしまうという不具合が発生する。そこで、このような不具合を未然に防ぐために、燃焼塔103の下部において、その内面側には比較的熱伝導率の高い耐火物111が貼り付けられるとともに、その外周面には水冷ジャケット112が装着され、燃焼塔103の下部に送り込まれた排ガスの温度を下げることにより、排ガス中に気化状態で存在するダストを極力固形化して燃焼塔103の下方に配されるダストコンベヤ113上に落下させるようにされている。また、壁面付近の温度を下げることにより、ダストが付着しても落下し易い雰囲気を形成している。なお、ダストコンベヤ113上に落下されたダストは、そのダストコンベヤ113によって系外に排出される。   In the combustion tower 103, in the zone 110 in the vicinity of the lower side of the hot air blowing zone 104, 1) a rewinding wind of hot air colliding with the tower wall is blown in, and 2) the reducing atmosphere is shifting to the oxidizing atmosphere. 3) The temperature is near the melting point of dust. For this reason, the dust adheres and grows on the tower wall portion surrounding the zone 110 in the vicinity of the lower side of the hot air blowing zone 104, and eventually the combustion tower 103 is blocked. Therefore, in order to prevent such problems, a refractory 111 having a relatively high thermal conductivity is attached to the inner surface of the lower portion of the combustion tower 103, and a water cooling jacket 112 is attached to the outer peripheral surface thereof. By reducing the temperature of the exhaust gas sent to the lower part of the combustion tower 103, the dust present in the exhaust gas in a vaporized state is solidified as much as possible and dropped onto the dust conveyor 113 arranged below the combustion tower 103. Has been. In addition, by lowering the temperature near the wall surface, an atmosphere that easily falls even if dust adheres is formed. The dust dropped on the dust conveyor 113 is discharged out of the system by the dust conveyor 113.

なお、ダストの付着防止を目的とする関連先行技術として、例えば特許文献1にて提案されている排ガスダクトがある。この特許文献1に係る排ガスダクトにおいては、セラミック多孔体よりなる内筒を含む二重筒構造とされ、その内筒内に流れる排ガスに対して内筒内面の全面から均等に冷却用ガス(窒素、空気)を噴射することにより、ダクト内におけるダストの付着・成長を防止することができるようにされている。   As a related prior art for the purpose of preventing the adhesion of dust, there is an exhaust gas duct proposed in Patent Document 1, for example. The exhaust gas duct according to Patent Document 1 has a double cylinder structure including an inner cylinder made of a ceramic porous body, and the exhaust gas flowing in the inner cylinder is evenly cooled from the entire inner surface of the inner cylinder (nitrogen). , Air) can be prevented from adhering and growing in the duct.

特開平8−219437号公報JP-A-8-219437

しかしながら、前記従来の二次燃焼装置101における排ガスの冷却によるダストの沈降分離では、排ガスに含まれるダストの半分程度しか沈降分離することができないために、熱風吹込みゾーン104の下側近傍のゾーン110を取り囲む塔壁部分でのダストの付着・成長を十分に防止することができないという問題点がある。なお、排ガスの冷却温度を更に低めることでダストの沈降分離効果をより高めることも考えられるが、この場合、COの発生を招くという新たな問題を出現させてしまうので好ましくない。また、特許文献1に係る発明の技術思想をそのまま二次燃焼装置に適用することはできない。   However, in the sedimentation separation of dust by cooling the exhaust gas in the conventional secondary combustion apparatus 101, only about half of the dust contained in the exhaust gas can settle and separate, so the zone near the lower side of the hot air blowing zone 104 There is a problem that it is not possible to sufficiently prevent the adhesion and growth of dust at the tower wall surrounding 110. Although it is conceivable to further increase the dust sedimentation effect by further lowering the cooling temperature of the exhaust gas, in this case, a new problem of causing the generation of CO appears, which is not preferable. Further, the technical idea of the invention according to Patent Document 1 cannot be applied to the secondary combustion device as it is.

