JP2007069075A - Method and system for separation of carbon dioxide - Google Patents

Method and system for separation of carbon dioxide Download PDF

Info

Publication number
JP2007069075A
JP2007069075A JP2005256371A JP2005256371A JP2007069075A JP 2007069075 A JP2007069075 A JP 2007069075A JP 2005256371 A JP2005256371 A JP 2005256371A JP 2005256371 A JP2005256371 A JP 2005256371A JP 2007069075 A JP2007069075 A JP 2007069075A
Authority
JP
Japan
Prior art keywords
carbon dioxide
absorption
separation method
absorbent
absorbent material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005256371A
Other languages
Japanese (ja)
Inventor
Takao Nakagaki
隆雄 中垣
Katsuya Yamashita
勝也 山下
Masafumi Fukuda
雅文 福田
Masanori Kato
雅礼 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005256371A priority Critical patent/JP2007069075A/en
Publication of JP2007069075A publication Critical patent/JP2007069075A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a system for separation of carbon dioxide which have a system arrangement with excellent energy efficiency and employ a lithium compound oxide. <P>SOLUTION: A method of separating carbon dioxide has an absorption process of incorporating, as an absorption material, a lithium composite oxide into an apparatus behaving as a carbon dioxide release source to make the oxide absorb carbon dioxide in the gas and a release process of causing the absorption material to release carbon dioxide in a regeneration unit. The operating conditions of the system are set so that the removal rate of carbon dioxide in the gas is 20-40%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、二酸化炭素の固定排出源から二酸化炭素を削減する二酸化炭素分離方法および二酸化炭素分離システムに関する。   The present invention relates to a carbon dioxide separation method and a carbon dioxide separation system for reducing carbon dioxide from a fixed emission source of carbon dioxide.

二酸化炭素は、地球温暖化を引き起こす温室効果ガスの一つとして認知されている。一方、これら温室効果ガスの排出量の削減目標を具体的に数値化した京都議定書の発効を受けて、温室効果ガスの削減技術に対する関心が高まっている。火力発電所は、膨大な二酸化炭素を排出量する固定排出源であり、分離回収のための対策が取りやすいため、例えばアミン吸収法などのガス吸収液技術が確立されている。   Carbon dioxide is recognized as one of the greenhouse gases that cause global warming. On the other hand, interest in greenhouse gas reduction technology has increased following the entry into force of the Kyoto Protocol, which specifically quantifies these greenhouse gas emission reduction targets. A thermal power plant is a fixed emission source that emits a large amount of carbon dioxide, and it is easy to take measures for separation and recovery. For example, a gas absorption liquid technology such as an amine absorption method has been established.

その一方、より効率的な二酸化炭素削減技術も模索されており、例えば、高温で使用可能な固体吸収材も研究開発されている。その中でもリチウム複合酸化物は、500℃〜600℃で発熱反応を生じながら二酸化炭素を吸収し、750℃〜850℃で吸熱反応を伴いながら二酸化炭素を放出して再吸収可能な状態に再生復帰する材料特性を持つ。このリチウム複合酸化物の有する性質を用いて、石炭や石油を燃料とする火力発電所の排気ガスから二酸化炭素を分離するシステムが考案されている(例えば、特許文献1および特許文献2参照)。
特開2005−075683号公報 特開2003−054927号公報
On the other hand, more efficient carbon dioxide reduction technologies have been sought, and for example, solid absorbent materials that can be used at high temperatures have been researched and developed. Among them, the lithium composite oxide absorbs carbon dioxide while causing an exothermic reaction at 500 ° C. to 600 ° C., and releases the carbon dioxide with an endothermic reaction at 750 ° C. to 850 ° C. to regenerate and recover the carbon dioxide. It has material characteristics to do. A system for separating carbon dioxide from exhaust gas of a thermal power plant using coal or petroleum as a fuel has been devised using the properties of this lithium composite oxide (see, for example, Patent Document 1 and Patent Document 2).
Japanese Patent Laying-Open No. 2005-075683 JP 2003-054927 A

リチウム複合酸化物を用いた二酸化炭素分離システムにおいては、二酸化炭素を吸収する反応器として、数ミリの粒径を持つリチウム複合酸化物のペレットを詰めた充填層が一般的に用いられる。このような構成の二酸化炭素分離システムの性能を実効的に予測するためには、二酸化炭素吸収反応器および二酸化炭素放出部における吸収材の吸放出特性を詳細に把握する必要があるが、これまで反応器における吸収、放出反応の挙動は、示差熱天秤で得られた重量変化やペレットを充填した内径数十ミリの管を電気炉で外部から加熱したラボスケールの試験結果を用いて予測していた。   In a carbon dioxide separation system using a lithium composite oxide, a packed bed packed with pellets of lithium composite oxide having a particle diameter of several millimeters is generally used as a reactor for absorbing carbon dioxide. In order to effectively predict the performance of a carbon dioxide separation system with such a configuration, it is necessary to understand in detail the absorption / release characteristics of the absorbent in the carbon dioxide absorption reactor and the carbon dioxide release section. The behavior of absorption and release reactions in the reactor is predicted using the changes in weight obtained with a differential thermobalance and the results of laboratory-scale tests in which a tube with an inner diameter of several tens of millimeters filled with pellets is heated from the outside in an electric furnace. It was.

しかしながら、実際のリチウム複合酸化物の二酸化炭素吸収・放出反応においては、二酸化炭素1モルあたり約75kJの反応熱が生じ、その熱は、プロセスガスが媒体として輸送する。具体的には、吸収反応時にはボイラ排気ガスが熱輸送媒体として、また放出再生反応時には循環二酸化炭素が熱供給媒体としてそれぞれ熱を授受する。また、吸収・放出反応は、それぞれ上記温度域でのみ生じるが、それぞれの反応の際の充填層固体の温度は、反応熱や上記プロセスガスによる熱輸送によって加熱および冷却されるため、時間とともに大きく変動する。さらに、この熱輸送量は、プロセスガスの流量によって決定されるが、充填層内での圧力損失が大きいため、この分をエネルギーロスとしてブロワ動力を考慮する必要がある。このような物理現象を伴う反応の挙動は、ラボスケールでの実験値より制御することが困難である。   However, in the actual carbon dioxide absorption / release reaction of lithium composite oxide, reaction heat of about 75 kJ is generated per mole of carbon dioxide, and the heat is transported as a medium by the process gas. Specifically, the boiler exhaust gas exchanges heat during the absorption reaction and the circulating carbon dioxide exchanges heat as the heat supply medium during the release regeneration reaction. In addition, the absorption / release reaction occurs only in the above temperature range, but the temperature of the packed bed solid during each reaction is heated and cooled by reaction heat and heat transport by the process gas, and thus increases with time. fluctuate. Furthermore, although this heat transport amount is determined by the flow rate of the process gas, since the pressure loss in the packed bed is large, it is necessary to consider the blower power with this amount as the energy loss. It is difficult to control the behavior of reactions involving such physical phenomena from experimental values on a laboratory scale.

従って、現実的な二酸化炭素分離システムの性能を見積り、精緻な制御を行うためには、上記条件を考慮して反応器の大きさやプロセスガスの空塔速度およびシステムの運転方法を論理的に決定する必要があった。   Therefore, in order to estimate the performance of a realistic carbon dioxide separation system and perform precise control, the size of the reactor, the superficial velocity of the process gas, and the system operation method are logically determined in consideration of the above conditions. There was a need to do.

本発明は、上述した事情を考慮してなされたもので、エネルギー効率に優れたシステム構成を有するリチウム複合酸化物を利用した二酸化炭素分離方法および二酸化炭素分離システムを提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a carbon dioxide separation method and a carbon dioxide separation system using a lithium composite oxide having a system configuration excellent in energy efficiency.

