JP2007071176A - Method and device for purifying combustion device - Google Patents

Method and device for purifying combustion device Download PDF

Info

Publication number
JP2007071176A
JP2007071176A JP2005261963A JP2005261963A JP2007071176A JP 2007071176 A JP2007071176 A JP 2007071176A JP 2005261963 A JP2005261963 A JP 2005261963A JP 2005261963 A JP2005261963 A JP 2005261963A JP 2007071176 A JP2007071176 A JP 2007071176A
Authority
JP
Japan
Prior art keywords
gas
oxygen
gas supply
supply path
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005261963A
Other languages
Japanese (ja)
Inventor
Tomio Inoue
富夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAN KIKAKU KK
Original Assignee
DAN KIKAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAN KIKAKU KK filed Critical DAN KIKAKU KK
Priority to JP2005261963A priority Critical patent/JP2007071176A/en
Publication of JP2007071176A publication Critical patent/JP2007071176A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Air Supply (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To recover combustion efficiency of a combustion device of which performance is deteriorated because soot is accumulated therein. <P>SOLUTION: Air A is filtered by a nitrogen separation film 6 to form oxygen enriched gas O<SB>R</SB>, radiation is irradiated on the oxygen enriched gas O<SB>R</SB>, and obtained activated gas G is mixed with fuel and is burned in the combustion device E to accelerate oxidation reaction. Namely, oxygen enriched gas O<SB>R</SB>receives radiation and becomes activated gas G, composition electron of contained oxygen is excited and chemical reaction activity is raised, and fuel is completely burned by the activated oxygen. Since oxygen concentration of activated gas G is high as compared to normal air, much highly activated high temperature oxygen remains in exhaust gas after combustion, and soot adhering and accumulating in a combustion chamber and an inside of an exhaust pipe is burned by the highly activated high temperature oxygen and is removed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃焼室や排気管内部に煤が付着堆積して性能劣化した各種燃焼装置(ボイラ
ー、工業用炉、エンジン等)の燃焼効率を回復させると共に、排出される有害物質量を低
減する燃焼装置の浄化方法及び装置に関する。
The present invention restores the combustion efficiency of various combustion devices (boilers, industrial furnaces, engines, etc.) whose performance has deteriorated due to the deposition and deposition of soot in the combustion chamber and exhaust pipe, and reduces the amount of harmful substances discharged The present invention relates to a combustion apparatus purification method and apparatus.

従来、ボイラーや各種の工業用炉等の様に発生熱を利用する熱設備や、エンジン等の様
に熱力学的エネルギーを動力として利用する熱機関(本願の特許請求の範囲及び明細書に
おいて、上記熱設備及び熱機関を合わせて、燃焼装置という。)は、石油等の燃料を燃焼
させることで、熱を得られる様にしている。
燃焼とは、空気中の酸素と燃料が化合し熱と光を発する現象で、完全燃焼に要する理論
上の最小空気量を理論空気量といい、この理論空気量と実際の燃焼に用いられる空気量の
比率を空気比といい、通常の燃焼制御においては、不完全燃焼防止のため、空気比1.0 以
上の状態、即ち過剰空気を供給して燃焼させる様にしている。
Conventionally, heat equipment that uses generated heat, such as boilers and various industrial furnaces, and heat engines that use thermodynamic energy as power, such as engines (in the claims and specifications of this application, Combining the heat facility and the heat engine, it is called a combustion device), and heat is obtained by burning fuel such as petroleum.
Combustion is a phenomenon in which oxygen and fuel in the air combine to emit heat and light. The theoretical minimum air amount required for complete combustion is called the theoretical air amount. This theoretical air amount and the air used for actual combustion The ratio of the quantity is called the air ratio. In normal combustion control, in order to prevent incomplete combustion, a state where the air ratio is 1.0 or more, that is, excess air is supplied and burned.

