JP2007063452A - Solid lubricating film and solid lubricating bearing - Google Patents

Solid lubricating film and solid lubricating bearing Download PDF

Info

Publication number
JP2007063452A
JP2007063452A JP2005253065A JP2005253065A JP2007063452A JP 2007063452 A JP2007063452 A JP 2007063452A JP 2005253065 A JP2005253065 A JP 2005253065A JP 2005253065 A JP2005253065 A JP 2005253065A JP 2007063452 A JP2007063452 A JP 2007063452A
Authority
JP
Japan
Prior art keywords
film
solid lubricating
lubricating film
vacuum
molybdenum disulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005253065A
Other languages
Japanese (ja)
Inventor
Kiyonori Oguma
清典 小熊
Mitsuaki Ikeda
満昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2005253065A priority Critical patent/JP2007063452A/en
Publication of JP2007063452A publication Critical patent/JP2007063452A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Rolling Contact Bearings (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Lubricants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a solid lubricating film of molybdenum disulfide and a solid lubricating film of tungsten disulfide hardly emitting hydrogen sulfide gas and to provide a solid lubricating bearing by using the film. <P>SOLUTION: In the solid lubricating film 1 of molybdenum disulfide made by a physical vapor phase growth method, the film has 3.5-4.8 g/cm<SP>3</SP>bulk density and contains 1.5-20 at% oxygen. In the solid lubricating film 1 of tungsten disulfide made by a physical vapor phase growth method, the film has 5.3-7.4 g/cm<SP>3</SP>bulk density and contains 1.5-20 at% oxygen. The solid lubricating bearing is obtained by coating a rolling element such as ball, roller, etc., with the solid lubricating film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、真空環境で使用される半導体製造装置に適用する軸受、またはその軸受用の固体潤滑膜に関する。   The present invention relates to a bearing applied to a semiconductor manufacturing apparatus used in a vacuum environment, or a solid lubricating film for the bearing.

真空環境下において、各機構の摺動部には固体潤滑膜が用いられており、固体潤滑膜には、潤滑特性が良好な二硫化モリブデンが使用されている。この固体潤滑膜は物理気相成長法で軸受部品に被覆され、真空ロボット用軸受として使用される(例えば、非特許文献1参照)。
また、従来の固体潤滑膜の製造方法は、アルゴンガスと水蒸気を導入した成膜室の中でターゲット材の二硫化モリブデンをスパッタリングにより成膜するものである(特許文献1)。
月刊トライボロジ2000年5月号(第41頁) 特開2002−276667号公報
Under a vacuum environment, a solid lubricating film is used for the sliding portion of each mechanism, and molybdenum disulfide having good lubricating characteristics is used for the solid lubricating film. This solid lubricating film is coated on a bearing component by physical vapor deposition and used as a bearing for a vacuum robot (for example, see Non-Patent Document 1).
In addition, a conventional method for producing a solid lubricant film is a method in which molybdenum disulfide as a target material is formed by sputtering in a film formation chamber into which argon gas and water vapor are introduced (Patent Document 1).
Monthly Tribology May 2000 (Page 41) JP 2002-276667 A

真空ロボットなどのウエハ搬送装置に要求されるクリーン度や適用真空度は、半導体部品の歩留まり向上の観点から年々厳しくなっている。高温・高真空中でのガス放出量低減や放出されるガスの種類の制限などである。二硫化モリブデンスパッタ膜を固体潤滑剤として使用した場合、非特許文献1でも記載されているように、真空機器特有のベーキング温度である120℃加熱により質量数34の硫化水素ガスがわずかではあるが放出されるという課題が生じていた。
この硫化水素ガスは真空装置を汚染し、ウエハの汚染につながるガスである。したがって、このガスは放出されないことが要望されていたが、真空中で優れた潤滑特性を示す固体潤滑剤が二硫化モリブデン膜以外にないのでやむなく使用されていた。
また、従来の固体潤滑膜の製造方法は、アルゴンガスに水蒸気を混入しているために、膜質を良くなる酸素ガスの混入量を正確に求めることができず、膜質の良い二硫化モリブデン膜の再現性が低いという問題が生じていた。また、水蒸気を導入しているので、膜中に水分子が入り込み、硫化水素の発生原因になるという問題も生じていた。
そこで、本発明はこのような問題点に鑑みてなされたものであり、真空中で120℃に加熱しても硫化水素ガスを放出し難い二硫化モリブデン膜または二硫化タングステン膜、およびこれらの膜を適用した固体潤滑軸受を提供することを目的とする。
The degree of cleanliness and applied vacuum required for wafer transfer devices such as vacuum robots are becoming stricter year by year from the viewpoint of improving the yield of semiconductor components. This includes reducing the amount of gas released at high temperature and high vacuum, and limiting the type of gas released. When a molybdenum disulfide sputtered film is used as a solid lubricant, as described in Non-patent Document 1, although hydrogen sulfide gas having a mass number of 34 is slight due to heating at 120 ° C., which is a baking temperature peculiar to vacuum equipment. The problem of being released has arisen.
This hydrogen sulfide gas is a gas that contaminates the vacuum apparatus and leads to contamination of the wafer. Therefore, it was desired that this gas not be released, but it was unavoidably used because there is no solid lubricant other than molybdenum disulfide film that exhibits excellent lubrication characteristics in a vacuum.
In addition, since the conventional method for producing a solid lubricating film contains water vapor in the argon gas, the amount of oxygen gas mixed in to improve the film quality cannot be accurately determined. There was a problem of low reproducibility. In addition, since water vapor is introduced, water molecules enter the film, which causes hydrogen sulfide generation.
Accordingly, the present invention has been made in view of such problems, and a molybdenum disulfide film or a tungsten disulfide film that hardly releases hydrogen sulfide gas even when heated to 120 ° C. in a vacuum, and these films. An object of the present invention is to provide a solid lubricated bearing to which is applied.

上記問題を解決するため、本発明は、次のように構成したのである。
請求項1に記載の発明は、真空中内に不活性ガスが導入され、物理気相成長法で基材に作製された二硫化モリブデン固体潤滑膜において、前記固体潤滑膜のかさ密度が3.5〜4.8g/cmで酸素を1.5〜20at%含むものである。
また、請求項2に記載の発明は、真空中内に不活性ガスが導入され、物理気相成長法で基材に作製された二硫化タングステン固体潤滑膜において、前記固体潤滑膜のかさ密度が5.3〜7.4g/cmで酸素を1.5〜20at%含むものである。
さらに、請求項3に記載の発明は、請求項1または2に記載の固体潤滑膜であって、前記固体潤滑膜が被覆された転動体が組み込まれたものである。
In order to solve the above problem, the present invention is configured as follows.
According to the first aspect of the present invention, in the molybdenum disulfide solid lubricant film produced on the base material by a physical vapor deposition method in which an inert gas is introduced into the vacuum, the bulk density of the solid lubricant film is 3. 5 to 4.8 g / cm 3 and 1.5 to 20 at% oxygen.
The invention according to claim 2 is a tungsten disulfide solid lubricating film produced on a substrate by a physical vapor deposition method in which an inert gas is introduced into a vacuum, and the bulk density of the solid lubricating film is It contains 5.3 to 7.4 g / cm 3 and oxygen of 1.5 to 20 at%.
Furthermore, the invention according to claim 3 is the solid lubricating film according to claim 1 or 2, wherein a rolling element coated with the solid lubricating film is incorporated.

請求項1に記載の発明によると、二硫化モリブデン膜のかさ密度を高くし、かつ膜中の硫黄を硫黄より原子半径の小さい酸素または窒素で置換することで格子間隔を狭くしているので、水が膜中に入り難くなり硫化水素の放出を防止できる。
硫化水素ガスの発生原因は、二硫化モリブデン膜と膜中に含まれる水分が80℃以上で反応するためである。したがって、膜中に水分をできるだけ含ませないようにすることが対策となる。膜のかさ密度が低いと空隙が多くなり、その部分に水分が吸着する。この水分を低減するためには、膜のかさ密度を3.5g/cm以上として空隙を少なくすることが第一必要条件である。なお、かさ密度4.8g/cmは物理気相成長法で得られる膜の最大密度である。
次に必要な条件は、二硫化モリブデンの結晶格子間に水を浸入させ難くすることである。二硫化モリブデンスパッタ膜には格子欠陥が多く存在しているので、天然の二硫化モリブデン材より最大で約10パーセントも格子間隔が広くなっている。したがって、水が格子間に入りやすく、また昇温によって生成された硫化水素ガスも放出されやすい。このため、格子間隔を狭くすることが硫化水素ガスの放出を防止することになる。
そこで、格子間隔を狭くするためには二硫化モリブデンを構成する硫黄原子を硫黄原子より原子半径の小さい酸素原子で置換すればよい。膜中に酸素を1.5at%以上含ませることで硫化水素の放出を防止できるが、酸素濃度が20at%を越えると高真空環境下での摩擦係数が大きくなることがわかっており、実用化に向かない。
このように膜のかさ密度と膜中の酸素の含有量を規定することで、ベーキング温度120℃でも硫化水素ガスを放出し難い高真空用途の二硫化モリブデン固体潤滑膜を提供できる。
請求項2に記載の発明によると、二硫化タングステン膜のかさ密度を5.3〜7.4g/cmとし、かつ膜中の硫黄原子をそれより原子半径の小さい酸素原子で置換することで格子間隔を狭くしているので、水が膜中に入り難くなり硫化水素の放出を防止できる。なお、かさ密度7.4g/cmは物理気相成長法で得られる膜の最大密度である。
請求項3に記載の発明によると、軸受の潤滑材として、請求項1または2に記載の固体潤滑膜を使用しているので、ベーキング温度120℃でも硫化水素ガスを放出し難い高真空用途の固体潤滑軸受を提供できる。
According to the invention described in claim 1, the bulk density of the molybdenum disulfide film is increased, and the lattice spacing is narrowed by replacing sulfur in the film with oxygen or nitrogen having an atomic radius smaller than that of sulfur. It becomes difficult for water to enter the film and release of hydrogen sulfide can be prevented.
The cause of the generation of hydrogen sulfide gas is that the molybdenum disulfide film reacts with the moisture contained in the film at 80 ° C. or higher. Therefore, it is a countermeasure to prevent moisture from being contained in the film as much as possible. When the bulk density of the film is low, voids increase, and moisture is adsorbed in that portion. In order to reduce this moisture, the first requirement is to reduce the voids by setting the bulk density of the film to 3.5 g / cm 3 or more. The bulk density of 4.8 g / cm 3 is the maximum density of the film obtained by physical vapor deposition.
The next necessary condition is to make it difficult for water to enter between the crystal lattices of molybdenum disulfide. Since there are many lattice defects in the sputtered molybdenum disulfide film, the lattice spacing is about 10 percent wider than that of natural molybdenum disulfide. Therefore, water tends to enter between the lattices, and hydrogen sulfide gas generated by the temperature rise is easily released. For this reason, reducing the lattice spacing prevents the release of hydrogen sulfide gas.
Therefore, in order to narrow the lattice spacing, the sulfur atoms constituting molybdenum disulfide may be replaced with oxygen atoms having an atomic radius smaller than that of the sulfur atoms. Hydrogen sulfide can be prevented from being released by containing oxygen in the film at 1.5at% or more, but it has been found that the friction coefficient in a high vacuum environment increases when the oxygen concentration exceeds 20at%. Not suitable for.
Thus, by defining the bulk density of the film and the content of oxygen in the film, it is possible to provide a molybdenum disulfide solid lubricant film for high vacuum applications that hardly releases hydrogen sulfide gas even at a baking temperature of 120 ° C.
According to the second aspect of the present invention, the bulk density of the tungsten disulfide film is set to 5.3 to 7.4 g / cm 3 and the sulfur atoms in the film are replaced with oxygen atoms having a smaller atomic radius. Since the lattice spacing is narrowed, it is difficult for water to enter the film, and the release of hydrogen sulfide can be prevented. The bulk density of 7.4 g / cm 3 is the maximum density of the film obtained by physical vapor deposition.
According to the invention described in claim 3, since the solid lubricant film described in claim 1 or 2 is used as a lubricant for the bearing, it is difficult to release hydrogen sulfide gas even at a baking temperature of 120 ° C. A solid lubricated bearing can be provided.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施例を示す断面図である。図において、1は固体潤滑膜、2は基板である。この固体潤滑膜は物理気相成長法で形成した酸素を含む二硫化モリブデンであり、かさ密度は3.5g/cm以上である。また、基板はSUS440Cである。本実施例では、物理気相成長法としてスパッタリング法を用いて説明する。
この固体潤滑膜は、図2に示すスパッタ装置で作製した。図において10は真空を保持する真空チャンバである。真空チャンバ10の内部には、基板ホルダ11に載置された基板2と、基板ホルダ11に対向する位置に二硫化モリブデンのターゲット13が電極12に接続されて配置されている。真空チャンバ10の外部には、電極12に接続されたRF電源19と、マスフローコントローラ18aを介して接続された純アルゴンガスボンベ16と、真空ポンプ14と、真空計15が配置されている。
二硫化モリブデン固体潤滑膜の作製手順は以下のとおりである。
・ 真空チャンバ10内を真空ポンプ14で5×10−4Pa以下の圧力まで真空引きする。
・ 真空引きしながら、マスフローコントローラ17が開かれ、純アルゴンガスが真空チャンバ10内に導入される。真空計15をモニタしながら真空チャンバ10内を所定の圧力にする。(このときの真空チャンバ10内の圧力を便宜的にアルゴンガス圧と呼ぶ。)
・ ターゲット13にRF電力を印加してグロー放電を発生させる。アルゴンイオンによって二硫化モリブデンからなるターゲット13の表面をスパッタし、ターゲット13を構成する原子、すなわち硫黄とモリブデンを叩き出す。これらの原子をターゲット13と対向する位置に置いた基板2の表面に堆積させ、二硫化モリブデン固体潤滑膜を形成する。
上記(2)の工程では、アルゴンガス圧および酸素濃度が以下のとおり調整されている。
はじめに、アルゴンガス圧の調整について述べる。アルゴンガス圧が高いと、ターゲット13から叩き出された硫黄やモリブデンなどの粒子(以下、スパッタ粒子と呼ぶ)は基板に到達するまでにアルゴン原子と衝突する回数が多い。このため、基板に到達したときのスパッタ粒子のエネルギは小さい。その結果、スパッタ粒子は粒状になって基板に堆積するために固体潤滑膜1のかさ密度は低くなる。逆に、アルゴンガス圧が低いと、スパッタ粒子はアルゴン原子とほとんど衝突しない。したがって、スパッタ粒子はエネルギを失わないまま基板に到達する。その結果、形成される固体潤滑膜のかさ密度は高くなる。したがって、膜のかさ密度は、アルゴンガスの分圧を調節することで設定される。
次に、酸素濃度の調整について述べる。膜中の酸素含有量は、上記(2)の工程の純アルゴンガスの代わりに種々の酸素濃度となるアルゴンガスを真空チャンバ10内に導入して設定された。
上記の方法によって作製された固体潤滑膜1のかさ密度は、マイクロ天秤で測定した固体潤滑膜作製前後の基板の重量差と表面形状計で測定した膜厚を用いて計算するアルキメデス法で算出された。
また、膜の組成、化学状態はそれぞれ電子線プローブマイクロアナライザ(以下EPMAと呼ぶ)、X線光電子分光法(以下XPSと呼ぶ)で分析した。EPMA分析の結果から、アルゴンガス中の酸素濃度が増加すると膜中の酸素含有量も増加した。また、XPS分析の結果から膜中の酸素は硫黄と二硫化モリブデン結晶の硫黄の位置に置き換わっていることが確認された。
次に、上記の手順によって試料を作製した結果について述べる。試料は、直径50mm(試料1)と5mm(試料2)のSUS440C製円板である、各々の試料上に厚さ0.6μmの固体潤滑膜を形成した。試料1はボールオンディスク式すべり試験機を用いた摩擦係数の測定に使用し、試料2は真空中で120℃に加熱したときに放出されるガスの分析に使用した。
摩擦係数の測定条件は、すべり速度8m/分、荷重1.5N、面圧0.8GPa、温度22〜27℃、湿度9〜15%RHとした。
また、120℃加熱時に放出されるガスは、四重極質量分析計を備えた真空チャンバ内に試料を設置して昇温脱離ガス分析法で調べた。このとき、昇温開始時の真空度は6×10−5Pa、昇温速度は30℃/分とした。
表1に評価結果を示す。かさ密度が3.5g/cm以上かつ膜中の酸素含有量が1.5〜20at%の範囲で、摩擦係数および硫化水素ガスの放出について優れた特性が得られている。なお、本試験時では摩擦係数は0.05を規定値とし、この値以下を合格品とした。
FIG. 1 is a sectional view showing a first embodiment of the present invention. In the figure, 1 is a solid lubricating film and 2 is a substrate. This solid lubricating film is molybdenum disulfide containing oxygen formed by physical vapor deposition and has a bulk density of 3.5 g / cm 3 or more. The substrate is SUS440C. In this embodiment, description will be made using a sputtering method as a physical vapor deposition method.
This solid lubricating film was produced by the sputtering apparatus shown in FIG. In the figure, reference numeral 10 denotes a vacuum chamber for holding a vacuum. Inside the vacuum chamber 10, a substrate 2 placed on the substrate holder 11 and a target 13 made of molybdenum disulfide are connected to the electrode 12 at a position facing the substrate holder 11. Outside the vacuum chamber 10, an RF power source 19 connected to the electrode 12, a pure argon gas cylinder 16 connected via a mass flow controller 18a, a vacuum pump 14, and a vacuum gauge 15 are arranged.
The procedure for producing the molybdenum disulfide solid lubricant film is as follows.
-The inside of the vacuum chamber 10 is evacuated with a vacuum pump 14 to a pressure of 5 × 10 -4 Pa or less.
The mass flow controller 17 is opened while evacuating, and pure argon gas is introduced into the vacuum chamber 10. While the vacuum gauge 15 is monitored, the inside of the vacuum chamber 10 is set to a predetermined pressure. (The pressure in the vacuum chamber 10 at this time is called argon gas pressure for convenience.)
-RF power is applied to the target 13 to generate glow discharge. The surface of the target 13 made of molybdenum disulfide is sputtered by argon ions, and atoms constituting the target 13, that is, sulfur and molybdenum are knocked out. These atoms are deposited on the surface of the substrate 2 placed at a position facing the target 13 to form a molybdenum disulfide solid lubricant film.
In the step (2), the argon gas pressure and the oxygen concentration are adjusted as follows.
First, the adjustment of the argon gas pressure will be described. When the argon gas pressure is high, particles such as sulfur and molybdenum struck out from the target 13 (hereinafter referred to as sputtered particles) frequently collide with argon atoms before reaching the substrate. For this reason, the energy of the sputtered particles when reaching the substrate is small. As a result, the sputtered particles become granular and are deposited on the substrate, so that the bulk density of the solid lubricating film 1 is lowered. Conversely, when the argon gas pressure is low, the sputtered particles hardly collide with argon atoms. Accordingly, the sputtered particles reach the substrate without losing energy. As a result, the bulk density of the formed solid lubricant film is increased. Therefore, the bulk density of the film is set by adjusting the partial pressure of the argon gas.
Next, adjustment of the oxygen concentration will be described. The oxygen content in the film was set by introducing argon gas having various oxygen concentrations into the vacuum chamber 10 instead of the pure argon gas in the step (2).
The bulk density of the solid lubricant film 1 produced by the above method is calculated by the Archimedes method that uses the weight difference of the substrate before and after the production of the solid lubricant film measured with a microbalance and the film thickness measured with a surface shape meter. It was.
The composition and chemical state of the film were analyzed by an electron probe microanalyzer (hereinafter referred to as EPMA) and X-ray photoelectron spectroscopy (hereinafter referred to as XPS). From the results of EPMA analysis, as the oxygen concentration in the argon gas increased, the oxygen content in the film also increased. From the XPS analysis results, it was confirmed that oxygen in the film was replaced by sulfur and sulfur in the molybdenum disulfide crystal.
Next, the result of producing a sample by the above procedure will be described. The samples were SUS440C discs having a diameter of 50 mm (sample 1) and 5 mm (sample 2), and a solid lubricant film having a thickness of 0.6 μm was formed on each sample. Sample 1 was used to measure the coefficient of friction using a ball-on-disk type sliding tester, and sample 2 was used to analyze the gas released when heated to 120 ° C. in a vacuum.
The friction coefficient measurement conditions were a sliding speed of 8 m / min, a load of 1.5 N, a surface pressure of 0.8 GPa, a temperature of 22 to 27 ° C., and a humidity of 9 to 15% RH.
The gas released during heating at 120 ° C. was examined by a temperature programmed desorption gas analysis method by placing a sample in a vacuum chamber equipped with a quadrupole mass spectrometer. At this time, the degree of vacuum at the start of temperature increase was 6 × 10 −5 Pa, and the temperature increase rate was 30 ° C./min.
Table 1 shows the evaluation results. When the bulk density is 3.5 g / cm 3 or more and the oxygen content in the film is in the range of 1.5 to 20 at%, excellent characteristics are obtained with respect to the friction coefficient and the release of hydrogen sulfide gas. At the time of this test, the coefficient of friction was set to 0.05 as a specified value, and a value below this value was regarded as an acceptable product.

Figure 2007063452
Figure 2007063452

図2のターゲット13に二硫化タングステンを用いて、実施例1と同様な方法で二硫化タングステン固体潤滑膜を形成し、摩擦係数と真空中で120℃に加熱したときのガス放出特性を調べた。それぞれの測定条件は、実施例1と同じである。
表2に評価結果を示す。かさ密度が5.3g/cm以上かつ膜中の酸素含有量が1.5〜20at%の範囲で、摩擦係数および硫化水素ガスの放出について優れた特性が得られている。なお、本試験時では摩擦係数は0.05を規定値とし、この値以下を合格品とした。
Using tungsten disulfide as the target 13 in FIG. 2, a tungsten disulfide solid lubricating film was formed in the same manner as in Example 1, and the coefficient of friction and gas release characteristics when heated to 120 ° C. in a vacuum were investigated. . Each measurement condition is the same as in Example 1.
Table 2 shows the evaluation results. When the bulk density is 5.3 g / cm 3 or more and the oxygen content in the film is in the range of 1.5 to 20 at%, excellent characteristics are obtained with respect to the friction coefficient and the release of hydrogen sulfide gas. At the time of this test, the coefficient of friction was set to 0.05 as a specified value, and a value below this value was regarded as an acceptable product.

Figure 2007063452
Figure 2007063452

実施例1または実施例2の方法で、SUS440C製ボール上に二硫化モリブデン固体潤滑膜、または二硫化タングステン固体潤滑膜を形成した。これらのボールを玉軸受に組込み、真空中で摩擦したときに硫化水素ガスが放出されるかどうか調べた。玉軸受はSUS440C製の内径8mm、外径22mm、幅7mmの深溝型玉軸受を用い、PEEK系保持器を組み込んだ。この軸受を真空度0.02Pa、温度22〜27℃の雰囲気中で、転がり速度8m/分、面圧0.8GPaとして摩擦を行い、このときに放出されるガスを四重極質量分析計で分析した。
表3に評価結果を示す。実施例1および実施例2で優れた特性を示した膜は玉軸受に組み込んで摩擦しても硫化水素を発生しておらず、高真空用途の固体潤滑軸受に使用できる。なお、実施例3は玉軸受であるが、本発明はこれに限られるものではなく、ころ軸受など他の軸受にも適用可能である。
By the method of Example 1 or Example 2, a molybdenum disulfide solid lubricant film or a tungsten disulfide solid lubricant film was formed on a SUS440C ball. These balls were incorporated into ball bearings and examined whether hydrogen sulfide gas was released when rubbed in vacuum. As the ball bearing, a deep groove type ball bearing made of SUS440C having an inner diameter of 8 mm, an outer diameter of 22 mm, and a width of 7 mm was used, and a PEEK cage was incorporated. The bearing is rubbed in an atmosphere having a degree of vacuum of 0.02 Pa and a temperature of 22 to 27 ° C. with a rolling speed of 8 m / min and a surface pressure of 0.8 GPa, and the gas released at this time is detected by a quadrupole mass spectrometer. analyzed.
Table 3 shows the evaluation results. Films having excellent characteristics in Example 1 and Example 2 are incorporated in ball bearings and do not generate hydrogen sulfide even when rubbed, and can be used for solid lubricated bearings for high vacuum applications. In addition, although Example 3 is a ball bearing, this invention is not restricted to this, It is applicable also to other bearings, such as a roller bearing.

Figure 2007063452
Figure 2007063452

本発明は,半導体製造等の分野で,低摩擦係数が必要とされ、高真空中での摺動部の軸受に適用される。   The present invention requires a low coefficient of friction in the field of semiconductor manufacturing and the like, and is applied to a sliding part bearing in a high vacuum.

本発明の第1実施例を示す固体潤滑膜の断面構造1 is a cross-sectional structure of a solid lubricating film showing a first embodiment of the present invention; 本発明の固体潤滑膜を作製したスパッタ装置Sputtering apparatus for producing the solid lubricating film of the present invention

符号の説明Explanation of symbols

1 :二硫化モリブデン膜
2 :基板
10:真空チャンバ
11:基板ホルダ
12:電極
13:ターゲット
14:真空ポンプ
15:真空計
16:純アルゴンガスボンベ、または酸素を含むアルゴンガスボンベ
17:マスフローコントローラ
18:RF電源
1: Molybdenum disulfide film 2: Substrate 10: Vacuum chamber 11: Substrate holder 12: Electrode 13: Target 14: Vacuum pump 15: Vacuum gauge 16: Pure argon gas cylinder or argon gas cylinder 17 containing oxygen 17: Mass flow controller 18: RF Power supply

Claims (3)

真空中内に不活性ガスが導入され、物理気相成長法で基材に作製された二硫化モリブデン固体潤滑膜において、
前記二硫化モリブデン固体潤滑膜のかさ密度が3.5〜4.8g/cmで、酸素を1.5〜20at%含むことを特徴とする固体潤滑膜。
In the molybdenum disulfide solid lubricant film in which an inert gas is introduced into the vacuum and the substrate is prepared by physical vapor deposition,
A solid lubricating film, wherein the molybdenum disulfide solid lubricating film has a bulk density of 3.5 to 4.8 g / cm 3 and contains 1.5 to 20 at% of oxygen.
真空中内に不活性ガスが導入され、物理気相成長法で基材に作製された二硫化タングステン固体潤滑膜において、
前記二硫化タングステン固体潤滑膜のかさ密度が5.3〜7.4g/cmで、酸素を1.5〜20at%含むことを特徴とする固体潤滑膜。
In the tungsten disulfide solid lubricant film in which an inert gas is introduced into the vacuum and the substrate is prepared by physical vapor deposition,
A solid lubricating film, wherein the tungsten disulfide solid lubricating film has a bulk density of 5.3 to 7.4 g / cm 3 and contains 1.5 to 20 at% of oxygen.
請求項1または2に記載の固体潤滑膜であって、前記固体潤滑膜が被覆された転動体が組み込まれたことを特徴とする固体潤滑軸受。
3. The solid lubricating film according to claim 1, wherein a rolling element covered with the solid lubricating film is incorporated.
JP2005253065A 2005-09-01 2005-09-01 Solid lubricating film and solid lubricating bearing Pending JP2007063452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005253065A JP2007063452A (en) 2005-09-01 2005-09-01 Solid lubricating film and solid lubricating bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005253065A JP2007063452A (en) 2005-09-01 2005-09-01 Solid lubricating film and solid lubricating bearing

Publications (1)

Publication Number Publication Date
JP2007063452A true JP2007063452A (en) 2007-03-15

Family

ID=37926007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005253065A Pending JP2007063452A (en) 2005-09-01 2005-09-01 Solid lubricating film and solid lubricating bearing

Country Status (1)

Country Link
JP (1) JP2007063452A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164069A (en) * 2009-01-13 2010-07-29 Daido Metal Co Ltd Slide member
CN103205724A (en) * 2013-04-23 2013-07-17 南开大学 Preparation method of molybdenum disulfide film material
CN108070437A (en) * 2017-12-27 2018-05-25 柳州璞智科技有限公司 A kind of robot retarder is with lubricator and preparation method thereof
CN111621745A (en) * 2020-01-19 2020-09-04 中国科学院宁波材料技术与工程研究所 Molybdenum disulfide/tungsten disulfide multilayer tantalum-doped thin film and preparation method and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164069A (en) * 2009-01-13 2010-07-29 Daido Metal Co Ltd Slide member
CN103205724A (en) * 2013-04-23 2013-07-17 南开大学 Preparation method of molybdenum disulfide film material
CN108070437A (en) * 2017-12-27 2018-05-25 柳州璞智科技有限公司 A kind of robot retarder is with lubricator and preparation method thereof
CN111621745A (en) * 2020-01-19 2020-09-04 中国科学院宁波材料技术与工程研究所 Molybdenum disulfide/tungsten disulfide multilayer tantalum-doped thin film and preparation method and application thereof
CN111621745B (en) * 2020-01-19 2021-10-26 中国科学院宁波材料技术与工程研究所 Molybdenum disulfide/tungsten disulfide multilayer tantalum-doped thin film and preparation method and application thereof
US11685986B2 (en) 2020-01-19 2023-06-27 Ningbo Institute Of Materials Technology & Engineering, Chinese Academy Of Sciences Tantalum-doped molybdenum disulfide/tungsten disulfide multi-layer film as well as preparation method and use thereof

Similar Documents

Publication Publication Date Title
Curry et al. Achieving ultralow wear with stable nanocrystalline metals
KR101519971B1 (en) Gas sensor and method for manufacturing the same
CN109504945B (en) Long-acting antibacterial solid lubricating film layer for space environment and preparation method thereof
WO2017163807A1 (en) Coating film, method for manufacturing same, and pvd apparatus
US10457885B2 (en) Coating film, manufacturing method for same, and PVD device
US10428416B2 (en) Coating film, manufacturing method for same, and PVD device
Panjan et al. Surface density of growth defects in different PVD hard coatings prepared by sputtering
Stuckert et al. Ar/O2 and H2O plasma surface modification of SnO2 nanomaterials to increase surface oxidation
JP2007063452A (en) Solid lubricating film and solid lubricating bearing
Vlček et al. Influence of nitrogen–argon gas mixtures on reactive magnetron sputtering of hard Si–C–N films
Penate-Quesada et al. Non-linear electronic transport in Pt nanowires deposited by focused ion beam
JP6453826B2 (en) Sliding member and manufacturing method thereof
Saringer et al. Influence of discharge power and bias potential on microstructure and hardness of sputtered amorphous carbon coatings
Cumpson et al. Stability of reference masses III: mechanism and long-term effects of mercury contamination on platinum-iridium mass standards
Jensen et al. Ge nanocrystals in magnetron sputtered SiO 2
Khadem et al. Ultralow Macroscale Friction and Wear of MoS2 in High‐Vacuum Through DC Pulsing Optimization, Nitridization, and Sublayer Engineering
Klimovich et al. Influence of Parameters of Reactive Magnetron Sputtering on Tribomechanical Properties of Protective Nanostructured Ti–Al–N Coatings
Gotoh et al. Formation and control of stoichiometric hafnium nitride thin films by direct sputtering of hafnium nitride target
Rudenkov et al. The phase composition and structure of silicon-carbon coatings
Valikov et al. Modification of the cylindrical products outer surface influenced by radial beam of argon ions at automatic mode
JP2002276667A (en) Manufacturing method for rolling element
Gupta et al. Ferromagnetism in a diamond-like carbon film after nickel implantation
KR101713423B1 (en) Manufacturing method of low frictional coating film for member of mechanical unit
JP2008174653A (en) Rolling element
JP2007303574A (en) Rolling element