本発明の二酸化炭素分離方法は、上述した課題を解決するために、リチウム複合酸化物を吸収材として用い、この吸収材を二酸化炭素発生源である装置に組み込んでガス中の二酸化炭素を吸収させる吸収過程と、再生装置にて前記吸収材に二酸化炭素を放出させる放出過程とを備えた二酸化炭素分離方法において、前記ガスに含まれる二酸化炭素の除去率が20%から40%の範囲となるように運転条件を設定することを特徴とする方法である。   In order to solve the above-described problems, the carbon dioxide separation method of the present invention uses a lithium composite oxide as an absorbent, and incorporates the absorbent into an apparatus that is a carbon dioxide generation source to absorb carbon dioxide in the gas. In a carbon dioxide separation method comprising an absorption process and a release process in which carbon dioxide is released to the absorbent by a regenerator, the removal rate of carbon dioxide contained in the gas is in the range of 20% to 40%. This is a method characterized by setting operating conditions to

また、本発明の二酸化炭素分離システムは、二酸化炭素発生源にて生成されたガスに含まれる二酸化炭素を吸収するリチウム複合酸化物製の吸収材を収容する二酸化炭素吸収反応器と、二酸化炭素を吸収した前記吸収材を加熱して二酸化炭素を放出させる二酸化炭素放出部と、この二酸化炭素放出部に加熱媒体を供給する二酸化炭素加熱器と、前記二酸化炭素放出部で二酸化炭素を放出させた前記吸収材を前記二酸化炭素吸収反応器に戻す手段とを備え、前記ガスに含まれる二酸化炭素の除去率が20%から40%の範囲となる条件にて運転されることを特徴とするシステムである。   The carbon dioxide separation system of the present invention includes a carbon dioxide absorption reactor that contains an absorbent material made of a lithium composite oxide that absorbs carbon dioxide contained in a gas generated by a carbon dioxide generation source, and carbon dioxide. A carbon dioxide releasing part for heating the absorbed material to release carbon dioxide, a carbon dioxide heater for supplying a heating medium to the carbon dioxide releasing part, and the carbon dioxide releasing part for releasing carbon dioxide. Means for returning the absorbent to the carbon dioxide absorption reactor, and the system is operated under the condition that the removal rate of carbon dioxide contained in the gas is in the range of 20% to 40%. .

本発明の二酸化炭素分離方法および二酸化炭素分離システムによれば、最適な運転条件を設定することにより、効率よく効果的に二酸化炭素を分離する二酸化炭素分離方法および二酸化炭素分離システムを提供することが可能となる。   According to the carbon dioxide separation method and the carbon dioxide separation system of the present invention, it is possible to provide a carbon dioxide separation method and a carbon dioxide separation system that efficiently and effectively separate carbon dioxide by setting optimum operating conditions. It becomes possible.

本発明に係る二酸化炭素分離方法および二酸化炭素分離システムの好ましい実施例について、図を参照して以下に詳細に説明する。   Preferred embodiments of a carbon dioxide separation method and a carbon dioxide separation system according to the present invention will be described below in detail with reference to the drawings.

図1に、本発明に係る二酸化炭素分離システムを、火力発電プラントに組み込まれるボイラプラントに適用した系統図を示す。   FIG. 1 shows a system diagram in which the carbon dioxide separation system according to the present invention is applied to a boiler plant incorporated in a thermal power plant.

まず、本図を用いて、ボイラプラントおよびそれに組み込まれる本発明の二酸化炭素分離システムの構成および作用について説明する。   First, the configuration and operation of a boiler plant and the carbon dioxide separation system of the present invention incorporated in the boiler plant will be described with reference to FIG.

火力発電プラントに組み込まれるボイラプラント10は、燃焼ガス17の流れに沿って順に、燃焼室18、放射形の第1過熱器19、第2過熱器20、第1再熱器21、第3過熱器22、電気集塵器23、脱硫器24、第2再熱器25、節炭器26を収容するボイラ本体27と、このボイラ本体27に順次連接する空気予熱器28、脱硝器29、煙突30とを備える。   The boiler plant 10 incorporated in the thermal power plant includes a combustion chamber 18, a radial first superheater 19, a second superheater 20, a first reheater 21, and a third superheater in order along the flow of the combustion gas 17. A boiler main body 27 that houses a condenser 22, an electrostatic precipitator 23, a desulfurizer 24, a second reheater 25, and a economizer 26; 30.

燃焼室18に供給される石炭等の燃料31と空気予熱器28を介して供給される空気32とで燃焼ガス17を生成し、生成された温度1200℃程度の燃焼ガス17の熱で放射形の第1過熱器19、第2過熱器20、第1再熱器21、第3過熱器22、第2再熱器25、節炭器26のそれぞれの内部を通る飽和水または飽和蒸気を加熱および過熱して蒸気(過熱蒸気)等にする。一方、電気集塵器23によって燃焼ガス17に含まれる飛灰等の不純物を除去し、さらに脱硫器24で硫黄酸化物(SOx)を除去する。   Combustion gas 17 is generated by fuel 31 such as coal supplied to combustion chamber 18 and air 32 supplied via air preheater 28, and the generated combustion gas 17 having a temperature of about 1200 ° C. is radiated by heat. Saturated water or saturated steam that passes through each of the first superheater 19, the second superheater 20, the first reheater 21, the third superheater 22, the second reheater 25, and the economizer 26 is heated. And overheated into steam (superheated steam). On the other hand, impurities such as fly ash contained in the combustion gas 17 are removed by the electric dust collector 23, and sulfur oxide (SOx) is further removed by the desulfurizer 24.

一方、節炭器26を出た温度350℃〜400℃の燃焼ガス17を空気予熱器28に供給し、空気予熱器28で燃焼ガス17を生成する空気32を予熱させ、空気を予熱させた燃焼ガス17を脱硝器29に供給し、ここで窒素酸化物(NOx)を除去した後、煙突30から温度120℃〜150℃の排ガスとして大気に放出させる。   On the other hand, the combustion gas 17 having a temperature of 350 ° C. to 400 ° C. exiting the economizer 26 is supplied to the air preheater 28, and the air 32 that generates the combustion gas 17 is preheated by the air preheater 28 to preheat the air. The combustion gas 17 is supplied to the denitrifier 29, where nitrogen oxides (NOx) are removed, and then discharged from the chimney 30 to the atmosphere as exhaust gas having a temperature of 120 ° C to 150 ° C.

このような構成を備えた火力発電プラントに適用するボイラプラントにおいて、本実施例の二酸化炭素分離システムは、ボイラ本体27における燃焼ガス17の温度800℃以上の領域、例えば第2過熱器20と第1再熱器21との間に二酸化炭素加熱器33を設け、燃焼ガス17の温度350℃〜650℃程度の領域、例えば電気集塵器23または脱硫器24と第2再熱器25との間に二酸化炭素吸収反応器34を設けたものである。   In the boiler plant applied to the thermal power plant having such a configuration, the carbon dioxide separation system of the present embodiment is an area where the temperature of the combustion gas 17 in the boiler body 27 is 800 ° C. or higher, for example, the second superheater 20 and the second superheater 20. A carbon dioxide heater 33 is provided between the first reheater 21 and the temperature of the combustion gas 17 is about 350 ° C. to 650 ° C., for example, the electrostatic precipitator 23 or the desulfurizer 24 and the second reheater 25. A carbon dioxide absorption reactor 34 is provided between them.

吸収材は、リチウム複合酸化物であるリチウムシリケート(LiSO)を含む材料であり、これをペレット状に成形して構成する。この吸収材を充填して充填層を構成し、これを移動床にて操作して、二酸化炭素吸収反応器34および二酸化炭素放出部36にてそれぞれ吸収・放出反応を作用させる。 The absorbent material is a material containing lithium silicate (Li 4 SO 4 ), which is a lithium composite oxide, and is formed by forming it into a pellet shape. This absorbent material is filled to form a packed bed, which is operated on a moving bed to cause the carbon dioxide absorption reactor 34 and the carbon dioxide release section 36 to perform absorption and release reactions, respectively.

二酸化炭素加熱器33および二酸化炭素吸収反応器34は、ともにボイラ本体27と別置きに設置される再生装置35に接続される。この再生装置35は、例えば筒状の胴体で構成され、この胴体内に二酸化炭素放出部36が設けられ、この二酸化炭素放出部36に、二酸化炭素を吸収した吸収材が二酸化炭素吸収反応器34から供給されて二酸化炭素を高温条件下で放出させる。また、再生装置35には、この二酸化炭素放出部36から放出された二酸化炭素を冷却させる冷却器37が収容されている。   Both the carbon dioxide heater 33 and the carbon dioxide absorption reactor 34 are connected to a regenerator 35 installed separately from the boiler body 27. The regenerator 35 is formed of, for example, a cylindrical body, and a carbon dioxide release unit 36 is provided in the body. An absorbent that has absorbed carbon dioxide is absorbed in the carbon dioxide absorption reactor 34 in the carbon dioxide release unit 36. To release carbon dioxide under high temperature conditions. In addition, the regenerator 35 accommodates a cooler 37 that cools the carbon dioxide emitted from the carbon dioxide emission part 36.

二酸化炭素吸収反応器34と再生装置35の冷却器37との間には、窒素循環系41が設けられ、冷却器38を設けた窒素タンク39と、搬送用窒素ブロア40とが設けられる。この窒素循環系41は、再生装置35の二酸化炭素放出部36で二酸化炭素を放出した吸収材を二酸化炭素吸収反応器34に戻す際、循環中の窒素で吸収材の表面をシールして、他の二酸化炭素を吸収させないようにするとともに、吸収材が二酸化炭素吸収反応器34に円滑に戻れるように押圧力(移動力)を与える。   Between the carbon dioxide absorption reactor 34 and the cooler 37 of the regenerator 35, a nitrogen circulation system 41 is provided, a nitrogen tank 39 provided with a cooler 38, and a transport nitrogen blower 40. This nitrogen circulation system 41 seals the surface of the absorbent with the circulating nitrogen when returning the absorbent released with the carbon dioxide release part 36 of the regenerator 35 to the carbon dioxide absorption reactor 34. The carbon dioxide is not absorbed, and a pressing force (moving force) is applied so that the absorbent can smoothly return to the carbon dioxide absorption reactor 34.

一方、再生装置35に配置される二酸化炭素放出部36には、第1二酸化炭素循環系45が設けられ、搬送用二酸化炭素ブロア42と冷却器43を設けた二酸化炭素タンク44が設けられる。この第1二酸化炭素循環系45は、ボイラ本体27に設けた二酸化炭素吸収反応器34で二酸化炭素を吸収した吸収材を再生装置35の二酸化炭素放出部36に移動させる際、二酸化炭素タンク44からの二酸化炭素を吸収材に与え、吸収材が円滑に移動できるようにする。   On the other hand, the carbon dioxide release part 36 disposed in the regenerator 35 is provided with a first carbon dioxide circulation system 45 and a carbon dioxide tank 44 provided with a transfer carbon dioxide blower 42 and a cooler 43. The first carbon dioxide circulation system 45 is moved from the carbon dioxide tank 44 when the absorbent that has absorbed carbon dioxide in the carbon dioxide absorption reactor 34 provided in the boiler body 27 is moved to the carbon dioxide discharge section 36 of the regenerator 35. The carbon dioxide is given to the absorbent so that the absorbent can move smoothly.

さらに、再生装置35は、第2二酸化炭素循環系47を備える。この第2二酸化炭素循環系47は、二酸化炭素放出部36において吸収材から放出させた二酸化炭素を冷却器37で冷却させ、この二酸化炭素の一部をブロア46を介してボイラ本体27の二酸化炭素加熱器33に供給して加熱させ、高温化させた二酸化炭素を二酸化炭素放出部36に加熱源として与えるものである。   Further, the regenerator 35 includes a second carbon dioxide circulation system 47. The second carbon dioxide circulation system 47 cools the carbon dioxide released from the absorbent in the carbon dioxide release part 36 by the cooler 37, and a part of the carbon dioxide is supplied to the carbon dioxide in the boiler body 27 through the blower 46. The carbon dioxide that is supplied to the heater 33 and heated to increase the temperature is given to the carbon dioxide releasing section 36 as a heating source.

次に、本実施例に係る二酸化炭素分離システムの作用について説明する。   Next, the operation of the carbon dioxide separation system according to the present embodiment will be described.

ボイラ本体27の燃焼室18で生成された燃焼ガス17は、温度800℃以上で二酸化炭素加熱器33を加熱させ、再生装置35からブロア46を介して供給される加熱用二酸化炭素を温度750℃〜850℃に高温化させ、高温化させた加熱用二酸化炭素を第2二酸化炭素循環系47を介して再生装置35の二酸化炭素放出部36に加熱源として与えて加熱させ、この加熱に伴って、二酸化炭素吸収反応器34において吸収材で吸収された二酸化炭素を放出させる。   The combustion gas 17 generated in the combustion chamber 18 of the boiler body 27 heats the carbon dioxide heater 33 at a temperature of 800 ° C. or higher, and the heating carbon dioxide supplied from the regenerator 35 via the blower 46 has a temperature of 750 ° C. The carbon dioxide for heating heated to 850 ° C. is heated as a heating source to the carbon dioxide discharge part 36 of the regenerator 35 through the second carbon dioxide circulation system 47. In the carbon dioxide absorption reactor 34, the carbon dioxide absorbed by the absorbent is released.

一方、二酸化炭素加熱器33を出た燃焼ガス17は、電気集塵器23で飛灰等の不純物が除去され、脱硫器24で硫黄酸化物(SOx)が除去された後、二酸化炭素吸収反応器34に温度350℃〜500℃の範囲で供給される。ここで吸収材に二酸化炭素が吸収される。   On the other hand, the combustion gas 17 exiting the carbon dioxide heater 33 is subjected to carbon dioxide absorption reaction after impurities such as fly ash are removed by the electric dust collector 23 and sulfur oxide (SOx) is removed by the desulfurizer 24. The vessel 34 is supplied at a temperature ranging from 350 ° C to 500 ° C. Here, carbon dioxide is absorbed by the absorbent material.

二酸化炭素を吸収した吸収材は、第1二酸化炭素循環系45における搬送用二酸化炭素ブロア42からの二酸化炭素による推進力により再生装置35の二酸化炭素放出部36に移動して供給される。ここで第2二酸化炭素循環系47から温度800度以上の高温化された二酸化炭素が加熱源として与えられ、吸収材に吸収されていた二酸化炭素を放出させる。   The absorbent that has absorbed the carbon dioxide is moved and supplied to the carbon dioxide discharge section 36 of the regenerator 35 by the propulsive force by the carbon dioxide from the transfer carbon dioxide blower 42 in the first carbon dioxide circulation system 45. Here, heated carbon dioxide having a temperature of 800 ° C. or more is supplied from the second carbon dioxide circulation system 47 as a heating source, and the carbon dioxide absorbed by the absorbent material is released.

二酸化炭素放出部36で吸収材から放出された再生用の二酸化炭素は、窒素循環系41における冷却器38で冷却され、窒素タンク39から搬送用窒素ブロア40を介して供給される窒素を冷媒源とする冷却器37にて冷却される。   The regeneration carbon dioxide released from the absorbent in the carbon dioxide release part 36 is cooled by the cooler 38 in the nitrogen circulation system 41, and the nitrogen supplied from the nitrogen tank 39 through the transport nitrogen blower 40 is used as a refrigerant source. It cools with the cooler 37.

また、冷却器37で冷却された再生用の二酸化炭素が過剰な場合、ブロア52で調整して他の機器に供給される。残りの再生用の二酸化炭素は、常に一定量に維持されてボイラ本体27に収容される二酸化炭素加熱器33に供給される。   When the carbon dioxide for regeneration cooled by the cooler 37 is excessive, it is adjusted by the blower 52 and supplied to other devices. The remaining carbon dioxide for regeneration is always maintained at a constant amount and supplied to the carbon dioxide heater 33 accommodated in the boiler body 27.