研究開発段階や出願段階で先行技術調査を行っておらず、記載すべき先行技術文献を知
りません。
We do not conduct prior art searches at the research and development stage or application stage, and do not know the prior art documents to be described.

ところが、いくら過剰の空気を供給しても、完全燃焼の実現は不可能で、排ガス中の一
酸化炭素COや炭化水素HCを皆無にすることは出来ず、この一酸化炭素や炭化水素は煤
と成り、燃焼装置の使用年時の経過に伴い、燃焼室や排気管内部に煤が付着堆積し、この
ため燃焼効率が徐々に低下し、燃焼後の排ガス中に残留する有害物質の量も徐々に増加し
てしまった。
However, no matter how much excess air is supplied, complete combustion is impossible, and carbon monoxide CO and hydrocarbon HC in the exhaust gas cannot be completely eliminated. As the years of use of the combustion equipment elapse, soot deposits and accumulates inside the combustion chamber and exhaust pipe, which gradually reduces the combustion efficiency and the amount of harmful substances remaining in the exhaust gas after combustion. It gradually increased.

本発明は、上記課題に鑑み、空気を窒素分離膜で濾過して酸素富化ガスを生成し、該酸
素富化ガスに放射線を照射し、得られた活性化ガスと、燃料とを混合して燃焼装置で燃焼
させる様にすることによって、酸化反応を促進して、上記課題を解決する。
即ち、酸素富化ガスは放射線を受けて、活性化ガスとなり、含有の酸素は構成電子が励
起されて、化学反応活性が高められ、かかる活性化酸素で燃料を完全に燃焼させる。
又、活性化ガスは酸素濃度が通常空気に比して高濃度であるため、燃焼後の排ガス中に
は高温度で高活性の酸素が多く残留し、この高温・高活性の酸素で燃焼室や排気管内部に
付着堆積している煤をも燃焼させて除去する。
In view of the above problems, the present invention produces an oxygen-enriched gas by filtering air through a nitrogen separation membrane, irradiates the oxygen-enriched gas with radiation, and mixes the obtained activated gas and fuel. Thus, the above problem is solved by accelerating the oxidation reaction.
That is, the oxygen-enriched gas receives radiation and becomes an activated gas, and the contained oxygen excites constituent electrons to increase the chemical reaction activity, and the activated oxygen completely burns the fuel.
Further, since the activated gas has a higher oxygen concentration than that of normal air, a large amount of highly active oxygen remains in the exhaust gas after combustion. And soot that is deposited and deposited inside the exhaust pipe is also burned and removed.

要するに本発明は、空気を窒素分離膜で濾過して酸素富化ガスを生成し送出するガス供
給装置を装備したので、燃焼装置により多くの酸素を送り込むことが出来る。
又、ガス供給装置の酸素富化ガス送出口にガス供給経路を接続し、該ガス供給経路に放
射性物質を配設したので、酸素富化ガスに放射線を照射することによって、化学反応活性
の高い活性化酸素を生成することが出来る。
そして、この活性化酸素を含有の活性化ガスを使い古された中古の燃焼装置に供給すれ
ば、所定燃料を完全に燃焼させることができ、また燃焼熱で高温化されている排ガス中の
余剰の活性化酸素で燃焼装置のガス排出経路に溜まった煤を燃やし尽くして、燃焼装置の
性能を新品同様に回復させることが出来る。
In short, the present invention is equipped with a gas supply device that generates and sends oxygen-enriched gas by filtering air through a nitrogen separation membrane, so that more oxygen can be fed into the combustion device.
In addition, since the gas supply path is connected to the oxygen-enriched gas delivery port of the gas supply apparatus and the radioactive substance is disposed in the gas supply path, the chemical reaction activity is high by irradiating the oxygen-enriched gas with radiation. Activated oxygen can be generated.
Then, if the activated gas containing this activated oxygen is supplied to a used combustion device that has been worn out, the predetermined fuel can be completely burned, and surplus in the exhaust gas that has been heated to high temperature by the combustion heat. The activated oxygen can burn out the soot accumulated in the gas discharge path of the combustion apparatus, and the performance of the combustion apparatus can be recovered as if it were new.