本発明は、このような問題点に鑑みてなされたもので、ダストの付着・成長に起因する燃焼塔の閉塞を確実に防止することのできる二次燃焼装置を提供することを目的とするものである。   The present invention has been made in view of such problems, and an object of the present invention is to provide a secondary combustion apparatus that can reliably prevent the clogging of a combustion tower due to dust adhesion and growth. It is.

前記目的を達成するために、本発明による二次燃焼装置は、
未燃ガスを含む排ガスが送り込まれる燃焼塔を備え、この燃焼塔内に送り込まれた排ガスに対して熱風を吹き込む熱風吹込みゾーンを形成することにより、その排ガスに含まれる未燃ガスを燃焼させるように構成される二次燃焼装置において、
前記熱風吹込みゾーンの下側近傍に、ポーラス煉瓦を通して不活性ガスを前記燃焼塔の内部に向けて吹き込む不活性ガス吹込みゾーンを形成することを特徴とするものである(第1発明)。
In order to achieve the above object, the secondary combustion apparatus according to the present invention comprises:
A combustion tower to which exhaust gas containing unburned gas is sent is provided, and a hot air blowing zone for blowing hot air into the exhaust gas sent into the combustion tower is formed to burn the unburned gas contained in the exhaust gas. In the secondary combustion device configured as follows:
In the vicinity of the lower side of the hot air blowing zone, an inert gas blowing zone for blowing an inert gas into the combustion tower through porous brick is formed (first invention).

本発明において、前記不活性ガス吹込みゾーンは前記燃焼塔の周方向に複数のブロックに分割され、かつ各ブロックにおける不活性ガスの吹込み動作が制御されるのが好ましい(第2発明)。   In the present invention, it is preferable that the inert gas blowing zone is divided into a plurality of blocks in the circumferential direction of the combustion tower, and the inert gas blowing operation in each block is controlled (second invention).

本発明においては、熱風吹込みゾーンの下側近傍にポーラス煉瓦を通して不活性ガス(窒素、アルゴン等)を燃焼塔の内部に向けて吹き込む不活性ガス吹込みゾーンが形成される。すなわち、熱風吹込みゾーンの下側近傍のゾーンを取り囲む塔壁部分の表面には、ポーラス煉瓦を通して均一に吹き込まれる不活性ガスによる膜が形成される。このため、排ガスに気化状態で存在するダストが当該塔壁部分に接触しようとした際に、その気化状態のダストは不活性ガスの膜に触れて冷却・固化されてその粘着性が著しく減殺される。また、冷却・固化されたダストは不活性ガスの膜に遮られて塔壁面に接触することなく、排ガスの流れに乗って後流側に運ばれるか、もしくは燃焼塔の下方に落下される。したがって、従来、熱風吹込みゾーンの下側近傍のゾーンを取り囲む塔壁部分においてダストが付着・成長していたのを確実に防止することができ、かかるダストの付着・成長に起因する燃焼塔の閉塞を確実に防止することができる。ここで、ポーラス煉瓦を通して燃焼塔の内部に向けて吹き込むガスを窒素等の不活性ガスとした理由は、次のとおりである。吹込みガスを空気とすると、排ガス中の未燃ガスがその空気により燃焼し、塔壁面の温度が局所的にダストの溶融点付近の温度にまで上昇してダストが溶融状態となり、ダストの付着を防止できない場合があるのに対し、吹込みガスを窒素等の不活性ガスとすると、未燃ガスが燃焼反応を起こすことがないため、気化状態のダストを冷却・固化してダストの付着を確実に防止することができるからである。   In the present invention, an inert gas blowing zone for blowing an inert gas (nitrogen, argon, etc.) through the porous brick toward the inside of the combustion tower is formed near the lower side of the hot air blowing zone. That is, a film of an inert gas that is uniformly blown through the porous brick is formed on the surface of the tower wall portion surrounding the zone near the lower side of the hot air blowing zone. For this reason, when dust that is in a vaporized state in the exhaust gas tries to contact the tower wall part, the vaporized state is cooled and solidified by touching the inert gas film, and its adhesiveness is remarkably reduced. The Further, the cooled and solidified dust is carried by the exhaust gas flow to the downstream side without being in contact with the wall surface of the tower by the inert gas film, or is dropped below the combustion tower. Therefore, it is possible to reliably prevent dust from adhering and growing in the tower wall portion surrounding the zone near the lower side of the hot air blowing zone in the past. Blockage can be reliably prevented. Here, the reason why the gas blown toward the inside of the combustion tower through the porous brick is an inert gas such as nitrogen is as follows. If the blown gas is air, the unburned gas in the exhaust gas is burned by the air, the temperature of the tower wall rises locally to a temperature near the melting point of the dust, and the dust becomes a molten state. However, if the insufflation gas is an inert gas such as nitrogen, the unburned gas will not cause a combustion reaction, so the vaporized dust is cooled and solidified to prevent the dust from adhering. This is because it can be surely prevented.