また、冷却器37で冷媒として使用された窒素は、窒素循環系41を介して二酸化炭素吸収反応器34に循環中、二酸化炭素放出部36で二酸化炭素を放出して二酸化炭素吸収反応器34に戻る吸収材の表面をシールするとともに、吸収材の移動促進力として利用される。   Further, nitrogen used as a refrigerant in the cooler 37 is circulated to the carbon dioxide absorption reactor 34 via the nitrogen circulation system 41, and carbon dioxide is released at the carbon dioxide release section 36 to the carbon dioxide absorption reactor 34. The surface of the returning absorbent material is sealed, and it is also used as a force for promoting the movement of the absorbent material.

この二酸化炭素分離システムは、ボイラ本体27の高温部に二酸化炭素加熱器33を収容し、ボイラ本体27の比較的低温部に二酸化炭素吸収反応器34を収容し、二酸化炭素加熱器33および二酸化炭素吸収反応器34のそれぞれを、ボイラ本体27と別置きに設置した再生装置35に第2二酸化炭素循環系47、第1二酸化炭素循環系45、窒素循環系41のそれぞれを介して接続させ、二酸化炭素吸収反応器34においてもリチウムシリケート(LiSiO)を粒子に含ませたペレットに構成した吸収材で燃焼ガスに含まれる二酸化炭素を吸収させ、二酸化炭素を吸収させた吸収材を再生装置35の二酸化炭素放出部36で二酸化炭素加熱器33からの二酸化炭素を加熱源として加熱させ、その際に吸収していた二酸化炭素を放出させ、二酸化炭素を放出した吸収材を再び二酸化炭素吸収反応器34に戻して二酸化炭素を吸収させる構成としたので、二酸化炭素を無駄なく、より多量に処理して回収することができる。 In this carbon dioxide separation system, a carbon dioxide heater 33 is accommodated in a high temperature portion of the boiler body 27, and a carbon dioxide absorption reactor 34 is accommodated in a relatively low temperature portion of the boiler body 27. Each of the absorption reactors 34 is connected to a regenerator 35 installed separately from the boiler body 27 via a second carbon dioxide circulation system 47, a first carbon dioxide circulation system 45, and a nitrogen circulation system 41, respectively. Also in the carbon absorption reactor 34, carbon dioxide contained in the combustion gas is absorbed by an absorbent material configured in pellets in which lithium silicate (Li 4 SiO 4 ) is contained in the particles, and the carbon dioxide-absorbed absorbent material is regenerated. The carbon dioxide discharge part 36 of 35 is heated using carbon dioxide from the carbon dioxide heater 33 as a heating source, and the carbon dioxide absorbed at that time is released. Since the absorption material released and released carbon dioxide is returned to the carbon dioxide absorption reactor 34 to absorb carbon dioxide, carbon dioxide can be processed and recovered in a larger amount without waste.

(実施例1)
上記構成を有する二酸化炭素分離システムの実施例として、500MW、発電効率40%の微粉炭焚き火力発電プラントを想定し、吸収材としてリチウム複合酸化物の一種であるリチウムシリケートを用いて排気ガス中の二酸化炭素を分離回収するシステムの物質収支を計算した結果、排気ガスの流量は460kg/s、排ガス中の二酸化炭素濃度は11%となった。これより、処理すべき二酸化炭素流量は、77kg/sと計算された。
Example 1
As an example of a carbon dioxide separation system having the above configuration, a pulverized coal-fired thermal power plant with 500 MW and power generation efficiency of 40% is assumed, and lithium silicate which is a kind of lithium composite oxide is used as an absorbent in exhaust gas. As a result of calculating the mass balance of the system for separating and recovering carbon dioxide, the exhaust gas flow rate was 460 kg / s, and the carbon dioxide concentration in the exhaust gas was 11%. From this, the carbon dioxide flow rate to be treated was calculated as 77 kg / s.

リチウムシリケートの最大の二酸化炭素吸収能力は、吸収していない初期の自重に対して35%である。二酸化炭素の吸収反応における反応速度は、温度、二酸化炭素分圧、吸収した二酸化炭素量、すなわち吸収材重量変化の3つのパラメータによって影響を受けるが、二酸化炭素の吸収量が増えると吸収の反応速度が低下する。また、二酸化炭素濃度の低下と共に反応速度もほぼ直線的に低下する。   The maximum carbon dioxide absorption capacity of lithium silicate is 35% with respect to the initial weight not absorbed. The reaction rate in the carbon dioxide absorption reaction is affected by three parameters: temperature, carbon dioxide partial pressure, and the amount of carbon dioxide absorbed, that is, the change in the weight of the absorbent, but the absorption reaction rate increases as the amount of carbon dioxide absorption increases. Decreases. In addition, the reaction rate decreases almost linearly with a decrease in carbon dioxide concentration.

図2に二酸化炭素吸収反応器における吸収材の挙動の模式図を示す。この図2は、図1の二酸化炭素吸収反応器34において、排気ガスが吸収材を流通する様子を模式化したものである。   FIG. 2 shows a schematic diagram of the behavior of the absorbent in the carbon dioxide absorption reactor. FIG. 2 schematically shows how exhaust gas flows through the absorbent in the carbon dioxide absorption reactor 34 of FIG.

再生過程を終了した吸収材は、850℃で均一な温度になっていると仮定する。この吸収材が移動床によって排気ガスダクト内に運ばれて吸収過程が開始される。この吸収過程において吸収材は、排気ガスによって冷却され、吸収過程に最適な温度域(500℃〜600℃)に保持されて、発熱反応である二酸化炭素吸収反応を生じる。吸収材は、最終的に排気ガス温度の400℃近くまで固体温度が下げられ、再生過程へ送られる。   It is assumed that the absorbent material that has finished the regeneration process has a uniform temperature at 850 ° C. The absorbent material is carried into the exhaust gas duct by the moving bed and the absorption process is started. In this absorption process, the absorbent is cooled by the exhaust gas, and is maintained in a temperature range (500 ° C. to 600 ° C.) optimum for the absorption process, thereby causing an exothermic carbon dioxide absorption reaction. The absorbent material is finally lowered in solid temperature to near 400 ° C. of the exhaust gas temperature and sent to the regeneration process.

排気ガス入口の二酸化炭素濃度は、上記計算のとおり約11%であるが、二酸化炭素は吸収材内に逐次吸収されるため、排気ガス中の二酸化炭素濃度が次第に低下する。一方、吸収材にも二酸化炭素が蓄積されることにより、吸収の反応速度が小さくなる。ここで、吸収材の吸収率を、材料特性の上限である最大35%に対して30%に設定し、システムの二酸化炭素除去率も30%として吸収材の必要量を算出した。この結果、必要な吸収材の量は77kg/sと算出された。   The carbon dioxide concentration at the exhaust gas inlet is about 11% as calculated above, but since carbon dioxide is sequentially absorbed into the absorbent, the carbon dioxide concentration in the exhaust gas gradually decreases. On the other hand, carbon dioxide is also accumulated in the absorbent material, thereby reducing the absorption reaction rate. Here, the absorption rate of the absorbent was set to 30% with respect to the maximum 35%, which is the upper limit of the material characteristics, and the required amount of the absorbent was calculated with the system's carbon dioxide removal rate being 30%. As a result, the amount of the necessary absorbent was calculated as 77 kg / s.

図3に、吸収材の局所に着目して、吸収過程における経過時間に対する二酸化炭素除去率の変化を示したグラフを示す。   FIG. 3 is a graph showing changes in the carbon dioxide removal rate with respect to the elapsed time in the absorption process, focusing on the local area of the absorbent material.

本発明者らの実施によれば、二酸化炭素の除去率は、図3のような傾向を示し、時間とともに変化する。すなわち図3に示すように、二酸化炭素除去率が20%から40%となる運転条件で吸収材を使用すれば、30%平均の二酸化炭素除去率を達成でき、十分な二酸化炭素除去性能を維持できることが明確である。   According to the implementation of the present inventors, the carbon dioxide removal rate shows a tendency as shown in FIG. 3 and changes with time. That is, as shown in FIG. 3, if the absorbent material is used under an operating condition where the carbon dioxide removal rate is 20% to 40%, a 30% average carbon dioxide removal rate can be achieved, and sufficient carbon dioxide removal performance is maintained. It is clear that we can do it.