シート材に放射性物質を固着して浄化材を形成し、該浄化材をガス供給経路の少なくと
も一部に貼付するか、可塑原料に放射性物質を配合して浄化材を調製し、該浄化材でガス
供給経路の少なくとも一部を形成して、ガス供給経路に放射性物質を配設するか、或いは
、塗料に放射性物質を配合して浄化材を調製し、該浄化材をガス供給経路の少なくとも一
部に塗布して、ガス供給経路に放射性物質を配設したので、ガス供給経路の周囲に放射性
物質を万遍なく最適配置するができ、酸素富化ガスが含有する酸素をより効率良く活性化
して、活性化酸素による清浄能力の向上を図ることが出来る等その実用的効果甚だ大であ
る。
A radioactive material is fixed to the sheet material to form a purification material, and the purification material is attached to at least a part of the gas supply path, or a plastic material is mixed with a radioactive material to prepare a purification material. At least a part of the gas supply path is formed, and a radioactive substance is disposed in the gas supply path, or a purification material is prepared by blending a radioactive substance into the paint, and the purification material is added to at least one of the gas supply paths. Since the radioactive material is disposed on the gas supply path and the radioactive material is arranged uniformly around the gas supply path, the oxygen contained in the oxygen-enriched gas can be activated more efficiently. Therefore, the practical effect such as being able to improve the cleaning ability by activated oxygen is significant.

以下本発明の一実施例を図面に基づいて説明する。
図1〜2に示す様に、本発明に係る燃焼装置の浄化装置は、酸素富化ガスOR を生成し
送出するガス供給装置1と、該ガス供給装置1の酸素富化ガス送出口2に接続したガス供
給経路3を備え、該ガス供給経路3に、放射性物質4を含有させた浄化材5を配設し、か
かるガス供給経路3の下流端から吐出される活性化ガスGを燃焼装置Eに供給する様にし
たものである。
An embodiment of the present invention will be described below with reference to the drawings.
As shown in FIGS. 1-2, purification apparatus for a combustion apparatus according to the present invention, a gas supply apparatus 1 that generates and sends the oxygen-enriched gas O R, the gas supply apparatus 1 of the oxygen-enriched gas outlet 2 The gas supply path 3 connected to the gas supply path 3 is provided with a purification material 5 containing a radioactive substance 4 disposed in the gas supply path 3, and the activated gas G discharged from the downstream end of the gas supply path 3 is combusted. The apparatus E is supplied to the apparatus E.

ガス供給装置1は、窒素分離膜6を備え、該窒素分離膜6によって、空気を濾過して酸
素富化ガスOR を生成する。
窒素分離膜6としては、例えばポリイミド製の中空糸膜(図3参照)が挙げられ、この
中空糸膜を複数本用いてモジュール化した宇部興産株式会社より市販の「UBE N2
パレーター」を利用しても良い。
このモジュールは、図4に示す様に、筒体7の内部両端に内蓋8、8aを設け、一方の内
蓋8には空気Aの流入口9、9a…を、また他方の内蓋8aには窒素富化ガスNR の流出口10
、10a…を設け、筒体7の中の内蓋8、8aの間に中空糸形状の窒素分離膜6を複数本収容
し、各窒素分離膜6の一端を流入口9、9a…に接続する一方、窒素分離膜6の他端を流出
口10、10a…に接続し、筒体7の側面(図面上では上側)には酸素富化ガスOR の吐出口
11を設けている。
そして、流入口9、9a…に空気Aの圧送装置(図面上省略)を接続し、空気Aを送り込
めば、空気Aが窒素分離膜6の中を流れ、その間に空気A中の酸素の大部分は少量の窒素
と共に窒素分離膜6を透過し、空気A中の窒素の大部分は窒素分離膜6を透過できず、少
量の酸素と共に流出口10、10a…へ向かい、その結果、流出口10、10a…には窒素富化ガ
スNR が、また吐出口11には酸素富化ガスOR が得られる。
尚、空気Aの圧送装置は、ガス供給装置1に内装させても、外付けとしても良く、また
窒素富化ガスNR は不要であるため、大気中に放出すれば良い。
Gas supply device 1 comprises a nitrogen separation membrane 6, the nitrogen separation membrane 6, the air is filtered to produce oxygen-enriched gas O R.
Examples of the nitrogen separation membrane 6 include a hollow fiber membrane made of polyimide (see FIG. 3), and a “UBE N 2 separator” commercially available from Ube Industries, Ltd., which is modularized using a plurality of hollow fiber membranes, is used. You may do it.
As shown in FIG. 4, this module is provided with inner lids 8 and 8a at both inner ends of the cylindrical body 7. One inner lid 8 is provided with air A inflow ports 9, 9a, and the other inner lid 8a. The nitrogen-enriched gas N R outlet 10
, 10a... And a plurality of hollow fiber-shaped nitrogen separation membranes 6 are accommodated between the inner lids 8 and 8a in the cylindrical body 7, and one end of each nitrogen separation membrane 6 is connected to the inflow ports 9, 9a. to one, connect the other end of the nitrogen separation membrane 6 the outlet 10, 10a ..., the discharge port of the oxygen-enriched gas O R on the side of the cylinder 7 (upper in the drawing)
11 is provided.
Then, when a pressure feeding device (not shown in the drawing) of the air A is connected to the inlets 9, 9a, and the air A is fed, the air A flows through the nitrogen separation membrane 6, while the oxygen A in the air A flows. Most of the nitrogen in the air A passes through the nitrogen separation membrane 6 with a small amount of nitrogen, and most of the nitrogen in the air A cannot pass through the nitrogen separation membrane 6 and goes to the outlets 10, 10a. outlet 10, 10a ... nitrogen-enriched gas N R in is the oxygen-enriched gas O R is obtained to the discharge port 11.
Note that the air A pumping device may be installed inside the gas supply device 1 or may be externally attached, and since the nitrogen-enriched gas N R is unnecessary, it may be released into the atmosphere.

浄化材5は、シート材12の表面に、エポキシ樹脂等の接着剤13を用いて、放射性物質4
を固着したものであり、裏面に粘着層14を設け、該粘着層14によってガス供給経路3の外
装の少なくとも一部に貼付されている。
シート材12は、可撓性を有するものであれば良く、例えば金属泊、樹脂製フィルム、不
織布等で良い。
放射性物質4は、人体に影響しない極微量の放射線を放出するもので、例えばラジウム
、ラドン等が挙げられ、天然鉱石、精製物の如何は問わないが、微粉化したものが望まし
い。
The purifying material 5 is made of a radioactive material 4 using an adhesive 13 such as an epoxy resin on the surface of the sheet material 12.
The adhesive layer 14 is provided on the back surface, and is adhered to at least a part of the exterior of the gas supply path 3 by the adhesive layer 14.
The sheet material 12 may be any material having flexibility, and may be, for example, a metal stay, a resin film, a nonwoven fabric, or the like.
The radioactive substance 4 emits a very small amount of radiation that does not affect the human body, and examples thereof include radium and radon. Regardless of natural ores and refined products, finely divided substances are desirable.

次に浄化装置の変形例について説明する。
第一変形例の浄化装置は、可塑原料15に放射性物質4を配合し、得られた浄化材5でガ
ス供給経路3の少なくとも一部を形成している。(図5参照)
ここで可塑原料15とは、適宜形状に成形可能なものであれば良く、例えば、フェノール
樹脂、ホルムアルデヒド樹脂、尿素樹脂、珪素樹脂等の熱硬化性樹脂、ポリエチレン、ポ
リスチレン、ポリメタクリル酸メチル等の熱可塑性樹脂が挙げられる。
又、可塑原料15は、練土状に調製したセラミックス原料でも良く、筒状に成形し焼成し
てガス供給経路3と成したり、或いは、図示しないが、球状やハニカム形状に成形し焼成
して、得られたセラミックス焼結体(放射性物質4を含有)を管の中に収容してガス供給
経路3としても良い。
Next, a modified example of the purification device will be described.
In the purification device of the first modified example, the radioactive material 4 is blended with the plastic raw material 15, and the obtained purification material 5 forms at least a part of the gas supply path 3. (See Figure 5)
Here, the plastic raw material 15 may be any material that can be molded into an appropriate shape, such as a thermosetting resin such as phenol resin, formaldehyde resin, urea resin, or silicon resin, polyethylene, polystyrene, polymethyl methacrylate, or the like. A thermoplastic resin is mentioned.
Further, the plastic raw material 15 may be a ceramic raw material prepared in the form of a clay, and is formed into a cylindrical shape and fired to form the gas supply path 3 or, although not shown, is formed into a spherical shape or a honeycomb shape and fired. Then, the obtained ceramic sintered body (containing the radioactive substance 4) may be accommodated in a tube to form the gas supply path 3.

第二変形例の浄化装置は、塗料16に放射性物質4を配合し、得られた浄化材5をガス供
給経路3の外装の少なくとも一部に塗布している。(図6参照)
尚、塗料16は公知のもの用いれば良く、有機系、無機系の如何は問わず、また球状やハ
ニカム形状に形成したセラミックス焼結体に塗料状の浄化材5を塗布し、かかる浄化材5
の被膜を有するセラミックス焼結体を管の中に収容してガス供給経路3としても良い。
In the purification device of the second modification, the radioactive substance 4 is blended in the paint 16 and the obtained purification material 5 is applied to at least a part of the exterior of the gas supply path 3. (See Figure 6)
The paint 16 may be any known one, whether it is organic or inorganic, and the paint-like purification material 5 is applied to a ceramic sintered body formed in a spherical or honeycomb shape.
A ceramic sintered body having the above coating may be accommodated in a tube to form the gas supply path 3.

次に本発明の浄化方法、並びに浄化装置の作用について説明する。
先ず、浄化装置のガス供給経路3を燃焼装置E、例えば自動車用エンジンの空気吸入口
に接続する。
次に、エンジンを始動すると共に、ガス供給装置1に内装又は外付けした空気圧送装置
により、窒素分離膜6に空気Aを圧送し、窒素分離膜6にて空気Aを濾過して、酸素富化
ガスOR を生成し、ガス供給経路3に送出する。
Next, the operation of the purification method and the purification device of the present invention will be described.
First, the gas supply path 3 of the purification device is connected to the combustion device E, for example, an air inlet of an automobile engine.
Next, the engine is started, and air A is pumped to the nitrogen separation membrane 6 by a pneumatic feeding device built in or externally attached to the gas supply device 1, and the air A is filtered by the nitrogen separation membrane 6 to enrich oxygen. of generating a gas O R, and sends the gas supply path 3.

すると、酸素富化ガスOR 中の酸素分子は、ガス供給経路3を通過する際に、放射性物
質4から照射される放射線を受け、分子結合に係る最外殻電子が励起されて、化学反応を
起こし易い活性化酸素となる。
従って、この活性化酸素を含有の活性化ガスGをエンジンに供給すると、エンジンに適
合した所定燃料(例えば、ガソリン、軽油、LPG、LNG等)は、活性化酸素と化合し
、残らず全てが燃焼し尽くされる。
又、活性化ガスGは酸素濃度が通常空気よりも高いため、供給されるエンジンの圧縮比
を高めなくとも、より多くの酸素がシリンダー内に送り込まれ、この内一部が燃焼で消費
されても、排ガス中には高温の活性化酸素が多量に残留し、かかる高温の活性化酸素で燃
焼室及びこれ以降のガス排出経路に付着堆積している煤は燃焼し、除去されるのである。
Then, the oxygen molecules in the oxygen-enriched gas O R, when passing through the gas supply path 3 receives the radiation emitted from the radioactive material 4, and outermost electrons are excited according to the molecular bonding, chemical reactions It becomes activated oxygen which is easy to cause.
Therefore, when the activated gas G containing activated oxygen is supplied to the engine, a predetermined fuel (for example, gasoline, light oil, LPG, LNG, etc.) suitable for the engine is combined with the activated oxygen, and not all remains. Burned out.
Further, since the activated gas G has an oxygen concentration higher than that of normal air, even if the compression ratio of the supplied engine is not increased, more oxygen is sent into the cylinder, and a part of this is consumed by combustion. However, a large amount of high-temperature activated oxygen remains in the exhaust gas, and the soot deposited and deposited in the combustion chamber and the gas discharge path thereafter is burned and removed by such high-temperature activated oxygen.

以上、酸素富化ガスOR を活性化ガスGに変成させ、酸素富化ガスOR のみから成る活
性化ガスGを燃焼装置Eに供給する浄化装置について説明したが、窒素分離膜7の能力(
即ち、得られる酸素富化ガスOR の量、酸素濃度など)を勘案し、酸素富化ガスOR だけ
では所定燃料の完全燃焼に必要な酸素を確保できない場合は、酸素富化ガスOR に空気A
を加え混合し、得られた混合ガスに放射線を当てて、活性化ガスGに変成させても良い。
この場合には、図7に示す様に、ガス供給経路3の上流側に空気導入部17を設け、該空
気導入部17により、ガス供給経路3の中の酸素富化ガスOR に空気Aを加え、混合すれば
良く、空気導入部17をガス供給経路3の上流側に設けることによって、空気A中の酸素も
ガス供給経路3を通過する際に、放射線を受け得て、活性化される。
この混合ガスより成る活性化ガスGも、酸素濃度は通常の空気よりも高く、排ガス中に
は高温の活性化酸素が残留し、かかる高温の活性化酸素で燃焼室及びこれ以降のガス排出
経路に付着堆積している煤は燃焼し、除去されるのである。
While the oxygen-enriched gas O R is transformed into activated gas G, has been described purifying device for supplying oxygen-enriched gas O R consists only activated gas G in the combustion device E, the ability of the nitrogen separation membrane 7 (
That is, the amount of oxygen-enriched gas O R obtained, taking into consideration the oxygen concentration, etc.), if only the oxygen-enriched gas O R can not be ensured oxygen required for complete combustion of a given fuel, the oxygen-enriched gas O R Air A
And mixing, and the resulting mixed gas may be irradiated with radiation to be transformed into the activated gas G.
In this case, as shown in FIG. 7, the air introduction portion 17 provided on the upstream side of the gas supply path 3, the air introduction part 17, the air A in the oxygen-enriched gas O R in the gas supply path 3 When the air introduction part 17 is provided on the upstream side of the gas supply path 3, oxygen in the air A can receive radiation and be activated when passing through the gas supply path 3. The
The activated gas G made of this mixed gas also has an oxygen concentration higher than that of normal air, and high-temperature activated oxygen remains in the exhaust gas, and the high-temperature activated oxygen causes the combustion chamber and the gas discharge path thereafter. The soot deposited on the surface burns and is removed.

本発明に係る浄化装置の概略図である。It is the schematic of the purification apparatus which concerns on this invention. 浄化装置を部分省略して表した模式図である。It is the schematic diagram which abbreviate | omitted and expressed the purification apparatus. 窒素分離膜の模式図である。It is a schematic diagram of a nitrogen separation membrane. 窒素分離膜モジュールの模式図である。It is a schematic diagram of a nitrogen separation membrane module. 第一変形例の浄化装置における浄化材の斜視図である。It is a perspective view of the purification | cleaning material in the purification apparatus of a 1st modification. 第二変形例の浄化装置における浄化材の斜視図である。It is a perspective view of the purification | cleaning material in the purification apparatus of a 2nd modification. 空気導入部を有する浄化装置を部分省略して表した模式図である。It is the schematic diagram which abbreviate | omitted and represented the purification apparatus which has an air introduction part.

符号の説明Explanation of symbols

1 ガス供給装置
2 酸素富化ガス送出口
3 ガス供給経路
4 放射性物質
5 浄化材
6 窒素分離膜
E 燃焼装置
A 空気
R 酸素富化ガス
G 活性化ガス
P 燃焼用ガス
12 シート材
15 可塑原料
16 塗料
17 空気導入部
1 gas supply device 2 enriched gas outlet 3 gas supply path 4 radioactive material 5 purification material 6 nitrogen separation membrane E combustion device A air O R enriched gas G activated gas P combustion gases
12 Sheet material
15 Plastic raw materials
16 Paint
17 Air inlet

Claims (7)

空気を窒素分離膜で濾過して酸素富化ガスを生成し、該酸素富化ガスに放射線を照射し
、得られた活性化ガスと、燃料とを混合して燃焼装置で燃焼させる様にしたことを特徴と
する燃焼装置の浄化方法。
Air is filtered through a nitrogen separation membrane to generate an oxygen-enriched gas, the oxygen-enriched gas is irradiated with radiation, and the resulting activated gas and fuel are mixed and combusted in a combustion device. A method for purifying a combustion apparatus.
酸素富化ガスに空気を混合して、得られた混合ガスに放射線を照射して活性化ガスと成
す様にしたことを特徴とする請求項1記載の燃焼装置の浄化方法。
The method for purifying a combustion apparatus according to claim 1, wherein air is mixed with the oxygen-enriched gas, and the resulting mixed gas is irradiated with radiation to form an activated gas.
空気を窒素分離膜で濾過して酸素富化ガスを生成し送出するガス供給装置と、該ガス供
給装置の酸素富化ガス送出口に接続したガス供給経路を備え、該ガス供給経路に放射性物
質を配設し、かかるガス供給経路の下流端から吐出される活性化ガスを燃焼装置に供給す
る様にしたことを特徴とする燃焼装置の浄化装置。
A gas supply device that generates and delivers oxygen-enriched gas by filtering air through a nitrogen separation membrane, and a gas supply path connected to an oxygen-enriched gas delivery port of the gas supply device, and a radioactive substance in the gas supply path A purification device for a combustion apparatus, wherein activated gas discharged from a downstream end of the gas supply path is supplied to the combustion apparatus.
ガス供給経路の上流側に空気導入部を設け、該空気導入部により、酸素富化ガスに空気
を混合する様にしたことを特徴とする請求項3記載の燃焼装置の浄化装置。
4. The purification apparatus for a combustion apparatus according to claim 3, wherein an air introduction part is provided upstream of the gas supply path, and the air introduction part mixes air with the oxygen-enriched gas.
シート材に放射性物質を固着して浄化材を形成し、該浄化材をガス供給経路の少なくと
も一部に貼付して、ガス供給経路に放射性物質を配設したことを特徴とする請求項3又は
4記載の燃焼装置の浄化装置。
The radioactive material is fixed to the sheet material to form a purification material, the purification material is attached to at least a part of the gas supply path, and the radioactive material is disposed in the gas supply path. 4. A purification apparatus for a combustion apparatus according to 4.
可塑原料に放射性物質を配合して浄化材を調製し、該浄化材でガス供給経路の少なくと
も一部を形成して、ガス供給経路に放射性物質を配設したことを特徴とする請求項3又は
4記載の燃焼装置の浄化装置。
4. A purification material is prepared by blending a plastic material with a radioactive substance, and at least a part of a gas supply path is formed with the purification material, and the radioactive substance is disposed in the gas supply path. 4. A purification apparatus for a combustion apparatus according to 4.
塗料に放射性物質を配合して浄化材を調製し、該浄化材をガス供給経路の少なくとも一
部に塗布して、ガス供給経路に放射性物質を配設したことを特徴とする請求項3又は4記
載の燃焼装置の浄化装置。
5. A purification material is prepared by mixing a radioactive substance with a paint, the purification material is applied to at least a part of a gas supply path, and the radioactive substance is disposed in the gas supply path. The combustion apparatus purification apparatus as described.
JP2005261963A 2005-09-09 2005-09-09 Method and device for purifying combustion device Pending JP2007071176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005261963A JP2007071176A (en) 2005-09-09 2005-09-09 Method and device for purifying combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005261963A JP2007071176A (en) 2005-09-09 2005-09-09 Method and device for purifying combustion device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010004596U Continuation JP3162815U (en) 2010-07-07 2010-07-07 Combustion device purification device

Publications (1)

Publication Number Publication Date
JP2007071176A true JP2007071176A (en) 2007-03-22

Family

ID=37932838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005261963A Pending JP2007071176A (en) 2005-09-09 2005-09-09 Method and device for purifying combustion device

Country Status (1)

Country Link
JP (1) JP2007071176A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106401814A (en) * 2016-10-13 2017-02-15 广西大学 Internal combustion engine oxygen-enriched combustion air inlet system based on thermal transpiration effect

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295285A (en) * 2001-03-29 2002-10-09 Denso Corp Air intake control device for internal combustion engine
JP2005036705A (en) * 2003-07-14 2005-02-10 Dan Kikaku:Kk Method and apparatus for purifying combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295285A (en) * 2001-03-29 2002-10-09 Denso Corp Air intake control device for internal combustion engine
JP2005036705A (en) * 2003-07-14 2005-02-10 Dan Kikaku:Kk Method and apparatus for purifying combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106401814A (en) * 2016-10-13 2017-02-15 广西大学 Internal combustion engine oxygen-enriched combustion air inlet system based on thermal transpiration effect

Similar Documents

Publication Publication Date Title
CN1037941C (en) Method of and apparatus for utilizing and recovering CO2 in combustion exhaust gas
US9156000B2 (en) Exhaust gas purifier
CN1211678A (en) Modifying device for natural gas, deoxidizing device equipped on same and gas engine with natural gas modifying device
JP2009517210A (en) Multi-stage system for selective catalytic reduction
US20090263296A1 (en) Catalyst with bioreactor for combustion engines
CN105189940A (en) System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US20070130956A1 (en) Rich catalytic clean burn for liquid fuel with fuel stabilization unit
Okubo Recent development of technology in scale-up of plasma reactors for environmental and energy applications
CN109289467A (en) Multistage composite exhaust treatment system
JP5474468B2 (en) Exhaust gas purification device using plasma discharge
JP2004115013A (en) Heating system for vehicle
US7708966B2 (en) Systems and methods for on-site selective catalytic reduction
US20040238802A1 (en) Combustion promoting material
JP2011185261A (en) Electrochemical and catalyst converter for controlling discharge of exhaust gas
JP2007071176A (en) Method and device for purifying combustion device
JP3162815U (en) Combustion device purification device
CN209188472U (en) Multistage composite exhaust treatment system
JP2007071506A (en) Combustion apparatus
JP2005036705A (en) Method and apparatus for purifying combustion engine
JP4268033B2 (en) Combustion method and apparatus
KR101292338B1 (en) Combustion Method of Burner Apparatus For Purifying Exhaust Emissions of Diesel Engine using Liquefied Fuel and Burner Apparatus using the Method
RU61843U1 (en) GAS BURNING DEVICE
EP1787015A1 (en) Installation for cleaning of exhaust gas and method for cleaning of exhaust gas
JPH0949462A (en) Liquid fuel activating device
CN1771082A (en) Method and apparatus for reducing combustion residues in exhaust gases

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511