JP2007070408A - Method for treating supercritical water decomposition gas, and energy recovery system and organic compound production system each utilizing the method - Google Patents
Method for treating supercritical water decomposition gas, and energy recovery system and organic compound production system each utilizing the method Download PDFInfo
- Publication number
- JP2007070408A JP2007070408A JP2005256825A JP2005256825A JP2007070408A JP 2007070408 A JP2007070408 A JP 2007070408A JP 2005256825 A JP2005256825 A JP 2005256825A JP 2005256825 A JP2005256825 A JP 2005256825A JP 2007070408 A JP2007070408 A JP 2007070408A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- oil
- water
- supercritical water
- biomass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/20—Waste processing or separation
Landscapes
- Processing Of Solid Wastes (AREA)
- Treatment Of Sludge (AREA)
- Carbon And Carbon Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Industrial Gases (AREA)
Abstract
Description
本発明は、含水率の高い有機物、特に食品廃棄物、食品工場廃棄物、下水汚泥、および家畜糞尿等、さらには藻類などのマイクロアルジェ等、を超臨界水中で分解ガス化する処理法により一酸化炭素、水素、低級炭化水素等の燃料および原料ガス(精製ガス)が製造される、有機物の超臨界水ガス化によって生じる分解ガスの処理方法に関し、詳細には、含水率の高い有機物の超臨界水ガス化処理工程、分解ガス中のタール分および高沸点油溶性有機物の処理工程、ならびに分解ガス中のアンモニア、塩化水素および二酸化炭素等の水溶性ガスの処理工程を備えた、超臨界水分解ガスの処理方法、及びこれを利用したエネルギー回収システム、有機化合物製造システムに関する。 The present invention is achieved by a treatment method for decomposing and gasifying organic matter having a high water content, particularly food waste, food factory waste, sewage sludge, livestock manure, etc., and microalgiers such as algae in supercritical water. The present invention relates to a method for treating cracked gas produced by supercritical water gasification of organic substances, in which fuels such as carbon oxide, hydrogen, lower hydrocarbons, etc. and raw gas (purified gas) are produced. Supercritical water equipped with a critical water gasification process, a process for treating tar content and high-boiling oil-soluble organic matter in cracked gas, and a process for treating water-soluble gases such as ammonia, hydrogen chloride and carbon dioxide in cracked gas The present invention relates to a cracked gas processing method, an energy recovery system using the same, and an organic compound manufacturing system.
従来、上述の含水率の高い有機物は、焼却処理され、その残渣は最終処分場に埋め立てるという、きわめて単純な方法で処理されてきた。しかし、最終処分場の不足、焼却時のダイオキシン発生問題、有害重金属問題、さらには近年のリサイクルやエネルギー回収利用などの視点から、焼却処理への見直しの必要性がある。 Conventionally, organic substances having a high water content have been incinerated, and the residue has been disposed of in a final disposal site in a very simple manner. However, there is a need to review incineration from the viewpoint of shortage of final disposal sites, dioxin generation problems during incineration, hazardous heavy metal problems, and recent recycling and energy recovery use.
一方、有機性廃棄物を含めたバイオマスを原材料としたエネルギーは、バイオマスがカーボンニュートラルであるため、地球環境問題とくに温暖化問題対策として、好適なエネルギーであることは自明である。このようなことから、バイオマスの熱分解の技術が検討されている。しかし、比較的乾燥した草や木(含水率:10〜30%)では、固定床、流動床、噴流床などによるガス化、および急速熱分解による油化などが可能であるが、含水率が80〜90%の食品廃棄物(生ごみ類)、食品類工場廃棄物(ビール粕、バガス、大豆粕等)、家畜糞尿や下水汚泥など多くの含水率の高いバイオマスを扱う場合、水の蒸発潜熱による損失が大きすぎて通常の熱分解法はとりづらいところがある。そこで、現状ではメタン発酵など生物的方法がとられているが、反応が遅いことと、残渣の問題がありその応用は限定されている。 On the other hand, it is obvious that energy using biomass including organic waste as a raw material is suitable energy as a countermeasure against global environmental problems, particularly global warming, since the biomass is carbon neutral. For this reason, biomass pyrolysis technology has been studied. However, relatively dry grass and trees (moisture content: 10 to 30%) can be gasified by a fixed bed, fluidized bed, spouted bed, etc., and liquefied by rapid thermal decomposition. Evaporation of water when handling 80-90% food waste (garbage), food factory waste (beer lees, bagasse, soybean lees, etc.), livestock manure and sewage sludge The loss due to latent heat is too great and the usual pyrolysis method is difficult. Therefore, at present, biological methods such as methane fermentation are used. However, the reaction is slow and there is a problem of residue, and its application is limited.