また、吸収過程において30分以上経過した場合、吸収材の温度が吸収反応に適した温度域よりも低下する。そのため、除去率が20%以下に低下して二酸化炭素回収効率が低下する。これより、二酸化炭素分離システムにおける運転条件は、二酸化炭素の除去率が20%から40%となるように設定すべきとの知見が得られた。また、二酸化炭素分離システムにおける吸収過程の所要時間を30分以内に設定した。   Moreover, when 30 minutes or more pass in an absorption process, the temperature of an absorber falls from the temperature range suitable for absorption reaction. Therefore, the removal rate is reduced to 20% or less, and the carbon dioxide recovery efficiency is reduced. From this, it was found that the operating conditions in the carbon dioxide separation system should be set so that the carbon dioxide removal rate is 20% to 40%. Moreover, the time required for the absorption process in the carbon dioxide separation system was set within 30 minutes.

次に、二酸化炭素吸収反応器34における圧力損失の許容値を見積る。二酸化炭素吸収反応器34は、ボイラ本体27に組み込む形状であるので、排気ガスの圧力損失を評価する必要がある。二酸化炭素吸収反応器34における圧力損失は、ボイラの燃焼ガスを押し込むブロワの動力を増加させる。圧力が10kPaのブロワをカスケード接続して大気圧の空気を昇圧するために必要な動力とその結果排出される増分の二酸化炭素量をステージごとに計算すると、動力増を2%以内に抑えるには、圧力損失が30kPaを超えないようにすることが指標として得られた。   Next, an allowable value of pressure loss in the carbon dioxide absorption reactor 34 is estimated. Since the carbon dioxide absorption reactor 34 has a shape incorporated in the boiler body 27, it is necessary to evaluate the pressure loss of the exhaust gas. The pressure loss in the carbon dioxide absorption reactor 34 increases the power of the blower that pushes the combustion gas of the boiler. To calculate the power required to boost atmospheric pressure by cascading blowers with a pressure of 10 kPa and the amount of incremental carbon dioxide discharged as a result, for each stage, to suppress the power increase to within 2% It was obtained as an indicator that the pressure loss does not exceed 30 kPa.

次に、二酸化炭素吸収反応器34の大きさを設計する。吸収材であるリチウムシリケートの単位体積あたりの吸収能力は、粒形状を直径5mmの球形ペレットとした場合、試験結果により0.05kg−二酸化炭素/m/sと計算され、必要な二酸化炭素吸収反応器34の体積は440mと算定される。ここで二酸化炭素吸収反応器34の形状を直方体と考えると、反応器体積は、排気ガス流路の断面積と充填層厚さの積で表される。また充填層における圧力損失は、近寄り流速と充填層厚さで決定される。 Next, the size of the carbon dioxide absorption reactor 34 is designed. The absorption capacity per unit volume of the lithium silicate as the absorbent is calculated as 0.05 kg-carbon dioxide / m 3 / s based on the test results when the particle shape is a spherical pellet having a diameter of 5 mm. The volume of the reactor 34 is calculated to be 440 m 3 . Here, when the shape of the carbon dioxide absorption reactor 34 is considered to be a rectangular parallelepiped, the reactor volume is represented by the product of the cross-sectional area of the exhaust gas flow path and the packed bed thickness. The pressure loss in the packed bed is determined by the approaching flow velocity and the packed bed thickness.

図4に吸収過程における充填層(吸収材)厚さに対する圧力損失と断面積との関係を示す。本実施例の二酸化炭素分離システムを既存のボイラに適用する場合、著しい拡大縮小を伴う流路は現実的でなく、900m程度が断面積の上限と考えられ、この場合の吸収材を充填した充填層の厚さは、0.5mとなる。また、上記の考察を考慮して圧力損失が30kPaを超えないように設定するならば、充填層の厚さは、1.5mとなる。これらの考察より、二酸化炭素分離システムの吸収材を充填する充填層の厚さの範囲を0.5mから1.5mと設定した。 FIG. 4 shows the relationship between the pressure loss and the cross-sectional area with respect to the thickness of the packed bed (absorbent) in the absorption process. When the carbon dioxide separation system of the present embodiment is applied to an existing boiler, a flow path with significant expansion / contraction is not realistic, and about 900 m 2 is considered as the upper limit of the cross-sectional area, and in this case, the absorbent material is filled. The thickness of the packed layer is 0.5 m. If the pressure loss is set so as not to exceed 30 kPa in consideration of the above consideration, the thickness of the packed layer is 1.5 m. From these considerations, the range of the thickness of the packed bed filled with the absorbent of the carbon dioxide separation system was set to 0.5 m to 1.5 m.

次に、空塔速度について考察する。プラントの発電効率は40%前後であり、空気比もほぼ一定であることから、発電容量が増減した場合は、排気ガス流量に対してほぼ直線的に増減するとしてよい。従って、必要な二酸化炭素吸収反応器体積も直線的に増減するので、断面質量流束、すなわち空塔速度と厚さはほとんど変化しない。また、断面は正方形である必要はなく、同一の空塔速度であればいかなる形状でもよい。厚さが0.5mから1.5mに対応する空塔速度は、図4により求められ、0.52kg/m/sから1.56kg/m/sである。従って、二酸化炭素分離システムの吸収過程における空塔速度を0.5kg/m/sから1.6kg/m/sの範囲に設定した。 Next, let us consider the superficial velocity. Since the power generation efficiency of the plant is around 40% and the air ratio is substantially constant, when the power generation capacity increases or decreases, it may increase or decrease substantially linearly with respect to the exhaust gas flow rate. Therefore, since the required carbon dioxide absorption reactor volume also increases and decreases linearly, the cross-sectional mass flux, that is, the superficial velocity and thickness, hardly changes. Further, the cross section need not be square, and may have any shape as long as it has the same superficial velocity. The superficial velocity corresponding to a thickness of 0.5 m to 1.5 m is obtained from FIG. 4 and is 0.52 kg / m 2 / s to 1.56 kg / m 2 / s. Therefore, the superficial velocity in the absorption process of the carbon dioxide separation system was set in the range of 0.5 kg / m 2 / s to 1.6 kg / m 2 / s.

次に、二酸化炭素吸収反応器34の実際の挙動を予測する。吸収過程は、放出過程の終了した直後の物理状態、すなわち吸収材固体温度、吸収材の密度分布などの履歴を引き継いで開始される。   Next, the actual behavior of the carbon dioxide absorption reactor 34 is predicted. The absorption process is started by taking over the physical state immediately after the end of the release process, that is, the history of the absorber solid temperature, the density distribution of the absorber, and the like.

ここで、吸収材固体温度分布および密度分布がそれぞれ850℃および初期状態600kg/mで均一であると仮定し、排気ガス温度は、節炭器26出口温度と同等であるとして400℃程度を選択する。 Here, it is assumed that the absorber solid temperature distribution and density distribution are uniform at 850 ° C. and initial state 600 kg / m 3 , respectively, and the exhaust gas temperature is assumed to be about 400 ° C. select.

本発明者らは、これらの初期条件、入口境界条件の下、二酸化炭素吸収反応器34の一部を切り出したモデルを用いて一次元の数値解析を行い、二酸化炭素吸収反応器34内の諸物理量の経時変化を予測した。なお、解析においては、プロセスガスと固体充填層の温度がそれぞれ異なる非均質系を扱い、強制対流支配の伝熱メカニズムに対して固体とガスの輻射を含む熱伝達、固体−固体および気体−気体同士の熱拡散や反応熱も考慮した。   The present inventors perform one-dimensional numerical analysis using a model in which a part of the carbon dioxide absorption reactor 34 is cut out under these initial conditions and inlet boundary conditions. The change of physical quantity with time was predicted. In the analysis, non-homogeneous systems with different process gas and solid packed bed temperatures are treated, and heat transfer including solid and gas radiation, solid-solid and gas-gas, with respect to the heat transfer mechanism governed by forced convection. Considering heat diffusion and heat of reaction between each other.

一方、無次元化した充填層厚さに対する吸収材密度の分布を調査した。図5に吸収材密度分布を示す。この結果、吸収材を排気ガスに長時間接触させても、排気ガス入口部から順次吸収材が冷却されるだけで二酸化炭素の吸収量は変化せず、吸収材の重量変化は15%を超えることはないことが明らかとなった。   On the other hand, the distribution of the absorber density with respect to the dimensionless packed bed thickness was investigated. FIG. 5 shows the absorbent density distribution. As a result, even if the absorbent material is kept in contact with the exhaust gas for a long time, the absorbent material is cooled sequentially from the exhaust gas inlet, and the amount of carbon dioxide absorbed does not change, and the weight change of the absorbent material exceeds 15%. It became clear that there was nothing.

以上、本実施例の考察により、吸収材を充填した充填層の厚さは、0.5mから1.5mの範囲とし、吸収過程における吸収材の質量変化は、吸収材の初期重量に対して15%以内で用いることが妥当であるとの知見が得られた。一方、吸収過程の条件としては、空塔速度は0.5kg/m/sから1.6kg/m/sの範囲とし、実質吸収時間を30分以内とすることが妥当であるとの知見を得た。また、二酸化炭素除去率は30%と見積もって二酸化炭素吸収反応器を設計し、運転条件を決定すべきであるとの知見も得られた。 As described above, according to the present example, the thickness of the packed layer filled with the absorbent is in the range of 0.5 m to 1.5 m, and the mass change of the absorbent in the absorption process is based on the initial weight of the absorbent. The knowledge that it was appropriate to use within 15% was obtained. On the other hand, as conditions for the absorption process, it is appropriate that the superficial velocity is in the range of 0.5 kg / m 2 / s to 1.6 kg / m 2 / s and that the substantial absorption time is within 30 minutes. Obtained knowledge. Moreover, the carbon dioxide removal rate was estimated to be 30%, and the knowledge that the operating conditions should be determined by designing the carbon dioxide absorption reactor was also obtained.

以上説明のように、本実施例の二酸化炭素分離システムによれば、リチウム複合酸化物を用いた二酸化炭素分離システムの効率的な吸収過程を実現可能な設計条件および操作条件を提供することができる。   As described above, according to the carbon dioxide separation system of the present embodiment, it is possible to provide design conditions and operation conditions capable of realizing an efficient absorption process of the carbon dioxide separation system using the lithium composite oxide. .

(実施例2)
次に、実施例2の二酸化炭素分離システムについて説明する。本実施例において、実施例1と同等の構成については、同一符号を付して詳しい説明を省略する。
(Example 2)
Next, the carbon dioxide separation system of Example 2 will be described. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図6に、二酸化炭素循環圧力に対する二酸化炭素放出(再生)反応の反応速度を示す。再生過程においても、実施例1で取り扱った吸収過程と同様に、温度、二酸化炭素分圧、吸収した二酸化炭素量、すなわち吸収材重量変化の3つのパラメータによって影響を受ける。図6に示すように、圧力が低いと温度が低くても放出反応速度が確保されるが、高圧になるほど温度によらず反応速度が低下し、特に0.08MPa付近でその傾向が大きく変化する傾向が明らかであった。よって、二酸化炭素分離システムの再生過程における二酸化炭素循環圧力を0.08MPa以下に設定した。   FIG. 6 shows the reaction rate of the carbon dioxide release (regeneration) reaction with respect to the carbon dioxide circulation pressure. Similarly to the absorption process handled in Example 1, the regeneration process is also affected by three parameters: temperature, carbon dioxide partial pressure, and the amount of absorbed carbon dioxide, that is, the change in weight of the absorbent. As shown in FIG. 6, when the pressure is low, the release reaction rate is ensured even if the temperature is low. However, the higher the pressure is, the lower the reaction rate is regardless of the temperature, and the tendency changes greatly especially around 0.08 MPa. The trend was obvious. Therefore, the carbon dioxide circulation pressure in the regeneration process of the carbon dioxide separation system was set to 0.08 MPa or less.

図7に再生過程の二酸化炭素放出部36における吸収材の模式図を示す。この図7は、図1の二酸化炭素放出部36において、循環二酸化炭素が吸収材を流通する様子を模式化したものである。   FIG. 7 shows a schematic diagram of the absorbent material in the carbon dioxide releasing part 36 in the regeneration process. FIG. 7 schematically shows how the circulating carbon dioxide circulates through the absorbent in the carbon dioxide release part 36 of FIG.

吸収過程を終了した吸収材は、400℃付近の温度分布と密度分布を持って、移動床によって再生プロセスガスである二酸化炭素循環系の流路内に運ばれて再生過程が再開される。ここで、約850℃の再生用の循環二酸化炭素によって加熱されながら再生過程に最適な温度域を通過することにより吸熱反応である二酸化炭素放出反応すなわち吸収材の再生反応を生じる。吸収材は、最終的に循環二酸化炭素温度の約850℃近くまで固体温度を上げて再び吸収過程へ送られる。   The absorbent material that has finished the absorption process has a temperature distribution and a density distribution around 400 ° C., and is carried by the moving bed into the flow path of the carbon dioxide circulation system, which is the regeneration process gas, and the regeneration process is resumed. Here, a carbon dioxide releasing reaction which is an endothermic reaction, that is, a regeneration reaction of the absorbent material occurs by passing through a temperature range optimum for the regeneration process while being heated by the regenerated circulating carbon dioxide at about 850 ° C. The absorbent material is finally sent to the absorption process again, raising the solid temperature to about 850 ° C. of the circulating carbon dioxide temperature.

次に循環二酸化炭素の空塔速度を計算する。循環二酸化炭素は、550℃、77kg/sの吸収材を750℃まで加熱すると共に、初期自重の30%を吸収した二酸化炭素を完全に放出させる反応熱を与えるために必要な流量と、0.08MPaにおける圧力損失とを考慮して、まず上限空塔速度1.3kg/m/sが求められる。 Next, the superficial velocity of circulating carbon dioxide is calculated. The circulating carbon dioxide is heated to 750 ° C. and an absorbent material of 77 kg / s up to 750 ° C., and the flow rate required to give reaction heat that completely releases carbon dioxide that has absorbed 30% of the initial dead weight; Considering the pressure loss at 08 MPa, the upper limit superficial velocity of 1.3 kg / m 2 / s is first determined.

次に本発明者らは、吸収過程の終了した吸収材固体温度分布と密度(重量変化)分布を初期状態として実施例1と同様に1次元で二酸化炭素吸収部での吸収材の挙動の経時変化を解析した。図8に空塔速度と再生にかかる時間との関係を示す。実施例1に示すように吸収時間の上限は30分であり、再生装置が3塔による切り替え運転であるとすると、吸収材の再生時間は長くとも2倍の60分が限界となる。このときの空塔速度は、図8により0.5kg/m/sと求められる。従って、循環二酸化炭素の空塔速度を0.5kg/m/sから1.3kg/m/sと設定した。 Next, the present inventors set the absorbent solid temperature distribution and the density (weight change) distribution after the absorption process as an initial state in the same manner as in Example 1 in one dimension in the time course of the behavior of the absorbent in the carbon dioxide absorber. Changes were analyzed. FIG. 8 shows the relationship between the superficial velocity and the time required for regeneration. As shown in Example 1, if the upper limit of the absorption time is 30 minutes and the regenerating apparatus is switched by three towers, the regenerating time of the absorbent material is limited to 60 minutes, which is twice as long. The superficial velocity at this time is obtained as 0.5 kg / m 2 / s from FIG. Therefore, the superficial velocity of the circulating carbon dioxide was set to 0.5 kg / m 2 / s to 1.3 kg / m 2 / s.

また、再生過程における吸収材の再生時間の最短時間は30分であり、これより再生時間を短くすると、再生されない吸収材が多く残ることになる。よって、二酸化炭素分離システムの再生時間を30分以上と設定した。   In addition, the shortest regeneration time of the absorbent material in the regeneration process is 30 minutes, and if the regeneration time is shorter than this, many absorbent materials that are not regenerated remain. Therefore, the regeneration time of the carbon dioxide separation system was set to 30 minutes or more.

吸収過程の終了時点における吸収材の温度は、吸収に最適な温度域よりも低い温度分布となっているが、吸収材が加熱される際に再度この最適温度域を通過することになる。このとき、循環二酸化炭素は、ほぼ二酸化炭素100%であり、また吸収材の吸収能力にまだ十分余裕があるため、循環二酸化炭素を吸収してしまう。このため、吸収材の一部の範囲において密度が増加した。吸収材の再生時間を短縮するためには、この密度増加を抑えることが効果的である。   The temperature of the absorbent material at the end of the absorption process has a temperature distribution lower than the optimum temperature range for absorption, but when the absorbent material is heated, it passes through this optimum temperature range again. At this time, the circulating carbon dioxide is almost 100% carbon dioxide, and the absorbing capacity of the absorbent material is still sufficient, so the circulating carbon dioxide is absorbed. For this reason, the density increased in a part of the absorbent material. In order to shorten the regeneration time of the absorbent material, it is effective to suppress this increase in density.

そこで、本発明者らは、再生過程において吸収材に流入する再生用の循環二酸化炭素を、吸収過程における排気ガス流入方向と逆向きに流通させることを試みた。循環二酸化炭素を順方向と逆方向とに流通させた場合の吸収材全体の二酸化炭素蓄積量の時刻変化を検討した。図9に検討結果を示す。本図に示すように、未放出二酸化炭素残量は、順方向すなわち吸収過程における排気ガスの流れ方向と同一方向に循環二酸化炭素を流通させた場合よりも、逆方向に循環二酸化炭素流通させた場合において確実に少なくなっている傾向が明らかとなった。   Therefore, the present inventors tried to circulate the regenerated circulating carbon dioxide flowing into the absorbent material in the regeneration process in the direction opposite to the exhaust gas inflow direction in the absorption process. The time change of the carbon dioxide accumulation amount of the whole absorbent material when circulating carbon dioxide was circulated in the forward and reverse directions was examined. FIG. 9 shows the examination results. As shown in this figure, the amount of unreleased carbon dioxide was circulated in the reverse direction, compared with the case where circulated carbon dioxide was circulated in the forward direction, that is, in the same direction as the exhaust gas flow direction in the absorption process. The trend of steadily decreasing in cases was revealed.

以上、本実施例の考察により、再生過程の条件として、空塔速度は0.5kg/m/sから1.3kg/m/sが妥当であると判断された。また、吸収材の再生過程において実質再生時間を30分以上とする必要があることが明らかとなった。また、循環二酸化炭素の圧力は、0.08MPa以下として再生時間を短縮することが好ましいとの知見を得た。さらに、二酸化炭素を再生過程における循環二酸化炭素の入口を吸収過程の排気ガス入口と逆側として、二酸化炭素を逆方向に循環させることによって吸収材の再生時間を効果的に短縮できるとの知見も得た。 As described above, from the consideration of this example, it was determined that the superficial velocity from 0.5 kg / m 2 / s to 1.3 kg / m 2 / s was appropriate as a condition for the regeneration process. Further, it has become clear that the substantial regeneration time needs to be 30 minutes or longer in the regeneration process of the absorbent material. Further, it was found that the pressure of the circulating carbon dioxide is preferably 0.08 MPa or less to shorten the regeneration time. Furthermore, the knowledge that the regeneration time of the absorbent can be effectively shortened by circulating the carbon dioxide in the reverse direction with the carbon dioxide inlet in the regeneration process opposite to the exhaust gas inlet in the absorption process. Obtained.

以上説明のように、本実施例の二酸化炭素分離システムによれば、リチウム複合酸化物を用いた二酸化炭素分離システムの効率的な再生過程を実現可能な設計条件および操作条件を提供することができる。   As described above, according to the carbon dioxide separation system of the present embodiment, it is possible to provide design conditions and operation conditions that can realize an efficient regeneration process of the carbon dioxide separation system using the lithium composite oxide. .

本発明の二酸化炭素分離システムをボイラプラントに組み入れた構成図。The block diagram which incorporated the carbon dioxide separation system of the present invention in the boiler plant. 吸収過程における吸収材の模式図。The schematic diagram of the absorber in an absorption process. 二酸化炭素除去率の時間変化を示す図。The figure which shows the time change of a carbon dioxide removal rate. 吸収過程における吸収材の充填層厚さに対する圧力損失と断面積との関係を示す図。The figure which shows the relationship between the pressure loss with respect to the filling layer thickness of an absorber in an absorption process, and a cross-sectional area. 充填層厚さに対する吸収材密度分布を示す図。The figure which shows the absorber density distribution with respect to the packed bed thickness. 二酸化炭素循環圧力と再生の反応速度の関係を示す図。The figure which shows the relationship between the carbon dioxide circulation pressure and the reaction rate of reproduction | regeneration. 再生過程における吸収材の模式図。The schematic diagram of the absorber in a reproduction | regeneration process. 再生過程における空塔速度と再生時間および圧力損失の関係を示す図。The figure which shows the relationship between the superficial velocity in a regeneration process, regeneration time, and pressure loss. 排気ガス流通方向と同一方向に二酸化炭素を流通させた場合と、逆方向に二酸化炭素を流通させた場合との吸収材での二酸化炭素蓄積量の時間変化を比較する図。The figure which compares the time change of the carbon dioxide accumulation amount in an absorber with the case where carbon dioxide is distribute | circulated in the same direction as an exhaust gas distribution direction, and the case where carbon dioxide is distribute | circulated to a reverse direction.

符号の説明Explanation of symbols

10 ボイラプラント
17 燃焼ガス
18 燃焼室
19 第1過熱器
20 第2過熱器
21 第1再熱器
22 第3過熱器
23 電気集塵器
24 脱硫器
25 第2再熱器
26 節炭器
27 ボイラ本体
28 空気予熱器
29 脱硝器
30 煙突
31 燃料
32 空気
33 二酸化炭素加熱器
34 二酸化炭素吸収反応器
35 再生装置
36 二酸化炭素放出部
37,38 冷却器
39 窒素タンク
40 搬送用窒素ブロア
41 窒素循環系
42 搬送用二酸化炭素ブロア
43 冷却器
44 二酸化炭素タンク
45 第1二酸化炭素循環系
46 ブロア
47 第2二酸化炭素循環系
48 流路
49 ロータ
50 ベルトコンベア
51 筒体
52 ブロア
DESCRIPTION OF SYMBOLS 10 Boiler plant 17 Combustion gas 18 Combustion chamber 19 1st superheater 20 2nd superheater 21 1st reheater 22 3rd superheater 23 Electric dust collector 24 Desulfurizer 25 2nd reheater 26 Carbon-saving device 27 Boiler Main body 28 Air preheater 29 Denitrator 30 Chimney 31 Fuel 32 Air 33 Carbon dioxide heater 34 Carbon dioxide absorption reactor 35 Regeneration device 36 Carbon dioxide discharge part 37, 38 Cooler 39 Nitrogen tank 40 Nitrogen blower 41 for transportation Nitrogen circulation system 42 Carbon dioxide blower for conveyance 43 Cooler 44 Carbon dioxide tank 45 First carbon dioxide circulation system 46 Blower 47 Second carbon dioxide circulation system 48 Flow path 49 Rotor 50 Belt conveyor 51 Cylindrical body 52 Blower

Claims (10)