また、第2発明によれば、各ブロックにおける不活性ガスの吹込み時間や吹込み順序を制御することで、ダスト付着防止効果を確保しつつ不活性ガスの使用量の削減を図ることができる。   Further, according to the second invention, by controlling the time and order of blowing the inert gas in each block, it is possible to reduce the amount of inert gas used while ensuring the dust adhesion preventing effect. .

次に、本発明による二次燃焼装置の具体的な実施の形態について、図面を参照しつつ説明する。なお、本実施形態は、プラズマ溶融炉に付設される二次燃焼装置に本発明が適用された例である。   Next, specific embodiments of the secondary combustion apparatus according to the present invention will be described with reference to the drawings. This embodiment is an example in which the present invention is applied to a secondary combustion apparatus attached to a plasma melting furnace.

図1には、本発明の一実施形態に係る二次燃焼装置の全体概略構造説明図が示されている。また、図2には図1のA−A視構造説明図が、図3には図1のB部拡大図がそれぞれ示されている。   FIG. 1 is an overall schematic structural diagram of a secondary combustion apparatus according to an embodiment of the present invention. Further, FIG. 2 shows an explanatory diagram of the AA view structure of FIG. 1, and FIG. 3 shows an enlarged view of part B of FIG.

本実施形態の二次燃焼装置1は、図1に示されるように、プラズマ溶融炉2内での被溶融物(焼却残渣)の溶融によって発生した排ガスが送り込まれる燃焼塔3を備え、この燃焼塔3内(燃焼室)に送り込まれた排ガスに対して熱風(1100〜1200℃程度)を吹き込む熱風吹込みゾーン4を形成することにより、その排ガスに含まれる未燃ガス(CO,H等)を燃焼させるように構成されている。すなわち、この二次燃焼装置1において、前記燃焼塔3には、プラズマ溶融炉2からの排ガスを受け入れる排ガス受入口5と、熱風炉6からの熱風を吹き込む熱風吹込口7と、排ガスを排出する排ガス排出口8とが、下側から上側に向かって順に設けられている。プラズマ溶融炉2からの排ガスは、排ガス受入口5を通って燃焼塔3の下部に送り込まれる。燃焼塔3の下部から熱風吹込口7の高さ位置にまで上昇した排ガスに対して、言い換えれば熱風吹込みゾーン4に入ってきた排ガスに対して、熱風炉6からの熱風が吹き込まれることにより、排ガスに含まれる未燃ガスが二次燃焼される。こうして、排ガスに含まれる未燃ガスは、燃焼塔3内において十分な滞留時間と温度をもって完全燃焼される。なお、燃焼塔3内において二次燃焼処理が施された排ガスは、燃焼塔3の上部に設けられる排ガス排出口8から排出されて減温塔9に送り込まれ、この減温塔9で冷却された後に、図示省略される排ガス処理装置等を経て大気中に放出される。また、前記プラズマ溶融炉2の本体内部は、溶融スラグや黒鉛主電極等の酸化を防止するために還元性雰囲気に保持されており、そのためにPSA窒素製造装置等の不活性ガス供給装置10から窒素ガス等の不活性ガスが、中空筒状に形成した黒鉛主電極および黒鉛スタート電極(いずれも図示省略)の中空孔を通して、プラズマ溶融炉2の本体内に連続的に供給されている。 As shown in FIG. 1, the secondary combustion apparatus 1 of the present embodiment includes a combustion tower 3 to which exhaust gas generated by melting of a material to be melted (incineration residue) in a plasma melting furnace 2 is sent. By forming a hot air blowing zone 4 for blowing hot air (about 1100 to 1200 ° C.) with respect to the exhaust gas sent into the tower 3 (combustion chamber), unburned gas (CO, H 2, etc.) contained in the exhaust gas ) Is combusted. That is, in the secondary combustion apparatus 1, the exhaust gas is discharged to the combustion tower 3, the exhaust gas inlet 5 that receives the exhaust gas from the plasma melting furnace 2, the hot air inlet 7 that blows the hot air from the hot air furnace 6, and the exhaust gas. An exhaust gas discharge port 8 is provided in order from the lower side to the upper side. The exhaust gas from the plasma melting furnace 2 is sent to the lower part of the combustion tower 3 through the exhaust gas inlet 5. The hot air from the hot stove 6 is blown into the exhaust gas that has risen from the lower part of the combustion tower 3 to the height of the hot air blowing port 7, in other words, the exhaust gas that has entered the hot air blowing zone 4. The unburned gas contained in the exhaust gas is secondarily burned. Thus, the unburned gas contained in the exhaust gas is completely burned in the combustion tower 3 with sufficient residence time and temperature. The exhaust gas that has been subjected to the secondary combustion treatment in the combustion tower 3 is discharged from an exhaust gas outlet 8 provided in the upper part of the combustion tower 3 and sent to the temperature reducing tower 9 where it is cooled by the temperature reducing tower 9. After that, it is discharged into the atmosphere through an exhaust gas treatment device (not shown). Further, the inside of the main body of the plasma melting furnace 2 is maintained in a reducing atmosphere in order to prevent oxidation of molten slag, graphite main electrode, and the like. For this purpose, from an inert gas supply device 10 such as a PSA nitrogen production device. An inert gas such as nitrogen gas is continuously supplied into the main body of the plasma melting furnace 2 through the hollow holes of the graphite main electrode and the graphite start electrode (both not shown) formed in a hollow cylindrical shape.

前記熱風吹込みゾーン4の下側近傍には、ポーラス煉瓦を通して不活性ガス(窒素)を燃焼塔3の内部に向けて吹き込む不活性ガス吹込みゾーン11が形成されている。また、本実施形態では、この不活性ガス吹込みゾーン11が、図2に示されるように、燃焼塔3の周方向に8つのブロック11a〜11hに分割され、かつ各ブロック11a〜11hにおける不活性ガスの吹込み動作が制御されるようになっている。   In the vicinity of the lower side of the hot air blowing zone 4, an inert gas blowing zone 11 for blowing an inert gas (nitrogen) toward the inside of the combustion tower 3 through porous brick is formed. In the present embodiment, the inert gas blowing zone 11 is divided into eight blocks 11a to 11h in the circumferential direction of the combustion tower 3 as shown in FIG. The active gas blowing operation is controlled.