そこで、近年注目を集めているのが、バイオマスの超臨界水ガス化である。含水率の高い有機性廃棄物を含むバイオマスを、超臨界水中でガス化する方法はいくつか開示されている(特表平11−502891号公報)。しかし、該公報に記載のような処理においては、完全にガス化する方法を志向しており、600℃以上の高温条件を必要としている。また、動物性廃棄物に多く含まれる窒素分や一般有機性廃棄物中の塩素分には言及しておらず、おもにグルコースなどの純物質を対象としている。また、得られたガスの利用については言及していない。 In recent years, therefore, supercritical water gasification of biomass has attracted attention. Several methods for gasifying biomass containing organic waste having a high water content in supercritical water have been disclosed (Japanese Patent Publication No. 11-502891). However, in the treatment as described in the publication, a method of completely gasifying is aimed at, and a high temperature condition of 600 ° C. or higher is required. Moreover, it does not mention nitrogen contained in animal wastes and chlorine in general organic wastes, but mainly targets pure substances such as glucose. Moreover, it does not mention utilization of the obtained gas.
しかし、実際問題として、有機性廃棄物を含むバイオマスから、エネルギーを回収する場合には、その後の生成ガスをどのように利用するかという問題と関連し、どのような分解ガスを生成させるべきかという課題が常に残っている。さらには、家畜糞尿など窒素分の多い廃棄物から生じるアンモニアや一般廃棄物から生じる塩化水素をどのように処理するかという問題も抱えている。 However, as a practical matter, when recovering energy from biomass containing organic waste, what kind of cracked gas should be generated in relation to the problem of how to use the subsequent product gas? The problem remains. Furthermore, there is also a problem of how to treat ammonia produced from wastes rich in nitrogen such as livestock manure and hydrogen chloride produced from general waste.
ガス成分の比率制御においては、触媒存在下であっても温度制御が最も有効な手段であり、また酸化剤や還元的エントレーナーなどの添加も考えられる。しかし、これらの操作によって、本来超臨界水ガス化処理では1%未満であるタールや高沸点非分解有機物生成も数%程度にまで上昇する。またアンモニア成分は、原料の窒素含有量によって変化する。超臨界水ガス化ではなく、有機物の熱分解ガス化において発生するチャーおよびタール分を微細粒子に吸着させて除去する方法が開示されている(特開2004−131560号公報、及び特開2004−298818号公報)。この方法では、除去したタール分の活用については触れていない。従って、これらのタール、高沸点非分解有機物、アンモニア、あるいは塩化水素などが生じた場合、これらを効率的に除去し、かつ有効活用可能な、準ゼロエミッション型システムは存在しない。
従って、本発明の目的の一つは、含水率の高い有機物を超臨界水によりガス化処理し、エネルギー回収用燃料ガスならびにジメチルエーテルの原料ガス等を獲得しようとする場合、生じてくるタール分、高沸点非分解有機物、アンモニア、および塩化水素などを捕捉しかつこれらをシステム内で利活用可能な処理方法を提供することにある。 Therefore, one of the objects of the present invention is to gasify an organic substance having a high water content with supercritical water and obtain a fuel gas for energy recovery and a raw material gas for dimethyl ether, etc. It is an object of the present invention to provide a treatment method capable of capturing high boiling point non-decomposed organic substances, ammonia, hydrogen chloride and the like and utilizing them in the system.
本発明は、下記1.の発明を提供することにより、前記目的を達成したものである。
1.含水率の高い有機物を超臨界水ガス化処理槽等で超臨界水により分解して発生するガスを取り出す工程と、前記ガス中のタール分およびその他の高沸点油溶性有機物からなる物質を、バイオマス由来可燃性油に吸収させて、該物質を除去する工程と、前記ガス中の水溶性成分の一部を、水を凝縮させることによって同時に分離除去する工程と、を具える超臨界水分解ガスの処理方法。
本発明は、上記の構成からなるため、タール分、高沸点非分解有機物、アンモニア、および塩化水素などを捕捉でき、これらをシステム内で利活用することができる。
ここで、含水率の高い有機物における含水率は、好ましくは50%以上である。
The present invention relates to the following 1. The object is achieved by providing the invention.
1. A step of taking out a gas generated by decomposing organic matter having a high water content with supercritical water in a supercritical water gasification treatment tank or the like, and a substance consisting of tar content in the gas and other high-boiling oil-soluble organic matter, A supercritical water splitting gas comprising a step of removing the substance by absorbing it in a flammable oil, and a step of separating and removing a part of water-soluble components in the gas by condensing water. Processing method.
Since this invention consists of said structure, a tar content, a high boiling point nondecomposition organic substance, ammonia, hydrogen chloride, etc. can be capture | acquired and these can be utilized in a system.
Here, the moisture content in the organic matter having a high moisture content is preferably 50% or more.
