JP2007070219A - High-specific-surface-area magnesium oxide powder and method for producing the same - Google Patents

High-specific-surface-area magnesium oxide powder and method for producing the same Download PDF

Info

Publication number
JP2007070219A
JP2007070219A JP2006218237A JP2006218237A JP2007070219A JP 2007070219 A JP2007070219 A JP 2007070219A JP 2006218237 A JP2006218237 A JP 2006218237A JP 2006218237 A JP2006218237 A JP 2006218237A JP 2007070219 A JP2007070219 A JP 2007070219A
Authority
JP
Japan
Prior art keywords
magnesium oxide
oxide powder
sieve
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006218237A
Other languages
Japanese (ja)
Other versions
JP5037066B2 (en
Inventor
Osamu Misumi
修 三隅
Shinichi Yamamoto
新一 山本
Takayuki Watanabe
高行 渡辺
Takashi Kishimoto
崇 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2006218237A priority Critical patent/JP5037066B2/en
Publication of JP2007070219A publication Critical patent/JP2007070219A/en
Application granted granted Critical
Publication of JP5037066B2 publication Critical patent/JP5037066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide magnesium oxide powder having higher activity than conventional magnesium oxide powder and a method for producing the same. <P>SOLUTION: The high-specific-surface-area magnesium oxide powder has a BET specific surface area in a range of 230-500 m<SP>2</SP>/g. The method for producing the high-specific-surface-area magnesium oxide powder comprises firing magnesium hydroxide powder having a BET specific surface area in a range of 10-200 m<SP>2</SP>/g by heating at 250-550°C under pressure of ≤300 Pa for 1-10 h. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高比表面積の酸化マグネシウム粉末及びその製造方法に関する。   The present invention relates to a magnesium oxide powder having a high specific surface area and a method for producing the same.

酸化マグネシウム粉末は、高い活性を示すため、固体塩基触媒として、あるいは酸性溶液や酸性ガスの中和剤として利用されている。また、酸化マグネシウム粉末は、原糖の脱色剤としても利用されている。
酸化マグネシウム粉末の活性は、一般にそのBET比表面積に依存し、BET比表面積の大きい方が活性が高いとされる。
Magnesium oxide powder is used as a solid base catalyst or as a neutralizing agent for an acidic solution or acidic gas because it exhibits high activity. Magnesium oxide powder is also used as a decolorizing agent for raw sugar.
The activity of the magnesium oxide powder generally depends on the BET specific surface area, and the larger the BET specific surface area, the higher the activity.

非特許文献1には、高比表面積の酸化マグネシウム粉末として、比表面積が220.5m2/gの酸化マグネシウム粉末が報告されている。この非特許文献1では、高比表面積の酸化マグネシウム粉末を、水酸化マグネシウム粉末を真空中で873K(約600℃)の温度にて熱分解させることによって製造している。
松橋博美、辻秀人、「固体塩基としてのマグネシアの構造と活性点」、触媒学会、触媒、2004年、vol.46、No.1、p.36−p.42
Non-Patent Document 1 reports a magnesium oxide powder having a specific surface area of 220.5 m 2 / g as a magnesium oxide powder having a high specific surface area. In Non-Patent Document 1, magnesium oxide powder having a high specific surface area is produced by thermally decomposing magnesium hydroxide powder in a vacuum at a temperature of 873 K (about 600 ° C.).
Hiromi Matsuhashi and Hideto Tsuji, “Structure and Active Site of Magnesia as Solid Base”, Catalysis Society of Japan, Catalysts, 2004, vol. 46, no. 1, p. 36-p. 42

本発明の目的は、従来の酸化マグネシウム粉末と比べて、高活性な酸化マグネシウム粉末及びその製造方法を提供することにある。   The objective of this invention is providing the highly active magnesium oxide powder and its manufacturing method compared with the conventional magnesium oxide powder.

本発明は、BET比表面積が230〜500m2/gの範囲にあって、構成する粒子のうちの80質量%以上の粒子が目開き0.25mmの篩による篩下に属する粒子である高比表面積酸化マグネシウム粉末にある。 In the present invention, the BET specific surface area is in the range of 230 to 500 m 2 / g, and 80% by mass or more of the constituting particles are particles belonging to a sieve under a sieve having an aperture of 0.25 mm. Surface area in magnesium oxide powder.

本発明はまた、BET比表面積が10〜200m2/gの範囲にあって、構成する粒子のうちの80質量%以上の粒子が目開き0.25mmの篩による篩下に属する粒子である水酸化マグネシウム粉末を、300Pa以下の圧力下、250〜550℃の温度にて、1〜10時間加熱焼成することからなる上記本発明の高比表面積酸化マグネシウム粉末の製造方法にもある。 The present invention also provides water in which the BET specific surface area is in the range of 10 to 200 m 2 / g, and 80% by mass or more of the constituting particles belong to a sieve under a sieve having an aperture of 0.25 mm. There is also a method for producing a high specific surface area magnesium oxide powder according to the present invention, comprising heating and baking magnesium oxide powder at a temperature of 250 to 550 ° C. for 1 to 10 hours under a pressure of 300 Pa or less.

