JP2007064699A - Quantitative measuring instrument of gas - Google Patents

Quantitative measuring instrument of gas Download PDF

Info

Publication number
JP2007064699A
JP2007064699A JP2005248540A JP2005248540A JP2007064699A JP 2007064699 A JP2007064699 A JP 2007064699A JP 2005248540 A JP2005248540 A JP 2005248540A JP 2005248540 A JP2005248540 A JP 2005248540A JP 2007064699 A JP2007064699 A JP 2007064699A
Authority
JP
Japan
Prior art keywords
gas
storage container
path
gas flow
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005248540A
Other languages
Japanese (ja)
Other versions
JP4598628B2 (en
Inventor
Shogo Uematsu
正吾 植松
Tokuji Murakami
篤司 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIO DENKI KK
YAHATA BUSSAN KK
Original Assignee
DAIO DENKI KK
YAHATA BUSSAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIO DENKI KK, YAHATA BUSSAN KK filed Critical DAIO DENKI KK
Priority to JP2005248540A priority Critical patent/JP4598628B2/en
Publication of JP2007064699A publication Critical patent/JP2007064699A/en
Application granted granted Critical
Publication of JP4598628B2 publication Critical patent/JP4598628B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quantitative measuring instrument of a gas capable of appropriately corresponding to an animal from an extremely small experimental animal to a relatively large experimental animal even if the detection capacity of a detection part is raised in spite of a compact and simple constitution. <P>SOLUTION: The quantitative measuring instrument of the gas is equipped with a gas flowing route 3 for guiding the gas from its one end to discharge it to its other end, a closed housing container 5, the detection part 27 for allowing the gas, which is discharged from the housing container 5 to flow in to detect the same, a bypass route 39 for guiding the gas so as to bypass the detection part 27, the solenoid valve 41 for connecting the gas flowing route (detection route 38) passed through the detection part 27 and the bypass route 39 in a changeable manner and a controller 45 for controlling the solenoid valve 41 at a predetermined time interval. An H<SB>2</SB>SO<SB>4</SB>solution is put in an ammonia absorbing bin 29 so that the flow rates of the gas become same even if the gas is passed through all of the routes and air passing resistance is adjusted by the surface height of the H<SB>2</SB>SO<SB>4</SB>solution to limit the flow rate of the gas. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はガス定量測定装置に係り、特に簡易な構成でありながらガスを精度高く定量測定できるガス定量測定装置に関するものである。   The present invention relates to a gas quantitative measurement device, and more particularly to a gas quantitative measurement device capable of quantitatively measuring gas with high accuracy while having a simple configuration.

ガスの分析法は、化学分析法(滴定法、吸着重量法など)と機器分析法(ガスクロマトグラフ法、非分散赤外線吸光法)に大別され、測定対象の特徴や測定目的に応じていずれかの方法が適宜採用される。
管中に被測定ガスを流してその中の二酸化炭素(炭酸ガス)を定量するような場合を考えると、前者の方法では被測定ガスを全量NaOHを入れたビンに導いてサンプリングした後に塩化バリウムを加え塩酸で逆滴定して算出するのに対して、後者の方法では被測定ガスの極一部分を導いてサンプリングした後に分析機器にかけて定量しその結果から全体を推算することになる。
前者の方法では被測定ガス中から目的成分を全量サンプリングするので測定の途中で少しぐらいガス流量が変わっても定量精度には影響しないが、後者の方法では、極一部しかサンプリングしないため、サンプリングによりガス流量が変わるような場合に結果に大きく影響するので、定量精度を上げるためには高精度なガス量の制御手段が必要となり、設備費用が嵩み、保守も面倒である。また、キャリブレーション操作も必要である。
一方、前者の方法では、滴定操作が煩雑なため長期にわたる連続的な測定では、操作ミスや操作の個人差に由来する誤差が定量値に含まれるため、実験用動物はマウス等の小動物に限られ、検体数は少なく、更に測定時間も短くせざるを得ないのに対して、後者の方法では分析時間自体は短く、自動化も可能である。
Gas analysis methods are broadly divided into chemical analysis methods (titration method, adsorption weight method, etc.) and instrumental analysis methods (gas chromatographic method, non-dispersive infrared absorption method). The method is appropriately adopted.
Considering the case in which the gas to be measured flows through the tube and carbon dioxide (carbon dioxide gas) in the gas is quantified, the former method introduces the gas to be measured into a bottle filled with NaOH and samples it before sampling barium chloride. In contrast, in the latter method, a part of the gas to be measured is sampled and sampled and then analyzed by an analytical instrument, and the whole is estimated from the result.
In the former method, all target components are sampled from the gas to be measured, so even if the gas flow rate changes slightly during the measurement, the quantitative accuracy is not affected. When the gas flow rate changes, the result is greatly affected. Therefore, in order to improve the quantitative accuracy, a highly accurate gas amount control means is required, the equipment cost is increased, and maintenance is troublesome. A calibration operation is also required.
On the other hand, in the former method, the titration operation is complicated, and in continuous measurement over a long period, errors due to operation errors and individual differences in operation are included in the quantitative value, so experimental animals are limited to small animals such as mice. In contrast, the number of specimens is small and the measurement time must be shortened. On the other hand, in the latter method, the analysis time itself is short and can be automated.

そこで、本発明者は、化学分析法と機器分析法との長所を生かした装置として、以下の特許文献において、既に実験用動物の呼吸による二酸化炭素発生量の測定装置を提案している。この測定装置は収容容器と検出部とがガス流通経路で接続されており、収容容器内で実験用動物を飼育するとその実験用動物の呼吸により排出された二酸化炭素を含む空気が全て検出部に導かれて発生した二酸化炭素が全てサンプリングされ、その後サンプリングされた二酸化炭素が重量法により測定可能なものに転化される。従って、全量サンプリングの長所がそのまま生かれており、測定精度は100分の1以上の高精度でありながら、高精度なガス量の制御手段やキャリブレーション操作は不要である。しかも、サンプリングした二酸化炭素は重量法により定量しているので、滴定操作のような煩雑な操作から開放される上に、重量の測定に掛かる時間も1分程度である。従って、二酸化炭素発生量を長期間にわたって測定することが可能となっている。
上記の装置を用いて二酸化炭素発生量(重量)を測定できれば、後は、以下の式に測定値を代入することによって、実験用動物の呼気中の二酸化炭素濃度(%)を算出できる。
Cw=44×(Cc−Cb)×F×1440/22400
ここで、Cw: 呼吸による二酸化炭素発生量(g/day)
Cc: 呼気中の二酸化炭素濃度(%)
Cb: 空気中の二酸化炭素濃度(%)
F : 閉鎖された収容容器に供給する空気量(mL/min)
Therefore, the present inventor has already proposed an apparatus for measuring the amount of carbon dioxide generated by respiration of an experimental animal in the following patent document as an apparatus that takes advantage of the chemical analysis method and the instrumental analysis method. In this measuring device, the container and the detection unit are connected by a gas flow path, and when an experimental animal is bred in the storage container, all the air containing carbon dioxide exhausted by the respiration of the experimental animal is passed to the detection unit. All of the carbon dioxide introduced and sampled is sampled and then the sampled carbon dioxide is converted to something that can be measured gravimetrically. Therefore, the advantages of sampling the entire amount are used as they are, and while the measurement accuracy is high accuracy of 1/100 or more, highly accurate gas amount control means and calibration operation are unnecessary. In addition, since the sampled carbon dioxide is quantified by the gravimetric method, it is free from complicated operations such as titration, and the time required for measuring the weight is about 1 minute. Therefore, it is possible to measure the amount of carbon dioxide generated over a long period of time.
If the carbon dioxide generation amount (weight) can be measured using the above apparatus, the carbon dioxide concentration (%) in the exhalation of the experimental animal can be calculated by substituting the measured value into the following equation.
Cw = 44 × (Cc−Cb) × F × 1440/22400
Here, Cw: carbon dioxide generation amount due to respiration (g / day)
Cc: Carbon dioxide concentration in exhaled breath (%)
Cb: Carbon dioxide concentration in air (%)
F: Amount of air (mL / min) supplied to the closed container

特開2003−329672号JP2003-329672A

上記の測定装置では、目的成分である二酸化炭素の全量サンプリングが原則となっているため、収容容器から排出された空気を全量検出部に導いて検出する構成となっており、実験用動物がマウスやラットのように極小の場合には上記装置の使用は妥当であるが、実験用動物がウサギのように比較的大きくなると呼吸量が多くなるので、検出能力を直ぐに超えてしまう。能力を大きくすると装置も大型化しなければならなく、結果として、保守管理や取扱いが面倒になる。
また、測定誤差をできるだけ小さくするには収容容器から外へのガスの漏れ出しを防止することが必要であるが、収容容器を高精度に気密な構造に製作するのは設計誤差や製作誤差も有るので実際上は難しく、実験用動物等を出し入れすること、即ち開閉することを前提とするような装置で出し入れの利便性を犠牲にせず気密性を高く製作するのは特に難しい。
In the above measurement device, since sampling of the total amount of carbon dioxide, which is the target component, is a principle, the configuration is such that the air exhausted from the container is guided to the total amount detection unit, and the experimental animal is a mouse. In the case of a minimum such as a rat or the like, the use of the above apparatus is appropriate, but if the experimental animal becomes relatively large like a rabbit, the respiration rate increases, so that the detection capability is immediately exceeded. When the capacity is increased, the apparatus must be increased in size, resulting in troublesome maintenance management and handling.
In addition, in order to minimize the measurement error, it is necessary to prevent gas from leaking out of the storage container. However, manufacturing the storage container in a highly accurate and airtight structure also has design and manufacturing errors. Therefore, it is practically difficult, and it is particularly difficult to produce a high airtightness without sacrificing the convenience of taking in and out with an apparatus that is premised on taking in and out laboratory animals, that is, opening and closing.

そこで、本発明は、上記課題を解決するために、先に提案した装置を改良し、コンパクト且つ簡易な構成ながら、検出部の検出能力を上げずとも極小の実験用動物から比較的大きい実験用動物まで適宜対応できるガス定量測定装置を提供することを目的とする。
また、本発明は、簡易な構成ながら、測定誤差の小さいガス定量測定装置を提供することを目的とする。
Therefore, in order to solve the above-mentioned problems, the present invention improves the previously proposed apparatus, and has a compact and simple configuration, but without increasing the detection capability of the detection unit, it can be used for relatively large experiments. An object of the present invention is to provide a gas quantitative measurement apparatus that can appropriately handle animals.
Another object of the present invention is to provide a gas quantitative measurement device with a small measurement error with a simple configuration.

本発明者らは、上記第1の課題を解決するために、収容容器内から経路中に流入してきたガスを全量サンプリングする手法はそのまま採用しつつも、全作業時間にわたって連続してサンプリングするのではなく、一定時間だけサンプリングし、即ち分取し、その検出結果からガス全量分の結果を推算することとした。具体的には、ガスの流入経路として切替え可能なサンプリングする経路とサンプリングしない経路を設け、その切替えの時間間隔を制御し、しかもサンプリングする経路とサンプリングしない経路のいずれの経路を通過してもガス流量が同じになる構造の装置を開発し、分取したものから信頼性の高い推算結果を得ることに成功した。
また、上記第2の課題を解決するために、収容容器にポンプによりガスを供給し結果として排出されるガスを検出部に導くと処理容器内が加圧雰囲気になることに着目し、収容容器からガスを吸引してガスを検出部に導く構成にすることで収容容器内を負圧雰囲気にして外へのガスの漏れ出しを防止することに成功した。
In order to solve the first problem, the present inventors continuously sample over the entire work time while adopting the method of sampling the total amount of gas flowing into the path from the inside of the container. Instead, sampling was performed for a certain period of time, that is, fractionation was performed, and the result for the total amount of gas was estimated from the detection result. Specifically, a sampling path and a non-sampling path that can be switched are provided as gas inflow paths, and the switching time interval is controlled, and gas passes through any of the sampling path and non-sampling path. We developed a device with the same flow rate and succeeded in obtaining highly reliable estimation results from the collected samples.
Further, in order to solve the second problem, focusing on the fact that when the gas is supplied to the storage container by a pump and the gas discharged as a result is guided to the detection unit, the inside of the processing container becomes a pressurized atmosphere, the storage container As a result, the inside of the container was made into a negative pressure atmosphere by sucking the gas from the gas and introducing the gas to the detection unit, and the gas was successfully prevented from leaking outside.

請求項1の発明は、一端からガスを導き他端で外に排出するガス流通経路と、前記ガス流通経路に設けられた閉鎖系収容容器と、前記収容容器より下流側のガス流通経路に設けられ、前記収容容器から出てきたガスの任意の成分を検出する検出部とを備えたガス定量測定装置において、前記ガス流通経路の一部により構成されて前記検出部を通過する検出経路と並列に設けられたバイパス経路と、前記検出経路と前記バイパス経路とを切り替え可能に接続する経路切替手段と、経路切替手段を所定の時間間隔で制御する制御手段と、いずれの経路をガスが通過してもガス流量を同量に調整するガス流量調整手段と、を設けたことを特徴とするガス定量測定装置である。   The invention according to claim 1 is provided in a gas flow path for introducing gas from one end and discharging it to the outside at the other end, a closed system storage container provided in the gas flow path, and a gas flow path downstream from the storage container. And a detection unit for detecting an arbitrary component of the gas coming out of the storage container, in parallel with the detection path configured by a part of the gas flow path and passing through the detection unit A bypass path, a path switching unit that connects the detection path and the bypass path in a switchable manner, a control unit that controls the path switching unit at predetermined time intervals, and a gas that passes through any of the paths. However, there is provided a gas flow rate adjusting means for adjusting the gas flow rate to the same amount.

請求項2の発明は、請求項1に記載したガス定量測定装置において、ガス流量調整手段は、検出経路とバイパス経路とに分岐する前に設けられ、前記検出経路の通気抵抗と前記バイパス経路の通気抵抗の大きい方と同じか或いはそれを超える通気抵抗部により構成されていることを特徴とするガス定量測定装置である。   According to a second aspect of the present invention, in the gas quantitative measurement apparatus according to the first aspect, the gas flow rate adjusting means is provided before branching into the detection path and the bypass path, and the ventilation resistance of the detection path and the bypass path It is a gas quantitative measurement apparatus characterized by comprising a ventilation resistance portion that is the same as or exceeds the larger ventilation resistance.

請求項3の発明は、請求項2に記載したガス定量測定装置において、通気抵抗部は所定の大きさの通気抵抗をなすよう液面高さの調整された液体を入れた吸気ビンと、その液体中にガスを導くガス流通経路とで構成されていることを特徴とするガス定量測定装置である。   According to a third aspect of the present invention, there is provided the gas quantitative measurement apparatus according to the second aspect, wherein the ventilation resistance portion includes an intake bottle containing a liquid whose liquid surface height is adjusted so as to form a ventilation resistance of a predetermined size, A gas quantitative measurement device comprising a gas flow path for introducing gas into a liquid.

請求項4の発明は、請求項1から3のいずれかに記載したガス定量測定装置において、収容容器より下流側のガス流通経路に吸引手段を設け、収容容器内のガスを吸引させることで前記収容容器内を負圧雰囲気にしながらガスを検出部に導くことを特徴とするガス定量測定装置である。   According to a fourth aspect of the present invention, in the gas quantitative measurement apparatus according to any one of the first to third aspects, the suction unit is provided in the gas flow path on the downstream side of the storage container, and the gas in the storage container is suctioned to thereby A gas quantitative measurement apparatus characterized in that a gas is guided to a detection unit while the inside of a container is in a negative pressure atmosphere.

請求項5の発明は、一端からガスを導き他端で外に排出するガス流通経路と、前記ガス流通経路に設けられた閉鎖系収容容器と、前記収容容器より下流側のガス流通経路に設けられ、前記収容容器から出てきたガスの任意の成分を検出する検出部とを備えたガス定量測定装置において、前記収容容器より下流側のガス流通経路に吸引手段を設け、前記収容容器内のガスを吸引させることで前記収容容器内を負圧雰囲気にしながらガスを検出部に導くことを特徴とするガス定量測定装置である。   According to a fifth aspect of the present invention, there is provided a gas distribution path through which gas is introduced from one end and discharged outside at the other end, a closed system storage container provided in the gas distribution path, and a gas distribution path downstream of the storage container. And a gas quantitative measurement apparatus comprising a detection unit that detects an arbitrary component of the gas that has come out of the storage container, and a suction means is provided in a gas flow path downstream of the storage container, The gas quantitative measurement apparatus is characterized in that the gas is guided to the detection unit while the inside of the container is made into a negative pressure atmosphere by sucking the gas.

請求項6の発明は、請求項1から5のいずれかに記載したガス定量測定装置において、実験用動物の呼吸量を定量測定するのに使用することを特徴とするガス定量測定装置である。   A sixth aspect of the present invention is the gas quantitative measurement apparatus according to any one of the first to fifth aspects, wherein the quantitative gas measurement apparatus is used for quantitatively measuring a respiration rate of an experimental animal.

本発明のガス定量測定装置は、化学分析法と機器分析法との長所を生かし、更に改良した装置であり、コンパクト且つ簡易な構成ながら、検出部の検出能力を上げずとも極小の実験用動物から大型の実験用動物まで適宜対応できる。
また、本発明のガス定量測定装置は、簡易な構成ながら、測定誤差は小さい。
The gas quantitative measurement apparatus of the present invention is an improved apparatus that takes advantage of the chemical analysis method and the instrumental analysis method, and has a compact and simple configuration, and is a minimal laboratory animal without increasing the detection capability of the detection unit. From large to large laboratory animals.
In addition, the gas quantitative measurement device of the present invention has a simple configuration but a small measurement error.

本発明の実施の形態を図1、図2に従って説明する。
図1は、比較的大型の実験用動物(例えば、ウサギ等)の呼吸による二酸化炭素発生量の定量測定装置(実験系列)1を模式的に示す。
符号3はガス流通経路を示し、一端が空気の供給口となり他端が空気の排出口となっている。ガス流通経路3に収容容器5が配置されている。
図2、図3に示すように、この収容容器5は透明な合成樹脂により一体に製作されている。また、収容容器5は角形をしており、前面が開口している。そして、前面には外方に向かって拡がるフランジ7が形成されており、透明の合わせ板9をフランジ7に当ててコの字状の固定具(クサビ)11で複数箇所フランジ7と合わせ板9とを挟んで固定することで閉鎖系としている。なお、合わせ板9にはフランジ7に当接する部分にOリング13が接着されており、合わせ部の気密性はある程度は保たれている。
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 schematically shows a quantitative measurement apparatus (experimental series) 1 for the amount of carbon dioxide generated by respiration of a relatively large laboratory animal (for example, a rabbit).
Reference numeral 3 denotes a gas flow path, one end being an air supply port and the other end being an air discharge port. A container 5 is disposed in the gas flow path 3.
As shown in FIGS. 2 and 3, the storage container 5 is integrally made of a transparent synthetic resin. Moreover, the storage container 5 has a square shape, and the front surface is open. A flange 7 that extends outward is formed on the front surface. A transparent laminating plate 9 is applied to the flange 7, and a plurality of flanges 7 and the laminating plate 9 are fixed by a U-shaped fixture 11. A closed system is established by fixing between and. Note that an O-ring 13 is bonded to a portion of the mating plate 9 that is in contact with the flange 7, so that the airtightness of the mating portion is maintained to some extent.

収容容器5の底面板には、途中まで水平貫通路15が延びており、その水平貫通路15には複数のガス流入口17が形成されており、水平貫通路15からいずれかのガス流入口17を通って空気が収容容器5内に流入する構成になっている。また、上面にも、途中まで水平貫通路19が延びており、その水平貫通路19にも複数のガス流出口21が形成されており、いずれかのガス流出口21から水平貫通路19を通って空気が収容容器5からガス流通経路3に流出する構成になっている。
水平貫通路15に接続されるガス流通経路3にはコック23が設けられており、このコック23が開かれるとガス流通経路3に空気が流入する。
A horizontal through passage 15 extends partway through the bottom plate of the storage container 5, and a plurality of gas inlets 17 are formed in the horizontal through passage 15. The air flows into the storage container 5 through 17. In addition, a horizontal through passage 19 extends partway along the upper surface, and a plurality of gas outlets 21 are formed in the horizontal through passage 19, and one of the gas outlets 21 passes through the horizontal through passage 19. Thus, the air flows out from the storage container 5 to the gas flow path 3.
A cock 23 is provided in the gas flow path 3 connected to the horizontal through path 15, and air flows into the gas flow path 3 when the cock 23 is opened.

収容容器5の中には網状のケージ25が配置されている。ウサギはケージ25に入れた状態で収容容器5内に配置できるので、作業者が噛まれてしまうのを防止できると共に、捕獲する必要がないので実験用動物の飼育ストレスを緩和することができる。   A mesh cage 25 is disposed in the storage container 5. Since the rabbit can be placed in the storage container 5 in a state of being placed in the cage 25, it is possible to prevent the operator from being bitten and to reduce the breeding stress of the experimental animal because it is not necessary to capture it.

符号27は検出部を示し、この検出部27はアンモニア吸収ビン29、第1除湿筒31、第2除湿筒33、捕集筒35、水分吸収筒37が下から接続部を介して着脱自在に組み立てられている。
アンモニア吸収ビン29には、収容容器5からガス流通経路3の一部をなすパイプを通って流出してきた空気中に含まれるアンモニア(NH3)を除去するために、1M−H2SO4(液体)が入れられている。第1除湿筒31、第2除湿筒33は、アンモニア(NH3)が除去された空気中に含まれる水(H2O)を除去するために、二酸化ケイ素(SiO2)と、二酸化ケイ素(SiO2)及び塩化カルシウム(CaCl2)がそれぞれ充填されている。
Reference numeral 27 denotes a detection unit. The detection unit 27 is configured such that the ammonia absorption bottle 29, the first dehumidification cylinder 31, the second dehumidification cylinder 33, the collection cylinder 35, and the moisture absorption cylinder 37 are detachable from below via a connection part. It is assembled.
In the ammonia absorption bottle 29, in order to remove ammonia (NH 3 ) contained in the air flowing out from the storage container 5 through a pipe forming a part of the gas flow path 3, 1M-H 2 SO 4 ( Liquid). The first dehumidifying cylinder 31 and the second dehumidifying cylinder 33 are provided with silicon dioxide (SiO 2 ) and silicon dioxide (SiO 2 ) in order to remove water (H 2 O) contained in the air from which ammonia (NH 3 ) has been removed. SiO 2 ) and calcium chloride (CaCl 2 ) are filled.

捕集筒35には、ソーダライム(NaOH)が充填されている。アンモニア(NH3)及び水(H2O)が除去された空気が通過すると、空気中に含まれる二酸化炭素(CO2)ガスは以下の化学反応により炭酸ナトリウム(Na2CO3)に転化した上でソーダライム上に固定され捕集される。
2NaOH+CO2 → Na2CO3+H2
水分吸収筒37には、上記化学反応によって生じた水分(H2O)を吸収するために、塩化カルシウム(CaCl2)が充填されている。水分吸収筒37で水分が吸収される。
The collection cylinder 35 is filled with soda lime (NaOH). When the air from which ammonia (NH 3 ) and water (H 2 O) were removed passed, carbon dioxide (CO 2 ) gas contained in the air was converted to sodium carbonate (Na 2 CO 3 ) by the following chemical reaction. Above it is fixed and collected on soda lime.
2NaOH + CO 2 → Na 2 CO 3 + H 2 O
The moisture absorption cylinder 37 is filled with calcium chloride (CaCl 2 ) in order to absorb moisture (H 2 O) generated by the chemical reaction. Water is absorbed by the water absorption cylinder 37.

収容容器5からガス流通経路3の一部である検出経路38に流入する空気は途中で検出部27を通過して経路切替手段としての電磁バルブ41(三方弁)を介して更に下流側のガス流通経路3と合流する。
一方、符号39はバイパス経路を示し、このバイパス経路39はアンモニア吸収ビン29の上部から延びており、経路切替手段としての電磁バルブ41を介して下流側のガス流通経路3と合流する。
符号43は炭酸ガス(二酸化炭素)吸収剤で構成された吸収体であり、この吸収体43はバイパス経路39に設けられている。このような吸収体43をバイパス経路39に設けることにより、経路切替時にバイパス経路39内に溜まった空気が検出部27に逆流しても既に二酸化炭素は吸収除去されているので、検出部27で捕集される炭酸ナトリウム量に有意的な影響を及ぼすことはない。
The air flowing into the detection path 38 which is a part of the gas flow path 3 from the container 5 passes through the detection unit 27 on the way, and further downstream gas via an electromagnetic valve 41 (three-way valve) as path switching means. Merge with distribution channel 3.
On the other hand, reference numeral 39 indicates a bypass path, and this bypass path 39 extends from the upper part of the ammonia absorption bottle 29 and joins the downstream gas flow path 3 via an electromagnetic valve 41 as a path switching means.
Reference numeral 43 denotes an absorber composed of a carbon dioxide (carbon dioxide) absorbent, and the absorber 43 is provided in the bypass path 39. By providing such an absorber 43 in the bypass path 39, carbon dioxide has already been absorbed and removed even if air accumulated in the bypass path 39 flows backward to the detection section 27 at the time of path switching. There is no significant effect on the amount of sodium carbonate collected.

上記の構成では、アンモニア吸収ビン29と、その中に入れられた液体中に空気を導くガス流通経路3としてのパイプによって通気抵抗体が構成されており、液面高さを調整することにより通気抵抗の大きさを調整できる。
通気抵抗の大きさは、検出経路38の通気抵抗とバイパス経路39の通気抵抗を比較し、大きい方の通気抵抗と同じかそれ以上に設定する。なお、通気抵抗体の通気抵抗は、経路の通気抵抗より大きく設定してガス流量の調整に確実を期す方が好ましい。
通気抵抗をこのように設定することで、通気抵抗体の通気抵抗が経路のガス流量を律速させることになり、通気抵抗体を通過したガスは検出経路38を通過してもバイパス経路39を通過してもガス流量は同じとなる。
上記の構成の通気抵抗体は現在思いつく限りでは最も簡単に通気圧力を調整できるものである。
In the above-described configuration, the ventilation resistor is configured by the ammonia absorption bottle 29 and the pipe as the gas flow path 3 that guides air into the liquid contained therein, and the ventilation level is adjusted by adjusting the liquid level. The magnitude of the resistance can be adjusted.
The magnitude of the ventilation resistance is set equal to or greater than the larger ventilation resistance by comparing the ventilation resistance of the detection path 38 and the ventilation resistance of the bypass path 39. It is preferable that the ventilation resistance of the ventilation resistor is set larger than the ventilation resistance of the path to ensure adjustment of the gas flow rate.
By setting the airflow resistance in this way, the airflow resistance of the airflow resistance body controls the gas flow rate of the path, and the gas that has passed through the airflow resistance body passes through the bypass path 39 even if it passes through the detection path 38. Even so, the gas flow rate is the same.
The ventilation resistor having the above configuration can adjust the ventilation pressure most easily as far as it can be conceived.

符号45は電磁バルブ41の切替を制御する制御手段としてのコントローラを示し、このコントローラ45からの指令により、電磁バルブ41は経路を切替えて検出経路38とその下流側のガス流通経路3とを接続して検出状態とするか、或いはバイパス経路39とその下流側のガス流通経路3とを接続してバイパス状態とする。
コントローラ45は所定の時間間隔に従ってシーケンサ制御をする。例えば、検出経路38をTon(例えば、1分)接続した後に経路を切替えてバイパス経路をTon(例えば、9分)接続するサイクル(Ttotal=10分)を繰り返す。このように接続を切り替えることにより、検出部27にはガス全量ではなく、1/10のガス量が導かれることになるので、検出部27に要求される検出能力は全量の場合の1/10で済むことになる。
Reference numeral 45 denotes a controller as a control means for controlling switching of the electromagnetic valve 41. In response to a command from the controller 45, the electromagnetic valve 41 switches the path and connects the detection path 38 and the gas flow path 3 downstream thereof. Then, the detection state is set, or the bypass path 39 and the gas flow path 3 on the downstream side are connected to set the bypass state.
The controller 45 performs sequencer control according to a predetermined time interval. For example, the cycle (Ttotal = 10 minutes) in which the detection path 38 is connected to Ton (for example, 1 minute) and the path is switched to connect the bypass path to Ton (for example, 9 minutes) is repeated. By switching the connection in this way, not the total gas amount but the 1/10 amount of gas is introduced to the detection unit 27. Therefore, the detection capability required for the detection unit 27 is 1/10 of the total amount. Will be enough.

符号47はガス流通経路3を通過するガス流量を調整する、手動のコックを示す。
符号49は浮玉式の流量計を示し、この流量計49によってガス流量を確認できる。
Reference numeral 47 indicates a manual cock for adjusting the flow rate of gas passing through the gas flow path 3.
Reference numeral 49 denotes a floating ball type flow meter, and the gas flow rate can be confirmed by the flow meter 49.

符号51は吸引ポンプを示し、この吸引ポンプ51はガス流通経路3の排出口に設けられている。この吸引ポンプ51が作動されると、矢印のように外の空気が吸引されて検出経路38またはバイパス経路39を通過し、ガス流通経路3を通過した後に最終的には外に排出される。
上記のように吸引されると、収容容器5内は負圧雰囲気になるので、少々の穴が空いていても、そこから外に空気が漏れ出すことはなく、収容容器5内の空気は全てガス流通経路3に導かれる。
Reference numeral 51 denotes a suction pump, and the suction pump 51 is provided at the outlet of the gas flow path 3. When the suction pump 51 is operated, outside air is sucked as indicated by an arrow, passes through the detection path 38 or the bypass path 39, and finally passes through the gas flow path 3 and is finally discharged outside.
When sucked as described above, the inside of the storage container 5 is in a negative pressure atmosphere, so even if there are a few holes, air does not leak out from there, and all the air in the storage container 5 It is guided to the gas distribution path 3.

実際の測定作業では、同じ仕様のものを少なくとも2系列は配置され、各系列では、同じ条件下で空気の供給が行われる。通常は、図1のガス定量測定装置1が実験系列(1)であり、残りの1系列(実験系列(2))は収容容器5に供給される空気中に含まれる総二酸化炭素量を定量測定するための、即ち装置の安全チェック用の基準系列として使用され、収容容器5内では動物は飼育されない。
なお、上記した系列以外に、実験用動物に何らかの処理を施した場合には、対照実験系列として、収容容器5内では未処理の実験用動物が飼育されたものが更に採用される。
各系列の先端は図示しないヘッダーに接続されており、ヘッダーに一旦蓄積された空気が各系列に供給される構成になっている。
In actual measurement work, at least two systems having the same specifications are arranged, and air is supplied under the same conditions in each system. Normally, the gas quantitative measurement device 1 of FIG. 1 is the experimental series (1), and the remaining one series (experimental series (2)) quantifies the total amount of carbon dioxide contained in the air supplied to the container 5. It is used as a reference series for measuring, that is, for checking the safety of the device, and no animals are raised in the container 5.
In addition to the above-described series, when some kind of treatment is performed on the experimental animals, a control experiment series in which untreated laboratory animals are bred in the storage container 5 is further employed.
The tip of each line is connected to a header (not shown), and the air once accumulated in the header is supplied to each line.

次に測定作業の手順を説明する。
まず、各系列の捕集筒35(ソーダライム(NaOH)充填済み)及び水分吸収筒37の重量を測定し、その次に図1に示す構成になるよう各系列を配置する。重量は、感度10mg以下の電子天秤で計測する。実験系列のケージ25内に実験用動物を入れた後、ケージ25を収容容器5内に上記のように合わせ板9等により閉鎖する。基準系列のケージ25は空のまま収容容器5内に入れて同様に閉鎖する。そして、図示しないヒータ及び温度センサにより収容容器5内を一定の温度に制御する。
Next, the procedure of measurement work will be described.
First, the weights of the collection tubes 35 (filled with soda lime (NaOH)) and the moisture absorption tube 37 of each series are measured, and then each series is arranged so as to have the configuration shown in FIG. The weight is measured with an electronic balance having a sensitivity of 10 mg or less. After placing the experimental animal in the cage 25 of the experimental series, the cage 25 is closed in the container 5 with the laminated plate 9 or the like as described above. The reference series cage 25 is placed in the receiving container 5 while being empty and is similarly closed. And the inside of the container 5 is controlled to a fixed temperature by a heater and a temperature sensor (not shown).

上記の準備作業が終了した後、コック23,47を開いて吸引ポンプ51を作動させると、空気がそれぞれの系列のガス流通経路3の供給口から流入を開始する。
そして、電磁バルブ41によって検出経路38が下流のガス流通経路3と接続されているときに検出部27を通過した後にガス流通経路3の排出口から装置外に排出される。一方、電磁バルブ41によってバイパス系が連通しているときには検出部27を通過せずにガス流通経路3の排出口から装置外に排出される。
When the cocks 23 and 47 are opened and the suction pump 51 is operated after the above preparatory work is completed, air starts to flow in from the supply ports of the gas flow paths 3 of the respective series.
Then, when the detection path 38 is connected to the downstream gas flow path 3 by the electromagnetic valve 41, it passes through the detection unit 27 and is then discharged out of the apparatus from the discharge port of the gas flow path 3. On the other hand, when the bypass system communicates with the electromagnetic valve 41, the electromagnetic valve 41 does not pass through the detection unit 27 and is discharged out of the apparatus through the discharge port of the gas flow path 3.

所定の測定時間終了後は、各系列の捕集筒35及び水分吸収筒37を取り外して、重量を測定作業前と同様に計測する。そして、各系列の捕集筒35及び水分吸収筒37の測定作業前と後の重量変化データから、炭酸ナトリウム(Na2CO3)へ転化していることを考慮して、各系列の捕集筒35における二酸化炭素(CO2)の捕集量(重量)を算出する。系列(1)の二酸化炭素発生量から系列(2)の二酸化炭素発生量を差し引いた二酸化炭素量が実験用動物の収容容器3内での飼育期間中の呼吸による総二酸化炭素発生量Cwp(g/day)を示す。但し、この総二酸化炭素発生量は分取した空気について測定したものである。
供給した空気全量についての二酸化炭素発生量Cwは、
Cw=Cwp×(Ttotal/Ton)
により簡単に且つ信頼性高く推算できる。
After the end of the predetermined measurement time, the collection cylinder 35 and the moisture absorption cylinder 37 of each series are removed, and the weight is measured in the same manner as before the measurement work. Then, taking into account that the weight change data before and after the measurement operation of the collection cylinder 35 and the moisture absorption cylinder 37 of each series is converted into sodium carbonate (Na 2 CO 3 ), the collection of each series. The amount (weight) of carbon dioxide (CO 2 ) collected in the cylinder 35 is calculated. The amount of carbon dioxide obtained by subtracting the amount of carbon dioxide generated in series (2) from the amount of carbon dioxide generated in series (1) is the total amount of carbon dioxide generated by respiration during the breeding period in the experimental animal container 3 Cwp (g / Day). However, the total amount of carbon dioxide generated is measured on the collected air.
Carbon dioxide generation amount Cw for the total amount of supplied air is
Cw = Cwp × (Ttotal / Ton)
Therefore, it can be estimated easily and reliably.

以上、本発明の実施の形態を説明したが、本発明の具体的構成が上記の実施の形態に限定されるものではなく、本発明の要旨から外れない範囲での設計変更があっても本発明に含まれる。
例えば、検出対象のガスは通常の空気に限定されず、ディーゼルエンジンからの排出ガス等、種々の種類のものを使用できる。
収容容器に入れるのは実験用動物に限定されず、植物等でもよい。
また、バイパス経路は1つに限定されず複数設けてもよく、更に、バイパス経路に別の検出器を設けて、同時に2以上の検出を行う構成にしてもよい。例えば、バイパス経路39に酸素や硫化水素の検知器を設ければ二酸化炭素量と同時に酸素量や硫化水素量を検出する構成にすることができる。
さらに、収容容器5に供給する空気を供給する前にシリカ等の乾燥剤に通して乾燥しておけば、収容容器5内の湿度を長時間にわたって連続して動物を飼育するのに適した程度に保持することができ、結果として長時間にわたって連続して二酸化炭素発生量を測定することができる。
Although the embodiment of the present invention has been described above, the specific configuration of the present invention is not limited to the above-described embodiment, and even if there is a design change within a range not departing from the gist of the present invention. Included in the invention.
For example, the gas to be detected is not limited to normal air, and various types of gases such as exhaust gas from a diesel engine can be used.
The container is not limited to experimental animals but may be a plant or the like.
Further, the number of bypass paths is not limited to one, and a plurality of bypass paths may be provided. Further, another detector may be provided in the bypass path, and two or more detections may be performed simultaneously. For example, if an oxygen or hydrogen sulfide detector is provided in the bypass passage 39, the oxygen amount and the hydrogen sulfide amount can be detected simultaneously with the carbon dioxide amount.
Furthermore, if it is dried by passing through a desiccant such as silica before supplying the air to be supplied to the storage container 5, the humidity in the storage container 5 is suitable for raising animals continuously for a long time. As a result, the carbon dioxide generation amount can be measured continuously over a long period of time.

上記実施の形態で説明したガス定量測定装置を用いて、遺伝的に同じ同日に出生した2匹の兄弟マウス(ミュータント)の呼吸による二酸化炭素発生量を測定した。
この実験で重量測定に掛かった時間は全体で30分ほどであった。なお、装置自体の運転時間は3日間であった。
二酸化炭素発生量は測定結果の引き算と足し算だけで容易に算出できる。
このように重量法では従来の滴定法と異なり、煩雑な計算技術が要求されず、また、データの精度も高く、100分の1以上の精度である。マウス1匹が一日で発生させる二酸化炭素5gに対して10mgの誤差範囲内で測定できる。
Using the gas quantitative measurement apparatus described in the above embodiment, the amount of carbon dioxide generated by respiration of two sibling mice (mutants) born on the same genetic day was measured.
In this experiment, it took about 30 minutes for the weight measurement. The operation time of the device itself was 3 days.
The amount of carbon dioxide generated can be easily calculated by simply subtracting and adding the measurement results.
Thus, unlike the conventional titration method, the gravimetric method does not require a complicated calculation technique, and the accuracy of the data is high, which is an accuracy of 1/100 or more. The measurement can be performed within an error range of 10 mg with respect to 5 g of carbon dioxide generated by one mouse per day.

以下の表は、測定結果を示す。なお、測定日時は、2005年8月8日〜22日であった。

Figure 2007064699
The following table shows the measurement results. The measurement date and time was August 8-22, 2005.
Figure 2007064699

本発明のガス定量測定装置は、コンパクトで且つ簡易な構成でありながら、精度高くガスを定量測定できる。
また、収容容器内のガスを上流側から吸引により下流側の検出部に導くように構成した場合には、従来のように収容容器内にガスを圧送により供給した場合に比べて、ノイズが小さくなるので、特別に消音仕様にせずとも、実験用動物に与えるストレスを軽減できる。従って、曝露系動物試験に適している。
更に、本発明のガス定量測定装置は、収容容器から外にガスが直接漏れ出すことはないので、アイソトープ等を収容容器内で扱う実験でも利用できる。
The gas quantitative measurement device of the present invention is capable of quantitatively measuring gas with high accuracy while having a compact and simple configuration.
Further, when the gas in the container is guided from the upstream side to the downstream detection unit by suction, the noise is smaller than in the case where the gas is supplied into the container by pressure feeding as in the conventional case. Therefore, it is possible to reduce the stress applied to the experimental animal without specially silencing. Therefore, it is suitable for exposure animal testing.
Furthermore, since the gas quantitative measurement device of the present invention does not leak gas directly from the storage container, it can be used in experiments in which isotopes and the like are handled in the storage container.

本発明の実施の形態に係るガス定量測定装置の模式図である。It is a schematic diagram of the gas quantitative measurement apparatus which concerns on embodiment of this invention. 収容容器の斜視図である。It is a perspective view of a storage container. 収容容器の分解斜視図である。It is a disassembled perspective view of a storage container. 実験結果のグラフである。It is a graph of an experimental result.

符号の説明Explanation of symbols

1‥‥ガス定量測定装置
3‥‥ガス流通経路 5‥‥収容容器
7‥‥フランジ 9‥‥合わせ板
11‥‥固定具 13‥‥Oリング
15‥‥水平貫通路 17‥‥ガス流入口
19‥‥水平貫通路 21‥‥ガス流出口
23‥‥コック 25‥‥ケージ
27‥‥検出部 29‥‥アンモニア吸収ビン
31‥‥第1除湿筒 33‥‥第2除湿筒
35‥‥捕集筒 37‥‥水分吸収筒
38‥‥検出経路 39‥‥バイパス経路
41‥‥電磁バルブ 43‥‥吸収体
45‥‥コントローラ 47‥‥コック
49‥‥流量計 51‥‥吸引ポンプ
DESCRIPTION OF SYMBOLS 1 ... Gas fixed-quantity measuring device 3 ... Gas distribution path 5 ... Container 7 ... Flange 9 ... Lamination board 11 ... Fixing fixture 13 ... O-ring 15 ... Horizontal through-channel 17 ... Gas inflow port 19 ··· Horizontal through passage 21 ··· Gas outlet 23 · · · Cock 25 · · · Cage 27 · · · Detection unit 29 · · · Ammonia absorption bottle 31 · · · First dehumidification tube 33 · · · Second dehumidification tube 35 · · · Collection tube 37 ... Water absorption cylinder 38 ... Detection path 39 ... Bypass path 41 ... Solenoid valve 43 ... Absorber 45 ... Controller 47 ... Cock 49 ... Flow meter 51 ... Suction pump

Claims (6)

一端からガスを導き他端で外に排出するガス流通経路と、前記ガス流通経路に設けられた閉鎖系収容容器と、前記収容容器より下流側のガス流通経路に設けられ、前記収容容器から出てきたガスの任意の成分を検出する検出部とを備えたガス定量測定装置において、
前記ガス流通経路の一部により構成されて前記検出部を通過する検出経路と並列に設けられたバイパス経路と、
前記検出経路と前記バイパス経路とを切り替え可能に接続する経路切替手段と、
経路切替手段を所定の時間間隔で制御する制御手段と、
いずれの経路をガスが通過してもガス流量を同量に調整するガス流量調整手段と、
を設けたことを特徴とするガス定量測定装置。
A gas flow path through which gas is introduced from one end and discharged to the outside at the other end; a closed system storage container provided in the gas flow path; and a gas flow path downstream from the storage container; In a gas quantitative measurement device equipped with a detection unit for detecting an arbitrary component of the gas
A bypass path configured in parallel with a detection path configured by a part of the gas flow path and passing through the detection unit;
A path switching means for connecting the detection path and the bypass path in a switchable manner;
Control means for controlling the route switching means at predetermined time intervals;
A gas flow rate adjusting means for adjusting the gas flow rate to the same amount regardless of which gas passes through;
A gas quantitative measurement device characterized by comprising:
請求項1に記載したガス定量測定装置において、ガス流量調整手段は、検出経路とバイパス経路とに分岐する前に設けられ、前記検出経路の通気抵抗と前記バイパス経路の通気抵抗の大きい方と同じか或いはそれを超える通気抵抗部により構成されていることを特徴とするガス定量測定装置。   2. The gas quantitative measurement apparatus according to claim 1, wherein the gas flow rate adjusting means is provided before branching into the detection path and the bypass path, and is the same as the larger one of the ventilation resistance of the detection path and the ventilation resistance of the bypass path. Or a quantitative gas measuring apparatus, characterized by comprising a ventilation resistance part exceeding it. 請求項2に記載したガス定量測定装置において、通気抵抗部は所定の大きさの通気抵抗をなすよう液面高さの調整された液体を入れた吸気ビンと、その液体中にガスを導くガス流通経路とで構成されていることを特徴とするガス定量測定装置。   3. The gas quantitative measurement apparatus according to claim 2, wherein the ventilation resistance portion includes an intake bottle containing a liquid whose liquid surface height is adjusted so as to form a ventilation resistance of a predetermined size, and a gas for guiding the gas into the liquid. A gas quantitative measurement apparatus characterized by comprising a distribution channel. 請求項1から3のいずれかに記載したガス定量測定装置において、収容容器より下流側のガス流通経路に吸引手段を設け、収容容器内のガスを吸引させることで前記収容容器内を負圧雰囲気にしながらガスを検出部に導くことを特徴とするガス定量測定装置。   4. The quantitative gas measuring apparatus according to claim 1, wherein a suction means is provided in a gas flow path downstream of the storage container, and the gas in the storage container is sucked to thereby create a negative pressure atmosphere in the storage container. A gas quantitative measurement device characterized in that the gas is guided to the detection unit while 一端からガスを導き他端で外に排出するガス流通経路と、前記ガス流通経路に設けられた閉鎖系収容容器と、前記収容容器より下流側のガス流通経路に設けられ、前記収容容器から出てきたガスの任意の成分を検出する検出部とを備えたガス定量測定装置において、
前記収容容器より下流側のガス流通経路に吸引手段を設け、前記収容容器内のガスを吸引させることで前記収容容器内を負圧雰囲気にしながらガスを検出部に導くことを特徴とするガス定量測定装置。
A gas flow path through which gas is introduced from one end and discharged to the outside at the other end; a closed system storage container provided in the gas flow path; and a gas flow path downstream from the storage container; In a gas quantitative measurement device equipped with a detection unit for detecting an arbitrary component of the gas
Gas quantification characterized in that a suction means is provided in a gas flow path downstream of the storage container, and the gas is guided to the detection unit while the storage container is in a negative pressure atmosphere by sucking the gas in the storage container. measuring device.
請求項1から5のいずれかに記載したガス定量測定装置において、実験用動物の呼吸量を定量測定するのに使用することを特徴とするガス定量測定装置。
6. The quantitative gas measuring apparatus according to claim 1, wherein the quantitative gas measuring apparatus is used for quantitatively measuring a respiration rate of an experimental animal.
JP2005248540A 2005-08-30 2005-08-30 Gas quantitative measurement device Expired - Fee Related JP4598628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005248540A JP4598628B2 (en) 2005-08-30 2005-08-30 Gas quantitative measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005248540A JP4598628B2 (en) 2005-08-30 2005-08-30 Gas quantitative measurement device

Publications (2)

Publication Number Publication Date
JP2007064699A true JP2007064699A (en) 2007-03-15
JP4598628B2 JP4598628B2 (en) 2010-12-15

Family

ID=37927083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005248540A Expired - Fee Related JP4598628B2 (en) 2005-08-30 2005-08-30 Gas quantitative measurement device

Country Status (1)

Country Link
JP (1) JP4598628B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170054024A (en) * 2015-11-09 2017-05-17 강원대학교산학협력단 Environmental control chamber for measuring respiration gases from animal and emission gases from animal manure treatment processes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326314A (en) * 1998-05-08 1999-11-26 Isao Nishi Method for separating and simultaneously measuring response of respiration and photosynthesis of plant and its device
JP2003329672A (en) * 2002-05-15 2003-11-19 Yahata Bussan Kk Apparatus for measuring amount of carbon dioxide generated by respiration of experimental animal
JP2005098817A (en) * 2003-09-24 2005-04-14 Toshiba Plant Systems & Services Corp Measurement method and measuring instrument for expiratory air constituent of domestic animal and recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326314A (en) * 1998-05-08 1999-11-26 Isao Nishi Method for separating and simultaneously measuring response of respiration and photosynthesis of plant and its device
JP2003329672A (en) * 2002-05-15 2003-11-19 Yahata Bussan Kk Apparatus for measuring amount of carbon dioxide generated by respiration of experimental animal
JP2005098817A (en) * 2003-09-24 2005-04-14 Toshiba Plant Systems & Services Corp Measurement method and measuring instrument for expiratory air constituent of domestic animal and recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170054024A (en) * 2015-11-09 2017-05-17 강원대학교산학협력단 Environmental control chamber for measuring respiration gases from animal and emission gases from animal manure treatment processes
KR102405925B1 (en) * 2015-11-09 2022-06-03 강원대학교산학협력단 Environmental control chamber for measuring respiration gases from animal and emission gases from animal manure treatment processes

Also Published As

Publication number Publication date
JP4598628B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
CN201207026Y (en) Radioactive aerosol generating and sampling apparatus in radon chamber
CA2635004C (en) Controlled humidification calibration checking of continuous emissions monitoring system
US20110021942A1 (en) Apparatus and method of analyzing constituents of gas in oral cavity and alveolar gas
CN106461592B (en) Gas component concentration measuring apparatus and method for measuring gas component concentration
US4578986A (en) Gas analyzer for dry/dusty kilns
US20110077545A1 (en) Portable pneumotachograph for measuring components of an expiration volume
JP2012202887A (en) Analyzer
US20080282764A1 (en) Calibration checking for continuous emissions monitoring system
KR102258156B1 (en) Test Apparatus for air-purification performance of Photocatalytic Materials and Test Method thereof
JP4598628B2 (en) Gas quantitative measurement device
KR101910017B1 (en) Apparatus for diagnosing diseases using exhaled breath analysis
JP5249665B2 (en) Breath test device
EP3561509B1 (en) Portable device for detection of biomarkers in exhaled air and method of biomarker detection in exhaled air
CN208187894U (en) Medical oxygen content detection plug, medical oxygen assay instrument with copper wire
JPWO2020066308A1 (en) Gas analyzer and calibration method of gas analyzer
CN202793983U (en) Particulate matter difference concentration measuring system based on oscillation balance
CN210465350U (en) VOCs on-site rapid detection device in soft furniture
US11957450B2 (en) Apparatus and method for collecting a breath sample using an air circulation system
CN210673313U (en) Expiration analysis device
KR101032758B1 (en) Multifunctional gas experimental device for hazardous gas absorption and deodorization experiments
US20240133867A1 (en) Breath capture and analysis system and method
US20240230624A9 (en) Breath capture and analysis system and method
JP2003329672A (en) Apparatus for measuring amount of carbon dioxide generated by respiration of experimental animal
CN109142625A (en) Gas absorber and the flue gas analytical equipment for having the gas absorber
US11782049B2 (en) Apparatus and method for collecting a breath sample using a container with controllable volume

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees