JP2007062338A - Shaping method of tubular member - Google Patents

Shaping method of tubular member Download PDF

Info

Publication number
JP2007062338A
JP2007062338A JP2005255224A JP2005255224A JP2007062338A JP 2007062338 A JP2007062338 A JP 2007062338A JP 2005255224 A JP2005255224 A JP 2005255224A JP 2005255224 A JP2005255224 A JP 2005255224A JP 2007062338 A JP2007062338 A JP 2007062338A
Authority
JP
Japan
Prior art keywords
prepreg
mold
core material
cavity
tubular member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005255224A
Other languages
Japanese (ja)
Other versions
JP4729370B2 (en
Inventor
Kentaro Shima
健太郎 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2005255224A priority Critical patent/JP4729370B2/en
Publication of JP2007062338A publication Critical patent/JP2007062338A/en
Application granted granted Critical
Publication of JP4729370B2 publication Critical patent/JP4729370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of integrally shaping a tubular member (a composite tube) having a tube with a small diameter on the inner wall of a tube with a large diameter, which is used for a complicated and advanced robot arm and the like. <P>SOLUTION: The shaping method of the tubular member comprises steps for placing a fiber-reinforced prepreg sheet along the inner surface of a cavity of a tubular mold, arranging a core material the outer periphery of which is covered with a prepreg on the inner surface of the prepreg sheet, applying a rigid foaming material on the core material to fill a space between the core material and the inner surface of the prepreg sheet with, inserting an expandable bag in the cavity of the tubular mold, then making the prepreg tightly contact with the mold for curing by expanding the expandable bag in the cavity and heating, and pulling out the core material after curing the prepreg. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、繊維強化樹脂(FRP)製の管状部材、更に詳しくは、大径の管の内壁に前記管より小径の管を有する管状部材を一体成形する方法に関する。 The present invention relates to a tubular member made of fiber reinforced resin (FRP), and more particularly to a method of integrally forming a tubular member having a tube having a smaller diameter than the tube on the inner wall of a large diameter tube.

一般に、FRP製の管状体は、マンドレルに繊維強化プリプレグを巻き付けて加熱硬化する方法、筒状の金型の内面に敷設したプリプレグを、膨張バッグを用いて型の内側から加圧した状態で加熱硬化する内圧成形法等により製造される。しかし、例えば、ロボットアーム等に用いられる、管状体内壁にその管状体の内径より小さい径の管を配置した管状部材を、一体成形することは、いずれの方法でも困難である。 In general, a tubular body made of FRP is heated in a state where a fiber reinforced prepreg is wrapped around a mandrel and heated and cured, and a prepreg laid on the inner surface of a cylindrical mold is pressed from the inside of the mold using an expansion bag. Manufactured by an internal pressure molding method for curing. However, for example, it is difficult to integrally form a tubular member used for a robot arm or the like in which a tube having a diameter smaller than the inner diameter of the tubular body is arranged on the tubular body wall.

ロボットアーム、例えば、コンパクトディスク等の加工製品の着脱を行うロボットアームは、FRPからなる中空のアーム内に配置した真空配管を利用して、製品を真空吸着することにより製品の着脱を行っている。そして、かかる真空吸着を行うロボットアームは、従来は、アーム本体と真空配管とを一体成形することができないため、以下の手順で製造されている。即ち、中空のアーム本体を内圧成形法等により成形した後、ロボットに取り付ける固定端側と作業を行う自由端側の2箇所に、機械加工により貫通孔を加工し、真空チューブ等の管を一方の貫通孔から他方の貫通孔へ通すことにより、真空配管をアーム内部に形成していた。 A robot arm, for example, a robot arm that attaches or detaches a processed product such as a compact disk, attaches or detaches the product by vacuum suction using a vacuum pipe disposed in a hollow arm made of FRP. . Conventionally, a robot arm that performs such vacuum suction cannot be integrally formed with an arm main body and a vacuum pipe, and is manufactured by the following procedure. That is, after forming the hollow arm body by the internal pressure molding method, etc., the through holes are machined in two places, the fixed end side to be attached to the robot and the free end side where the work is performed, and a tube such as a vacuum tube is A vacuum pipe was formed inside the arm by passing it from one through hole to the other through hole.

内圧成形法によって、ロボットアームを一体成形する方法も、比較的最近提案されている(特許文献1と2参照)。これらの方法によると、大径管の内壁に小径管を有する複合管状体が一体成形できるので、製造コストを低くできるというメリットがある。しかしながら、最近は、ロボットアームとして、大径管の内壁に複数の小径管が配置されたり、配置の仕方がより複雑なものも要求されるようになっており、かかる場合には、膨張バッグによる押圧が不十分となり易く、さらなる成形法の改良が望まれている。
特開2005−111772号公報 特開2005−111773号公報
A method of integrally forming a robot arm by an internal pressure forming method has also been proposed relatively recently (see Patent Documents 1 and 2). According to these methods, a composite tubular body having a small-diameter pipe can be integrally formed on the inner wall of the large-diameter pipe, so that there is an advantage that the manufacturing cost can be reduced. However, recently, as a robot arm, a plurality of small-diameter pipes are arranged on the inner wall of a large-diameter pipe, or a more complicated arrangement is required. The pressing tends to be insufficient, and further improvement of the molding method is desired.
JP 2005-111772 A JP 2005-111773 A

本発明の課題は、複雑・高度なロボットアーム等に使用される、大径管の内壁に小径管を有する管状部材(複合管状体)を、一体成形する方法を提供することにある。 An object of the present invention is to provide a method for integrally forming a tubular member (composite tubular body) having a small-diameter pipe on the inner wall of a large-diameter pipe, which is used for a complex and advanced robot arm or the like.