本発明はさらに、BET比表面積が230〜500m2/gの範囲にあって、構成する粒子のうちの20質量%を超える粒子が目開き0.25mmの篩による篩上に属する粒子である高比表面積酸化マグネシウム粉末にある。 In the present invention, the BET specific surface area is in the range of 230 to 500 m 2 / g, and more than 20% by mass of the constituting particles are particles belonging to a sieve having a sieve opening of 0.25 mm. Specific surface area of magnesium oxide powder.

本発明はさらに、BET比表面積が10〜200m2/gの範囲にあって、構成する粒子のうちの20質量%を超える粒子が目開き0.25mmの篩による篩上に属する粒子である水酸化マグネシウム粉末を、300Pa以下の圧力下、250〜550℃の温度にて、1〜10時間加熱焼成することからなる上記本発明の高比表面積酸化マグネシウム粉末の製造方法にもある。 The present invention further provides water in which the BET specific surface area is in the range of 10 to 200 m 2 / g, and the particles exceeding 20% by mass of the constituting particles belong to the sieve with a sieve having an opening of 0.25 mm. There is also a method for producing a high specific surface area magnesium oxide powder according to the present invention, comprising heating and baking magnesium oxide powder at a temperature of 250 to 550 ° C. for 1 to 10 hours under a pressure of 300 Pa or less.

本発明の高比表面積酸化マグネシウム粉末は、従来の酸化マグネシウム粉末と比べて、BET比表面積が大きいため、高い活性を示す。
また、本発明の高比表面積酸化マグネシウム粉末の製造方法によれば、上記の高比表面積酸化マグネシウム粉末を工業的に有利に製造することができる。
Since the high specific surface area magnesium oxide powder of the present invention has a large BET specific surface area as compared with the conventional magnesium oxide powder, it exhibits high activity.
Moreover, according to the manufacturing method of the high specific surface area magnesium oxide powder of this invention, said high specific surface area magnesium oxide powder can be manufactured industrially advantageously.

本発明の高比表面積酸化マグネシウム粉末は、BET比表面積が230〜500m2/gの範囲、好ましくは250〜500m2/gの範囲、特に好ましくは300〜500m2/gの範囲にある。 High specific surface area magnesium oxide powder of the present invention, the range of BET specific surface area of 230~500m 2 / g, preferably in the range of 250~500m 2 / g, particularly preferably in the range of 300~500m 2 / g.

本発明の高比表面積酸化マグネシウム粉末を構成する酸化マグネシウム粒子は、一次粒子であっても、凝集粒子(二次粒子)であってもよい。本発明の高比表面積酸化マグネシウム粉末は、その粉末を構成する粒子のうちの80質量%以上の粒子が目開き0.25mmの篩による篩下に属する粒子(以下、小径粒子ということがある)である微小粉末であるか、その粉末を構成する粒子のうちの20質量%を超える粒子が目開き0.25mmの篩による篩上に属する粒子(以下、大径粒子ということがある)である粗大粉末であることが好ましい。大径粒子は、目開き5.6mmの篩上に属する粒子が10質量%未満であることが好ましい。   The magnesium oxide particles constituting the high specific surface area magnesium oxide powder of the present invention may be primary particles or aggregated particles (secondary particles). The high specific surface area magnesium oxide powder of the present invention is a particle in which 80% by mass or more of the particles constituting the powder belong to a sieve under a sieve having an aperture of 0.25 mm (hereinafter sometimes referred to as a small particle). Or a particle that exceeds 20% by mass of the particles constituting the powder belongs to a sieve with a sieve having an aperture of 0.25 mm (hereinafter sometimes referred to as a large particle). A coarse powder is preferred. The large-diameter particles preferably have less than 10% by mass of particles belonging to a sieve having a mesh size of 5.6 mm.

微小粉末は、液体や気体への分散性が高いという利点がある。一方、粗大粉末は、飛散が起こりにくくハンドリング性が向上するという利点がある。また粗大粉末は、見掛け密度が微小粉末よりも高く、単位体積当たりの充填量が高くなるという利点がある。   Micropowder has the advantage of high dispersibility in liquids and gases. On the other hand, the coarse powder is advantageous in that scattering is less likely to occur and handling properties are improved. The coarse powder has an advantage that the apparent density is higher than that of the fine powder and the filling amount per unit volume is high.

微小粉末は、小径粒子の含有量が90質量%以上であることが好ましい。一方、粗大粉末は、大径粒子の含有量が40質量%以上であることが好ましく、60質量%以上であることがより好ましい。   The fine powder preferably has a small particle content of 90% by mass or more. On the other hand, the coarse powder preferably has a content of large particles of 40% by mass or more, and more preferably 60% by mass or more.

本発明の高比表面積酸化マグネシウム粉末は、BET比表面積が10〜200m2/gの範囲にある水酸化マグネシウム粉末を、300Pa以下の圧力下、250〜550℃の温度にて、1〜10時間加熱焼成することからなる方法により製造することができる。 The high specific surface area magnesium oxide powder of the present invention is a magnesium hydroxide powder having a BET specific surface area in the range of 10 to 200 m 2 / g and a pressure of 300 Pa or less and a temperature of 250 to 550 ° C. for 1 to 10 hours. It can be produced by a method comprising heating and baking.

原料となる水酸化マグネシウム粉末としては、海水に消石灰もしくは苦汁を投入して水酸化マグネシウム粒子を生成させ、生成した水酸化マグネシウム粒子を分離回収する方法(以下、海水法ということがある)によって製造されたものを用いることができる。   The raw material magnesium hydroxide powder is produced by adding slaked lime or bitter juice to seawater to produce magnesium hydroxide particles, and separating and recovering the produced magnesium hydroxide particles (hereinafter sometimes referred to as the seawater method). Can be used.

微小粉末の高比表面積酸化マグネシウム粉末を製造する場合は、原料の水酸化マグネシウム粉末には、目開き0.25mmの篩による篩下に属する小径粒子の含有量が80質量%以上、好ましくは90%以上となるように分級されたものを用いる。海水法により製造された水酸化マグネシウム粉末は、通常、一次粒子の平均粒子径が1〜10μmの範囲で、目開き0.25mmの篩による篩下に属する小径粒子の含有量が80質量%以上であるため、微小粉末の高比表面積酸化マグネシウム粉末を製造する場合には、そのまま用いることができる。   When producing a high specific surface area magnesium oxide powder of fine powder, the raw material magnesium hydroxide powder has a content of small-diameter particles belonging to a sieve under a sieve having an aperture of 0.25 mm of 80% by mass or more, preferably 90%. % Classified so as to be at least%. Magnesium hydroxide powder produced by the seawater method usually has an average primary particle size in the range of 1 to 10 μm, and the content of small-diameter particles belonging to the sieve under a sieve having an aperture of 0.25 mm is 80% by mass or more. Therefore, when producing a high specific surface area magnesium oxide powder of fine powder, it can be used as it is.

一方、粗大粉末の高比表面積酸化マグネシウム粉末を製造する場合は、原料の水酸化マグネシウム粉末には、目開き0.25mmの篩による篩上に属する大径粒子の含有量が20質量%を超える量、好ましくは40質量%以上、特に好ましくは目開き5.6mmの篩上に属する粒子が10質量%未満となるように分級されたものを用いる。水酸化マグネシウム粉末が微細である場合は、水酸化マグネシウム粉末を造粒して、所定の粒度に分級して用いる。   On the other hand, in the case of producing a coarse powder high specific surface area magnesium oxide powder, the raw material magnesium hydroxide powder has a content of large-diameter particles belonging to a sieve with a sieve having an opening of 0.25 mm exceeding 20% by mass. An amount, preferably 40% by mass or more, and particularly preferably a particle classified so that the particles belonging to the sieve having an aperture of 5.6 mm are less than 10% by mass is used. When the magnesium hydroxide powder is fine, the magnesium hydroxide powder is granulated and classified into a predetermined particle size.

水酸化マグネシウム粉末の造粒方法としては、水酸化マグネシウム粉末に水を加えて混合造粒する方法(湿式造粒法)を用いることができる。造粒粒子の形状安定性を向上させるために、造粒用の水にはカルボキシメチルセルロースやポリビニルアルコールなどの水溶性有機バインダーを0.5〜5質量%の範囲にて添加してもよい。   As a granulation method of the magnesium hydroxide powder, a method of adding water to the magnesium hydroxide powder and mixing and granulating it (wet granulation method) can be used. In order to improve the shape stability of the granulated particles, a water-soluble organic binder such as carboxymethyl cellulose or polyvinyl alcohol may be added to the water for granulation in the range of 0.5 to 5% by mass.

水酸化マグネシウムの加熱焼成には、公知の真空焼成電気炉を用いることができる。水酸化マグネシウム粉末の加熱焼成は、300Pa以下、好ましくは1〜200Paの範囲、より好ましくは1〜150Paの範囲の圧力下にて、250〜550℃、好ましくは300〜550℃、特に好ましくは330〜450℃の温度にて行なう。水酸化マグネシウム粉末の加熱焼成は、水酸化マグネシウム粉末から発生する水蒸気によって炉内の圧力が上昇しないように、高速排気しながら焼成を行なうことが好ましい。   A known vacuum firing electric furnace can be used for heating and firing magnesium hydroxide. Magnesium hydroxide powder is heated and fired at a pressure of 300 Pa or less, preferably in the range of 1 to 200 Pa, more preferably in the range of 1 to 150 Pa, 250 to 550 ° C., preferably 300 to 550 ° C., particularly preferably 330. Perform at a temperature of ~ 450 ° C. It is preferable that the magnesium hydroxide powder be fired while firing at high speed so that the pressure in the furnace does not increase due to water vapor generated from the magnesium hydroxide powder.

本発明の高比表面積酸化マグネシウム粉末は、固体塩基触媒、酸性溶液(例えば、フッ化水素酸、塩化水素酸)や酸性ガス(例えば、フッ化水素ガス、塩化水素ガス、二酸化硫黄ガス及び炭酸ガス)の中和剤、及び原糖の脱色剤として有利に使用することができる。また、吸湿剤やハロゲン化炭化水素ガスの分解生成物の吸着処理材としても利用することができる。   The high specific surface area magnesium oxide powder of the present invention comprises a solid base catalyst, an acidic solution (for example, hydrofluoric acid, hydrochloric acid) or an acidic gas (for example, hydrogen fluoride gas, hydrogen chloride gas, sulfur dioxide gas, and carbon dioxide gas). ) And a decolorizing agent for raw sugar. Further, it can also be used as an adsorbent for the decomposition product of a hygroscopic agent or halogenated hydrocarbon gas.

[実施例1]
原料となる水酸化マグネシウム粉末(Mg(OH)2純度:90質量%以上、BET比表面積:15.9m2/g、平均粒子径:2.5μm)1000gを真空焼成電気炉に入れ、真空ポンプを用いて炉内を脱気して炉内圧力を50Pa以下にした後、炉内圧力が220Paを超えないように炉内を脱気しながら、炉内温度を常温から1℃/分の速度で450℃まで昇温し、次いでその温度にて8時間焼成して、酸化マグネシウム粉末を製造した。そして室温まで炉内を冷却し、窒素ガスにて炉内圧力を大気圧に調整した後、真空焼成電気炉から酸化マグネシウム粉末を取り出した。
[Example 1]
1000 g of magnesium hydroxide powder (Mg (OH) 2 purity: 90% by mass or more, BET specific surface area: 15.9 m 2 / g, average particle size: 2.5 μm) as a raw material is placed in a vacuum firing electric furnace, and a vacuum pump The inside of the furnace was degassed using a pressure of 50 Pa or less, and then the inside temperature of the furnace was degassed so that the pressure inside the furnace did not exceed 220 Pa. The temperature was raised to 450 ° C. and then calcined at that temperature for 8 hours to produce a magnesium oxide powder. Then, the inside of the furnace was cooled to room temperature, the pressure inside the furnace was adjusted to atmospheric pressure with nitrogen gas, and then magnesium oxide powder was taken out from the vacuum firing electric furnace.

得られた酸化マグネシウム粉末のBET比表面積、ゆるみ見掛け比重、目開き0.25mmの篩による粒度、及び吸湿率を下記の方法により測定した。その結果、BET比表面積は、374.0m2/gであった。ゆるみ見掛け比重は、0.417g/mLであった。目開き0.25mmの篩の篩下に属する粒子(小径粒子)の量は100質量%であった。吸湿率の測定結果を、図1に示す。図1に示すように、経過時間が60分までの吸湿率は、16質量%であった。 The obtained magnesium oxide powder was measured for the BET specific surface area, loose apparent specific gravity, particle size with a sieve having an opening of 0.25 mm, and moisture absorption rate by the following methods. As a result, the BET specific surface area was 374.0 m 2 / g. The loose specific gravity was 0.417 g / mL. The amount of particles (small diameter particles) belonging to the sieve under a sieve having an opening of 0.25 mm was 100% by mass. The measurement results of the moisture absorption rate are shown in FIG. As shown in FIG. 1, the moisture absorption rate up to 60 minutes was 16% by mass.

[BET比表面積の測定方法]
全自動ガス吸着量測定装置(Quantachrome製、Autosord−1MP)を用いて、BET多点法により測定する。
[Measurement method of BET specific surface area]
Measurement is performed by a BET multipoint method using a fully automatic gas adsorption amount measuring device (manufactured by Quantachrome, Autosord-1MP).

[ゆるみ見掛け比重の測定方法]
ホソカワミクロン(株)製のパウダテスタを用いて測定する。
[Measurement of loose apparent specific gravity]
Measurement is performed using a powder tester manufactured by Hosokawa Micron Corporation.

[目開き0.25mm篩による粒度の測定方法]
試料の酸化マグネシウム粉末7.0gを正確に量り取り、これを目開き0.25mmの円形標準篩に投入する。円形標準篩を、電磁式振盪機を用いて振幅1mm、振幅速度1秒間に往復50回の条件にて10分間振盪する。振盪後、篩下の試料の質量を測定し、下記の式にて篩下に属する粒子量と篩上に属する粒子量とを算出する。
篩下に属する粒子量(質量%)=[篩下の質量(g)/7.0(g)]×100
篩上に属する粒子量(質量%)=[(7.0(g)−篩下の質量(g))/7.0(g)]×100
[Measuring method of particle size with sieve of 0.25 mm mesh]
7.0 g of magnesium oxide powder as a sample is accurately weighed and put into a circular standard sieve having an opening of 0.25 mm. The circular standard sieve is shaken for 10 minutes using an electromagnetic shaker under conditions of an amplitude of 1 mm and an amplitude speed of 50 reciprocations per second. After shaking, the mass of the sample under the sieve is measured, and the amount of particles belonging to the sieve and the amount of particles belonging to the sieve are calculated by the following formula.
Amount of particles belonging to under sieve (mass%) = [mass under sieve (g) /7.0 (g)] × 100
Amount of particles belonging to the sieve (mass%) = [(7.0 (g) −mass under the sieve (g)) / 7.0 (g)] × 100

[吸湿率の測定方法]
試料の酸化マグネシウム粉末0.1gを正確に量り取り、これを温度25℃、相対湿度48%RHに調整したグローブボックス内に入れ、所定時間毎に酸化マグネシウム粉末の質量を測定し、下記の式により吸湿率を算出する。
吸湿率(質量%)=[(酸化マグネシウム粉末の質量(g)−0.1(g))/0.1(g)]×100
[Measurement method of moisture absorption rate]
A sample of 0.1 g of magnesium oxide powder is accurately weighed and placed in a glove box adjusted to a temperature of 25 ° C. and a relative humidity of 48% RH, and the mass of the magnesium oxide powder is measured every predetermined time. To calculate the moisture absorption rate.
Moisture absorption (mass%) = [(mass of magnesium oxide powder (g) −0.1 (g)) / 0.1 (g)] × 100

得られた酸化マグネシウム粉末の細孔分布、細孔容積、ペリクレース結晶子径、クエン酸活性度、及び原糖溶液の脱色率を以下の方法で測定した。その結果、細孔分布は、図2に示すように、直径3〜4nmの細孔が多かった。細孔容積は、0.3185mL/gであった。ペリクレース結晶子径は、6.5nmであった。クエン酸活性度は、16秒であった。原糖溶液の脱色率は、99.3%であった。   The pore distribution, pore volume, periclase crystallite diameter, citric acid activity, and decolorization rate of the raw sugar solution of the obtained magnesium oxide powder were measured by the following methods. As a result, the pore distribution had many pores having a diameter of 3 to 4 nm as shown in FIG. The pore volume was 0.3185 mL / g. The periclase crystallite diameter was 6.5 nm. The citric acid activity was 16 seconds. The decolorization rate of the raw sugar solution was 99.3%.

[細孔分布の測定方法]
全自動ガス吸着量測定装置を用いて測定した等温線のデータを、細孔壁近傍の液体の理論値上の密度の偏差に換算して細孔分布を得る(NLDFT法)。
[Measurement method of pore distribution]
The isotherm data measured using a fully automatic gas adsorption amount measuring device is converted into a theoretical density deviation of the liquid in the vicinity of the pore wall to obtain a pore distribution (NLDFT method).

[全細孔容積の測定方法]
全自動ガス吸着量測定装置を用いて測定する。
[Measurement method of total pore volume]
Measure using a fully automatic gas adsorption measuring device.

[ペリクレース結晶子径]
粉末X線回折法により測定する。
[Periclase crystallite diameter]
Measured by powder X-ray diffraction method.

[クエン酸活性度]
30±0.5℃に調整した0.4Nのクエン酸溶液100mLを攪拌しながら、クエン酸溶液に試料の酸化マグネシウム粉末2.0gを投入する。酸化マグネシウム粉末の投入後、クエン酸のpHが8になるまでの時間をクエン酸活性度とする。
[Citric acid activity]
While stirring 100 mL of 0.4N citric acid solution adjusted to 30 ± 0.5 ° C., 2.0 g of magnesium oxide powder as a sample is put into the citric acid solution. The time until the pH of citric acid reaches 8 after adding magnesium oxide powder is defined as citric acid activity.

[原糖溶液の脱色率の測定方法]
公知の方法により測定する。
[Measurement method of decolorization rate of raw sugar solution]
Measurement is performed by a known method.

[実施例2]
原料となる水酸化マグネシウム粉末(Mg(OH)2純度:90質量%以上、BET比表面積:15.9m2/g)2000gに水500gを加えて混合した後、押し出し成形機を用いて、直径3mmの含水円柱状粒状物を得た。得られた含水円柱状粒状物を棚型真空乾燥機に入れ、減圧下、150℃の温度で水分が1質量%以下になるまで乾燥した。続いて、乾燥円柱状粒状物を円形振動篩にて、粒子径が2.0〜5.6mmのものを分級した。
[Example 2]
After adding and mixing 500 g of water to 2000 g of magnesium hydroxide powder (Mg (OH) 2 purity: 90% by mass or more, BET specific surface area: 15.9 m 2 / g) as a raw material, the diameter is measured using an extrusion molding machine. A 3 mm water-containing columnar granular material was obtained. The obtained hydrous columnar granular material was put into a shelf-type vacuum dryer and dried under reduced pressure at a temperature of 150 ° C. until the water content became 1% by mass or less. Subsequently, the dried cylindrical granular material was classified with a circular vibrating sieve with a particle diameter of 2.0 to 5.6 mm.

次いで、得られた水酸化マグネシウムの乾燥円柱状粒状物(粒子径:2.0〜5.6mm)40gを真空焼成電気炉に入れ、真空ポンプを用いて炉内を脱気して炉内圧力を50Pa以下にした後、炉内圧力が150Paを超えないように炉内を脱気しながら、炉内温度を常温から1.5℃/分の速度で400℃まで昇温し、次いでその温度にて1時間焼成して、酸化マグネシウム粉末を製造した。そして室温まで炉内を冷却し、窒素ガスにて炉内圧力を大気圧に調整した後、真空焼成電気炉から酸化マグネシウム粉末を取り出した。   Next, 40 g of the obtained dried magnesium hydroxide granular particle (particle size: 2.0 to 5.6 mm) was put into a vacuum firing electric furnace, and the inside of the furnace was deaerated using a vacuum pump, and the pressure inside the furnace was reduced. The temperature in the furnace is increased from room temperature to 400 ° C. at a rate of 1.5 ° C./min while degassing the furnace so that the pressure in the furnace does not exceed 150 Pa. Was fired for 1 hour to produce a magnesium oxide powder. Then, the inside of the furnace was cooled to room temperature, the pressure inside the furnace was adjusted to atmospheric pressure with nitrogen gas, and then magnesium oxide powder was taken out from the vacuum firing electric furnace.

得られた酸化マグネシウム粉末のBET比表面積、ゆるみ見掛け比重、目開き0.25mmの篩による粒度、及び吸湿率を実施例1と同様に測定した。その結果、BET比表面積は、333.4m2/gであった。ゆるみ見掛け比重は、0.533g/mLであった。目開き0.25mmの篩の篩下に属する粒子(小径粒子)の量は、34質量%で、目開き0.25mmの篩の篩上に属する粒子(大径粒子)の量は、66質量%であった。吸湿率の測定結果を、図1に示す。図1に示すように、経過時間が60分までの吸湿率は15質量%であった。 The BET specific surface area, loose apparent specific gravity, particle size of the sieve having an aperture of 0.25 mm, and moisture absorption of the obtained magnesium oxide powder were measured in the same manner as in Example 1. As a result, the BET specific surface area was 333.4 m 2 / g. The loose apparent specific gravity was 0.533 g / mL. The amount of particles (small particle) belonging to the sieve under the sieve having a mesh size of 0.25 mm is 34% by mass, and the amount of particle (large particle) belonging to the sieve having a mesh of 0.25 mm is 66 mass. %Met. The measurement results of the moisture absorption rate are shown in FIG. As shown in FIG. 1, the moisture absorption up to 60 minutes was 15% by mass.

[比較例1]
原料となる水酸化マグネシウム粉末(Mg(OH)2純度:90質量%以上、BET比表面積:15.9m2/g)3gを真空焼成電気炉に入れ、真空ポンプを用いて炉内を脱気して炉内圧力を50Pa以下にした後、炉内圧力が150Paを超えないように炉内を脱気しながら、炉内温度を常温から2℃/分の速度で600℃まで昇温し、次いでその温度にて6時間焼成して、酸化マグネシウム粉末を製造した。そして室温まで炉内を冷却し、窒素ガスにて炉内圧力を大気圧に調整した後、真空焼成電気炉から酸化マグネシウム粉末を取り出した。
[Comparative Example 1]
3 g of magnesium hydroxide powder (Mg (OH) 2 purity: 90% by mass or more, BET specific surface area: 15.9 m 2 / g) as a raw material is put into a vacuum firing electric furnace, and the inside of the furnace is deaerated using a vacuum pump Then, after the furnace pressure was reduced to 50 Pa or less, the furnace temperature was raised from room temperature to 600 ° C. at a rate of 2 ° C./min while degassing the furnace so that the furnace pressure did not exceed 150 Pa. Subsequently, it baked at that temperature for 6 hours to produce a magnesium oxide powder. Then, the inside of the furnace was cooled to room temperature, the pressure inside the furnace was adjusted to atmospheric pressure with nitrogen gas, and then magnesium oxide powder was taken out from the vacuum firing electric furnace.

得られた酸化マグネシウム粉末のBET比表面積、ゆるみ見掛け比重、目開き0.25mmの篩による粒度、及び吸湿率を実施例1と同様に測定した。その結果、BET比表面積は、214.5m2/gであった。ゆるみ見掛け比重は、0.420g/mLであった。目開き0.25mmの篩の篩下に属する粒子(小径粒子)の量は100質量%であった。吸湿率の測定結果を、図1に示す。図1に示すように、経過時間が60分までの吸湿率は11質量%であった。 The BET specific surface area, loose apparent specific gravity, particle size of the sieve having an aperture of 0.25 mm, and moisture absorption of the obtained magnesium oxide powder were measured in the same manner as in Example 1. As a result, the BET specific surface area was 214.5 m 2 / g. The loose specific gravity was 0.420 g / mL. The amount of particles (small diameter particles) belonging to the sieve under a sieve having an opening of 0.25 mm was 100% by mass. The measurement results of the moisture absorption rate are shown in FIG. As shown in FIG. 1, the moisture absorption up to 60 minutes was 11% by mass.

実施例1、実施例2及び比較例1にて製造した酸化マグネシウム粉末の吸湿率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the moisture absorption rate of the magnesium oxide powder manufactured in Example 1, Example 2, and Comparative Example 1. 実施例1にて製造した酸化マグネシウム粉末の細孔分布を示すグラフである。2 is a graph showing the pore distribution of the magnesium oxide powder produced in Example 1. FIG.

Claims (4)

BET比表面積が230〜500m2/gの範囲にあって、構成する粒子のうちの80質量%以上の粒子が目開き0.25mmの篩による篩下に属する粒子である高比表面積酸化マグネシウム粉末。 High specific surface area magnesium oxide powder having a BET specific surface area in the range of 230 to 500 m 2 / g, wherein 80% by mass or more of the constituent particles belong to a sieve under a sieve having an aperture of 0.25 mm . BET比表面積が10〜200m2/gの範囲にあって、構成する粒子のうちの80質量%以上の粒子が目開き0.25mmの篩による篩下に属する粒子である水酸化マグネシウム粉末を、300Pa以下の圧力下、250〜550℃の温度にて、1〜10時間加熱焼成することからなる請求項1に記載の高比表面積酸化マグネシウム粉末の製造方法。 Magnesium hydroxide powder having a BET specific surface area in the range of 10 to 200 m 2 / g, and 80% by mass or more of the constituting particles belongs to a sieve under a sieve having an aperture of 0.25 mm, The manufacturing method of the high specific surface area magnesium oxide powder of Claim 1 which consists of heat-baking for 1 to 10 hours at the temperature of 250-550 degreeC under the pressure of 300 Pa or less. BET比表面積が230〜500m2/gの範囲にあって、構成する粒子のうちの20質量%を超える粒子が目開き0.25mmの篩による篩上に属する粒子である高比表面積酸化マグネシウム粉末。 High specific surface area magnesium oxide powder having a BET specific surface area in the range of 230 to 500 m 2 / g, and particles exceeding 20% by mass of particles constituting the particles belong to a sieve with a sieve having an opening of 0.25 mm . BET比表面積が10〜200m2/gの範囲にあって、構成する粒子のうちの20質量%を超える粒子が目開き0.25mmの篩による篩上に属する粒子である水酸化マグネシウム粉末を、300Pa以下の圧力下、250〜550℃の温度にて、1〜10時間加熱焼成することからなる請求項3に記載の高比表面積酸化マグネシウム粉末の製造方法。 Magnesium hydroxide powder having a BET specific surface area in the range of 10 to 200 m 2 / g, and particles exceeding 20% by mass of the constituting particles belong to a sieve with a sieve having an aperture of 0.25 mm, The manufacturing method of the high specific surface area magnesium oxide powder of Claim 3 which heat-fires for 1 to 10 hours at the temperature of 250-550 degreeC under the pressure of 300 Pa or less.
JP2006218237A 2005-08-10 2006-08-10 High specific surface area magnesium oxide powder and method for producing the same Active JP5037066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006218237A JP5037066B2 (en) 2005-08-10 2006-08-10 High specific surface area magnesium oxide powder and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005232058 2005-08-10
JP2005232058 2005-08-10
JP2006218237A JP5037066B2 (en) 2005-08-10 2006-08-10 High specific surface area magnesium oxide powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007070219A true JP2007070219A (en) 2007-03-22
JP5037066B2 JP5037066B2 (en) 2012-09-26

Family

ID=37931990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218237A Active JP5037066B2 (en) 2005-08-10 2006-08-10 High specific surface area magnesium oxide powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP5037066B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149531A1 (en) * 2007-06-05 2008-12-11 Tateho Chemical Industries Co., Ltd. Magnesium oxide powder
JP2009007215A (en) * 2007-06-29 2009-01-15 Sakai Chem Ind Co Ltd Spherical magnesium oxide particles and method for producing the same
US9061919B2 (en) 2009-10-02 2015-06-23 Tateho Chemical Industries Co., Ltd. Magnesium oxide powder having excellent dispersibility and method for producing the same
JP2020063185A (en) * 2018-10-16 2020-04-23 宇部マテリアルズ株式会社 Magnesium oxide, method for producing the same, and gas adsorbent comprising magnesium oxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112714751B (en) * 2018-08-09 2023-06-23 卡乌斯帝科联合股份公司 Active high-purity magnesium oxide and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916200B1 (en) * 1970-12-15 1974-04-20
JPH07187662A (en) * 1993-12-28 1995-07-25 Tateho Chem Ind Co Ltd Production of alkaline earth metal oxide
JP2005001949A (en) * 2003-06-12 2005-01-06 Ube Material Industries Ltd Magnesium oxide powder and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916200B1 (en) * 1970-12-15 1974-04-20
JPH07187662A (en) * 1993-12-28 1995-07-25 Tateho Chem Ind Co Ltd Production of alkaline earth metal oxide
JP2005001949A (en) * 2003-06-12 2005-01-06 Ube Material Industries Ltd Magnesium oxide powder and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149531A1 (en) * 2007-06-05 2008-12-11 Tateho Chemical Industries Co., Ltd. Magnesium oxide powder
JP2008303079A (en) * 2007-06-05 2008-12-18 Tateho Chem Ind Co Ltd Magnesium oxide powder
US8512673B2 (en) 2007-06-05 2013-08-20 Tateho Chemical Industries Co., Ltd. Magnesium oxide powder of high purity
JP2009007215A (en) * 2007-06-29 2009-01-15 Sakai Chem Ind Co Ltd Spherical magnesium oxide particles and method for producing the same
US9061919B2 (en) 2009-10-02 2015-06-23 Tateho Chemical Industries Co., Ltd. Magnesium oxide powder having excellent dispersibility and method for producing the same
JP2020063185A (en) * 2018-10-16 2020-04-23 宇部マテリアルズ株式会社 Magnesium oxide, method for producing the same, and gas adsorbent comprising magnesium oxide
JP7267852B2 (en) 2018-10-16 2023-05-02 宇部マテリアルズ株式会社 Magnesium oxide, method for producing the same, and gas adsorbent made of the magnesium oxide

Also Published As

Publication number Publication date
JP5037066B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
Hong et al. Manufacturing of metal-organic framework monoliths and their application in CO2 adsorption
WO2007142192A1 (en) Porous calcium oxide particulate and porous calcium hydroxide particulate
Wei et al. Pore structure modified CaO-based sorbents with different sized templates for CO2 capture
JP5037066B2 (en) High specific surface area magnesium oxide powder and method for producing the same
KR20160138951A (en) Adsorbent and method for manufacturing crystalline silicotitanate
KR20110128324A (en) Porous carbon and process for producing same
JP2001070726A (en) Carbon dioxide absorption method and carbon dioxide adsorbent and production of the same
WO2009084208A1 (en) Molded porous article, method for production thereof, catalyst carrier, and catalyst
CA2922942C (en) Porous carbon, humidity control adsorbent, adsorption heat pump, and fuel cell
WO2006106878A1 (en) Granular material comprising porous particles containing calcium and/or magnesium
JP2001240407A (en) Activated carbon and its manufacturing method
Ramírez-Moreno et al. CO2 adsorption at elevated pressure and temperature on Mg–Al layered double hydroxide
JP6286620B2 (en) Iron powder and heating element and heating tool using the same
Hu et al. Preparation of Li4SiO4 sorbents for carbon dioxide capture via a spray-drying technique
Bamiduro et al. Spray‐Dried Sodium Zirconate: A Rapid Absorption Powder for CO2 Capture with Enhanced Cyclic Stability
Joshi et al. Sodium hydroxide activated nanoporous carbons based on Lapsi seed stone
JPH07149580A (en) Calcium oxide porous material having high activity and its production
Xue et al. Encapsulated HKUST-1 nanocrystal with enhanced vapor stability and its CO2 adsorption at low partial pressure in unitary and binary systems
Gong et al. Densely packed and highly ordered carbon flower particles for high volumetric performance
JP2003012316A (en) Activated carbon and its manufacturing method
JP2000313611A (en) Active carbon and its production
JP2008001534A (en) Calcium oxide powder and method for producing the same
JP2011084454A (en) Spherical activated carbon and method for producing the same
JP6383188B2 (en) Method for producing α-sodium ferrites
JP4387870B2 (en) Granular quicklime

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5037066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250