JP2007070708A - Wet type treating method for zinc leach residue - Google Patents

Wet type treating method for zinc leach residue Download PDF

Info

Publication number
JP2007070708A
JP2007070708A JP2005261345A JP2005261345A JP2007070708A JP 2007070708 A JP2007070708 A JP 2007070708A JP 2005261345 A JP2005261345 A JP 2005261345A JP 2005261345 A JP2005261345 A JP 2005261345A JP 2007070708 A JP2007070708 A JP 2007070708A
Authority
JP
Japan
Prior art keywords
zinc
gypsum
underflow
stage
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005261345A
Other languages
Japanese (ja)
Other versions
JP5114764B2 (en
Inventor
Masato Kudo
理人 工藤
Harunobu Arima
晴信 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2005261345A priority Critical patent/JP5114764B2/en
Publication of JP2007070708A publication Critical patent/JP2007070708A/en
Application granted granted Critical
Publication of JP5114764B2 publication Critical patent/JP5114764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve, in a wet type treating process for zinc residue, the dehydrating property of gypsum produced in a first stage neutralization step, to improve productivity in this step, and to improve the quality of the resultant gypsum. <P>SOLUTION: The zinc leach residue is leached, and the resultant leachate is put into a first stage neutralization reaction vessel to undergo neutralization by the addition of a neutralizing agent and then separated into a first overflow and a first underflow, and the first overflow is fed to a subsequent step and the first underflow is separated into first stage gypsum and a filtrate. In the above step, the first underflow and/or the filtrate is returned to the first stage neutralization reaction vessel. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、湿式亜鉛製錬の亜鉛浸出工程で分離された亜鉛浸出残渣にいまだ残る亜鉛を回収するために、この亜鉛浸出残渣から主に鉄をヘマタイトとして除いて亜鉛浸出工程に戻す、所謂ヘマタイトプロセスに係り、特には、当該ヘマタイトプロセスにおける中和工程の効率を上げる処理方法に関する。   In order to recover the zinc remaining in the zinc leaching residue separated in the zinc leaching process of wet zinc smelting, the present invention removes mainly iron as hematite from the zinc leaching residue and returns to the zinc leaching process. In particular, the present invention relates to a processing method that increases the efficiency of the neutralization step in the hematite process.

湿式亜鉛製錬の原料鉱石は、通常1〜12%の鉄を含んでおり、焙焼炉内で鉄分に相当したジンクフェライトを形成する。ジンクフェライトは、通常の焼鉱(焙焼された鉱石)浸出条件では不溶性であるため、湿式亜鉛製錬において亜鉛を浸出した際に亜鉛浸出残渣として亜鉛以外の他の成分とともに除かれる。   The raw ore of wet zinc smelting usually contains 1 to 12% iron, and forms zinc ferrite corresponding to iron in a roasting furnace. Since zinc ferrite is insoluble under normal sinter (roasted ore) leaching conditions, zinc leaching residue is removed together with other components other than zinc when leaching zinc in wet zinc smelting.

この亜鉛浸出残渣には、浸出しきれなかった亜鉛、鉄並びに有価金属を含む他の様々の元素が混入している。それゆえ、亜鉛浸出残渣にいまだ残っている亜鉛を回収するために、この亜鉛浸出残渣から亜鉛以外の鉄や他の有価金属を除去・回収する処理を施した後に、この処理済物(液)を亜鉛製錬の亜鉛浸出工程に戻すことが行なわれている。   The zinc leaching residue is mixed with various other elements including zinc, iron, and valuable metals that could not be leached. Therefore, in order to recover the zinc still remaining in the zinc leaching residue, this processed material (liquid) is processed after removing and recovering iron and other valuable metals other than zinc from the zinc leaching residue. Is returned to the zinc leaching process of zinc smelting.

上述の亜鉛浸出残渣(ジンクフェライト)から亜鉛を回収し鉄を分離除去する方法として、生成鉄残渣の化学名をとった、所謂ヘマタイトプロセスが実操業化されている。例えば特許文献1には、湿式亜鉛製錬の亜鉛残渣処理をヘマタイトプロセスにて行なう場合に生ずるヘマタイトを、分離・回収する亜鉛浸出残渣の湿式処理方法が開示されている。そこで、当該処理方法について、図面を参照しながら簡単に説明する。   As a method for recovering zinc from the zinc leaching residue (zinc ferrite) and separating and removing iron, a so-called hematite process, which takes the chemical name of the generated iron residue, has been put into practical use. For example, Patent Document 1 discloses a wet treatment method for zinc leaching residue that separates and recovers hematite generated when the zinc residue treatment of wet zinc smelting is performed in a hematite process. Therefore, the processing method will be briefly described with reference to the drawings.

図3は、従来の技術に係るヘマタイトプロセスの1例の概要を示したフローチャートである。へマタイトプロセスは、湿式亜鉛製錬で焼鉱を浸出して固液分離したときに、固形分として除かれた亜鉛浸出残渣に、2次浸出工程(1)と、1段中和工程(2)と、脱砒工程(3)と、2段中和工程(4)と、脱鉄工程(5)と、からなる処理を加えた後に、脱鉄后液を亜鉛製錬の浸出工程にて処理を行うプロセスである。なお、ここで、ヘマタイトとは、 化学式で、Fe23で表される物質である。 FIG. 3 is a flowchart showing an outline of an example of a hematite process according to the prior art. In the hematite process, the zinc leaching residue removed as a solid content when leaching sinter by wet zinc smelting and solid-liquid separation is applied to the secondary leaching step (1) and the one-step neutralization step (2 ), Arsenic removal step (3), two-step neutralization step (4), and iron removal step (5), and after the removal of the iron removal solution in the leaching step of zinc smelting It is a process that performs processing. Here, hematite is a substance represented by a chemical formula of Fe 2 O 3 .

(1)2次浸出工程
この工程は、湿式亜鉛製錬で得られる亜鉛浸出残渣に上記亜鉛製錬の電解尾液を加えてパルプ状にした後にSO2等による還元雰囲気で浸出して固(S)液(L)分離し、鉛及び銀を主成分に含む固形分とその他の成分を含む浸出液とに分離する工程である。
(1) Secondary leaching step In this step, the zinc leaching residue obtained by wet zinc smelting is added to the above zinc smelting electrolytic tail liquor to form a pulp and then leached in a reducing atmosphere such as SO 2 to solidify ( S) Liquid (L) The liquid is separated into a solid containing lead and silver as main components and a leachate containing other components.

(2)1段中和工程
この工程は、上記浸出工程で得られた浸出液に中和剤(例えば、炭酸カルシウム)を加え、該浸出液中の遊離硫酸を中和して固液分離し、石膏を主成分とする固形分とその他の成分を含む液とに分離する工程である。
(2) One-step neutralization step In this step, a neutralizing agent (for example, calcium carbonate) is added to the leachate obtained in the leaching step, and the free sulfuric acid in the leachate is neutralized and solid-liquid separated. Is a step of separating into a liquid containing a solid component and other components.

(3)脱砒工程
この工程は、上記1段中和工程で得られた中和液に亜鉛末を加えて固液分離し、銅及び砒素を主に含む固形分であるRT残渣として、その他の成分を含む液から分離する工程である。
(3) De-arsenic process This process involves adding zinc powder to the neutralized solution obtained in the above-mentioned one-step neutralization process for solid-liquid separation, and as an RT residue that is a solid content mainly containing copper and arsenic. It is the process of isolate | separating from the liquid containing these components.

(4)2段中和工程
この工程は、上記脱砒工程で砒化銅を分離した後の液に中和剤(例えば、炭酸カルシウム)を加えながらpHをあげて固液分離し、アルミニウムを主成分とする3価の陽イオン化合物の固形分と、その他の成分を含む液とに分離する工程である。
(4) Two-stage neutralization step This step involves solid-liquid separation by increasing the pH while adding a neutralizing agent (for example, calcium carbonate) to the solution after separating copper arsenide in the above-mentioned dearsenic step, and mainly using aluminum. This is a step of separating into a solid content of a trivalent cation compound as a component and a liquid containing other components.

(5)脱鉄工程
この工程は、上記2段中和工程でアルミニウム等を分離した後の液を、ヘマタイト生成温度領域で鉄を酸化しながら加水分解した後に固形分離し、鉄をヘマタイトとして含む固形分と亜鉛を含む液とに分離する工程である。
(5) Deironing process In this process, the liquid after separation of aluminum and the like in the two-stage neutralization process is hydrolyzed while oxidizing iron in the hematite generation temperature region, and then solid separated to contain iron as hematite. This is a step of separating into a solid and a liquid containing zinc.

特開2002−30355号公報JP 2002-30355 A

上述した1段中和工程において、2次浸出工程にて得られた浸出液中の遊離酸量が5〜8g/lとなる迄、中和剤(例えば、炭酸カルシウム)にて中和を行う。これは、後工程である脱鉄工程にて、2次浸出液中のFeを効率的に高品質の酸化鉄として回収するためである。ところが、当該中和において生成する石膏の粒度が細かいため、当該石膏の脱水性が悪化し、生産性が低下すると共に、得られる石膏の品質が低下するという問題があった。   In the above-described one-step neutralization step, neutralization is performed with a neutralizing agent (for example, calcium carbonate) until the amount of free acid in the leachate obtained in the secondary leaching step is 5 to 8 g / l. This is because Fe in the secondary leaching solution is efficiently recovered as high-quality iron oxide in the iron removal step, which is a subsequent step. However, since the particle size of the gypsum produced in the neutralization is fine, the dehydrating property of the gypsum is deteriorated, the productivity is lowered, and the quality of the obtained gypsum is lowered.

さらに、脱鉄工程にとっての不純物であるアルミニウム等の3価の陽イオンを除去するため、当該1段中和後、再度、中和剤(例えば、炭酸カルシウム)にて中和を行いpHを4〜5として、当該3価の陽イオンを水酸化物として沈殿除去する2段中和工程が採られている。ここで、安価な中和剤として炭酸カルシウムを使用すると、当該3価の陽イオンの水酸化物と石膏とが生成しスラリーとなる。このスラリーを濾過機で濾別するのであるが、発生残渣量が多く、後工程の設備容量が大きくならざるを得ない。だからといって、中和剤としてMg(OH)やNaOHを用いようとしても、これらの中和剤は高価な上に、不純物として、または化合した生成物が、製錬工程に悪影響を与えるため使用するのが困難だった。 Furthermore, in order to remove trivalent cations such as aluminum, which is an impurity for the iron removal process, neutralization is performed again with a neutralizing agent (for example, calcium carbonate) after the first stage neutralization to adjust the pH to 4. ˜5, a two-stage neutralization step is performed in which the trivalent cation is precipitated and removed as a hydroxide. Here, when calcium carbonate is used as an inexpensive neutralizing agent, the trivalent cation hydroxide and gypsum are produced to form a slurry. This slurry is separated by a filter, but the amount of generated residue is large, and the capacity of the post-process must be increased. However, even if Mg (OH) 2 or NaOH is used as a neutralizing agent, these neutralizing agents are expensive and are used as impurities or the combined product adversely affects the smelting process. It was difficult.

本発明は、上述の状況を背景としてなされたものであり、解決しようとする課題の一つは、1段中和工程において生成する石膏の脱水性を向上させ、当該工程の生産性を上げると伴に、得られる石膏の品質を向上させることである。本発明が解決しようとする、他の課題は、2段中和工程において生成する3価の陽イオンの水酸化物と石膏とのスラリーから、3価の陽イオンと石膏との分離性を上げて、後工程における設備負担を減らしながら、3価の陽イオン中における有用金属の回収効率を上げることである。   The present invention has been made against the background described above, and one of the problems to be solved is to improve the dehydration property of gypsum produced in the one-step neutralization step and increase the productivity of the step. At the same time, it is to improve the quality of the obtained gypsum. Another problem to be solved by the present invention is to increase the separation of trivalent cation and gypsum from the slurry of trivalent cation hydroxide and gypsum produced in the two-stage neutralization step. Thus, it is to increase the recovery efficiency of useful metals in the trivalent cation while reducing the equipment burden in the subsequent process.

上述の課題を解決するため、中和後に生成した中和物を元の中和槽に添加することにより、中和反応時の中和生成物の成長過程を制御できることを見出した。
その第1の手段は、
湿式亜鉛製錬で得られる亜鉛浸出残渣の湿式処理法であって、
前記亜鉛浸出残渣を浸出し、得られた浸出液を第1段の中和反応槽に投入し、中和剤を加え、第1のオーバーフローと第1のアンダーフローとに分離し、第1のオーバーフローは次工程へ送り、第1のアンダーフローは石膏と濾液とに分離する工程において、
第1のアンダーフローを分級し、分級後の細粒側の石膏を、第1段の中和反応槽へ繰り返すことを特徴とする亜鉛浸出残渣の湿式処理法である。
In order to solve the above-mentioned problems, it has been found that the growth process of the neutralized product during the neutralization reaction can be controlled by adding the neutralized product generated after neutralization to the original neutralization tank.
The first means is
It is a wet processing method of zinc leaching residue obtained by wet zinc smelting,
The zinc leaching residue is leached, the obtained leachate is put into a first stage neutralization reaction tank, a neutralizing agent is added, and it is separated into a first overflow and a first underflow. Is sent to the next process and the first underflow is separated into gypsum and filtrate.
The first underflow is classified, and the fine-grained gypsum after classification is repeated in the first stage neutralization reaction tank.

第2の手段は、
湿式亜鉛製錬で得られる亜鉛浸出残渣の湿式処理法であって、
前記亜鉛浸出残渣を浸出し、得られた浸出液を第1段の中和反応槽に投入し、中和剤を加え、第1のオーバーフローと第1のアンダーフローとに分離し、得られた第1のオーバーフローを第2段の中和反応槽に投入し、中和剤を加え、第2のオーバーフローと第2のアンダーフローとに分離し、得られた第2のアンダーフローを、第2段の中和反応槽へ繰り返すことを特徴とする亜鉛浸出残渣の湿式処理法である。
The second means is
It is a wet processing method of zinc leaching residue obtained by wet zinc smelting,
The zinc leaching residue was leached, the obtained leachate was put into a first-stage neutralization reaction tank, a neutralizing agent was added, and the first overflow and the first underflow were separated. 1 overflow into the second stage neutralization reactor, neutralizing agent is added to separate the second overflow and the second underflow, and the resulting second underflow is supplied to the second stage. It is the wet processing method of the zinc leaching residue characterized by repeating to the neutralization reaction tank.

第3の手段は、
湿式亜鉛製錬で得られる亜鉛浸出残渣の湿式処理法であって、
前記亜鉛浸出残渣を浸出し、得られた浸出液を第1段の中和反応槽に投入し、中和剤を加え、第1のオーバーフローと第1のアンダーフローとに分離し、得られた第1のオーバーフローを、第2段の中和反応槽に投入し、中和剤を加え、第2のオーバーフローと第2のアンダーフローとに分離する工程において、
第2のオーバーフローと第2のアンダーフローとの分離に湿式分級機を用い、得られた第2のアンダーフローを、第1段の中和反応槽へ繰り返すことを特徴とする亜鉛浸出残渣の湿式処理法である。
The third means is
It is a wet processing method of zinc leaching residue obtained by wet zinc smelting,
The zinc leaching residue was leached, the obtained leachate was put into a first-stage neutralization reaction tank, a neutralizing agent was added, and the first overflow and the first underflow were separated. In the step of charging 1 overflow into the second stage neutralization reaction tank, adding a neutralizing agent, and separating into a second overflow and a second underflow,
Wet classifier leaching residue, characterized in that a wet classifier is used to separate the second overflow and the second underflow, and the obtained second underflow is repeated in the first stage neutralization reactor. It is a processing method.

第4の手段は、
第1および第3の手段に記載の湿式処理法を併用して行うことを特徴とする亜鉛浸出残渣の湿式処理法である。
The fourth means is
A wet processing method for zinc leaching residue, which is performed in combination with the wet processing methods described in the first and third means.

第5の手段は、
第1、第2および第3の手段に記載の湿式処理法を併用して行うことを特徴とする亜鉛浸出残渣の湿式処理法である。
The fifth means is
A wet processing method for zinc leaching residue, which is performed by using the wet processing methods described in the first, second and third means.

第6の手段は、
中和剤として炭酸カルシウムを用いることを特徴とする第1から第4の手段のいずれかに記載の亜鉛浸出残渣の湿式処理法である。
The sixth means is
5. The wet processing method for zinc leaching residue according to any one of the first to fourth means, wherein calcium carbonate is used as a neutralizing agent.

第1または第3の手段によれば、粒径が大きく脱水性の良好な1段石膏が生成し、工程の生産性が向上すると同時に、良質な1段石膏を得ることが出来た。   According to the first or third means, a first-stage gypsum having a large particle size and good dewaterability was produced, and the productivity of the process was improved, and at the same time, a good-quality first-stage gypsum could be obtained.

第2の手段によれば、石膏の粒径が大きくなり、第2のアンダーフローと第2のオーバーフローの分離性が向上した。   According to the 2nd means, the particle size of the gypsum became large and the separability of the 2nd underflow and the 2nd overflow improved.

第4の手段によれば、粒径が大きく脱水性の良好な1段石膏が生成し、工程の生産性が向上すると同時に、良質な1段石膏を得ることが出来、粒径が大きく分離性の良好な石膏を主成分とする第2のアンダーフローが生成し、第2のオーバーフロー中において3価の陽イオンを含む固体濃縮物の品質が向上した。   According to the fourth means, a single-stage gypsum having a large particle size and good dehydrating properties is produced, and the productivity of the process can be improved. A second underflow composed mainly of good gypsum was produced, and the quality of the solid concentrate containing trivalent cations was improved in the second overflow.

第5の手段によれば、中和剤として炭酸カルシウムという安価な原料を用いることで、工程のコストを低減することが出来た。   According to the 5th means, the cost of the process was able to be reduced by using an inexpensive raw material called calcium carbonate as a neutralizing agent.

以下、図面、表を参照しながら本発明の実施形態について説明する。
図1は、本発明に係るヘマタイトプロセスの1例のフロー図である。
亜鉛精鉱1は、焙焼工程2を経て亜鉛焼鉱となり、1次浸出工程3において主に亜鉛が分離回収され、浄液工程4、電解工程5へ送られる。一方、上記亜鉛が回収された後の亜鉛残渣6には、亜鉛鉱石や副原料からの様々な成分が含まれている。当該成分の例を表1に示す。表1から明らかなように、亜鉛残渣6には、成分として金、銀、銅、鉛、鉄、亜鉛、カドミウムが含有されている。亜鉛残査6の組成例の2例を表1に記載する。

Figure 2007070708
Hereinafter, embodiments of the present invention will be described with reference to the drawings and tables.
FIG. 1 is a flow diagram of an example of a hematite process according to the present invention.
The zinc concentrate 1 becomes a zinc sinter through the roasting process 2, and zinc is mainly separated and recovered in the primary leaching process 3 and sent to the liquid purification process 4 and the electrolysis process 5. On the other hand, the zinc residue 6 after the zinc is recovered contains various components from zinc ore and auxiliary materials. Examples of the components are shown in Table 1. As is apparent from Table 1, the zinc residue 6 contains gold, silver, copper, lead, iron, zinc, and cadmium as components. Two examples of composition of zinc residue 6 are listed in Table 1.
Figure 2007070708

ヘマタイト・プロセスにおいては、亜鉛残渣6中の鉄を酸化鉄として固定化除去し、残った亜鉛分を亜鉛製錬の本系統に返すこととなる。
まず亜鉛残渣6を、硫酸とSO2ガスとを用いて2次浸出工程7を行い、2次浸出液9中に鉄等をFe2+他として浸出し、固液分離をおこなって、第1の固形分として例えば、鉛、銀等を鉛銀残査8として分離する。2次浸出液9の組成例の2例を表2に記載する。

Figure 2007070708
In the hematite process, iron in the zinc residue 6 is fixed and removed as iron oxide, and the remaining zinc content is returned to the main system of zinc smelting.
First, the zinc residue 6 is subjected to a secondary leaching step 7 using sulfuric acid and SO 2 gas, and iron or the like is leached into the secondary leaching solution 9 as Fe 2+ and the like, and solid-liquid separation is performed. For example, lead, silver or the like is separated as a solid lead residue 8 as a solid content. Two examples of the composition of the secondary leachate 9 are listed in Table 2.
Figure 2007070708

この2次浸出液9中の遊離硫酸を、中和剤10にて中和し、該遊離硫酸濃度を5〜8g/lとし、残余の遊離硫酸を1段石膏17として除去する工程が1段中和工程である。
(尚、本発明において、複数の同名工程を区別するため、便宜上、第1、第2、等の識別をつけているが、特に、この識別方法、表現に限られるものではない。)
まず、好ましい中和剤10として炭酸カルシウム、生石灰が挙げられる。中和剤10の添加は、第1段の中和反応槽11に収納された2次浸出液9を攪拌しながら行うことが好ましい。なお、中和剤10の添加口の数や、第1段の中和反応槽11の攪拌機に対する適宜な位置は、液量、槽圧、攪拌速度などにより適宜決められる。中和完了後、第1段の中和反応槽11内の液は、シックナー12へ送られ第1のo/f(オーバーフロー)15は次工程である脱砒工程18へ送られ、第1のu/f(アンダーフロー)19は、遠心分離機13を用いて脱水し、細かい石膏を主成分とする粒子を含有する液16と1段石膏17とを得ている。1段石膏17の組成例の2例を表3に記載する。

Figure 2007070708
The step of neutralizing the free sulfuric acid in the secondary leachate 9 with the neutralizing agent 10 to make the concentration of the free sulfuric acid 5-8 g / l and removing the remaining free sulfuric acid as the first-stage gypsum 17 is in one stage. It is a sum process.
(In the present invention, in order to distinguish a plurality of processes having the same name, the first, second, etc. are identified for convenience. However, the identification method and expression are not particularly limited.)
First, preferable neutralizing agent 10 includes calcium carbonate and quicklime. The addition of the neutralizing agent 10 is preferably performed while stirring the secondary leachate 9 accommodated in the first stage neutralization reaction tank 11. Note that the number of addition ports for the neutralizing agent 10 and the appropriate position of the first-stage neutralization reaction tank 11 with respect to the stirrer are appropriately determined depending on the liquid amount, tank pressure, stirring speed, and the like. After the completion of neutralization, the liquid in the first stage neutralization reaction tank 11 is sent to the thickener 12, and the first o / f (overflow) 15 is sent to the next dearsenation process 18, where the first The u / f (underflow) 19 is dehydrated using the centrifuge 13 to obtain a liquid 16 containing particles mainly composed of fine gypsum and a first-stage gypsum 17. Two examples of the composition of the first-stage gypsum 17 are shown in Table 3.
Figure 2007070708

本実施の形態では、第1のu/f19から遠心分離機13を用いて得られた、細かい石膏を主成分とする粒子を含有する液16を、第1段の中和反応槽11内へ繰り返す構成を採っている。濾液16中には、石膏分が含有され(当該石膏分を、繰り返し石膏という場合がある。)、この繰り返し石膏が、第1段の中和反応槽11内に再投入されることで、第1段の中和反応槽11内で、新たに析出する石膏の成長点(核)となり、当該石膏の粒径を粗大化することが可能となった。ここで、繰り返し石膏の粒径は、細かく均一性のあるものが好ましく、針状の結晶となった石膏を繰り返すのが良い。石膏のメジアン径は、140〜170μmの範囲にあるが、150μm程度以下の細粒側の石膏を繰り返しに用いることが好ましい。そのため遠心分離機により分級を行う。   In the present embodiment, the liquid 16 containing particles mainly composed of fine gypsum obtained from the first u / f 19 using the centrifuge 13 is fed into the first stage neutralization reaction tank 11. The structure is repeated. The filtrate 16 contains a gypsum content (the gypsum content may be referred to as repetitive gypsum), and the repetitive gypsum is re-introduced into the first stage neutralization reaction tank 11, thereby In the one-stage neutralization reaction tank 11, it becomes a growth point (core) of newly precipitated gypsum, and the particle size of the gypsum can be increased. Here, the particle size of the repeated gypsum is preferably fine and uniform, and the gypsum formed into needle-like crystals is preferably repeated. The median diameter of gypsum is in the range of 140 to 170 μm, but it is preferable to repeatedly use gypsum on the fine grain side of about 150 μm or less. Therefore, classification is performed with a centrifuge.

ここで、繰り返し石膏を、第1段の中和反応槽11内に再投入したことで、第1段の中和反応槽11内で、新たに析出する1段石膏17の粒径を粗大化することが出来たことについて表4および図2を用い、さらに説明する。
表4は、1段石膏17の3試料についての、粒径、比表面積、粒径5μm以下の粒子が占める割合を示した表である。図2は、縦軸に分布率、横軸に粒径を採ったグラフで、1段石膏17における3試料についての粒度分布をプロットしたものである。表4および図2の結果から明らかなように、生成した1段石膏17の3試料とも、殆どの粒子の粒径は、1000μm以下であり、さらに100〜300μm範囲内にあり均質である。一方、濾過工程にて生産性を低下させる原因となり得る粒径5μm以下の粒子が占める割合は、いずれの試料においても2%に満たない。従って、生成した1段石膏17は、濾過工程の生産性向上に貢献すると伴に、脱水性にも優れ、この点でも生産性向上に貢献した。
尚、上述した粒径や粒度分布の測定は、市販の篩、または、レーザー回折式の粒度分布測定機を用いて測定することが出来る。

Figure 2007070708
Here, by repeatedly charging the gypsum into the first-stage neutralization reaction tank 11, the particle size of the newly-deposited first-stage gypsum 17 in the first-stage neutralization reaction tank 11 is increased. What can be done will be further described with reference to Table 4 and FIG.
Table 4 is a table showing the ratio of the particle size, specific surface area, and particles having a particle size of 5 μm or less for three samples of the first-stage gypsum 17. FIG. 2 is a graph in which the vertical axis represents the distribution ratio and the horizontal axis represents the particle size, and the particle size distribution for three samples in the first-stage gypsum 17 is plotted. As is clear from the results of Table 4 and FIG. 2, all the three samples of the first-stage gypsum 17 produced have a particle size of 1000 μm or less, and are in the range of 100 to 300 μm and are homogeneous. On the other hand, the proportion of particles having a particle size of 5 μm or less, which can cause a decrease in productivity in the filtration step, is less than 2% in any sample. Therefore, the produced first-stage gypsum 17 contributed to improving the productivity of the filtration process, and also excellent in dehydrating properties, which also contributed to improving the productivity.
The particle size and particle size distribution can be measured using a commercially available sieve or a laser diffraction type particle size distribution measuring machine.
Figure 2007070708

一方、脱砒工程18へ送られた第1のo/f15は、脱砒工程18でRT残査(砒化銅)20を除去された後、第2段の中和反応槽21に収納され、Ca系の中和剤22が添加され2段中和反応がおこなわれる。当該中和反応は、上述の1段中和の場合と同様に、第1のo/f15を攪拌しながら行うことが好ましい。なお、中和剤22の添加口の数や、第2段の中和反応槽21の攪拌機に対する適宜な位置は、液量、槽圧、攪拌速度などにより適宜決められる。また、好ましい中和剤22として炭酸カルシウム、生石灰が挙げられる。当該2段中和反応で生成した生成物の組成例を表5に記載する。

Figure 2007070708
On the other hand, the first o / f 15 sent to the arsenic removal process 18 is stored in the second stage neutralization reaction tank 21 after the RT residue (copper arsenide) 20 is removed in the arsenic removal process 18. A Ca-based neutralizer 22 is added to carry out a two-step neutralization reaction. The neutralization reaction is preferably performed while stirring the first o / f15 as in the case of the above-described one-stage neutralization. Note that the number of addition ports for the neutralizing agent 22 and the appropriate position of the second-stage neutralization reaction tank 21 with respect to the stirrer are appropriately determined depending on the liquid amount, tank pressure, stirring speed, and the like. Moreover, as a preferable neutralizing agent 22, calcium carbonate and quicklime are mentioned. An example of the composition of the product produced by the two-stage neutralization reaction is shown in Table 5.
Figure 2007070708

当該2段中和反応で生成した生成物へ、分級シックナー23(または水力分級)により分級を行い、水酸化物系の沈殿物が含まれる第2のo/f27と、第1段の中和反応槽11へ繰り返す第2のu/fである石膏濃縮スラリー26を得る。ここで、当該分級は、湿式分級機を用いることが良く、特に分級シックナー(または水力分級)を用いることにより、石膏を効率良く分離できる。   The product generated by the two-stage neutralization reaction is classified by the classification thickener 23 (or hydraulic classification), the second o / f27 containing a hydroxide-based precipitate, and the first-stage neutralization A gypsum concentrated slurry 26 that is the second u / f to be repeated into the reaction vessel 11 is obtained. Here, for the classification, a wet classifier is preferably used, and gypsum can be efficiently separated by using a classification thickener (or hydraulic classification).

得られた石膏濃縮スラリー26を第2段の中和反応槽21へ繰り返す。ここで、石膏濃縮スラリー26の粒径は、細かく均一性のあるものが好ましく、針状の結晶となった石膏を再投入するのが良い。石膏のメジアン径は、10〜200μmの範囲にあるが、150μm程度以下の細粒側の石膏を再投入に用いることが好ましい。そのためさらに分級をしても良い。ここで、石膏濃縮スラリー26の組成例を表6に記載する。

Figure 2007070708
The obtained gypsum concentrated slurry 26 is repeated to the second stage neutralization reaction tank 21. Here, the particle size of the gypsum concentrated slurry 26 is preferably fine and uniform, and it is preferable to re-inject the gypsum that has become needle-like crystals. The median diameter of gypsum is in the range of 10 to 200 μm, but it is preferable to use a gypsum on the fine grain side of about 150 μm or less for recharging. Therefore, classification may be further performed. Here, composition examples of the gypsum concentrated slurry 26 are shown in Table 6.
Figure 2007070708

石膏濃縮スラリー26は、第2段の中和反応槽21内に再投入されることで、第2段の中和反応槽21内にて新たに析出する石膏の成長点(核)となり、当該石膏の粒径を粗大化させる。
尚、石膏濃縮スラリー26を、第1段の中和反応槽11へ繰り返す構成を採ることも好ましい。当該構成を採ることで、上述した1段石膏の粒径、脱水性をさらに上げることができる。
勿論、石膏濃縮スラリー26を、第2段の中和反応槽21へ繰り返す構成と、第1段の中和反応槽11へ繰り返す構成とを併用することも好ましい構成である。
The gypsum concentrated slurry 26 is re-introduced into the second-stage neutralization reaction tank 21 to become a growth point (core) of gypsum newly precipitated in the second-stage neutralization reaction tank 21, Increase the particle size of gypsum.
In addition, it is also preferable to take the structure which repeats the gypsum concentration slurry 26 to the neutralization reaction tank 11 of the 1st stage. By adopting this configuration, it is possible to further increase the particle size and dewaterability of the first-stage gypsum described above.
Of course, it is also preferable to use a combination of the configuration in which the gypsum concentrated slurry 26 is repeated in the second-stage neutralization reaction tank 21 and the configuration in which the gypsum-concentrated slurry 26 is repeated in the first-stage neutralization reaction tank 11.

一方、第2のo/f27は、フィルタープレス28により固液分離して、固形分はAl等の3価の陽イオンを含む固体濃縮物として回収される。このとき、石膏分は、既に分級シックナー23にて殆ど除去されているので、第2のo/f27は、フィルタープレス28により、高い効率をもって固液分離される。
フィルタープレス28の濾液29は、脱鉄工程30へ送られ、ヘマタイト(酸化鉄)31を分離された後、脱鉄后液32となり1次浸出工程3等へ繰り返される。Al、In、Ga、等の3価のイオンを含む固体濃縮物33の組成例を表7に記載する。

Figure 2007070708
On the other hand, the second o / f 27 is subjected to solid-liquid separation by the filter press 28, and the solid content is recovered as a solid concentrate containing a trivalent cation such as Al. At this time, since most of the gypsum has already been removed by the classification thickener 23, the second o / f 27 is solid-liquid separated by the filter press 28 with high efficiency.
The filtrate 29 of the filter press 28 is sent to a deironing step 30 where hematite (iron oxide) 31 is separated, and then becomes a deironed post-solution 32 which is repeated to the primary leaching step 3 and the like. Table 7 shows a composition example of the solid concentrate 33 containing trivalent ions such as Al, In, and Ga.
Figure 2007070708