すなわち、前記燃焼塔3において、不活性ガス吹込みゾーン11を取り囲む塔壁部分は、図1および図2にそれぞれ示されるように、主にポーラス煉瓦よりなる円筒形状の塔壁部材12(以下、「ポーラス煉瓦塔壁部材12」という。)で構成されている。このポーラス煉瓦塔壁部材12の外周面上には、図2に示されるように、周方向に区画された8つの風室13が形成されるとともに、このポーラス煉瓦塔壁部材12の外側には、前記不活性ガス供給装置10からの窒素ガスが供給される環状の主配管14が当該ポーラス煉瓦塔壁部材12を取り囲むように配されている。前記各風室13には、主配管14から分岐される分岐配管14a〜14hが接続され、各分岐配管14a〜14hには、制御装置15からの指令信号に基づき流路を開閉する開閉弁16が介設されている。前記制御装置15には、タイマー17が内蔵されており、制御装置15は、所定プログラムに従ってそれら開閉弁16の弁開作動順序と弁開作動時間とを制御する。   That is, in the combustion tower 3, the tower wall portion surrounding the inert gas blowing zone 11 is a cylindrical tower wall member 12 (hereinafter referred to as the following) made mainly of porous brick, as shown in FIGS. 1 and 2. "Porous brick tower wall member 12"). On the outer peripheral surface of this porous brick tower wall member 12, as shown in FIG. 2, there are formed eight air chambers 13 partitioned in the circumferential direction, and on the outer side of this porous brick tower wall member 12 An annular main pipe 14 to which nitrogen gas from the inert gas supply device 10 is supplied is disposed so as to surround the porous brick tower wall member 12. Branch pipes 14 a to 14 h branched from the main pipe 14 are connected to the respective wind chambers 13. The branch valves 14 a to 14 h are connected to the branch pipes 14 a to 14 h according to a command signal from the control device 15 to open and close the flow path 16. Is installed. The control device 15 includes a timer 17, and the control device 15 controls the valve opening operation sequence and the valve opening operation time of the on-off valves 16 according to a predetermined program.

ここで、前記ポーラス煉瓦は、例えば焼結アルミナ製の連通気孔を有する耐火物のことであって、金属溶解炉の脱ガス、脱硫に供せられたり、セメント製造時のサイロ内材料の撹拌に供せられたりする従来公知のものである。現在、ポーラス煉瓦はその気孔径や気孔率など多くの種類のものがあるが、本実施形態では、窒素使用量の低減のために、気孔径や気孔率ができるかぎり小さいものを使用するようにされている。また、前記ポーラス煉瓦塔壁部材12は、ポーラス煉瓦で一体成形されたもの、またはセグメント状のポーラス煉瓦もしくはプラグ状のポーラス煉瓦が複数個組み合わされてなるもの、のいずれであってもよい。また、燃焼塔3の内部に向けて吹き込むガスを窒素等の不活性ガスとした理由は、次のとおりである。吹込みガスを空気とすると、排ガス中の未燃ガスがその空気により燃焼し、塔壁面の温度が局所的にダストの溶融点付近の温度にまで上昇してダストが溶融状態となり、ダストの付着を防止できない場合があるのに対し、吹込みガスを窒素等の不活性ガスとすると、未燃ガスが燃焼反応を起こすことがないため、気化状態のダストを冷却・固化してダストの付着を確実に防止することができるからである。   Here, the porous brick is a refractory having a continuous ventilation hole made of, for example, sintered alumina, and is used for degassing and desulfurization of a metal melting furnace, or for stirring the material in the silo at the time of cement production. It is a conventionally well-known thing. Currently, there are many types of porous bricks such as the pore diameter and porosity, but in this embodiment, in order to reduce the amount of nitrogen used, the one with the smallest pore diameter and porosity is used. Has been. Further, the porous brick tower wall member 12 may be either integrally formed of porous bricks, or a combination of a plurality of segmented porous bricks or plug-shaped porous bricks. The reason why the gas blown toward the inside of the combustion tower 3 is an inert gas such as nitrogen is as follows. If the blown gas is air, the unburned gas in the exhaust gas is burned by the air, the temperature of the tower wall rises locally to a temperature near the melting point of the dust, and the dust becomes a molten state. However, if the insufflation gas is an inert gas such as nitrogen, the unburned gas will not cause a combustion reaction, so the vaporized dust is cooled and solidified to prevent the dust from adhering. This is because it can be surely prevented.

さらに、本実施形態の二次燃焼装置1においては、燃焼塔3の下部に送り込まれた排ガスの温度を下げるために、従来と同様の水冷手段が設けられている。すなわち、図1に示されるように、熱風吹込みゾーン4およびその熱風吹込みゾーン4の上側近傍のゾーンを取り囲む塔壁部分の内面側には比較的熱伝導率の高い耐火物18が貼り付けられるとともに、同塔壁部分の外周面には水冷ジャケット19が装着されている。また、同様に、不活性ガス吹込みゾーン11の下側近傍のゾーンを取り囲む塔壁部分の内面側には比較的熱伝導率の高い耐火物18′が貼り付けられるとともに、同塔壁部分の外周面には水冷ジャケット19′が装着されている。こうして、燃焼塔3の下部に送り込まれた排ガスの温度を下げることにより、排ガス中に気化状態で存在するダストを極力固形化して燃焼塔3の下方に配されるダストコンベヤ20上に落下させるようにされている。なお、ダストコンベヤ20上に落下されたダストは、そのダストコンベヤ20によって系外に排出される。   Furthermore, in the secondary combustion apparatus 1 of this embodiment, in order to lower the temperature of the exhaust gas sent to the lower part of the combustion tower 3, water cooling means similar to the conventional one is provided. That is, as shown in FIG. 1, a refractory 18 having a relatively high thermal conductivity is attached to the inner surface side of the tower wall portion surrounding the hot air blowing zone 4 and the zone near the upper side of the hot air blowing zone 4. In addition, a water cooling jacket 19 is mounted on the outer peripheral surface of the tower wall portion. Similarly, a refractory 18 'having a relatively high thermal conductivity is attached to the inner surface side of the tower wall portion surrounding the zone near the lower side of the inert gas blowing zone 11, and the tower wall portion A water cooling jacket 19 'is mounted on the outer peripheral surface. Thus, by lowering the temperature of the exhaust gas sent to the lower part of the combustion tower 3, dust present in the vaporized state in the exhaust gas is solidified as much as possible and dropped onto the dust conveyor 20 disposed below the combustion tower 3. Has been. The dust dropped on the dust conveyor 20 is discharged out of the system by the dust conveyor 20.

以上に述べたように構成される二次燃焼装置1において、不活性ガス吹込みゾーン11では、予め定められた順序と吹込み時間に従って各ブロック11a〜11hにおける窒素ガスの吹込み動作が行われる(図2参照)。これにより、不活性ガス吹込みゾーン11を取り囲む塔壁部分の表面では、図3に示されるように、ポーラス煉瓦(ポーラス煉瓦塔壁部材12)を通して均一に吹き込まれる窒素ガスによる膜が各ブロック11a〜11hにおける窒素ガスの吹込み動作に連動して形成される。そして、排ガスに気化状態で存在するダストが当該塔壁部分に接触しようとした際に、その気化状態のダストは窒素ガスの膜に触れて冷却・固化されてその粘着性が著しく減殺される。冷却・固化されたダストは窒素ガスの膜に遮られて塔壁面に接触することなく、排ガスの流れに乗って後流側に運ばれるか、もしくは燃焼塔3の下方に落下される。   In the secondary combustion apparatus 1 configured as described above, in the inert gas blowing zone 11, the nitrogen gas blowing operation in each of the blocks 11a to 11h is performed according to a predetermined order and blowing time. (See FIG. 2). Thereby, on the surface of the tower wall portion surrounding the inert gas blowing zone 11, as shown in FIG. 3, a film of nitrogen gas blown uniformly through the porous brick (porous brick tower wall member 12) is formed in each block 11a. It is formed in conjunction with the nitrogen gas blowing operation at ˜11h. And when the dust which exists in the gasified state in exhaust gas tries to contact the said tower wall part, the dust in the vaporized state touches a film | membrane of nitrogen gas, is cooled and solidified, and the adhesiveness is remarkably reduced. The cooled and solidified dust is carried by the exhaust gas flow to the downstream side without being blocked by the nitrogen gas film and coming into contact with the tower wall surface, or dropped below the combustion tower 3.

本実施形態の二次燃焼装置1よれば、熱風吹込みゾーン4の下側近傍のゾーンを取り囲む塔壁部分におけるダストの付着・成長を確実に防止することができるので、かかるダストの付着・成長に起因する燃焼塔3の閉塞を確実に防止することができる。また、燃焼塔3内に吹き込む窒素ガスの供給源としてプラズマ溶融炉2に元々付設されている不活性ガス供給装置10が用いられるので、新たに窒素発生装置や窒素ボンベ等を設置する必要がなく、装置構成の簡素化を図ることができる。また、燃焼塔3の下部における水冷ジャケット19,19′の取付範囲やダストの沈降分離スペースを従来よりも縮小することができるので、熱風吹込口7の配置の自由度が大きくなるという利点がある。また、予め定められた順序と吹込み時間に従って各ブロック11a〜11hにおける窒素ガスの吹込み動作が行われるので、ダスト付着防止効果を確保しつつ窒素ガスの使用量の削減を図ることができる。   According to the secondary combustion apparatus 1 of the present embodiment, it is possible to reliably prevent the adhesion / growth of dust in the tower wall portion surrounding the zone near the lower side of the hot air blowing zone 4, so that such dust adhesion / growth is possible. It is possible to reliably prevent the combustion tower 3 from being blocked due to the above. Moreover, since the inert gas supply device 10 originally attached to the plasma melting furnace 2 is used as a supply source of nitrogen gas blown into the combustion tower 3, there is no need to newly install a nitrogen generator, a nitrogen cylinder, or the like. Thus, the device configuration can be simplified. In addition, since the mounting range of the water cooling jackets 19 and 19 ′ and the dust settling / separation space of the dust in the lower part of the combustion tower 3 can be reduced as compared with the conventional case, there is an advantage that the degree of freedom of arrangement of the hot air inlet 7 is increased. . Moreover, since the nitrogen gas blowing operation in each of the blocks 11a to 11h is performed in accordance with a predetermined order and blowing time, it is possible to reduce the amount of nitrogen gas used while ensuring the dust adhesion preventing effect.

本発明の一実施形態に係る二次燃焼装置の全体概略構造説明図1 is an overall schematic structural explanatory diagram of a secondary combustion apparatus according to an embodiment of the present invention. 図1のA−A視構造説明図AA structural view of FIG. 図1のB部拡大図Part B enlarged view of FIG. 従来の二次燃焼装置の全体概略構造説明図Description of the overall schematic structure of a conventional secondary combustion device

符号の説明Explanation of symbols

1 二次燃焼装置
3 燃焼塔
4 熱風吹込みゾーン
11 不活性ガス吹込みゾーン
12 ポーラス煉瓦塔壁部材
DESCRIPTION OF SYMBOLS 1 Secondary combustion apparatus 3 Combustion tower 4 Hot-air blowing zone 11 Inert gas blowing zone 12 Porous brick tower wall member

Claims (2)

未燃ガスを含む排ガスが送り込まれる燃焼塔を備え、この燃焼塔内に送り込まれた排ガスに対して熱風を吹き込む熱風吹込みゾーンを形成することにより、その排ガスに含まれる未燃ガスを燃焼させるように構成される二次燃焼装置において、
前記熱風吹込みゾーンの下側近傍に、ポーラス煉瓦を通して不活性ガスを前記燃焼塔の内部に向けて吹き込む不活性ガス吹込みゾーンを形成することを特徴とする二次燃焼装置。
A combustion tower to which exhaust gas containing unburned gas is sent is provided, and a hot air blowing zone for blowing hot air into the exhaust gas sent into the combustion tower is formed to burn the unburned gas contained in the exhaust gas. In the secondary combustion device configured as follows:
A secondary combustion apparatus, wherein an inert gas blowing zone for blowing an inert gas toward the inside of the combustion tower through porous bricks is formed near the lower side of the hot air blowing zone.
前記不活性ガス吹込みゾーンは前記燃焼塔の周方向に複数のブロックに分割され、かつ各ブロックにおける不活性ガスの吹込み動作が制御される請求項1に記載の二次燃焼装置。   The secondary combustion apparatus according to claim 1, wherein the inert gas blowing zone is divided into a plurality of blocks in a circumferential direction of the combustion tower, and an inert gas blowing operation in each block is controlled.
JP2005256841A 2005-09-05 2005-09-05 Secondary combustion device Active JP4859416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256841A JP4859416B2 (en) 2005-09-05 2005-09-05 Secondary combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005256841A JP4859416B2 (en) 2005-09-05 2005-09-05 Secondary combustion device

Publications (2)

Publication Number Publication Date
JP2007071423A true JP2007071423A (en) 2007-03-22
JP4859416B2 JP4859416B2 (en) 2012-01-25

Family

ID=37933030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256841A Active JP4859416B2 (en) 2005-09-05 2005-09-05 Secondary combustion device

Country Status (1)

Country Link
JP (1) JP4859416B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219437A (en) * 1995-02-15 1996-08-30 Mitsubishi Heavy Ind Ltd Exhaust gas duct and treating method of high-temperature exhaust gas
JP2002115831A (en) * 2000-10-10 2002-04-19 Takuma Co Ltd Furnace wall structure and method for cooling furnace wall
JP2002310414A (en) * 2001-04-05 2002-10-23 Sumitomo Heavy Ind Ltd Rotary kiln
JP2005083724A (en) * 2003-09-11 2005-03-31 Ishikawajima Harima Heavy Ind Co Ltd Corrosion prevention method and apparatus of melting furnace secondary combustion chamber dust extractor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219437A (en) * 1995-02-15 1996-08-30 Mitsubishi Heavy Ind Ltd Exhaust gas duct and treating method of high-temperature exhaust gas
JP2002115831A (en) * 2000-10-10 2002-04-19 Takuma Co Ltd Furnace wall structure and method for cooling furnace wall
JP2002310414A (en) * 2001-04-05 2002-10-23 Sumitomo Heavy Ind Ltd Rotary kiln
JP2005083724A (en) * 2003-09-11 2005-03-31 Ishikawajima Harima Heavy Ind Co Ltd Corrosion prevention method and apparatus of melting furnace secondary combustion chamber dust extractor

Also Published As

Publication number Publication date
JP4859416B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4685671B2 (en) Waste melting processing equipment
JP4859416B2 (en) Secondary combustion device
KR20040095194A (en) Fusion furnace, gasification fusion furnace, and method of processing waste
JP2010065932A (en) Device and method for controlling combustion in secondary combustion furnace for pyrolysis gas
WO2015196889A1 (en) Side-blast tin smelting apparatus
JP3921706B2 (en) Electrode sealing device for ash melting furnace
JP3742472B2 (en) Method for preventing clinker formation in combustion furnace of product gas from waste melting furnace
CN111036186A (en) Activated carbon activation furnace, activated carbon production equipment and activated carbon regeneration method
JP4073916B2 (en) Melting furnace
JP3904379B2 (en) Dust discharge device for secondary combustion chamber
JP3941526B2 (en) Waste powder melting method and melting equipment used therefor
CN211338817U (en) Activated carbon activation furnace and activated carbon production equipment
JP2001201028A (en) Method of controlling rotating flame stream in rotary fusion furnace
JP3797954B2 (en) Replacing refractories on melting furnace side walls
JP2001012721A (en) Combustion apparatus for furnace
JPS6240607B2 (en)
JP2006292180A (en) Slag discharge mechanism
JP3196918B2 (en) Waste melting method and waste melting equipment
JP2000018537A (en) Vertical melting furnace
JP2010236733A (en) Gasification melting method and gasification melting facility for waste
JP4972458B2 (en) Ash melting furnace combustion chamber
JP2007085562A (en) Shaft furnace type gasification melting furnace
JP2007085563A (en) Tuyere structure of shaft furnace type gasification melting furnace
JP2001221414A (en) Combustion method for combustion melting furnace, combustion melting furnace and waste combustion melting system provided with the same
JPH09217920A (en) Combustion melting furnace and waste disposing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Ref document number: 4859416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250