また、本発明は、下記2.〜11.の発明を好ましく提供する。
2.前記ガスを取り出す工程において、前記含水率の高い有機物から無機塩類を捕捉しかつ反応条件を緩和しうる触媒機能を併せ持った金属担持あるいは無担持金属酸化物および炭素物からなる物質を、更新可能な形状で存在させる、前記1記載の超臨界水分解ガスの処理方法。
The present invention also provides the following 2. ~ 11. The present invention is preferably provided.
2. In the step of taking out the gas, it is possible to renew a material comprising a metal-supported or non-supported metal oxide and a carbon material having a catalytic function capable of capturing inorganic salts from the organic material having a high water content and relaxing the reaction conditions. 2. The method for treating a supercritical water cracking gas according to 1 above, which is present in a shape.
これによれば、一般的に超臨界水ガス化の条件である500℃以上35MPa以上という厳しい条件を、該触媒の作用により400℃程度および25MPa程度にまで緩和させることが可能であり装置そのものの設計許容範囲を広げることができることと、生成するガス成分比を次工程に有利な成分比に制御することも可能である。さらに更新可能な形状で存在させることにより制御範囲を広げることが可能であると供に、流体の性状によりその形状を変化させ実用性を発現させることができる。さらには固定化触媒形式にすることも可能であるため反応液中に触媒が混入することを避け精製工程の負荷を減らすことができる。 According to this, the severe condition of 500 ° C. or more and 35 MPa or more, which is generally the supercritical water gasification condition, can be relaxed to about 400 ° C. and about 25 MPa by the action of the catalyst. It is possible to widen the design allowable range and to control the ratio of gas components to be generated to a component ratio advantageous for the next process. Furthermore, by making it exist in an updatable shape, it is possible to widen the control range, and it is possible to change the shape according to the properties of the fluid and to exhibit practicality. Furthermore, since it is possible to use an immobilized catalyst format, it is possible to prevent the catalyst from being mixed into the reaction solution and reduce the load of the purification process.
また、「更新可能な形状」とは、一般的な半均一系での触媒の混合を含め、反応槽の壁面、あるいは壁面からの突起物、透過膜形状であり、これらが反応槽の蓋、バルブ等の出入り口を経由して取り外し、変更、更新が可能であることをいう。 In addition, the “updatable shape” is a reaction vessel wall surface, or a protrusion from the wall surface, including a catalyst mixture in a general semi-homogeneous system, and a shape of a permeable membrane. It means that it can be removed, changed, and updated via a doorway such as a valve.
3.前記タール分およびその他の高沸点油溶性有機物からなる物質を除去する工程の後に、前記水溶性成分の一部を除去する工程を行う、前記1又は2記載の超臨界水分解ガスの処理方法。
前記水溶性成分が一般的に油溶性成分より低沸点であるためこの順序で除去工程を設けることにより、それぞれを高効率、高純度で除去可能であるため好ましい。
3. 3. The method for treating a supercritical water cracking gas according to 1 or 2, wherein a step of removing a part of the water-soluble component is performed after the step of removing the tar and other high-boiling oil-soluble organic substances.
Since the water-soluble component generally has a lower boiling point than the oil-soluble component, it is preferable to provide the removal steps in this order because each can be removed with high efficiency and high purity.
4.前記タール分およびその他の高沸点油溶性有機物からなる物質を吸収する際の温度が100℃〜250℃、圧力が0.1MPa〜3.9MPaである、前記1〜3の何れかに記載の超臨界水分解ガスの処理方法。
これによれば、タール中の低分子量物質の気化を防止してタール分の分離を促進し、バイオマス由来可燃性油の分解反応を抑制し、さらに水分が気体状態であるためこの工程で滞留せず次工程での水溶性成分除去において有利であるため好ましい。
4). The super-according to any one of 1 to 3 above, wherein the temperature when absorbing the tar and other high-boiling oil-soluble organic substances is 100 ° C to 250 ° C, and the pressure is 0.1 MPa to 3.9 MPa. Processing method of critical water cracking gas.
According to this, the vaporization of low molecular weight substances in tar is prevented, the separation of the tar content is promoted, the decomposition reaction of the biomass-derived combustible oil is suppressed, and the water is in a gaseous state so that it is retained in this step. It is preferable because it is advantageous in removing water-soluble components in the next step.
5.前記バイオマス由来可燃性油が、植物油、動物油、廃食油、脂肪酸エステル型バイオディーゼル油、油脂熱分解型バイオディーゼル油、バイオマス化学分解型バイオディーゼル油およびバイオマス熱分解型バイオディーゼル油からなる群より選ばれた一種あるいは二種以上の混合物である、前記1〜4の何れかに記載の超臨界水分解ガスの処理方法。
これによれば、特定のバイオマス由来の吸収用可燃油を使用するためその後燃焼を行った際にも二酸化炭素ゼロカウントであり地球環境に対する負荷低減に繋がることと、これらバイオマス由来可燃油は一般に含酸素燃料であることから様々な有機物を溶解しやすいため好ましい。
5. The biomass-derived combustible oil is selected from the group consisting of vegetable oil, animal oil, waste cooking oil, fatty acid ester type biodiesel oil, oil pyrolysis biodiesel oil, biomass chemical decomposition biodiesel oil and biomass
According to this, since the use of combustible oil for absorption derived from a specific biomass, carbon dioxide is zero-counted even after subsequent combustion, leading to a reduction in the burden on the global environment. Since it is an oxygen fuel, it is preferable because various organic substances are easily dissolved.
6.前記水溶性成分が、水分、アンモニア、塩化水素および二酸化炭素からなる群より選ばれた一種あるいは二種以上の混合物である、前記1〜5の何れかに記載の超臨界水分解ガスの処理方法。
これによれば、水分、アンモニア、塩化水素および二酸化炭素などを効率よく捕捉できるため好ましい。
6). The method for treating a supercritical water decomposition gas according to any one of 1 to 5, wherein the water-soluble component is one or a mixture of two or more selected from the group consisting of moisture, ammonia, hydrogen chloride, and carbon dioxide. .
This is preferable because moisture, ammonia, hydrogen chloride, carbon dioxide and the like can be efficiently captured.
7.前記タール分およびその他の高沸点油溶性有機物からなる物質を吸収させたバイオマス由来可燃性油を焼却炉等で燃焼し、その燃焼熱を利用する工程を更に含む、前記1〜6の何れかに記載の超臨界水分解ガスの処理方法。
これによれば、これまでは副産物として廃棄されていたタール分を効率的に熱源として用いることができるため好ましい。
7). In any one of the above 1 to 6, further comprising a step of burning the biomass-derived combustible oil that has absorbed the tar and other high-boiling oil-soluble organic substances in an incinerator or the like, and utilizing the combustion heat. The supercritical water decomposition gas treatment method as described.
According to this, since the tar content discarded as a by-product until now can be used efficiently as a heat source, it is preferable.
8.前記水溶性成分としてアンモニア成分を分離し、該アンモニア成分を排気ガス処理用の成分として利用する工程を更に含む、前記1〜5の何れか又は7に記載の超臨界水分解ガスの処理方法。
これによれば、これまでは副産物として廃棄されていたアンモニア分を効率的に排ガス処理剤として用いることができるため好ましい。
8). 8. The method for treating a supercritical water decomposition gas according to any one of 1 to 5 or 7, further comprising a step of separating an ammonia component as the water-soluble component and using the ammonia component as a component for exhaust gas treatment.
According to this, since the ammonia content discarded as a by-product until now can be used efficiently as an exhaust gas treating agent, it is preferable.
9.前記1〜8の何れかに記載の超臨界水分解ガスの処理方法によって得られる精製ガスを燃料ガスとして利用する、エネルギー回収システム。
これによれば、系内のエネルギーを効率よく回収できると供にシステム全体をエネルギー自給型にすることができるため好ましい。
9. An energy recovery system using a purified gas obtained by the supercritical water cracking gas treatment method according to any one of 1 to 8 as a fuel gas.
This is preferable because energy in the system can be efficiently recovered and the entire system can be made self-sufficient.
10.前記エネルギーが、ガスタービン、ガスエンジン、スターリングエンジン、又は燃料電池のエネルギーである、前記9記載のエネルギー回収システム。
これによれば、得られたガスを変換することなく直接利用可能であるため好ましい。
10. 10. The energy recovery system according to 9, wherein the energy is energy of a gas turbine, a gas engine, a Stirling engine, or a fuel cell.
This is preferable because the obtained gas can be used directly without conversion.
11.前記1〜8の何れかに記載の超臨界水分解ガスの処理方法によって得られる精製ガスを原料ガスとして利用する、有機化合物製造システム。
これによれば、低級アルコールやエーテル等の低級有機化合物等を効率よく製造できる。
11. The organic compound manufacturing system using the refined gas obtained by the processing method of the supercritical water cracking gas in any one of said 1-8 as raw material gas.
This makes it possible to efficiently produce lower organic compounds such as lower alcohols and ethers.
12.前記有機化合物が、メタノール又はジメチルエーテルである、前記11記載の有機化合物製造システム。
これによれば、メタノール又はメチルエーテルを効率よく製造できる。
12 12. The organic compound production system according to 11 above, wherein the organic compound is methanol or dimethyl ether.
According to this, methanol or methyl ether can be produced efficiently.
本発明によれば、含水率の高い有機物を超臨界水によりガス化処理して精製ガスを製造する際に生じるタール分、高沸点非分解有機物、アンモニア、および塩化水素などを容易に捕捉することができ、かつ得られる精製ガスを種々のシステムで利活用することができる。 According to the present invention, tar content, high boiling point non-decomposed organic matter, ammonia, hydrogen chloride, and the like generated when gasifying a high moisture content organic substance with supercritical water to produce purified gas can be easily captured. The purified gas obtained can be used in various systems.
また、本発明によれば、タールの付着によるシステムあるいはエネルギー回収装置等のトラブルも無く、塩化水素等による腐食問題も解決される。さらに、アンモニア分も除去され、その後利活用可能なので、従来の窒素分処理問題も可決される。また、除去したタール分も燃焼用燃料として用いることで、タール分の再処理エネルギーの削減とシステム内の熱源確保を同時に可能としている。さらには、バイオマス由来可燃性油を使用することにより、全体システムの二酸化炭素排出をゼロとすることができる。 Further, according to the present invention, there is no trouble in the system or energy recovery device due to the adhesion of tar, and the corrosion problem due to hydrogen chloride or the like is solved. Furthermore, since the ammonia content is removed and can be used thereafter, the conventional nitrogen content treatment problem is also passed. In addition, by using the removed tar as a combustion fuel, it is possible to simultaneously reduce the reprocessing energy of the tar and secure the heat source in the system. Furthermore, the use of biomass-derived combustible oil can reduce the total system carbon dioxide emissions to zero.
また、本発明によれば、含水率の高い有機廃棄物、特に食品廃棄物、食品工場廃棄物、下水汚泥、および家畜糞尿等、さらには藻類などのマイクロアルジェ等、有機物を環境負荷特に二酸化炭素等化石燃料由来のエネルギー使用の極めて少ない方法により処理するとともに、生じるタール分およびアンモニア等を処理有効活用し、その他の可燃性バイオガスからエネルギー回収することのできる有機物からのエネルギー回収方法が提供される。 In addition, according to the present invention, organic waste having a high moisture content, particularly food waste, food factory waste, sewage sludge, livestock manure, etc., and microalgiers such as algae, etc., and organic matter, particularly carbon dioxide Provided is an energy recovery method from organic matter that can be processed by a method that uses very little energy derived from isofossil fuel, and that the tar content and ammonia that are generated can be effectively used to recover energy from other combustible biogas. The
本発明の好適な態様によれば、含水率の高い有機物の超臨界水中での分解ガスの処理方法であって、超臨界水スラリー中において、無機塩類を捕捉しかつ反応条件を緩和しうる触媒機能を併せ持った金属担持金属酸化物および炭素物からなる物質を、更新可能な形状で存在させ、さらに生じた水を含むバイオガスを、水がドライスチーム状態である条件で、バイオマス由来の高沸点燃料油、植物油およびバイオディーゼル油等、を通過させることでタール分を吸収除去し、その後のガスを凝縮させて、水および水溶性ガスである二酸化炭素およびアンモニア等の水溶性成分を除去することで、水素、一酸化炭素およびメタンなどを主要成分とした燃料ガス、すなわちガスタービン、ガスエンジン、スターリングエンジン、燃料電池、などのエネルギー回収用燃料、さらにはメタノールや、ジメチルエーテル(DME)原料を効率的に得ることができる。 According to a preferred embodiment of the present invention, there is provided a method for treating a cracked gas in supercritical water of an organic substance having a high water content, wherein the catalyst can trap inorganic salts and relax reaction conditions in a supercritical water slurry. A material consisting of a metal-supported metal oxide and carbonaceous material having both functions is present in a renewable form, and the biogas containing water is generated under the condition that the water is in a dry steam state and has a high boiling point derived from biomass. Absorb and remove tar by passing fuel oil, vegetable oil, biodiesel oil, etc., and then condense the gas to remove water and water soluble components such as carbon dioxide and ammonia. In addition, fuel gas mainly composed of hydrogen, carbon monoxide, methane, etc., that is, gas turbine, gas engine, Stirling engine, fuel cell, etc. Energy recovery fuel, it is possible to obtain the methanol or dimethyl ether (DME) feed efficiently.
図1は、本発明に係る、含水率の高い有機物の超臨界水分解ガスの処理方法の概略工程図である。
以下、図1を基に本発明の好適な実施形態について詳細に説明する。ここでいう高含水率有機物とは、食品廃棄物、食品工場廃棄物、下水汚泥、および家畜糞尿等、さらには藻類などのマイクロアルジェ等をいう。
FIG. 1 is a schematic process diagram of a method for treating an organic supercritical water decomposition gas having a high water content according to the present invention.
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to FIG. The high water content organic substance here refers to food waste, food factory waste, sewage sludge, livestock manure, etc., and microalgiers such as algae.