表6、7の結果を比較しながら検討してみると、Al等の3価の陽イオンの殆どは、Al等の3価の陽イオンを含む固体濃縮物33へ移行し、石膏の殆どは石膏濃縮スラリー26へ移行していることが判明した。即ち、繰り返し石膏が、第2段の中和反応槽21内に再投入されたことにより、分級という単純・容易で生産性の高い分離手段を用いながら、In、Ga、等の有価金属を含む3価の陽イオンを含む固体濃縮物と石膏分との分離が十分に行われ、分離工程での生産性が向上すると伴に、3価の陽イオンを含む固体濃縮物33からの有価金属採取の生産性にも、大きく貢献出来ることが明らかとなった。   When comparing the results shown in Tables 6 and 7, most of the trivalent cations such as Al migrate to the solid concentrate 33 containing trivalent cations such as Al, and most of the gypsum It turned out that it moved to the gypsum concentrated slurry 26. That is, the recycle gypsum is re-introduced into the second-stage neutralization reaction tank 21, thereby containing valuable metals such as In, Ga, etc. while using a simple, easy and highly productive separation means of classification. Extraction of valuable metals from the solid concentrate 33 containing trivalent cations as well as the separation of the solid concentrate containing trivalent cations from the gypsum content is sufficiently performed and the productivity in the separation process is improved. It has become clear that it can also contribute greatly to the productivity of.

本発明に係るヘマタイトプロセスの1例のフロー図である。It is a flowchart of one example of the hematite process which concerns on this invention. 本発明に係る1段石膏試料の粒度分布をプロットしたグラフである。It is the graph which plotted the particle size distribution of the 1 step | paragraph gypsum sample which concerns on this invention. 従来の技術に係るヘマタイトプロセスの1例のフロー図である。It is a flowchart of an example of the hematite process which concerns on a prior art.

符号の説明Explanation of symbols

1 亜鉛精鉱
2 焙焼工程
3 1次浸出工程
4 浄液工程
5 電解工程
6 亜鉛残査
7 2次浸出工程
8 鉛銀残査
9 2次浸出液
10 中和剤
11 第1段の中和反応槽
12 シックナー
13 遠心分離機
14 第1のu/f
15 第1のo/f
16 濾液
17 1段石膏
18 脱砒工程
19 第1のu/f
21 第2段の中和反応槽
22 中和剤
23 分級シックナー
26 石膏濃縮スラリー
27 第2のo/f
28 フィルタープレス
29 濾液
30 脱鉄工程
32 脱鉄后液
33 固体濃縮物
DESCRIPTION OF SYMBOLS 1 Zinc concentrate 2 Roasting process 3 Primary leaching process 4 Purification process 5 Electrolysis process 6 Zinc residue 7 Secondary leaching process 8 Lead silver residue 9 Secondary leaching solution 10 Neutralizing agent 11 First stage neutralization reaction Tank 12 Thickener 13 Centrifuge 14 First u / f
15 First o / f
16 Filtrate 17 First stage gypsum 18 Dearsenic process 19 First u / f
21 Second stage neutralization reactor 22 Neutralizing agent 23 Classification thickener 26 Gypsum concentrated slurry 27 Second o / f
28 Filter press 29 Filtrate 30 Deironing process 32 Deironed post-solution 33 Solid concentrate

Claims (6)

湿式亜鉛製錬で得られる亜鉛浸出残渣の湿式処理法であって、
前記亜鉛浸出残渣を浸出し、得られた浸出液を第1段の中和反応槽に投入し、中和剤を加えて、第1のオーバーフローと第1のアンダーフローとに分離し、第1のオーバーフローは次工程へ送り、第1のアンダーフローは石膏と濾液とに分離する工程において、
第1のアンダーフローを分級し、分級後の細粒側の石膏を、第1段の中和反応槽へ繰り返すことを特徴とする亜鉛浸出残渣の湿式処理法。
It is a wet processing method of zinc leaching residue obtained by wet zinc smelting,
The zinc leaching residue is leached, the obtained leachate is put into a first stage neutralization reaction tank, a neutralizing agent is added, and the first overflow and the first underflow are separated. Overflow is sent to the next process, and the first underflow is the process of separating gypsum and filtrate,
A wet treatment method for zinc leaching residue, characterized by classifying the first underflow and repeating the classified fine-gypsum side gypsum to the first stage neutralization reaction tank.
湿式亜鉛製錬で得られる亜鉛浸出残渣の湿式処理法であって、
前記亜鉛浸出残渣を浸出し、得られた浸出液を第1段の中和反応槽に投入し、中和剤を加え、第1のオーバーフローと第1のアンダーフローとに分離し、得られた第1のオーバーフローを第2段の中和反応槽に投入し、中和剤を加え、第2のオーバーフローと第2のアンダーフローとに分離し、得られた第2のアンダーフローを、第2段の中和反応槽へ繰り返すことを特徴とする亜鉛浸出残渣の湿式処理法。
It is a wet processing method of zinc leaching residue obtained by wet zinc smelting,
The zinc leaching residue was leached, the obtained leachate was put into a first-stage neutralization reaction tank, a neutralizing agent was added, and the first overflow and the first underflow were separated. 1 overflow into the second stage neutralization reactor, neutralizing agent is added to separate the second overflow and the second underflow, and the resulting second underflow is supplied to the second stage. A wet processing method for zinc leaching residue, which is repeated in a neutralization reaction tank.
湿式亜鉛製錬で得られる亜鉛浸出残渣の湿式処理法であって、
前記亜鉛浸出残渣を浸出し、得られた浸出液を第1段の中和反応槽に投入し、中和剤を加え、第1のオーバーフローと第1のアンダーフローとに分離し、得られた第1のオーバーフローを、第2段の中和反応槽に投入し、中和剤を加え、第2のオーバーフローと第2のアンダーフローとに分離する工程において、
第2のオーバーフローと第2のアンダーフローとの分離に湿式分級機を用い、得られた第2のアンダーフローを、第1段の中和反応槽へ繰り返すことを特徴とする亜鉛浸出残渣の湿式処理法。
It is a wet processing method of zinc leaching residue obtained by wet zinc smelting,
The zinc leaching residue was leached, the obtained leachate was put into a first-stage neutralization reaction tank, a neutralizing agent was added, and the first overflow and the first underflow were separated. In the step of charging 1 overflow into the second stage neutralization reaction tank, adding a neutralizing agent, and separating into a second overflow and a second underflow,
Wet classifier leaching residue characterized in that a wet classifier is used to separate the second overflow and the second underflow, and the obtained second underflow is repeated to the first stage neutralization reaction tank. Processing method.
請求項1および3に記載の湿式処理法を、併用して行うことを特徴とする亜鉛浸出残渣の湿式処理法。   A wet processing method for zinc leaching residue, wherein the wet processing method according to claim 1 and 3 is used in combination. 請求項1、2および3に記載の湿式処理法を、併用して行うことを特徴とする亜鉛浸出残渣の湿式処理法。   A wet processing method for a zinc leaching residue, wherein the wet processing method according to claim 1, 2 and 3 is used in combination. 中和剤として炭酸カルシウムを用いることを特徴とする請求項1から5のいずれかに記載の亜鉛浸出残渣の湿式処理法。
6. The wet treatment method for zinc leaching residue according to any one of claims 1 to 5, wherein calcium carbonate is used as a neutralizing agent.
JP2005261345A 2005-09-08 2005-09-08 Wet treatment of zinc leaching residue Active JP5114764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005261345A JP5114764B2 (en) 2005-09-08 2005-09-08 Wet treatment of zinc leaching residue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005261345A JP5114764B2 (en) 2005-09-08 2005-09-08 Wet treatment of zinc leaching residue

Publications (2)

Publication Number Publication Date
JP2007070708A true JP2007070708A (en) 2007-03-22
JP5114764B2 JP5114764B2 (en) 2013-01-09

Family

ID=37932419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005261345A Active JP5114764B2 (en) 2005-09-08 2005-09-08 Wet treatment of zinc leaching residue

Country Status (1)

Country Link
JP (1) JP5114764B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140836A1 (en) * 2012-03-19 2013-09-26 住友金属鉱山株式会社 Method for producing hematite for iron production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212304A (en) * 1993-01-19 1994-08-02 Akita Seiren Kk Method for smelting zinc
JP2000219920A (en) * 1999-01-29 2000-08-08 Dowa Mining Co Ltd Method for removing and fixing aresenic from solution containing arsenic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212304A (en) * 1993-01-19 1994-08-02 Akita Seiren Kk Method for smelting zinc
JP2000219920A (en) * 1999-01-29 2000-08-08 Dowa Mining Co Ltd Method for removing and fixing aresenic from solution containing arsenic

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140836A1 (en) * 2012-03-19 2013-09-26 住友金属鉱山株式会社 Method for producing hematite for iron production
JP2013194283A (en) * 2012-03-19 2013-09-30 Sumitomo Metal Mining Co Ltd Method for producing hematite for iron manufacture
AU2013236726B2 (en) * 2012-03-19 2015-12-17 Sumitomo Metal Mining Co., Ltd. Method for producing hematite for iron production
US9255013B2 (en) 2012-03-19 2016-02-09 Sumitomo Metal Mining Co., Ltd. Method for producing hematite for ironmaking

Also Published As

Publication number Publication date
JP5114764B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP2014218719A (en) Scandium collecting method
WO2016125386A1 (en) Method for recovering scandium
JP5138737B2 (en) Method for producing waste acid gypsum
JP4765062B2 (en) Wet treatment method for zinc leaching residue
JP5776913B2 (en) Method for producing hematite for iron making
CN115427593A (en) Vanadium recovery from basic slag materials
WO2018101039A1 (en) Ion exchange processing method, and scandium recovery method
WO2016151959A1 (en) Method for recovering scandium
JP2019014928A (en) Purification method of scandium
CN115427592A (en) Recovery of vanadium from slag material
US2842436A (en) Selective rejection of iron and aluminum in hydrometallurgical recovery of metals
JP3411320B2 (en) Zinc smelting method
JP6256491B2 (en) Scandium recovery method
WO2014080665A1 (en) Settling separation method for nuetralized slurry and wet smelting method for nickel oxide ore
US4437953A (en) Process for solution control in an electrolytic zinc plant circuit
JP5114764B2 (en) Wet treatment of zinc leaching residue
CN110036123B (en) Method for controlling iron via formation of magnetite in hydrometallurgical processes
JP3955934B2 (en) Wet treatment of zinc leaching residue
JP5858189B2 (en) Method for producing hematite for iron making
JP2021161449A (en) Sc extraction method
JP6888359B2 (en) Smelting method of metal oxide ore
JP2018188722A (en) Method of scandium refinement
JP6206358B2 (en) Scandium recovery method
JP7338283B2 (en) Scandium recovery method
JP4914976B2 (en) Method for removing thallium from zinc sulfate solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120925

R150 Certificate of patent or registration of utility model

Ref document number: 5114764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250