リチウム複合酸化物を吸収材として用い、二酸化炭素発生源にて生成されるガス中の二酸化炭素を前記吸収材に吸収させる吸収過程と、前記吸収材に吸収された二酸化炭素を再生装置にて放出させる放出過程とを備えた二酸化炭素分離方法において、前記ガスに含まれる二酸化炭素の除去率が20%から40%の範囲となるように運転条件を設定することを特徴とする二酸化炭素分離方法。 An absorption process in which lithium composite oxide is used as an absorbing material, and the absorbing material absorbs carbon dioxide in a gas generated at a carbon dioxide generation source, and the carbon dioxide absorbed in the absorbing material is released by a regenerator. A carbon dioxide separation method comprising: a carbon dioxide separation method, wherein operating conditions are set so that a removal rate of carbon dioxide contained in the gas is in a range of 20% to 40%. 前記吸収過程における排気ガス空塔速度を0.5kg/m/sから1.6kg/m/sの範囲とすることを特徴とする請求項1記載の二酸化炭素分離方法。 2. The carbon dioxide separation method according to claim 1, wherein an exhaust gas superficial velocity in the absorption process is in a range of 0.5 kg / m 2 / s to 1.6 kg / m 2 / s. 前記吸収材を充填した充填層の厚さを0.5mから1.5mの範囲に設定することを特徴とする請求項1記載の二酸化炭素分離方法。 2. The carbon dioxide separation method according to claim 1, wherein a thickness of the packed bed filled with the absorbent is set in a range of 0.5 m to 1.5 m. 前記吸収過程の所要時間を30分以内とすることを特徴とする請求項1記載の二酸化炭素分離方法。 2. The carbon dioxide separation method according to claim 1, wherein the time required for the absorption process is 30 minutes or less. 前記吸収過程における前記吸収材の質量変化を、二酸化炭素が吸収されていない状態での前記吸収材の質量に対する質量比で15%以内とすることを特徴とする請求項1記載の二酸化炭素分離方法。 2. The carbon dioxide separation method according to claim 1, wherein a mass change of the absorbent material in the absorption process is set to 15% or less in a mass ratio with respect to a mass of the absorbent material in a state where carbon dioxide is not absorbed. . 前記再生過程における循環二酸化炭素の空塔速度を0.5kg/m/sから1.3kg/m/sの範囲とすることを特徴とする請求項1記載の二酸化炭素分離方法。 The carbon dioxide separation method according to claim 1, wherein a superficial velocity of circulating carbon dioxide in the regeneration process is set in a range of 0.5 kg / m 2 / s to 1.3 kg / m 2 / s. 前記再生過程における循環二酸化炭素の圧力を0.08MPa以下とすることを特徴とする請求項1記載の二酸化炭素分離方法。 The carbon dioxide separation method according to claim 1, wherein the pressure of the circulating carbon dioxide in the regeneration process is set to 0.08 MPa or less. 前記再生過程の所要時間を30分以上とすることを特徴とする請求項1記載の二酸化炭素分離方法。 The carbon dioxide separation method according to claim 1, wherein a time required for the regeneration process is 30 minutes or more. 前記再生過程における循環二酸化炭素の入口を前記吸収過程における排気ガスの入口と逆側とし、循環二酸化炭素を前記吸収過程における排気ガス流れ方向と逆方向に前記吸収材に流通させることを特徴とする請求項1記載の二酸化炭素分離方法。 The inlet of the circulating carbon dioxide in the regeneration process is opposite to the inlet of the exhaust gas in the absorption process, and the circulating carbon dioxide is circulated in the absorbent material in the direction opposite to the exhaust gas flow direction in the absorption process. The carbon dioxide separation method according to claim 1. 二酸化炭素発生源にて生成されたガスに含まれる二酸化炭素を吸収するリチウム複合酸化物製の吸収材を収容する二酸化炭素吸収反応器と、二酸化炭素を吸収した前記吸収材を加熱して二酸化炭素を放出させる二酸化炭素放出部と、この二酸化炭素放出部に加熱媒体を供給する二酸化炭素加熱器と、前記二酸化炭素放出部で二酸化炭素を放出させた前記吸収材を前記二酸化炭素吸収反応器に戻す手段とを備え、前記ガスに含まれる二酸化炭素の除去率が20%から40%の範囲となる条件にて運転されることを特徴とする二酸化炭素分離システム。 A carbon dioxide absorption reactor that contains an absorbent material made of a lithium composite oxide that absorbs carbon dioxide contained in a gas generated at a carbon dioxide generation source, and carbon dioxide by heating the absorbent material that has absorbed carbon dioxide A carbon dioxide releasing part for releasing carbon dioxide, a carbon dioxide heater for supplying a heating medium to the carbon dioxide releasing part, and the absorbent material from which carbon dioxide has been released by the carbon dioxide releasing part is returned to the carbon dioxide absorption reactor. And a carbon dioxide separation system, characterized in that the carbon dioxide separation system is operated under conditions where the removal rate of carbon dioxide contained in the gas is in the range of 20% to 40%.
JP2005256371A 2005-09-05 2005-09-05 Method and system for separation of carbon dioxide Pending JP2007069075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256371A JP2007069075A (en) 2005-09-05 2005-09-05 Method and system for separation of carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005256371A JP2007069075A (en) 2005-09-05 2005-09-05 Method and system for separation of carbon dioxide

Publications (1)

Publication Number Publication Date
JP2007069075A true JP2007069075A (en) 2007-03-22

Family

ID=37930997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256371A Pending JP2007069075A (en) 2005-09-05 2005-09-05 Method and system for separation of carbon dioxide

Country Status (1)

Country Link
JP (1) JP2007069075A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085078A (en) * 2008-09-04 2010-04-15 Toshiba Corp Carbon-dioxide-recovery-type steam power generation system
CN103711517A (en) * 2012-10-06 2014-04-09 德拉格安全股份两合公司 Personal protection system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085078A (en) * 2008-09-04 2010-04-15 Toshiba Corp Carbon-dioxide-recovery-type steam power generation system
CN103711517A (en) * 2012-10-06 2014-04-09 德拉格安全股份两合公司 Personal protection system
US9284840B2 (en) 2012-10-06 2016-03-15 Dräger Safety AG & Co. KGaA Personal safety system

Similar Documents

Publication Publication Date Title
JP4956519B2 (en) Carbon dioxide recovery system
US8500886B2 (en) Apparatus for removing carbon dioxide from a gas
EP2561919B1 (en) Exhaust gas treatment system provided with carbon dioxide chemisorption equipment
JP4427498B2 (en) Carbon dioxide absorber and carbon dioxide separator
JP4503378B2 (en) Method and apparatus for removing gaseous mercury in exhaust gas
KR20130116276A (en) Exhaust gas treatment method and apparatus
CZ297796A3 (en) Purification of gas combustion products and apparatus for making the same
JP2015166090A (en) Exhaust gas treatment system and exhaust gas treatment method
KR102033745B1 (en) Apparatus and process for capturing of carbon dioxide
JP4496208B2 (en) Carbon dioxide absorbent, carbon dioxide separator and reformer
JPH11148625A (en) Device and method of recovering combustion heat of waste
JP5478921B2 (en) Smoke exhaust treatment apparatus and method
US20140026751A1 (en) System and method for capturing carbon dioxide from flue gas
JP2011173047A (en) Co2 recovery apparatus and co2 recovering method
KR20130039185A (en) Dry sorbent co2 capturing device with improving energy efficiency
JP2014128775A (en) Exhaust gas treatment equipment and gas turbine power generation system using the same
JP2023531777A (en) Exhaust gas waste heat recovery and white smoke reduction device with pre-cooler
KR101645975B1 (en) CO2 capturing device with optimizing energy consumption
JP6173734B2 (en) Exhaust gas treatment system
JP2007069075A (en) Method and system for separation of carbon dioxide
JP5944042B2 (en) Exhaust gas treatment system and exhaust gas treatment method
KR100547904B1 (en) CO2 Separation Device Using Solid Absorber and CO2 Separation Method Using The Same
JP2005279640A (en) Method and system for treating exhaust gas
JP5501029B2 (en) Chemical loop reaction system and power generation system using the same
JP3797781B2 (en) Waste treatment equipment