本発明のうち請求項1記載の発明は、筒状の金型のキャビティ内表面に沿ってシート状の繊維強化プリプレグを敷設し、このシート状プリプレグ内表面に、外周がプリプレグで被覆された芯材を配置すると共に、この芯材を覆う様に硬質発泡材を付着させシート状プリプレグ内表面との間隙を充填し、次いで、前記筒状の金型のキャビティ内に膨張バッグを挿入し、その後、キャビティ内で膨張バッグを膨張させると共に型内を加熱することによりプリプレグを型に密着させて硬化させ、プリプレグ硬化後に芯材を抜き取ることを特徴とする管状部材の成形方法である。 The invention according to claim 1 of the present invention is a core in which a sheet-like fiber reinforced prepreg is laid along the cavity inner surface of a cylindrical mold, and the outer periphery of the sheet-like prepreg inner surface is covered with the prepreg. In addition to placing the material, a hard foam material is attached so as to cover the core material to fill the gap with the inner surface of the sheet-like prepreg, and then an expansion bag is inserted into the cavity of the cylindrical mold, A method for forming a tubular member comprising inflating an inflatable bag in a cavity and heating the inside of the mold so that the prepreg adheres to the mold and is cured, and the core material is extracted after the prepreg is cured.

請求項2記載の発明は、外周がプリプレグで被覆された芯材が、複数配置されていることを特徴とする請求項1記載の管状部材の成形方法である。 A second aspect of the present invention is the method for forming a tubular member according to the first aspect, wherein a plurality of cores whose outer circumferences are covered with a prepreg are arranged.

請求項3記載の発明は、筒状の金型に複数の孔が穿孔されており、外周がプリプレグで被覆された芯材が、該孔を通してキャビティ内に張設されていることを特徴とする請求項1又は2記載の管状部材の成形方法である。 The invention described in claim 3 is characterized in that a plurality of holes are perforated in a cylindrical mold, and a core material whose outer periphery is covered with a prepreg is stretched in the cavity through the holes. It is a shaping | molding method of the tubular member of Claim 1 or 2.

請求項4記載の発明は、硬質発泡材が、硬質発泡ウレタンである請求項1〜3のいずれか1項記載の管状部材の成形方法である。 Invention of Claim 4 is a shaping | molding method of the tubular member of any one of Claims 1-3 whose hard foam material is hard foaming urethane.

そして、請求項5記載の発明は、芯材が中空シリコンチューブにシラスコンゴムを流し込んだものである請求項1〜4のいずれか1項記載の管状部材の成形方法である。 The invention according to claim 5 is the method for forming a tubular member according to any one of claims 1 to 4, wherein the core material is made by pouring shirasukon rubber into a hollow silicon tube.

本発明によれば、大径管の内壁に複数の小径管を有する管状部材(複合管状体)、あるいは大径管の内壁に複雑に配置された小径管を有する管状部材が一体成形できる。従って、ロボットアームを製造する場合には、従来のようにアーム成形後に機械加工を行って真空配管を取付する必要がないため、製造コストを低くできる。 According to the present invention, a tubular member (composite tubular body) having a plurality of small diameter tubes on the inner wall of the large diameter tube, or a tubular member having small diameter tubes arranged in a complicated manner on the inner wall of the large diameter tube can be integrally formed. Therefore, when manufacturing a robot arm, since it is not necessary to perform machining after arm formation and to attach a vacuum pipe as in the prior art, the manufacturing cost can be reduced.

本発明者は、通常用いるシート状の繊維強化プリプレグに加えて、外周がプリプレグで被覆された芯材を、中空型のキャビティ内に配置して内圧成形を行うことにより、大径管の内壁に小径管を有する複合管状体が一体成形できること、そして、その際、このプリプレグで被覆された芯材の全体を覆う様に、硬質発泡材を付着させて、シート状プリプレグ内表面との間隙を充填することによって、容易に所望の管状部材が一体成形できることを見出したものである。 In addition to the sheet-like fiber reinforced prepreg that is usually used, the present inventor has placed a core material whose outer periphery is covered with a prepreg in a hollow cavity and performs internal pressure molding on the inner wall of the large-diameter pipe. A composite tubular body having a small diameter tube can be integrally molded, and at that time, a hard foam material is attached so as to cover the entire core material covered with this prepreg, and the gap between the inner surface of the sheet-like prepreg is filled. Thus, it has been found that a desired tubular member can be easily formed integrally.

本発明は、筒状の金型のキャビティ内表面に沿ってシート状の繊維強化プリプレグを敷設し、このシート状プリプレグ内表面に、外周がプリプレグで被覆された芯材を1本又は2本以上配置すると共に、このプリプレグで被覆された芯材を覆う様に、硬質発泡材を付着させ、シート状プリプレグ内表面との間隙を充填し、次いで、前記筒状の金型のキャビティ内に膨張バッグを挿入する。そして、その後、膨張バッグをキャビティ内で膨張させると共に、型内を加熱することによりプリプレグ全体を型に密着させて硬化させる。そして、全部のプリプレグが硬化した後に、芯材を抜き取るものである。その際、膨張バッグも同時に取り除いても良く、場合によっては、膨張バッグは取り除かずにそのままキャビティ内に残しておいても良い。 In the present invention, a sheet-like fiber reinforced prepreg is laid along the inner surface of a cavity of a cylindrical mold, and one or more cores whose outer periphery is coated with the prepreg on the inner surface of the sheet-like prepreg. A hard foam material is attached so as to cover the core material coated with the prepreg, and a gap with the inner surface of the sheet-like prepreg is filled, and then an expansion bag is placed in the cavity of the cylindrical mold Insert. Thereafter, the inflatable bag is inflated in the cavity, and the inside of the mold is heated so that the entire prepreg is brought into close contact with the mold and cured. And after all the prepregs harden | cure, a core material is extracted. At that time, the inflatable bag may be removed at the same time. In some cases, the inflatable bag may be left in the cavity without being removed.

本発明の筒状の金型とは、特に型形状に制限は無いが、典型的には、上型と下型からなり内圧成形法で管状(中空状)のFRP部材を成形し得るものを意味する。内圧成形法は公知の成形方法であり、成形型である筒状の金型のキャビティ内にプリプレグ等の成形素材を配置し、これを筒の内側から圧力を与えて金型に密着させた状態にて加熱硬化させる方法である。圧力を加える手段として、ナイロンやシリコンゴムのような可撓性があり且つ耐熱性に優れた材料で形成した膨張バッグ(圧力バッグ)を用い、これを成形素材の中心に挿入・配置しバッグ内に加圧媒体を送り込んでバッグを膨張させ、成形素材を金型内面に押し付けて加熱成形する方法である。 The cylindrical mold of the present invention is not particularly limited in the shape of the mold, but typically, it is composed of an upper mold and a lower mold that can form a tubular (hollow) FRP member by an internal pressure molding method. means. The internal pressure molding method is a known molding method, in which a molding material such as a prepreg is placed in a cavity of a cylindrical mold that is a molding die, and this is in close contact with the mold by applying pressure from the inside of the cylinder. It is the method of heat-hardening with. As a means of applying pressure, an inflatable bag (pressure bag) made of a flexible and heat-resistant material such as nylon or silicone rubber is used, and this is inserted and placed in the center of the molding material. In this method, the pressure medium is fed into the bag to expand the bag, and the molding material is pressed against the inner surface of the mold to perform heat molding.

本発明においては、外周がプリプレグで被覆された芯材を用いる。ここで用いるプリプレグは、金型のキャビティ内表面に敷設したものと同じシート状の繊維強化プリプレグであつても良いし、あるいは、その他のプリプレグ、例えば、筒状に編んだ強化繊維に樹脂を含浸させたプリプレグであっても良い。芯材は、内圧成形時に加圧されても中空配管を形成できる程度の可撓性を有するものであって、成形後に配管から容易に抜き取ることができるものであれば何でも良い。例えば、プラスチック製のチューブやパイプがあるが、中空シリコンチューブにシラスコンゴムを流し込んだものは、特に好ましく用いることができる。 In the present invention, a core whose outer periphery is coated with a prepreg is used. The prepreg used here may be the same sheet-like fiber reinforced prepreg as that laid on the inner surface of the mold cavity, or other prepreg, for example, a reinforcing fiber knitted in a tubular shape is impregnated with resin. It may be a prepreg. The core material may be anything as long as it is flexible enough to form a hollow pipe even when pressed during internal pressure molding, and can be easily extracted from the pipe after molding. For example, although there are plastic tubes and pipes, those in which shirasukon rubber is poured into a hollow silicon tube can be particularly preferably used.

本発明では、その外周がプリプレグで被覆された芯材を、例えば、2本以上並べて、筒状の金型のキャビティ内表面に沿って敷設されたシート状の繊維強化プリプレグの内表面に配置する。本発明者の知見によると、このままの状態で内圧成形法に付しても、キャビティ内の空間形状が複雑であるために、全体のプリプレグを十分に金型内面に押し付けることが困難であった。また、外周がプリプレグで被覆された芯材が1本であっても、その配置状態が複雑であると、全体のプリプレグを十分に金型内面に押し付けることが困難であった。そこで、本発明では、プリプレグで被覆された芯材を覆う様に硬質発泡材を付着させ、シート状プリプレグ内表面との間隙を充填する。かかる工夫を行うことで、以後の内圧成形を非常に効率的に行うことができる。 In the present invention, for example, two or more core materials whose outer circumferences are coated with a prepreg are arranged and arranged on the inner surface of a sheet-like fiber-reinforced prepreg laid along the inner surface of the cavity of a cylindrical mold. . According to the knowledge of the present inventor, even if it is subjected to the internal pressure molding method as it is, it is difficult to sufficiently press the entire prepreg against the inner surface of the mold because the space shape in the cavity is complicated. . Moreover, even if the outer periphery is a single core material covered with prepreg, if the arrangement state is complicated, it is difficult to sufficiently press the entire prepreg against the inner surface of the mold. Therefore, in the present invention, a hard foam material is attached so as to cover the core material coated with the prepreg, and the gap with the inner surface of the sheet-like prepreg is filled. By performing such a device, the subsequent internal pressure molding can be performed very efficiently.

本発明において用いられる硬質発泡材としては、硬化条件下で発泡し耐熱性のあるものであれば、特に制限されるものではない。例えば、硬質発泡ウレタン、エポキシ系樹脂に発泡ビーズを混合したもので、発泡倍率が数倍〜10倍程度のものが好ましく用いられる。付着させる量は特に制限はないが、プリプレグで被覆された芯材の間、及び、これら芯材とシート状の繊維強化プリプレグの内表面との間隙を充填するに必要にして十分な量であれば良い。 The hard foam used in the present invention is not particularly limited as long as it is foamed under curing conditions and has heat resistance. For example, a foamed bead is mixed with hard foamed urethane or epoxy resin, and a foaming ratio of about several to 10 times is preferably used. The amount to be attached is not particularly limited, but it may be an amount sufficient to fill the gap between the core material coated with the prepreg and between the core material and the inner surface of the sheet-like fiber-reinforced prepreg. It ’s fine.

プリプレグとは、繊維強化材に、熱硬化性樹脂や熱可塑性樹脂などのマトリックス樹脂を含浸させ、流動性や粘着性を除いて取り扱い性を良くした成形中間材である。本発明において用いられるシート状の繊維強化プリプレグとしては、シート状のものである限り特に制限はない。例えば、一軸織物や多軸織物等の一方向配列繊維、織物、編物、不織布を強化繊維としたプリプレグが用いられる。 A prepreg is a molded intermediate material in which a fiber reinforcing material is impregnated with a matrix resin such as a thermosetting resin or a thermoplastic resin to improve handling properties except for fluidity and adhesiveness. The sheet-like fiber reinforced prepreg used in the present invention is not particularly limited as long as it is a sheet-like one. For example, a prepreg using unidirectionally arranged fibers such as uniaxial woven fabric and multiaxial woven fabric, woven fabric, knitted fabric, and nonwoven fabric as reinforcing fibers is used.

本発明においては、用いられる繊維強化材やマトリックス樹脂に関しては特に制限はい。繊維強化材としては、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、金属繊維等が挙げられるが、特に炭素繊維が好ましい。熱硬化性樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂とシアン酸エステル樹脂の予備重合樹脂から選ばれる樹脂がある。これらは1種又は2種以上の混合物として用いることもできる。熱可塑性樹脂としては、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、芳香族ポリアミド、芳香族ポリエステル、芳香族ポリカーボネート、ポリエーテルイミド、ポリアリーレンオキシド、熱可塑性ポリイミド、ポリアミドイミドがある。これらの樹脂は、2種以上併用しても良い。 In the present invention, the fiber reinforcing material and matrix resin used are not particularly limited. Examples of the fiber reinforcing material include carbon fiber, glass fiber, aramid fiber, boron fiber, and metal fiber, and carbon fiber is particularly preferable. Examples of the thermosetting resin include epoxy resins, unsaturated polyester resins, phenol resins, vinyl ester resins, cyanate ester resins, urethane acrylate resins, phenoxy resins, alkyd resins, urethane resins, maleimide resins and cyanate ester resins. There are resins selected from prepolymerized resins. These can also be used as one type or a mixture of two or more types. Examples of thermoplastic resins include polypropylene, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, aromatic polyamide, aromatic polyester, aromatic polycarbonate, polyetherimide, polyarylene oxide, thermoplastic polyimide, and polyamideimide. is there. Two or more of these resins may be used in combination.

以下、ロボットアーム(小径管を2本配置した例)の製造方法を例に、本発明の実施形態について詳細に説明する。ロボットアームの製造に用いる筒状の分割型の金型の一例を、図1と図2に示した。図1は上型1の平面図であり、図2は下型2の平面図である。上型1及び下型2は、一端から他端に向かうに従って漸次細く形成した中空筒状で、その中央部で略90度に曲折している。また、両端は閉塞されている。下型2には、二対の貫通孔3a、3b、4a、4bが形成されている。なお、図1及び図2において、5、6は、上型1又は下型2のキャビティ内表面である。図2のA−A線、B−B線の断面図をそれぞれ図3、図4に示す。図3、図4に示すように、分割型の各断面は、略角を丸めた四辺形である。図1、図2、図3において13は、ロボットアームの固定端側の取り付け孔である。 Hereinafter, an embodiment of the present invention will be described in detail by taking as an example a method for manufacturing a robot arm (an example in which two small-diameter tubes are arranged). An example of a cylindrical split mold used for manufacturing the robot arm is shown in FIGS. FIG. 1 is a plan view of the upper mold 1, and FIG. 2 is a plan view of the lower mold 2. The upper mold 1 and the lower mold 2 are hollow cylinders that are gradually formed to be thinner from one end to the other end, and are bent at approximately 90 degrees at the center thereof. Both ends are closed. The lower mold 2 is formed with two pairs of through holes 3a, 3b, 4a, 4b. 1 and 2, 5 and 6 are the cavity inner surfaces of the upper mold 1 or the lower mold 2. Cross-sectional views taken along lines AA and BB in FIG. 2 are shown in FIGS. 3 and 4, respectively. As shown in FIGS. 3 and 4, each section of the split type is a quadrangle with rounded corners. 1, 2, and 3, reference numeral 13 denotes an attachment hole on the fixed end side of the robot arm.

次に、図2のC−C線の断面図である図5を用いて、ロボットアームの一体成形について説明する。先ず、図5(イ)に示したように、下型2のキャビティ内表面6に沿って、アーム形成のためのシート状の繊維強化プリプレグ7aを敷設する。一方、筒状に編んだ炭素繊維に樹脂を含浸させたプリプレグ8a、8bに、丸棒状の可撓性芯材9a、9bを挿入したものを2本(10a、10b)を、図5(ロ)に示したように、プリプレグ7a上に配置する。更に、それぞれ芯材を挿入したプリプレグの一端側と他端側を、アーム形成用プリプレグ7aを貫通させ、下型2に形成してある貫通孔3a、3bと4a、4bにそれぞれ挿入する(10aを3aと4aに挿入し、キャビティ内に10aを張設する)(図2参照)。 Next, integral molding of the robot arm will be described with reference to FIG. 5 which is a cross-sectional view taken along the line CC of FIG. First, as shown in FIG. 5 (a), a sheet-like fiber reinforced prepreg 7a for arm formation is laid along the cavity inner surface 6 of the lower mold 2. As shown in FIG. On the other hand, two prepregs 8a and 8b in which carbon fibers knitted into a tubular shape are impregnated with a resin and round bar-shaped flexible cores 9a and 9b are inserted into two pieces (10a and 10b) as shown in FIG. As shown in (2), it is arranged on the prepreg 7a. Further, one end side and the other end side of the prepreg into which the core material has been inserted are respectively inserted into the through holes 3a, 3b and 4a, 4b formed in the lower mold 2 through the arm forming prepreg 7a (10a). Are inserted into 3a and 4a, and 10a is stretched in the cavity) (see FIG. 2).

次に、図5(ロ)に示したように、外周がプリプレグで被覆された芯材10a、10bを覆う様に、硬質発泡材11を付着させ間隙を充填する。次いで、図5(ハ)に示したように、プリプレグ7aを敷設したキャビティ内側に膨張バッグ12をセットするとともに、内表面5にアーム形成のためのシート状の繊維強化プリプレグ7bを敷設した上型1を下型2に型締めし、内圧成形法によりプリプレグ7a、7b、8a、8bと、硬質発泡材11の一体成形を行う。 Next, as shown in FIG. 5B, the hard foam material 11 is attached to fill the gap so as to cover the core materials 10a and 10b whose outer periphery is covered with the prepreg. Next, as shown in FIG. 5 (c), the inflatable bag 12 is set inside the cavity in which the prepreg 7a is laid, and the upper die in which a sheet-like fiber-reinforced prepreg 7b for arm formation is laid on the inner surface 5 1 is clamped to the lower mold 2, and the prepregs 7 a, 7 b, 8 a, 8 b and the hard foam material 11 are integrally molded by an internal pressure molding method.

内圧成形は、図5(ハ)の状態で膨張バッグ12に気体、液体等の流体を充填し、膨張バッグ12を膨張させることにより行う。膨張バッグ12が膨張することにより、プリプレグ7a、7bは型の内側から外部方向に向って加圧され、プリプレグを型の内表面5及び6に密着させることができる。また、芯材9a、9bを挿入したプリプレグ8a、8bも膨張バッグ12により加圧され、硬質発泡材11と共にプリプレグ7aに圧着され、一体化される。 The internal pressure molding is performed by filling the expansion bag 12 with a fluid such as gas or liquid in the state of FIG. When the expansion bag 12 is inflated, the prepregs 7a and 7b are pressurized from the inside of the mold toward the outside so that the prepreg can be brought into close contact with the inner surfaces 5 and 6 of the mold. In addition, the prepregs 8a and 8b into which the core members 9a and 9b are inserted are also pressed by the expansion bag 12, and are pressure-bonded to the prepreg 7a together with the hard foam material 11 to be integrated.

その後、加圧された状態のプリプレグを加熱し、硬化させる。プリプレグが硬化した後、芯材9a、9bをプリプレグ8a、8bから抜き取ることにより、ロボットアームの吸引孔になるそれぞれ3aと4a、3bと4bを結ぶ2本の真空配管を一体に成形した図5(ニ)に示したような、ロボットアームが得られる。図5(ニ)においては、膨張バッグ12は示してないが、膨張バッグは芯材と同時に取り出しても、あるいはそのまま内部に残しておいても良い。その後、膨張バッグの挿入口は、必要に応じて蓋をして閉じることもできる。 Thereafter, the pressurized prepreg is heated and cured. After the prepreg has hardened, the core materials 9a and 9b are removed from the prepregs 8a and 8b, so that two vacuum pipes connecting the 3a and 4a and 3b and 4b, respectively, which become the suction holes of the robot arm, are integrally formed. A robot arm as shown in (d) is obtained. In FIG. 5D, the inflatable bag 12 is not shown, but the inflatable bag may be taken out at the same time as the core material or may be left inside. Thereafter, the insertion port of the inflatable bag can be closed with a lid if necessary.

なお、プリプレグからしみ出した余分な樹脂を吸収したり、成形品を取出す際の離型性を高める目的で、プリプレグと膨張バッグとの間に必要によりピールクロス、ブレザークロス等を重ねて用いてもよい。 For the purpose of absorbing excess resin that has oozed out of the prepreg and improving the releasability when taking out the molded product, use a peel cloth, blazer cloth, etc., if necessary, between the prepreg and the expansion bag. Also good.

上記例においては断面が略角を丸めた四辺形の2つの分割型を用いて説明したが、分割型の断面の形状を円形、楕円形、三角形、四辺形等の任意の形状とすることにより、任意の断面形状のアームを形成することができる。また、分割型の分割数は任意である。また、前記例では、下型2に貫通孔を形成したが、型に形成する孔は得られるロボットアームに吸引孔が形成されるものであれば良く、型を貫通していなくてもよい。更に、型に形成する孔は上型に形成したものであっても良いし、あるいは型の側面に形成されていても良い。 In the above example, the description has been made using two divided types of quadrilateral whose cross section is rounded at substantially rounded corners, but by making the shape of the cross section of the divided type arbitrary shape such as circular, elliptical, triangular, quadrilateral, etc. An arm having an arbitrary cross-sectional shape can be formed. Further, the division type division number is arbitrary. In the above example, the through hole is formed in the lower mold 2. However, the hole formed in the mold is not limited as long as the suction hole is formed in the obtained robot arm and does not have to penetrate the mold. Furthermore, the hole formed in the mold may be formed in the upper mold, or may be formed in the side surface of the mold.

可撓性芯材10a、10bの長さ方向に対して直角断面の形状や断面積は特に制限されないが、通常は芯材の長さ方向に対して直角断面の断面積を、1〜4cm2程度とすることが好ましい。 The shape and cross-sectional area of the flexible core materials 10a and 10b perpendicular to the length direction are not particularly limited, but usually the cross-sectional area of the cross-section perpendicular to the length direction of the core material is about 1 to 4 cm2. It is preferable that

膨張バッグ12の形状は特に限定されないが、ロボットアームの形状に合わせた形状とすることが好ましい。また、膨張バッグ12の材質は特に制限されず、内圧成形法で用いられる公知のものを用いることができる。内圧成形を行う際にプリプレグへ加える圧力は0.05〜1MPaとすることが好ましい。 The shape of the inflatable bag 12 is not particularly limited, but is preferably a shape that matches the shape of the robot arm. Moreover, the material in particular of the expansion | swelling bag 12 is not restrict | limited, The well-known thing used by the internal pressure molding method can be used. The pressure applied to the prepreg when performing the internal pressure molding is preferably 0.05 to 1 MPa.

上記例においてはロボットアームを製造する場合について説明したが、大径管の内壁に小径管を有する複合管状体の製造においては、芯材として必ずしも可撓性を有する芯材を用いる必要はない。内圧成形時に小径管が形成できる程度の剛性を有するものであって、成形後に取り除くことが可能であればいかなる芯材も使用できる。また、複合管状体の用途によっては、芯材を被覆したプリプレグの両端を型に形成した孔に挿入して吸引孔を形成しなくてもよい。 In the above example, the case where the robot arm is manufactured has been described. However, in the manufacture of the composite tubular body having the small diameter tube on the inner wall of the large diameter tube, it is not always necessary to use a flexible core material as the core material. Any core material can be used as long as it has rigidity enough to form a small-diameter tube during internal pressure molding and can be removed after molding. Further, depending on the use of the composite tubular body, the suction holes may not be formed by inserting both ends of the prepreg coated with the core material into the holes formed in the mold.

図1に示す様な上型1と図2に示す様な下型2の内面にプリプレグ(W−3101/Q−112:東邦テナックス社製)を敷設した。型はA−A線における幅80cm、厚さ30cm、B−B線における幅40cm、厚さ20cm、型の曲線長さ320cm、孔3a、4a間の直線距離150cm(曲線距離160cm)、孔3b、4b間の直線距離160cm(曲線距離170cm)のものを用いた。芯材(長さ180cm、直径1.5cmの中空シリコンチューブにシラスコンゴムを流し込んだもの)の周囲にプリプレグ(W−3101/Q−112:東邦テナックス社製)を巻き付けたものを2本、敷設したプリプレグ上に配置し、2本の芯材の両端側をそれぞれ貫通孔3aと4a、3bと4bに挿入した。そして、2本の周囲にプリプレグを巻き付けた芯材の間及びそれらと敷設したプリプレグの隙間に、硬質発泡ウレタン(エアータイトフォームATF−001、エアータイト社製)を注入・付着し、隙間を充填した。 A prepreg (W-3101 / Q-112: manufactured by Toho Tenax Co., Ltd.) was laid on the inner surfaces of the upper mold 1 as shown in FIG. 1 and the lower mold 2 as shown in FIG. The mold has a width of 80 cm and a thickness of 30 cm at the AA line, a width of 40 cm and a thickness of 20 cm at the BB line, a curve length of the mold of 320 cm, a linear distance of 150 cm (curve distance of 160 cm) between the holes 3a and 4a, and a hole of 3b. A straight line having a straight line distance of 160 cm (curved distance of 170 cm) was used. Two wraps of prepreg (W-3101 / Q-112: manufactured by Toho Tenax Co., Ltd.) were laid around the core material (180 cm long, 1.5 cm diameter hollow silicon tube poured with Shirasukon rubber). It arrange | positioned on a prepreg and the both ends of two core materials were inserted in the through-holes 3a and 4a, 3b, and 4b, respectively. Then, rigid foamed urethane (Air Tight Foam ATF-001, manufactured by Air Tight Co., Ltd.) is injected and adhered between the core material in which the prepreg is wound around the two wires and between the prepreg laid therewith, and the gap is filled. did.

その後、ナイロンバッグ(WRIGHTLON#7400:AIRTECH社製)を挿入して上型1及び下型2の型締めを行った。バッグに気体を充填し、圧力0.5MPaで加圧下、120℃で2時間プリプレグを加熱硬化し、その後芯材を取り除いて、貫通孔をつないで内壁に2本のパイプ状の真空配管が形成されたロボットアームを得た。 Thereafter, a nylon bag (WRIGHTLON # 7400: manufactured by AIRTECH) was inserted to clamp the upper mold 1 and the lower mold 2. Fill the bag with gas, heat and cure the prepreg for 2 hours at 120 ° C under a pressure of 0.5 MPa, remove the core material, connect through-holes, and form two pipe-like vacuum pipes on the inner wall Got the robot arm.

本発明は、筒状アームの内壁に1又は2以上の真空配管を有するロボットアーム等の、FRP管状部材の一体成形に好適である The present invention is suitable for integrally forming an FRP tubular member such as a robot arm having one or more vacuum pipes on the inner wall of a cylindrical arm.

本発明の一例であるロボットアームの製造に用いる金型の、上型の平面図である。It is a top view of the upper mold | type of the metal mold | die used for manufacture of the robot arm which is an example of this invention. 本発明の一例であるロボットアームの製造に用いる金型の、下型の平面図である。It is a top view of the lower mold | type of the metal mold | die used for manufacture of the robot arm which is an example of this invention. 下型のA−A線における断面図である。It is sectional drawing in the AA line of a lower mold | type. 下型のB−B線における断面図である。It is sectional drawing in the BB line of a lower mold | type. 本発明の一例であるロボットアームの製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the robot arm which is an example of this invention.

符号の説明Explanation of symbols

1 上型
2 下型
3a、3b、4a、4b 貫通孔
5、6 キャビティ内表面
7a、7b シート状の繊維強化プリプレグ
10a、10b 外周がプリプレグで被覆された芯材
11 硬質発泡材
12 膨張バッグ
13 ロボットアームの固定端側の取り付け孔
DESCRIPTION OF SYMBOLS 1 Upper mold | type 2 Lower mold | type 3a, 3b, 4a, 4b Through-hole 5, 6 Cavity inner surface 7a, 7b Sheet-like fiber-reinforced prepreg 10a, 10b Core material 11 outer periphery coat | covered with prepreg 11 Hard foam material 12 Expansion bag 13 Mounting hole on the fixed end side of the robot arm

Claims (5)

筒状の金型のキャビティ内表面に沿ってシート状の繊維強化プリプレグを敷設し、該シート状プリプレグ内表面に、外周がプリプレグで被覆された芯材を配置すると共に、該芯材を覆う様に硬質発泡材を付着させシート状プリプレグ内表面との間隙を充填し、次いで、前記筒状の金型のキャビティ内に膨張バッグを挿入し、その後、キャビティ内で膨張バッグを膨張させると共に型内を加熱することによりプリプレグを型に密着させて硬化させ、プリプレグ硬化後に芯材を抜き取ることを特徴とする管状部材の成形方法。 A sheet-like fiber reinforced prepreg is laid along the inner surface of the cavity of the cylindrical mold, and a core material whose outer periphery is covered with the prepreg is arranged on the inner surface of the sheet-shaped prepreg so as to cover the core material. A hard foam material is attached to the inner surface of the sheet-like prepreg to fill the gap between the inner surfaces of the sheet-like prepreg, and then the expansion bag is inserted into the cavity of the cylindrical mold, and then the expansion bag is inflated in the cavity and within the mold. A method for forming a tubular member, comprising: heating a prepreg so that the prepreg adheres to a mold and curing the prepreg, and extracting the core material after the prepreg is cured. 外周がプリプレグで被覆された芯材が、複数配置されていることを特徴とする請求項1記載の管状部材の成形方法。 The method for forming a tubular member according to claim 1, wherein a plurality of cores whose outer circumferences are coated with prepreg are arranged. 筒状の金型に複数の孔が穿孔されており、外周がプリプレグで被覆された芯材が、該孔を通してキャビティ内に張設されていることを特徴とする請求項1又は2記載の管状部材の成形方法。 The tubular body according to claim 1 or 2, wherein a plurality of holes are perforated in a cylindrical mold, and a core material whose outer periphery is covered with a prepreg is stretched in the cavity through the holes. A method for forming a member. 硬質発泡材が、硬質発泡ウレタンである請求項1〜3のいずれか1項記載の管状部材の成形方法。 The method for forming a tubular member according to any one of claims 1 to 3, wherein the hard foam material is hard foam urethane. 芯材が中空シリコンチューブにシラスコンゴムを流し込んだものである請求項1〜4のいずれか1項記載の管状部材の成形方法。
The method for forming a tubular member according to any one of claims 1 to 4, wherein the core material is obtained by pouring shirasukon rubber into a hollow silicon tube.
JP2005255224A 2005-09-02 2005-09-02 Method for forming tubular member Active JP4729370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005255224A JP4729370B2 (en) 2005-09-02 2005-09-02 Method for forming tubular member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005255224A JP4729370B2 (en) 2005-09-02 2005-09-02 Method for forming tubular member

Publications (2)

Publication Number Publication Date
JP2007062338A true JP2007062338A (en) 2007-03-15
JP4729370B2 JP4729370B2 (en) 2011-07-20

Family

ID=37925089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255224A Active JP4729370B2 (en) 2005-09-02 2005-09-02 Method for forming tubular member

Country Status (1)

Country Link
JP (1) JP4729370B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018538178A (en) * 2015-12-16 2018-12-27 上海晋飛新材料科技有限公司Shanghai Cedar Composites Technology Co., Ltd. 3D nylon air duct molding flame-retardant bending beam molding process and mold

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005111772A (en) * 2003-10-07 2005-04-28 Toho Tenax Co Ltd Monolithic molding method for robot arm
JP2005111773A (en) * 2003-10-07 2005-04-28 Toho Tenax Co Ltd Manufacturing method of composite tubular body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005111772A (en) * 2003-10-07 2005-04-28 Toho Tenax Co Ltd Monolithic molding method for robot arm
JP2005111773A (en) * 2003-10-07 2005-04-28 Toho Tenax Co Ltd Manufacturing method of composite tubular body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018538178A (en) * 2015-12-16 2018-12-27 上海晋飛新材料科技有限公司Shanghai Cedar Composites Technology Co., Ltd. 3D nylon air duct molding flame-retardant bending beam molding process and mold

Also Published As

Publication number Publication date
JP4729370B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP6140679B2 (en) Resin injection molding process using vacuum with reusable resin distribution line
US8906489B2 (en) Method for producing a fibre composite component for aviation and spaceflight
JP4515526B2 (en) Resin transfer molding method
US6555045B2 (en) Grooved mold apparatus and process for forming fiber reinforced composite structures
US6723271B2 (en) Method and apparatus for making composite parts
JP2005534533A5 (en)
US6361840B2 (en) Injection molded, rigidized bladder with varying wall thickness for manufacturing composite shafts
US7758793B2 (en) Method and apparatus for manufacturing of an article including an empty space
JP2007118577A (en) Method and apparatus for manufacturing fiber-reinforced resin member
JP4729370B2 (en) Method for forming tubular member
CA2747382A1 (en) Process and apparatus for producing composite structures
WO2014115668A1 (en) Method for molding hollow molding and method for manufacturing fiber reinforced plastic
JP4227299B2 (en) Manufacturing method of flanged tubular product made of fiber reinforced plastic
JP5329828B2 (en) Internal pressure molding method for FRP molded products
JP2007152615A (en) Method for molding hollow frp member having corner part
JP2007069349A (en) Manufacturing method of tubular member
JP4371759B2 (en) Method for producing composite tubular body
JP2009090646A (en) Resin transfer molding process
JP2007176050A (en) Molding method for frp molded article with foam core
JP4243802B2 (en) Robot arm integral molding method
JP2006150614A (en) Resin transfer molding method of hollow member made of frp
JP4269923B2 (en) FRP manufacturing method and manufacturing apparatus thereof
JP4586500B2 (en) Manufacturing method of fiber reinforced resin molding
JP4653539B2 (en) Vacuum injection molding method for fiber reinforced plastic
JP2008295938A (en) Manufacturing method of golf club shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350