まず、回収された高含水率有機物(101)を、超臨界水ガス化処理槽(1)において超臨界水中でガス化分解処理する。処理温度および処理圧力は、亜臨界水条件、(250℃〜374℃、4.0MPa〜22.1MPa)および超臨界水条件(374℃以上、22.1MPa以上)で行うが、獲得するガス成分の種類によって条件が設定される。メタン等の炭化水素優位のエネルギー回収システムに好適なガス成分を得る場合には、400℃、25MPa程度でよいが、水素優位の場合には600℃、35MPaにまで上昇させる必要がある。また、系内酸化剤の防御によってもこれらは変化する。 First, the recovered high water content organic substance (101) is gasified and decomposed in supercritical water in the supercritical water gasification tank (1). Process temperature and pressure are subcritical water conditions (250 ° C. to 374 ° C., 4.0 MPa to 22.1 MPa) and supercritical water conditions (374 ° C. or higher, 22.1 MPa or higher). The condition is set according to the type of. When obtaining a gas component suitable for a hydrocarbon-dominated energy recovery system such as methane, the temperature may be about 400 ° C. and 25 MPa. However, when hydrogen is dominant, it is necessary to increase the temperature to 600 ° C. and 35 MPa. Moreover, these change also by the defense of an in-system oxidizing agent.
さらに、反応条件を制御する目的で、超臨界水ガス化処理槽(1)内に、アルミナ、チタニア、ジルコニアなどの金属酸化物および活性炭を、棒状、筒状、片状、粒状、で固定あるいは浮遊させてある。これら金属酸化物および活性炭の具備方法は、特に限定されるものでなく、超臨界水の流動性に影響を与えず、超臨界水流体と接触可能で、かつ脱着可能であればよい。さらには、これらの担体(金属酸化物および活性炭)の表面に、ニッケル等のガス化分解触媒効果を有する金属を担持させてもよい。このように各種条件を変動させるため、タール分および高沸点非分解有機物の量が異なってくる。 Furthermore, for the purpose of controlling reaction conditions, a metal oxide such as alumina, titania, zirconia and activated carbon are fixed in a rod-like, cylindrical, piece-like, granular shape in the supercritical water gasification treatment tank (1) or It is floating. The method for providing these metal oxides and activated carbon is not particularly limited as long as it does not affect the fluidity of supercritical water, can be contacted with the supercritical water fluid, and can be desorbed. Furthermore, a metal having a gasification decomposition catalytic effect such as nickel may be supported on the surface of these carriers (metal oxide and activated carbon). Thus, since various conditions are fluctuate | varied, the quantity of a tar content and the high boiling point nondecomposition organic substance changes.
次に、超臨界水ガス化処理槽(1)で分解処理された分解ガスをタール分離槽(2)に送る。ここでは、分解ガスを好ましくは冷却し、分解ガス中のタール分および高沸点非分解有機物を、バイオマス由来可燃性油に吸収させる。このときの温度および圧力は、水のドライスチーム状態(温度100℃〜250℃、圧力0.1MPa〜3.9MPa、範囲)に維持されることが好ましい。この温度をこえるとタール中の低分子量物質が気化しガス中に含まれ分離できなくなる。また、バイオマス由来可燃性油の分解反応も生じてしまう。さらに上記温度および圧力は、蒸気圧との関係に応じて、125℃〜200℃、0.2MPa〜1.5MPaが好ましい。 Next, the cracked gas decomposed in the supercritical water gasification tank (1) is sent to the tar separation tank (2). Here, the cracked gas is preferably cooled, and the tar content and the high-boiling point non-decomposed organic matter in the cracked gas are absorbed by the biomass-derived combustible oil. The temperature and pressure at this time are preferably maintained in a dry steam state of water (temperature 100 ° C. to 250 ° C., pressure 0.1 MPa to 3.9 MPa, range). When this temperature is exceeded, low molecular weight substances in tar vaporize and are contained in the gas and cannot be separated. Moreover, the decomposition reaction of biomass origin combustible oil will also arise. Further, the temperature and pressure are preferably 125 ° C. to 200 ° C. and 0.2 MPa to 1.5 MPa depending on the relationship with the vapor pressure.
バイオマス由来可燃性油としては、植物油、動物油、廃食油、脂肪酸エステル型バイオディーゼル油、油脂熱分解型バイオディーゼル油、バイオマス化学分解型バイオディーゼル油およびバイオマス熱分解型バイオディーゼル油よりなる群より選ばれた一種あるいは二種以上の混合物であることが好ましい。 Biomass-derived combustible oil is selected from the group consisting of vegetable oil, animal oil, waste cooking oil, fatty acid ester biodiesel oil, oil pyrolysis biodiesel oil, biomass chemical decomposition biodiesel oil, and biomass pyrolysis biodiesel oil One kind or a mixture of two or more kinds is preferred.
タール成分を吸収した可燃性油(103)は、連続的あるいは不連続的に、排熱ボイラー(4)に送られ、燃焼させる。ここで得た熱は、超臨界水製造用熱源として使用される。 The combustible oil (103) that has absorbed the tar component is sent to the exhaust heat boiler (4) continuously or discontinuously for combustion. The heat obtained here is used as a heat source for producing supercritical water.
一方、タール分を除去した分解ガスは、水、NH3、CO2除去槽(3)に送られる、ここでは、ガス中の水分を凝縮し、この水および前もって投入されている水中を分解ガスが通過する構造を有している。これによってガス中の水溶性成分である、アンモニア、二酸化炭素、塩化水素等が吸収分離される。この場合の温度、圧力条件は、基本的に水が凝縮される条件であればよいが、好ましくは50〜100℃が良い。 On the other hand, the cracked gas from which the tar content has been removed is sent to water, NH 3 , and CO 2 removal tank (3). Here, moisture in the gas is condensed, and this water and previously introduced water are decomposed into cracked gas. Has a structure to pass through. As a result, ammonia, carbon dioxide, hydrogen chloride and the like, which are water-soluble components in the gas, are absorbed and separated. The temperature and pressure conditions in this case may be basically any conditions that allow water to be condensed, but preferably 50 to 100 ° C.
水溶性成分を吸収した水(104)は、アルカリ処理を施しアンモニア成分を分離する。該アンモニア成分は、排ガス処理装置の脱硝処理剤として用いられる。 Water (104) that has absorbed the water-soluble component is subjected to an alkali treatment to separate the ammonia component. The ammonia component is used as a denitration treatment agent for an exhaust gas treatment apparatus.
一方、水溶性成分を分離したガス(102)は、目的に応じ、エネルギー回収装置(6)あるいは、メタノール、ジメチルエーテル製造装置(6)へ送られる。これら装置の熱源として、排熱ボイラー(4)の熱を利用することもできる。 On the other hand, the gas (102) from which the water-soluble component has been separated is sent to the energy recovery device (6) or the methanol / dimethyl ether production device (6) according to the purpose. The heat of the exhaust heat boiler (4) can also be used as a heat source for these devices.
本発明は、含水率の高い有機物を超臨界水によりガス化処理して精製ガスを製造する際に生じるタール分、高沸点非分解有機物、アンモニア、および塩化水素などを容易に捕捉することができる超臨界水分解ガスの処理方法、及びこれを用いたエネルギー回収システム、有機化合物製造システムとして、産業上の利用可能性を有する。 INDUSTRIAL APPLICABILITY The present invention can easily capture tars, high boiling point non-decomposed organic substances, ammonia, hydrogen chloride, and the like that are produced when gasifying an organic substance having a high water content with supercritical water to produce a purified gas. The present invention has industrial applicability as a supercritical water decomposition gas treatment method, an energy recovery system using the same, and an organic compound production system.
Claims (12)
前記ガス中のタール分およびその他の高沸点油溶性有機物からなる物質を、バイオマス由来可燃性油に吸収させて、該物質を除去する工程と、
前記ガス中の水溶性成分の一部を、水を凝縮させることによって同時に分離除去する工程と、を具える超臨界水分解ガスの処理方法。 Decomposing organic matter with a high water content with supercritical water and extracting the generated gas;
A step of removing the substance by absorbing the tar content in the gas and other high-boiling oil-soluble organic substances into the biomass-derived combustible oil;
A process for treating a supercritical water decomposition gas comprising: a step of simultaneously separating and removing a part of water-soluble components in the gas by condensing water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005256825A JP4564907B2 (en) | 2005-09-05 | 2005-09-05 | Supercritical water decomposition gas treatment method, energy recovery system using the same, and organic compound production system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005256825A JP4564907B2 (en) | 2005-09-05 | 2005-09-05 | Supercritical water decomposition gas treatment method, energy recovery system using the same, and organic compound production system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007070408A true JP2007070408A (en) | 2007-03-22 |
JP4564907B2 JP4564907B2 (en) | 2010-10-20 |
Family
ID=37932158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005256825A Expired - Fee Related JP4564907B2 (en) | 2005-09-05 | 2005-09-05 | Supercritical water decomposition gas treatment method, energy recovery system using the same, and organic compound production system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4564907B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010531903A (en) * | 2007-06-29 | 2010-09-30 | ウーデ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Removal of aromatic hydrocarbons from coke oven gas by absorption |
JP2011521872A (en) * | 2008-05-21 | 2011-07-28 | アルケマ フランス | Hydrocyanic acid containing bioresource carbon |
CN104230081A (en) * | 2014-07-16 | 2014-12-24 | 湖北仙隆化工股份有限公司 | Paraquat pesticide wastewater treatment process |
JP2018030960A (en) * | 2016-08-26 | 2018-03-01 | ザ・カーボン株式会社 | Tar removal method concerning to power generation system of biomass carbonization gas |
JP2021196157A (en) * | 2020-06-18 | 2021-12-27 | 一般財団法人電力中央研究所 | Ammonia utilization system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110272762B (en) * | 2019-07-11 | 2020-07-24 | 深圳大学 | CO (carbon monoxide)2Method for gasifying sludge by synergistic action with subcritical/supercritical water |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004300254A (en) * | 2003-03-31 | 2004-10-28 | Osaka Gas Co Ltd | Method for producing fuel gas |
-
2005
- 2005-09-05 JP JP2005256825A patent/JP4564907B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004300254A (en) * | 2003-03-31 | 2004-10-28 | Osaka Gas Co Ltd | Method for producing fuel gas |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010531903A (en) * | 2007-06-29 | 2010-09-30 | ウーデ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Removal of aromatic hydrocarbons from coke oven gas by absorption |
KR101542265B1 (en) | 2007-06-29 | 2015-08-06 | 티센크루프 인더스트리얼 솔루션스 아게 | Method of removing aromatic hydrocarbons by absorption from coke-oven gas |
JP2011521872A (en) * | 2008-05-21 | 2011-07-28 | アルケマ フランス | Hydrocyanic acid containing bioresource carbon |
JP2015096467A (en) * | 2008-05-21 | 2015-05-21 | アルケマ フランス | Hydrocyanic acid containing bioresource carbon |
JP2017039643A (en) * | 2008-05-21 | 2017-02-23 | アルケマ フランス | Hydrocyanic acid containing bioresource carbon |
CN104230081A (en) * | 2014-07-16 | 2014-12-24 | 湖北仙隆化工股份有限公司 | Paraquat pesticide wastewater treatment process |
CN104230081B (en) * | 2014-07-16 | 2016-08-31 | 湖北仙隆化工股份有限公司 | A kind of N,N'-dimethyl-.gamma..gamma.'-dipyridylium pesticides waste water treatment process |
JP2018030960A (en) * | 2016-08-26 | 2018-03-01 | ザ・カーボン株式会社 | Tar removal method concerning to power generation system of biomass carbonization gas |
JP2021196157A (en) * | 2020-06-18 | 2021-12-27 | 一般財団法人電力中央研究所 | Ammonia utilization system |
JP7485550B2 (en) | 2020-06-18 | 2024-05-16 | 一般財団法人電力中央研究所 | Ammonia Utilization System |
Also Published As
Publication number | Publication date |
---|---|
JP4564907B2 (en) | 2010-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | Thermochemical conversion of sewage sludge for energy and resource recovery: technical challenges and prospects | |
Dastyar et al. | Biofuel production using thermochemical conversion of heavy metal-contaminated biomass (HMCB) harvested from phytoextraction process | |
Liew et al. | Stabilization of heavy metals loaded sewage sludge: Reviewing conventional to state-of-the-art thermal treatments in achieving energy sustainability | |
Saidi et al. | Hydrogen production from waste gasification followed by membrane filtration: a review | |
Hu et al. | A review on turning sewage sludge to value-added energy and materials via thermochemical conversion towards carbon neutrality | |
Gururani et al. | Recent advances and viability in sustainable thermochemical conversion of sludge to bio-fuel production | |
Zhao et al. | Pyrolysis of food waste and food waste solid digestate: A comparative investigation | |
EP2475750B1 (en) | Methodology for the removal of inorganic components from biomass of agro/forest/urban origin and from low-quality coal such as peat, lignite, sub-bituminous and bituminous coals | |
Mohamed et al. | Biofuel production by co-pyrolysis of sewage sludge and other materials: a review | |
Maguyon-Detras et al. | Thermochemical conversion of rice straw | |
KR102256515B1 (en) | Gasification system of bio crude oil containing tar-reducing reformer | |
CN106398771A (en) | Solid organic waste gasifying process capable of reducing dioxin emission | |
Bhaskar et al. | Thermochemical route for biohydrogen production | |
Kurniawan et al. | Wastewater sludge as an alternative energy resource: A review | |
AU2020342767A1 (en) | Combination of anaerobic treatment of carbonaceous material with hydrothermal gasification to maximize value added product recovery | |
Chormare et al. | Conversion of solid wastes and natural biomass for deciphering the valorization of biochar in pollution abatement: A review on the thermo-chemical processes | |
Umar et al. | An outlook on tar abatement, carbon capture and its utilization for a clean gasification process | |
JP4564907B2 (en) | Supercritical water decomposition gas treatment method, energy recovery system using the same, and organic compound production system | |
CN110272762B (en) | CO (carbon monoxide)2Method for gasifying sludge by synergistic action with subcritical/supercritical water | |
JP2006205135A (en) | Complex waste disposal system | |
WO2012017893A1 (en) | Waste processing system | |
JP4364684B2 (en) | Method for producing gasified fuel | |
JP6940715B1 (en) | Hydrogen production system | |
WO2011083131A1 (en) | Method of production of fuels from biomass, from low quality coals and from wastes, residues and sludges from sewage treatment plants | |
CN109897673A (en) | It is a kind of to handle high COD chemical industry dangerous waste technique with high salt using hydropyrolysis process harmless resource |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070803 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100408 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100413 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100421 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100421 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100708 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100802 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |