JP2007063085A - Calcium carbonate composition - Google Patents

Calcium carbonate composition Download PDF

Info

Publication number
JP2007063085A
JP2007063085A JP2005253087A JP2005253087A JP2007063085A JP 2007063085 A JP2007063085 A JP 2007063085A JP 2005253087 A JP2005253087 A JP 2005253087A JP 2005253087 A JP2005253087 A JP 2005253087A JP 2007063085 A JP2007063085 A JP 2007063085A
Authority
JP
Japan
Prior art keywords
calcium carbonate
lithium
weight
sintered body
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005253087A
Other languages
Japanese (ja)
Inventor
Shoji Seike
捷二 清家
Akira Seike
晃 清家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005253087A priority Critical patent/JP2007063085A/en
Publication of JP2007063085A publication Critical patent/JP2007063085A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a calcium carbonate sintered compact which is inexpensive, excellent in water resistance, has antibacterial power and adsorbability, and enables an effective utilization of shells or the like. <P>SOLUTION: A calcium carbonate sintered compact and its applied product which are improved in water resistance by appropriately selecting a mixing ratio of a lithium compound and a fluorine compound that are sintering aids for calcium carbonate are obtained. Namely, there are provided a calcium carbonate sintered compact excellent in water resistance and a calcium carbonate sintered compact excellent in water resistance to whose composition an antibacterial agent, an activated carbon, a coloring pigment, aggregate or the like are added. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐水性、特に水に対するリチウム成分の溶出性を改善した炭酸カルシウム焼結体に関するものである。   The present invention relates to a calcium carbonate sintered body having improved water resistance, in particular, elution of a lithium component with respect to water.

炭酸カルシウムの焼結体についての研究報告、特許出願は、例えば、「フッ化リチウム添加カルサイトの常圧焼結中の液相生成」JOUNAL OF THE CERAMIC SOCIETY OF JAPAN ; VOL.110.December 2002 P.1053-1057、特許3419063号「炭酸カルシウムの常圧焼結法」、特許第3050071号「炭酸カルシウム焼結体の製造方法」、特許第3498112号「養殖真珠用合成真珠核及びその製法、特開平9-124379「人造大理石」、特開平11−75608「養殖真珠用人工核お呼びその製造方法」でなされている。これらの報告及び特許出願は炭酸カルシウムにフッ化リチウムなどリチウム化合物を添加することによって、炭酸カルシウムが低温(400〜700℃)で焼結することを見出したことに基づいている。しかし、これらの焼結体は、水に長時間浸漬するとカルシウム、リチウム成分が溶出し、表面がアルカリ性を示すことが判明した。これらの問題を解決する手段として、焼結体の焼結程度をコントロールし、焼結体中に気孔を有する状態として、気孔に樹脂を含浸することが行なわれている。   Research reports and patent applications on sintered calcium carbonate include, for example, “Liquid phase generation during normal pressure sintering of lithium fluoride-added calcite” JOUNAL OF THE CERAMIC SOCIETY OF JAPAN; VOL.110.December 2002 P .1053-1057, Japanese Patent No. 3419063, “Atmospheric Pressure Sintering Method for Calcium Carbonate”, Japanese Patent No. 3050071, “Method for Producing Calcium Carbonate Sintered Body”, Japanese Patent No. 3498112, “Synthetic Pearl Core for Cultured Pearls and Production Method, Kaihei 9-124379 “artificial marble”, Japanese Patent Application Laid-Open No. 11-75608 “Called artificial nuclei for cultured pearls and their manufacturing method”. These reports and patent applications are based on the finding that calcium carbonate is sintered at a low temperature (400 to 700 ° C.) by adding a lithium compound such as lithium fluoride to calcium carbonate. However, it was found that when these sintered bodies were immersed in water for a long time, calcium and lithium components were eluted and the surface was alkaline. As means for solving these problems, the degree of sintering of the sintered body is controlled, and the pores are impregnated with a resin so that the sintered body has pores.

この改善策として、炭酸カルシウムの焼結助剤であるリチウム化合物、フッ素化合物の配合割合を適切に選択することによって、耐水性を改善した炭酸カルシウム焼結体を作成することができる。
特許3419063号 特許第3050071号 特許第3498112号 特開平9−124379号 特開平11−75608号
As an improvement measure, a calcium carbonate sintered body with improved water resistance can be produced by appropriately selecting a blending ratio of a lithium compound and a fluorine compound which are calcium carbonate sintering aids.
Japanese Patent No. 3419063 Patent No. 3050071 Japanese Patent No. 3498112 JP-A-9-124379 JP-A-11-75608

本発明は、安価に耐水性の優れた炭酸カルシウム焼結体を提供することにある。また、それにより、抗菌性焼結体、抗菌性多孔質体、吸着性焼結体、吸着性多孔質体、牡蠣、アコヤガイ、ホタテガイなどの貝殻を有効活用した炭酸カルシウム焼結体を提供するものである。   An object of the present invention is to provide a calcium carbonate sintered body having excellent water resistance at low cost. In addition, it provides an antibacterial sintered body, an antibacterial porous body, an adsorptive sintered body, an adsorbent porous body, a calcium carbonate sintered body that effectively utilizes shells such as oysters, pearl oysters, and scallops. It is.

本発明によれば、炭酸カルシウムの焼結助剤であるリチウム化合物、フッ素化合物の配合割合を適切に選択することによって、耐水性を改善した炭酸カルシウム焼結体を得る。すなわち、炭酸カルシウムと炭酸リチウム、フッ化リチウム及びフッ化ソーダなどの焼結助剤からなる組成において、カルシウム、炭酸塩、リチウム、フッ素及びナトリウムをモル%で表すと、リチウムが0.5モル%以下かつリチウム、フッ素及びナトリウムの合計が0.1モル%以上、5モル%以下である炭酸カルシウム組成物からなる耐水性の優れていることを特徴とする炭酸カルシウム焼結体及びこれらの組成物100重量部に対して、抗菌剤の配合量が0.2重量部以上15重量部以下、活性炭、着色顔料、骨材などの配合物が40重量部以上、120重量部以下である組成物からなり、耐水性の優れていることを特徴とする炭酸カルシウム焼結体を提供する。   According to the present invention, a calcium carbonate sintered body with improved water resistance is obtained by appropriately selecting the blending ratio of a lithium compound and a fluorine compound, which are calcium carbonate sintering aids. That is, in a composition comprising a sintering aid such as calcium carbonate and lithium carbonate, lithium fluoride and sodium fluoride, when calcium, carbonate, lithium, fluorine and sodium are expressed in mol%, lithium is 0.5 mol%. And a calcium carbonate sintered body characterized by having excellent water resistance comprising a calcium carbonate composition in which the total of lithium, fluorine and sodium is not less than 0.1 mol% and not more than 5 mol%, and these compositions From the composition in which the blending amount of the antibacterial agent is 0.2 parts by weight or more and 15 parts by weight or less and the blend of activated carbon, coloring pigment, aggregate, etc. is 40 parts by weight or more and 120 parts by weight or less with respect to 100 parts by weight. Thus, a calcium carbonate sintered body characterized by excellent water resistance is provided.

本発明の炭酸カルシウム焼結体は、耐水性に優れており、かつ低温(700℃以下)で焼結できることから、一般の陶磁器の代替製品を効率的に作成できることと併せて、抗菌性、活性炭の吸着性、光触媒などの機能を有する焼結体の作成や気孔率を調整した多孔質体の作成を可能にし、安価に、また、低エネルギーで、これらの機能を有する焼結体の作成を可能にするものであり、産業に貢献するところは大きい。   Since the calcium carbonate sintered body of the present invention is excellent in water resistance and can be sintered at a low temperature (700 ° C. or less), it can be effectively produced as an alternative to general ceramics, and has antibacterial properties and activated carbon. This makes it possible to create a sintered body having functions such as adsorption and photocatalyst and a porous body with adjusted porosity, and to produce a sintered body having these functions at low cost and with low energy. It is possible, and there is a great contribution to industry.

本発明の炭酸カルシウム焼結体は、炭酸カルシウムと炭酸リチウムやフッ化リチウムなどのリチウム化合物とフッ化カルシウム、フッ化ナトリウムなどのフッ素化合物を混合して焼成することによって得られる。   The calcium carbonate sintered body of the present invention can be obtained by mixing and firing calcium carbonate, a lithium compound such as lithium carbonate and lithium fluoride, and a fluorine compound such as calcium fluoride and sodium fluoride.

炭酸カルシウム原料は、純度が高く、微粒の軽質炭酸カルシウムを使用できるが、天然鉱物である石灰石を粉砕した重質炭酸カルシウムや牡蠣やアコヤガイ、ホタテガイなどの貝殻を粉砕した炭酸カルシウム原料を使用することができる。   The calcium carbonate raw material has high purity and can use fine light calcium carbonate, but it should use heavy calcium carbonate obtained by grinding limestone, a natural mineral, and calcium carbonate raw material obtained by grinding shells such as oysters, pearl oysters, and scallops. Can do.

炭酸カルシウム焼結体の耐水性は、焼結体を長時間、水に浸漬しておくとカルシウム成分、リチウム成分が水中に溶出する現象である。種々の実験から、焼結体の焼結が不十分である場合に、カルシウム成分が溶出し、焼結に必要な量より過剰なリチウム成分を配合するとリチウム成分が溶出しやすくなる傾向にあることが分かった。また、炭酸カルシウムは、1気圧の炭酸ガス雰囲気での分解温度824℃より低い温度でも、大気中では分解が進行し、焼結体の表面に酸化カルシウムが生成し、水と反応して、潮解あるいは溶解する。酸化カルシウムが生成しないためには、大気中では700℃以下で焼成する必要がある。   The water resistance of the calcium carbonate sintered body is a phenomenon in which the calcium component and the lithium component are eluted in water when the sintered body is immersed in water for a long time. From various experiments, when the sintered body is not sufficiently sintered, the calcium component is eluted, and if an excess lithium component is added in an amount necessary for sintering, the lithium component tends to be easily eluted. I understood. In addition, calcium carbonate decomposes in the atmosphere even at a temperature lower than 824 ° C. in a carbon dioxide gas atmosphere of 1 atm, calcium oxide is generated on the surface of the sintered body, reacts with water, and is deliquescent. Or it dissolves. In order not to produce calcium oxide, it is necessary to bake at 700 ° C. or lower in the air.

炭酸リチウム、フッ化リチウム、フッ化カルシウム、フッ化ソーダは炭酸カルシウムの焼結助剤として作用する。炭酸リチウム、フッ化リチウムの配合割合が多くなると、炭酸カルシウム焼成体中の遊離したリチウム成分が多くなり、炭酸カルシウム焼結体のリチウム成分の溶出量が多くなる。配合物をカルシウム、リチウム、炭酸塩、フッ素、ナトリウムをモル%で表すと、リチウムモル%が0.5%以下であるとリチウム溶出量が小さくなることを確認した。   Lithium carbonate, lithium fluoride, calcium fluoride, and sodium fluoride act as a calcium carbonate sintering aid. When the blending ratio of lithium carbonate and lithium fluoride increases, the liberated lithium component in the calcium carbonate fired body increases, and the amount of lithium component eluted from the calcium carbonate sintered body increases. When the blend was expressed by mol% of calcium, lithium, carbonate, fluorine, and sodium, it was confirmed that the lithium elution amount was small when the lithium mol% was 0.5% or less.

リチウム含有量とフッ素含有量の合計が0.1モル%以上、5.0モル%以下であることが必要な理由は、0.1モル%未満である場合は十分緻密な焼結体が得られず、機械的な強度が発現できないためである。同じく、5.0モル%以下であることが必要な理由は5.0モル%越えると焼結体が発泡し、あるいは、緻密な焼結体を得られないためである。炭酸リチウムやフッ化リチウムは、焼結助剤としての効果は大きいが、これらを多く使用すると、結果的に焼結体中にリチウム含有量が多くなり焼結に必要以上のリチウム成分は耐水性に悪い影響を与える。フッ化カルシウムは、焼結助剤としての効果は小さいものの、耐水性を悪くする効果は少なく、したがって、焼結性を確保するためには、リチウム含有量とフッ素含有量の最適割合を見極めることが重要であることが判明した。   The reason why the total lithium content and fluorine content must be 0.1 mol% or more and 5.0 mol% or less is that when the content is less than 0.1 mol%, a sufficiently dense sintered body can be obtained. This is because the mechanical strength cannot be expressed. Similarly, the reason why it is necessary to be 5.0 mol% or less is that if it exceeds 5.0 mol%, the sintered body is foamed or a dense sintered body cannot be obtained. Lithium carbonate and lithium fluoride have a great effect as a sintering aid, but if they are used in large quantities, the lithium content in the sintered body will increase, resulting in water resistance of lithium components that are more than necessary for sintering. Negatively impacts. Calcium fluoride has little effect as a sintering aid, but has little effect on water resistance. Therefore, in order to ensure sinterability, determine the optimum ratio of lithium content and fluorine content. Turned out to be important.

炭酸カルシウムの焼結は、必ずしも、気孔率がゼロになるまで完全に焼結するものではない。例えば、フィルターとして使用する場合には、焼成温度を調整することによって、あるいは、でんぷん、カーボン、増孔材などの可燃性粉体を混合することによって、気孔率を調整し、通気性、通水性を製品に適した範囲に調整することができる。   The sintering of calcium carbonate does not necessarily sinter completely until the porosity is zero. For example, when used as a filter, the porosity is adjusted by adjusting the calcination temperature or by mixing flammable powders such as starch, carbon and pore expander, and the air permeability and water permeability. Can be adjusted to a range suitable for the product.

本発明の炭酸カルシウム焼結体は、700℃以下の温度で焼結できるため、抗菌材あるいは珪藻土、ゼオライト、活性炭などの多孔質体の機能を焼成中に失う程度が少ない。炭酸カルシウムおよび焼結助剤にこれらの材料を配合し、焼成することによって、これらの機能を有する焼結体を簡単に得ることができる。   Since the calcium carbonate sintered body of the present invention can be sintered at a temperature of 700 ° C. or less, the degree of loss of the function of the antibacterial material or the porous body such as diatomaceous earth, zeolite, activated carbon or the like during firing is small. By blending these materials into calcium carbonate and a sintering aid and firing, a sintered body having these functions can be easily obtained.

抗菌材は銀系のもの、銅系のもの、その他のものの使用が可能である。配合量を炭酸カルシウム配合物に対して、0.2重量部から15重量部とした理由は、0.2重量部以下では十分な抗菌作用が得られないためであり、15重量部以下とした理由は、15重量部を越えるとでは、配合量が多くなる効果は得られず、コスト高になるためである。   Antibacterial materials can be silver-based, copper-based, and others. The reason why the blending amount is 0.2 to 15 parts by weight with respect to the calcium carbonate blend is that a sufficient antibacterial action cannot be obtained at 0.2 parts by weight or less, and is 15 parts by weight or less. The reason is that if it exceeds 15 parts by weight, the effect of increasing the blending amount cannot be obtained and the cost is increased.

多孔質体は珪藻土、ゼオライト、活性炭のほかに、スメクタイト、ホルマイト、パーライト、アロフェンなどの天然鉱物が使用できる。ゼオライトは、天然鉱物を粉砕したものや人工的に合成したものが使用できる。これらの多孔質体の配合量を、炭酸カルシウム配合物に対して、40重量部から120重量部とした理由は、40重量部未満では、多孔質体の効果が小さく、120重量部を越えると炭酸カルシウム配合物が相対的に少なくなり、十分な強度が得られないためである。   As the porous material, natural minerals such as smectite, holmite, perlite, and allophane can be used in addition to diatomaceous earth, zeolite, and activated carbon. As the zeolite, natural mineral crushed or artificially synthesized can be used. The reason for setting the amount of these porous bodies to 40 parts by weight to 120 parts by weight with respect to the calcium carbonate compound is that if the amount is less than 40 parts by weight, the effect of the porous body is small, and if it exceeds 120 parts by weight This is because the calcium carbonate compound is relatively reduced and sufficient strength cannot be obtained.

炭酸カルシウム原料と炭酸リチウム、フッ化リチウム、フッ化ナトリウム及びフッ化カルシウムを表1に示す配合割合に配合し、水分を5重量%、バインダーとしてメチルセルロースを1重量%相当配合して、金型プレスで、5KM/cmの荷重で、直径40mm、厚さ約5mmの成形体を作成した。炭酸カルシウムは矢橋工業株式会社製軽質炭酸カルシウム:カルピーンY 、炭酸リチウムは本荘ケミカル株式会社製炭酸リチウム(工業原料)、フッ化リチウムは本荘ケミカル株式会社製フッ化リチウム(工業原料)、フッ化カルシウムは株式会社ジェコム製フッ化カルシウム(工業原料)、フッ化ナトリウムは株式会社カーク製試薬1級、メチルセルロースは株式会社カーク製試薬メチルセルロース4000cpsを使用した。成形後乾燥をした試料を、大気中で100℃/時間で昇温、最高温度560℃で1時間保持、以降放冷する焼成スケジュールで焼成した。焼結程度を評価する手段として、JIS法によって吸水率を測定した。耐水性を表する手段として、焼成した試料をプラスチック容器に入れ、純水100gの中に浸漬し、30℃の高温槽で10日間浸漬し、PHの測定, カルシウム、リチウムの溶出量の定量分析(原子吸光法)を行なった。その結果を表1に示す。その結果、本特許の方法に基づく試料は、PHの変化は小さいものであり、溶出成分が小さいことが判明した。比較として実施した本特許の範囲外の方法で作成した試料は、試料の重量減少が認められ、PHの変化、溶出成分が検出された。比較として行なった試料No.8はリチウム成分の溶出が検出され好ましくない。結果表で、モル%に記載以外の成分は炭酸塩である。trは分析限界以下の数値であることを示す。試験に使用した純水のPHは6.8である。 Calcium carbonate raw material and lithium carbonate, lithium fluoride, sodium fluoride and calcium fluoride are mixed in the mixing ratio shown in Table 1, 5% by weight of water, 1% by weight of methylcellulose as a binder, and die press Thus, a molded body having a diameter of 40 mm and a thickness of about 5 mm was prepared with a load of 5 KM / cm 2 . Calcium carbonate is manufactured by Yabashi Kogyo Co., Ltd. Light calcium carbonate: Calpin Y, Lithium carbonate is manufactured by Honjo Chemical Co., Ltd. lithium carbonate (industrial raw material), Lithium fluoride is manufactured by Honjo Chemical Co., Ltd. lithium fluoride (industrial raw material), calcium fluoride Used calcium fluoride (industrial raw material) manufactured by Gecom Co., Ltd., sodium fluoride used the first grade reagent made by Kirk Co., Ltd., and methylcellulose used the reagent methylcellulose 4000 cps made by Kirk Co., Ltd. The sample dried after molding was heated in the atmosphere at a temperature of 100 ° C./hour, held at the maximum temperature of 560 ° C. for 1 hour, and then fired on a firing schedule for cooling. As a means for evaluating the degree of sintering, water absorption was measured by the JIS method. As a means of expressing water resistance, put the baked sample in a plastic container, immerse it in 100 g of pure water, immerse it in a high-temperature bath at 30 ° C for 10 days, measure PH, and quantitatively analyze the elution amount of calcium and lithium. (Atomic absorption method) was performed. The results are shown in Table 1. As a result, it was found that the sample based on the method of this patent has a small change in PH and a small amount of eluted components. As a comparison, a sample prepared by a method outside the scope of this patent showed a decrease in the weight of the sample, and a change in PH and an elution component were detected. Sample No. 8 performed as a comparison is not preferable because elution of the lithium component is detected. In the result table, the components other than those described in mol% are carbonates. tr indicates a numerical value that is less than the analysis limit. The pH of pure water used in the test is 6.8.

Figure 2007063085
Figure 2007063085

炭酸カルシウム97.9重量%と炭酸リチウム0.1重量%、フッ化リチウム1.0重量%及びフッ化カルシウム1.0重量%の配合物(試験No.3の配合組成)を100重量部とし、抗菌材料を表2に示す割合に配合し、水分5%、バインダーとしてメチルセルロースを1%相当配合して、金型プレスで、5KN/cmの荷重で、直径40mm、厚さ約5mmの成形体を作成した。抗菌材は東亜合成株式会社製ノバロンAG300を使用した。成形後乾燥した試料を実施例1と同じ焼成条件で焼成を行なったが、最高温度は試料の吸水率による効果の違いを見る目的で、460℃と520℃とした。各試料について、配合割合、最高温度、吸水率、耐水試験結果及び抗菌試験結果を表2に示した。抗菌試験結果の○印は、大腸菌、黄色ブドウ球菌の増加は認められず良好な結果であることを示す。 100 parts by weight of 97.9% by weight of calcium carbonate, 0.1% by weight of lithium carbonate, 1.0% by weight of lithium fluoride and 1.0% by weight of calcium fluoride (composition of test No. 3) The antibacterial material was blended in the proportions shown in Table 2, 5% moisture, 1% methyl cellulose as the binder was blended, and molded with a die press with a diameter of 40 mm and a thickness of about 5 mm at a load of 5 KN / cm 2. Created the body. The antibacterial material used was Toa Gosei Co., Ltd. Novalon AG300. The sample dried after molding was fired under the same firing conditions as in Example 1, but the maximum temperature was set to 460 ° C. and 520 ° C. in order to see the difference in effect due to the water absorption rate of the sample. Table 2 shows the blending ratio, maximum temperature, water absorption rate, water resistance test results, and antibacterial test results for each sample. The ◯ marks in the antibacterial test results indicate that the increase in Escherichia coli and Staphylococcus aureus is not observed, which is a good result.

Figure 2007063085
Figure 2007063085

炭酸カルシウム96.5重量%とフッ化リチウム0.5重量%、フッ化カルシウム3重量%の配合物(試験No.1の配合組成)を100重量部とし、抗菌材ノバロンAG300を10重量部、増孔材炭素を10重量部、水分5重量%、バインダーとしてメチルセルロースを1重量%相当配合して、金型プレス成形で、40KNの荷重で、直径100mm、厚さ約2mmの成形体を作成した。乾燥後、480℃まで、150℃/時で昇温し、480℃で3時間保持し、さらに100℃/時で560℃まで昇温し、560℃で1時間保持し、放冷し、焼結体を得た(試験No.14)。この試料の吸水率は32%、20℃における水の透過性は38m/時・m・バールである多孔体を得た。素地に抗菌材を含み、気孔の状態をコントロールしたセラミックフィルター円盤を得た。形状は、機器の形状に合わせて、直方体形、円筒形などに作成することができる。 100 parts by weight of 96.5% by weight of calcium carbonate, 0.5% by weight of lithium fluoride and 3% by weight of calcium fluoride (composition composition of test No. 1), 10 parts by weight of antibacterial material Novalon AG300, A molded body having a diameter of 100 mm and a thickness of about 2 mm was prepared by a die press molding at a load of 40 KN by blending 10 parts by weight of a pore-forming material carbon, 5% by weight of water, and 1% by weight of methylcellulose as a binder. . After drying, the temperature is raised to 480 ° C. at 150 ° C./hour, held at 480 ° C. for 3 hours, further raised to 560 ° C. at 100 ° C./hour, held at 560 ° C. for 1 hour, allowed to cool, and then fired. A ligation was obtained (Test No. 14). A porous body having a water absorption rate of 32% and water permeability at 20 ° C. of 38 m 3 / hour · m 2 · bar was obtained. A ceramic filter disk containing an antibacterial material in the substrate and controlling the state of the pores was obtained. The shape can be created in a rectangular parallelepiped shape, a cylindrical shape or the like according to the shape of the device.

炭酸カルシウム97.9重量%、炭酸リチウム0.1重量%、フッ化カルシウム1.0重量%、フッ化ナトリウム1.0重量%の配合物(試験No.7の配合組成)を100重量部とし、活性炭100重量部を配合し、水分重量50%、バインダーとしてメチルセルロースを3重量%相当配合して、石膏型の上に流し込み、80mm角、厚さ約10mmの成形体を作成した。活性炭は日本エンバイロケミカルズ株式会社製白鷺Cを使用した。成形後乾燥した試料を、炭酸ガス雰囲気で、昇温速度100℃/時間で、最高温度460℃まで昇温し、460℃で30分保持し、200℃まで炭酸ガス雰囲気で放冷して焼結体を得た(試験No.15)。焼結体の吸水率は63%で、強度は小さいものの透水性があり、水に浸漬して、焼結体が崩壊することなく維持でき、活性炭の機能を果たした。   100 parts by weight of a blend of 97.9% by weight of calcium carbonate, 0.1% by weight of lithium carbonate, 1.0% by weight of calcium fluoride, and 1.0% by weight of sodium fluoride (composition composition of Test No. 7) Then, 100 parts by weight of activated carbon was blended, 50% by weight of moisture and 3% by weight of methylcellulose as a binder were blended, and poured onto a plaster mold to prepare a molded body having an 80 mm square and a thickness of about 10 mm. The activated carbon used was Nippon Enviro Chemicals Co., Ltd. Hakuho C. The sample dried after molding is heated in a carbon dioxide atmosphere at a heating rate of 100 ° C./hour up to a maximum temperature of 460 ° C., held at 460 ° C. for 30 minutes, and then cooled to 200 ° C. in a carbon dioxide atmosphere to be baked. A ligation was obtained (Test No. 15). The sintered body had a water absorption rate of 63% and a small strength but water permeability. The sintered body was immersed in water and could be maintained without collapsing, thereby fulfilling the function of activated carbon.

炭酸カルシウム96.0重量%、フッ化リチウム1.0重量%、フッ化カルシウム3.0重量%の配合物(試験No.5配合組成)100重量部に対して、珪藻土を60重量部、ゼオライトを100重量部各々配合し、試料16、試料17とした。これらの混合物に水分5%、バインダーとしてメチルセルロースを1%相当配合して、金型プレス成形で、40KNの荷重で、直径100mm、厚さ約2mmの成形体を作成した。これらの試料を空気中で100℃/時間で昇温し、650℃で1時間保持する焼成を行なった。これらの試料の吸水率は各々34%、42%で、水に浸漬しても溶解しない程度に焼結した多孔質固化体を得た。   60 parts by weight of diatomaceous earth with respect to 100 parts by weight of a blend of 96.0% by weight of calcium carbonate, 1.0% by weight of lithium fluoride and 3.0% by weight of calcium fluoride (composition composition of test No. 5), zeolite 100 parts by weight of each was blended to make Sample 16 and Sample 17. These mixtures were mixed with 5% moisture and 1% methyl cellulose as a binder, and a molded body having a diameter of 100 mm and a thickness of about 2 mm was prepared by die press molding under a load of 40 KN. These samples were heated in air at a rate of 100 ° C./hour and fired at 650 ° C. for 1 hour. The water absorption of these samples was 34% and 42%, respectively, and porous solidified bodies sintered to such an extent that they did not dissolve even when immersed in water were obtained.

炭酸カルシウム97.0重量%、フッ化カルシウム3.0重量%の配合物100重量部に対して、酸化セリウム30重量部を配合し、試料18。これらの混合物に水分23%、分散材ノプコサント(サンノプコ株式会社製)を0.7%、バインダーとしてバインドセラムWA−310(三井化学株式会社製)を3%相当配合して、直径10mmの球形石膏型に鋳込み成形を行ない、球形試料を作成した。これらの試料を空気中で100℃/時間で昇温し、650℃で1時間保持する焼成を行なった。これらの試料の吸水率は13.4%であった。この試料にエポキシ樹脂XN1233(ナガセエレック株式会社製)のハードナーを混合後、球を入れて真空脱気し、その後、5KN/cmで加圧樹脂含浸を行ない、110℃、1時間で硬化した。この球を素研磨、精密研磨を通して、直径6.9mmに鏡面研磨を行なった。その球の嵩密度は2.81で、吸水性率は1%以下、モース硬度は3であった。この球の100個について養殖試験を行ない、貝殻の核で作成した真珠の結果と変わらない良好な結果が得られた。 Sample 18 was prepared by adding 30 parts by weight of cerium oxide to 100 parts by weight of a mixture of 97.0% by weight of calcium carbonate and 3.0% by weight of calcium fluoride. A spherical gypsum having a diameter of 10 mm is blended with 23% moisture, 0.7% dispersion material Nopco Santo (manufactured by San Nopco Co., Ltd.), and 3% bind bind serum WA-310 (manufactured by Mitsui Chemicals) as a binder. The mold was cast and formed into a spherical sample. These samples were heated in air at a rate of 100 ° C./hour and fired at 650 ° C. for 1 hour. The water absorption rate of these samples was 13.4%. This sample was mixed with a hardener of epoxy resin XN1233 (manufactured by Nagase Elec Co., Ltd.), put in a ball, vacuum degassed, and then impregnated with pressure resin at 5 KN / cm 2 and cured at 110 ° C. for 1 hour. . The sphere was mirror polished to a diameter of 6.9 mm through raw polishing and precision polishing. The sphere had a bulk density of 2.81, a water absorption of 1% or less, and a Mohs hardness of 3. An aquaculture test was conducted on 100 of these spheres, and good results were obtained that were not different from the results of pearls made with shell nuclei.

本発明によれば、炭酸カルシウムの焼結体の耐水性を改善することができ、安価に焼結体がえられるようになった。この焼結体はこれまでの陶磁器の代替になり、また、フィルターなどの工業部材として利用できる。これに、抗菌剤や珪藻土やゼオライトなどの多孔質材料を配合することによって、多孔質体としての利用が可能になり、産業に貢献するところが大きい。
According to the present invention, the water resistance of the sintered body of calcium carbonate can be improved, and the sintered body can be obtained at low cost. This sintered body can replace conventional ceramics and can be used as an industrial member such as a filter. By adding a porous material such as an antibacterial agent, diatomaceous earth, or zeolite to this, it can be used as a porous material and contributes greatly to the industry.

Claims (3)

炭酸カルシウムと炭酸リチウム、フッ化リチウム及びフッ化ソーダなどの焼結助剤からなる組成において、カルシウム、炭酸塩、リチウム、フッ素及びナトリウムをモル%で表現して、リチウムが0.5モル%以下かつリチウム、ナトリウムとフッ素の合計が0.1モル%以上、5モル%以下である炭酸カルシウム組成物からなる耐水性の優れていることを特徴とする炭酸カルシウム焼結体。   In a composition comprising a sintering aid such as calcium carbonate and lithium carbonate, lithium fluoride and sodium fluoride, calcium, carbonate, lithium, fluorine and sodium are expressed in mol%, and lithium is 0.5 mol% or less. A calcium carbonate sintered body characterized by having excellent water resistance comprising a calcium carbonate composition in which the total of lithium, sodium and fluorine is 0.1 mol% or more and 5 mol% or less. 請求項1あるいは請求項3の組成物100重量部に、抗菌材を0.2重量部から15重量部を配合した抗菌性炭酸カルシウム焼結体。   The antibacterial calcium carbonate sintered compact which mix | blended 0.2 to 15 weight part of antibacterial materials with 100 weight part of compositions of Claim 1 or Claim 3. 請求範囲1の組成物100重量部に、珪藻土、ゼオライト、活性炭など多孔質体の1種以上を40重量部から120重量部を配合して、焼成後の吸水率が20から90%である吸着性能を持つ炭酸カルシウム焼結体。
Adsorption wherein 100 to 100 parts by weight of the composition of claim 1 is mixed with 40 to 120 parts by weight of one or more porous bodies such as diatomaceous earth, zeolite and activated carbon, and the water absorption after firing is 20 to 90% Calcium carbonate sintered body with performance.
JP2005253087A 2005-09-01 2005-09-01 Calcium carbonate composition Pending JP2007063085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005253087A JP2007063085A (en) 2005-09-01 2005-09-01 Calcium carbonate composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005253087A JP2007063085A (en) 2005-09-01 2005-09-01 Calcium carbonate composition

Publications (1)

Publication Number Publication Date
JP2007063085A true JP2007063085A (en) 2007-03-15

Family

ID=37925689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005253087A Pending JP2007063085A (en) 2005-09-01 2005-09-01 Calcium carbonate composition

Country Status (1)

Country Link
JP (1) JP2007063085A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017214238A (en) * 2016-05-31 2017-12-07 株式会社白石中央研究所 Production method of calcium carbonate sintered body
JPWO2018155680A1 (en) * 2017-02-27 2019-12-19 株式会社白石中央研究所 High-purity calcium carbonate sintered body and its manufacturing method, and high-purity calcium carbonate porous sintered body and its manufacturing method
JP2020152600A (en) * 2019-03-19 2020-09-24 株式会社白石中央研究所 Sintered body of calcium carbonate, method of producing the same, and bone prosthetic material
EP3587379A4 (en) * 2017-02-27 2021-01-06 Shiraishi Central Laboratories Co. Ltd. Production method of calcium carbonate porous sintered body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017214238A (en) * 2016-05-31 2017-12-07 株式会社白石中央研究所 Production method of calcium carbonate sintered body
WO2017209096A1 (en) * 2016-05-31 2017-12-07 株式会社白石中央研究所 Method for producing calcium carbonate sintered compact
CN109195929A (en) * 2016-05-31 2019-01-11 株式会社白石中央研究所 The manufacturing method of calcium carbonate sintered body
JPWO2018155680A1 (en) * 2017-02-27 2019-12-19 株式会社白石中央研究所 High-purity calcium carbonate sintered body and its manufacturing method, and high-purity calcium carbonate porous sintered body and its manufacturing method
EP3587379A4 (en) * 2017-02-27 2021-01-06 Shiraishi Central Laboratories Co. Ltd. Production method of calcium carbonate porous sintered body
US11097987B2 (en) 2017-02-27 2021-08-24 Shiraishi Central Laboratories Co. Ltd. Production method of calcium carbonate porous sintered body
JP7048055B2 (en) 2017-02-27 2022-04-05 株式会社白石中央研究所 High-purity calcium carbonate sintered body and its manufacturing method, and high-purity calcium carbonate porous sintered body and its manufacturing method
JP2020152600A (en) * 2019-03-19 2020-09-24 株式会社白石中央研究所 Sintered body of calcium carbonate, method of producing the same, and bone prosthetic material
JP7330484B2 (en) 2019-03-19 2023-08-22 株式会社白石中央研究所 Calcium carbonate sintered body and bone filling material

Similar Documents

Publication Publication Date Title
Vu et al. Humidity control materials prepared from diatomite and volcanic ash
JP6419705B2 (en) Antibacterial porous ceramic tile and manufacturing method thereof
Kong et al. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures
JP5066766B2 (en) Geopolymer high-strength cured product containing calcined kaolin as active filler and method for producing the same
KR20100085112A (en) Method of preparing a controlled porosity geopolymer, the resulting geopolymer and the various applications thereof
CN104402519A (en) Microcrystal and bamboo charcoal composite pottery material and preparation method thereof
JP2007063085A (en) Calcium carbonate composition
Jing et al. Hydrothermal synthesis of mesoporous materials from diatomaceous earth
JP2007063084A (en) Diatom earth solidified body and solidifying method
JP2007063083A (en) Zeolite solidified body and solidifying method
WO2011110965A1 (en) Humidity regulating material and production method thereof
JP2007070172A (en) Activated carbon compact, and compacting method
JP3212588B1 (en) Humidity control building material having deodorizing function and method for producing the same
EA005771B1 (en) Lightweight, heat insulating, high mechanical strength shaped product and method of producing the same
Yu et al. Experimental research of cement mortar with incorporated lauric acid/expanded perlite phase-change materials
Tognonvi et al. Durability of tubular geopolymer reinforced with silica sand
KR20120093797A (en) Porous ceramic media for microbes by sawdust and method of manufacturing the same
JP2007070171A (en) Natural porous solidified body, and solidifying method
KR100798748B1 (en) Manufacturing method of transparent ceramic filter for environmental purification
JP2016078017A (en) Gas adsorbent, gas adsorption molded body and method for producing the gas adsorbent
JP4774752B2 (en) Humidity control molded body and manufacturing method thereof
JP2002029804A (en) Humidity control building material
KR20110100491A (en) Porous ceramic media for microbes by sawdust and method of manufacturing the same
JP2002012467A (en) Humidity conditioning building material
JP6320872B2 (en) Hollow particles and thermal insulation containing hollow particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20081014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080930

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20090512