JP2007062305A - Transparent gas barrier substrate - Google Patents
Transparent gas barrier substrate Download PDFInfo
- Publication number
- JP2007062305A JP2007062305A JP2005254457A JP2005254457A JP2007062305A JP 2007062305 A JP2007062305 A JP 2007062305A JP 2005254457 A JP2005254457 A JP 2005254457A JP 2005254457 A JP2005254457 A JP 2005254457A JP 2007062305 A JP2007062305 A JP 2007062305A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- gas barrier
- silicon oxynitride
- transparent
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Laminated Bodies (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、水蒸気バリア性を有する透明ガスバリア基板に関する。さらに詳しくは、液晶表示体又は有機エレクトロルミネッセンス表示体の製造に係る部材として、好適な透明ガスバリア基板に関する。 The present invention relates to a transparent gas barrier substrate having water vapor barrier properties. More specifically, the present invention relates to a transparent gas barrier substrate suitable as a member related to the production of a liquid crystal display or an organic electroluminescence display.
各種の表示装置において近年、液晶素子を用いた表示体や有機エレクトロルミネッセンス素子(以下、有機EL素子と略す)を用いた表示体が実用化され、従来のCRTを用いた表示装置を置き換えていく状況にある。 In various display devices, a display body using a liquid crystal element and a display body using an organic electroluminescence element (hereinafter, abbreviated as an organic EL element) have been put into practical use, replacing a display apparatus using a conventional CRT. Is in the situation.
液晶素子又は有機EL素子は、主としてガラス基板上に形成され、表示体として実用化されている。これらの素子は、素子自体が極度に水分に弱いため、当該素子を用いた表示体の製造には、水蒸気バリア性を備えた封止用部材が必要であり、このような水蒸気バリア性を備えた部材としては、ガラス基板あるいは金属基板が用いられていた。特に、これまで実用化されている有機EL素子を用いた表示体では、ガラス基板間あるいはガラス基板−金属基板間に素子が封止されており、さらに、水蒸気バリア性を備えた部材の中で、透明性が必要な部材は、ガラス基板のみが実用化されていた。 A liquid crystal element or an organic EL element is mainly formed on a glass substrate and is put into practical use as a display body. Since these elements are extremely vulnerable to moisture, the manufacture of a display using the element requires a sealing member having a water vapor barrier property. As the member, a glass substrate or a metal substrate has been used. In particular, in a display body using an organic EL element that has been put to practical use, the element is sealed between glass substrates or between a glass substrate and a metal substrate, and further, among members having water vapor barrier properties. As a member requiring transparency, only a glass substrate has been put into practical use.
このように、水蒸気バリア性に優れる部材として、実用化されているガラス基板は、重量が重く、衝撃によって割れやすいという欠点があるため、特に持ち運び可能な表示装置に適用するのは困難であった。そこで、ガラス基板に替わる、軽量且つ耐衝撃性の優れる透明ガスバリア基板、及び該透明ガスバリア基板を部材として用いた表示体の開発が望まれていた。 As described above, the glass substrate that has been put to practical use as a member having excellent water vapor barrier properties has a drawback that it is heavy and easily broken by impact, and thus it has been difficult to apply to a portable display device. . Therefore, it has been desired to develop a transparent gas barrier substrate that is lightweight and has excellent impact resistance, instead of a glass substrate, and a display using the transparent gas barrier substrate as a member.
透明ガスバリア基板に用いられる透明素材には、ガラス基板と同等以上の、高い水蒸気バリア性、透明性、耐熱性及び軽量性等の要求性能が必要であり、特に軽量性が期待できる樹脂材料を用いた透明ガスバリア基板が望まれている。しかし、市販の樹脂材料を、そのまま使用するだけでは、前記の要求性能を全て満足することは非常に困難であり、これまで種々の検討がなされてきた。一例を挙げると、透明樹脂基板上に、ケイ素単体ターゲットの窒素含有雰囲気中スパッタリングにより窒化ケイ素膜を形成した透明ガスバリア基板(特許文献1)、樹脂基材上に酸窒化ケイ素層A、さらにその上に酸窒化ケイ素層Bの順に、スパッタリングを用いて積層してなり、酸窒化ケイ素層Aの元素濃度比O/(O+N)が酸窒化珪素層Bの元素濃度比O/(O+N)よりも小さい透明水蒸気バリアフィルム(特許文献2)などが検討されている。 The transparent material used for the transparent gas barrier substrate must have the required performance such as high water vapor barrier property, transparency, heat resistance and light weight equivalent to or better than the glass substrate. A transparent gas barrier substrate that has been required is desired. However, it is very difficult to satisfy all the required performances by using commercially available resin materials as they are, and various studies have been made so far. For example, a transparent gas barrier substrate (Patent Document 1) in which a silicon nitride film is formed on a transparent resin substrate by sputtering in a nitrogen-containing atmosphere of a silicon simple substance target, a silicon oxynitride layer A on a resin base material, and further thereon The silicon oxynitride layer B is laminated in this order by sputtering, and the element concentration ratio O / (O + N) of the silicon oxynitride layer A is equal to the element concentration ratio O / (O + N) of the silicon oxynitride layer B. A transparent water vapor barrier film (Patent Document 2) and the like smaller than) are being studied.
しかしながら、上記の、透明樹脂基板を用いた透明ガスバリア基板では、基板の製造初期における水蒸気バリア性は優れているが、液晶素子表示体製造プロセス、有機EL素子表示体製造プロセスでの電極用透明金属膜成膜工程やカラーフィルター層作成工程など、前記透明ガスバリア基板自体に、150℃以上の熱履歴が加わる工程を経たとき、透明樹脂基板上に積層された透明無機層(窒化ケイ素層又は酸窒化ケイ素層)にクラックが生じ、水蒸気バリア性が著しく劣化するといった問題があった。
本発明の目的は、液晶素子表示体又は有機EL素子表示体に係る部材として、好適な水蒸気バリア性を有し、且つ、液晶素子表示体又は有機EL素子表示体の製造プロセスによっても、水蒸気バリア性の劣化が少ない透明ガスバリア基板を提供することにある。
However, in the transparent gas barrier substrate using the transparent resin substrate described above, the water vapor barrier property at the initial stage of production of the substrate is excellent. A transparent inorganic layer (a silicon nitride layer or an oxynitride layer) laminated on a transparent resin substrate when a thermal history of 150 ° C. or higher is applied to the transparent gas barrier substrate itself, such as a film forming step and a color filter layer forming step. There was a problem that a crack occurred in the silicon layer) and the water vapor barrier property was remarkably deteriorated.
An object of the present invention is to provide a water vapor barrier property suitable as a member relating to a liquid crystal element display or an organic EL element display, and also according to a manufacturing process of a liquid crystal element display or an organic EL element display. An object of the present invention is to provide a transparent gas barrier substrate with little deterioration in properties.
本発明者らは、鋭意検討を重ねた結果、透明樹脂基板上に、特定の積層構造を形成せしめた積層基板が、上記課題で示した、表示体製造プロセスによる水蒸気バリア性の劣化を抑制できることを見出し、本発明を完成するに至った。
即ち、本発明は、透明樹脂基板の片面又は両面に、酸窒化ケイ素層及び窒化ケイ素層が、この順に積層されてなる透明ガスバリア基板を提供するものである。このような透明ガスバリア基板は、表示体製造プロセスによる水蒸気バリア性の劣化が小さいガスバリア基板となる。
As a result of intensive studies, the present inventors have found that a laminated substrate in which a specific laminated structure is formed on a transparent resin substrate can suppress the deterioration of the water vapor barrier property due to the display body manufacturing process shown in the above problem. As a result, the present invention has been completed.
That is, the present invention provides a transparent gas barrier substrate in which a silicon oxynitride layer and a silicon nitride layer are laminated in this order on one side or both sides of a transparent resin substrate. Such a transparent gas barrier substrate is a gas barrier substrate with little deterioration of water vapor barrier properties due to the display body manufacturing process.
さらに、本発明は透明樹脂基板の両面に、酸窒化ケイ素層及び窒化ケイ素層が、この順に積層されてなる透明ガスバリア基板を提供する。こうすると、水蒸気バリア性が、さらに良好なガスバリア基板を得ることができる。 Furthermore, the present invention provides a transparent gas barrier substrate in which a silicon oxynitride layer and a silicon nitride layer are laminated in this order on both surfaces of a transparent resin substrate. In this way, a gas barrier substrate with better water vapor barrier properties can be obtained.
さらに、本発明の透明ガスバリア基板は、酸窒化ケイ素層が、ラザフォード後方散乱法(RBS法)で観測される酸素元素比率をx、窒素元素比率をyとしたとき、0.30≦x/(x+y)≦0.90で示される条件を満たすものであると好ましい。このようにすると、酸窒化ケイ素層が柔軟性に優れ、フレキシブルな透明ガスバリア基板が得られる。 Further, in the transparent gas barrier substrate of the present invention, when the silicon oxynitride layer has an oxygen element ratio x and a nitrogen element ratio y observed by the Rutherford backscattering method (RBS method), 0.30 ≦ x / ( x + y) ≦ 0.90 is preferably satisfied. In this way, the silicon oxynitride layer is excellent in flexibility, and a flexible transparent gas barrier substrate can be obtained.
さらに、本発明の透明ガスバリア基板において、その積層構造を構成する酸窒化ケイ素層及び/又は窒化ケイ素層が、触媒化学気相堆積法を用いて製造される透明ガスバリア基板が好ましい。触媒化学気相堆積法は、大面積の透明ガスバリア基板の製造が容易であり、生産性に優れるため好ましい。 Furthermore, in the transparent gas barrier substrate of the present invention, a transparent gas barrier substrate in which the silicon oxynitride layer and / or silicon nitride layer constituting the laminated structure is produced by using a catalytic chemical vapor deposition method is preferable. The catalytic chemical vapor deposition method is preferable because it is easy to produce a transparent gas barrier substrate having a large area and is excellent in productivity.
また、本発明の透明ガスバリア基板は、その積層構造を構成する酸窒化ケイ素層の層厚が10nm以上500nm以下であり、且つ、窒化ケイ素層の層厚が10nm以上200nm以下であることが、特に好ましい。こうすると、水蒸気バリア性及び透明性が良好となるばかりか、より軽量の基板が得られるため好ましい。 In the transparent gas barrier substrate of the present invention, the layer thickness of the silicon oxynitride layer constituting the laminated structure is from 10 nm to 500 nm, and the layer thickness of the silicon nitride layer is from 10 nm to 200 nm, preferable. This is preferable because not only water vapor barrier properties and transparency are improved, but a lighter substrate can be obtained.
また、本発明は、前記の透明樹脂基板を構成する樹脂が、ポリエーテルスルホン、ポリエチレンナフタレート、ポリノルボルネンからなる群から選択された少なくとも1種の樹脂である透明ガスバリア基板を提供する。前記の透明樹脂基板は、表面平坦性に優れた樹脂基板を容易に入手でき、当該樹脂基板上に、酸窒化ケイ素層及び窒化ケイ素層を製造することが容易となるため好ましい。 In addition, the present invention provides a transparent gas barrier substrate in which the resin constituting the transparent resin substrate is at least one resin selected from the group consisting of polyethersulfone, polyethylene naphthalate, and polynorbornene. The transparent resin substrate is preferable because a resin substrate having excellent surface flatness can be easily obtained and a silicon oxynitride layer and a silicon nitride layer can be easily produced on the resin substrate.
本発明によれば、透明、且つ水蒸気バリア性が高く、さらに熱処理による水蒸気バリア性の劣化が小さい透明ガスバリア基板が得られ、当該透明ガスバリア基板は、液晶素子表示体や有機EL素子表示体の部材として、好適に用いることができる。 According to the present invention, a transparent gas barrier substrate is obtained that is transparent and has a high water vapor barrier property and a small deterioration of the water vapor barrier property due to heat treatment. The transparent gas barrier substrate is a member of a liquid crystal element display body or an organic EL element display body. Can be suitably used.
以下、本発明の好適な実施形態を詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
本発明の透明ガスバリア基板は、透明樹脂基板の片面又は両面に、酸窒化ケイ素層及び窒化ケイ素層が、この順に積層された透明ガスバリア基板である。ここで、透明であるとは、可視光に対する透過度が70%以上であることを示す。
酸窒化ケイ素層とは、ケイ素、酸素及び窒素から構成された層を示し、窒化ケイ素層とは、ケイ素及び窒素から構成された層を示すものである。ここで、酸窒化ケイ素層及び窒化ケイ素層ともに、後述の製膜方法によっては、数ppm乃至数百ppm程度の他元素を不純物として含む場合もあるが、本発明では、このように微量の不純物元素を含む酸窒化ケイ素層又は窒化ケイ素層でも適用できる。
The transparent gas barrier substrate of the present invention is a transparent gas barrier substrate in which a silicon oxynitride layer and a silicon nitride layer are laminated in this order on one side or both sides of a transparent resin substrate. Here, being transparent means that the transmittance for visible light is 70% or more.
The silicon oxynitride layer refers to a layer composed of silicon, oxygen, and nitrogen, and the silicon nitride layer refers to a layer composed of silicon and nitrogen. Here, both the silicon oxynitride layer and the silicon nitride layer may contain other elements as impurities of about several ppm to several hundred ppm depending on the film forming method described later. A silicon oxynitride layer or a silicon nitride layer containing an element is also applicable.
特に、透明樹脂基板の両面に、酸窒化ケイ素層及び窒化ケイ素層が、この順に積層されてなる透明ガスバリア基板が好ましい。この透明ガスバリア基板は、透明樹脂基板の片面に、酸窒化ケイ素層(第1の酸窒化ケイ素層)及び窒化ケイ素層(第1の窒化ケイ素層)が、この順に積層された面に対して、裏面の透明樹脂基板上に、第2の酸窒化ケイ素層及び第2の窒化ケイ素層が、この順に積層された透明バリアガラス基板である。 In particular, a transparent gas barrier substrate in which a silicon oxynitride layer and a silicon nitride layer are laminated in this order on both surfaces of a transparent resin substrate is preferable. This transparent gas barrier substrate has a silicon oxynitride layer (first silicon oxynitride layer) and a silicon nitride layer (first silicon nitride layer) laminated on one side of the transparent resin substrate in this order, A transparent barrier glass substrate in which a second silicon oxynitride layer and a second silicon nitride layer are laminated in this order on a transparent resin substrate on the back surface.
ここで、酸窒化ケイ素層又は窒化ケイ素層の製造方法は、特に限定されないが、例えば、抵抗加熱蒸着法、電子線蒸着法、スパッタリング法、イオンプレーティング法、CVD法等、当該分野で、通常工業的に用いられる製膜方法のいずれも用いることできる。なかでも、スパッタリング法又はCVD法が好ましい。
ここで、スパッタリング法による酸窒化ケイ素層の製造方法としては、前記特許文献2に記載の方法あるいは特開2003−262750号公報に記載の方法が例示でき、CVD法による酸窒化ケイ素層の製造方法としては、特開2001−15696号公報に記載の方法が例示できる。また、スパッタリング法による窒化ケイ素層の製造方法としては、特開2004−42502号公報に記載の方法が例示でき、CVD法による窒化ケイ素層の製造方法としては特開2004−63304号公報に記載の方法あるいは特開2005−111729号公報に記載の方法が例示できる。
Here, the method for producing the silicon oxynitride layer or the silicon nitride layer is not particularly limited, but for example, resistance heating vapor deposition, electron beam vapor deposition, sputtering, ion plating, CVD, etc. Any film forming method used industrially can be used. Of these, the sputtering method or the CVD method is preferable.
Here, examples of the method for producing a silicon oxynitride layer by sputtering include the method described in Patent Document 2 or the method described in JP-A-2003-262750, and a method for producing a silicon oxynitride layer by CVD. Examples thereof include the method described in JP-A-2001-15696. Moreover, as a manufacturing method of the silicon nitride layer by sputtering method, the method of Unexamined-Japanese-Patent No. 2004-4502 can be illustrated, and as a manufacturing method of silicon nitride layer by CVD method, it describes in Unexamined-Japanese-Patent No. 2004-63304. Examples thereof include the method and the method described in JP-A-2005-111729.
本発明の透明ガスバリア基板において、透明樹脂基板に対して片面又は両面に積層された酸窒化ケイ素膜層におけるケイ素、酸素、窒素に係る各元素の存在比率については特に限定されるものではないが、ラザフォード後方散乱分析法(以下、RBS法と呼ぶ)にて観測される酸素元素比率をx、窒素元素比率をyで表し、x/(x+y)を、酸素含有比率を示す指標(以下、酸素含有指標と呼ぶ)とした場合、0.30≦x/(x+y)≦0.90で示される条件を満たす酸窒化ケイ素層であることが好ましい。ここで、酸素含有指標が0.30未満の場合には、水蒸気バリア性が高いものの柔軟性に乏しくなる傾向があり、一方、酸素含有指標が0.90を超える場合には、水蒸気バリア性自体が低下する傾向がある。前記酸素含有指標の最小値は、0.35以上であると、さらに好ましく、一方、前記酸素含有指標の最大値は、0.81以下であると、さらに好ましい。
ここで、RBS法による酸窒化ケイ素層における酸素元素比率x、窒素元素比率yを求める方法を簡単に説明する。酸窒化ケイ素層を備えた基板試料に対し、Heイオンを酸窒化ケイ素層表面に入射し、発生する散乱Heの散乱方向とエネルギーによって、酸窒化ケイ素層中の各元素の同定、及び同定された各元素の存在比率を求められるものであり、標準物質を用いたキャリブレーションを必要とせず、ある深さでの元素存在比率を求めることができる。本発明における酸素元素比率x及び窒素元素比率yは、酸窒化ケイ素層の深さ方向で観測した酸素元素比率、窒素元素比率の平均値で表す。また、RBS法は、酸窒化ケイ素層の上層として、窒化ケイ素層を備えた積層板の場合、上層の窒化ケイ素層表面にHeイオンを照射し、深さ方向の酸素元素比率を観測することで、上層の窒化ケイ素層及び下層の酸窒化ケイ素層における、酸素元素比率x及び窒素元素比率yを、それぞれ求めることもできる。
In the transparent gas barrier substrate of the present invention, the abundance ratio of each element relating to silicon, oxygen, and nitrogen in the silicon oxynitride film layer laminated on one side or both sides with respect to the transparent resin substrate is not particularly limited, The oxygen element ratio observed by Rutherford backscattering analysis method (hereinafter referred to as RBS method) is expressed as x, the nitrogen element ratio is expressed as y, and x / (x + y) is an index indicating the oxygen content ratio (hereinafter referred to as oxygen content). It is preferable that the silicon oxynitride layer satisfy the condition of 0.30 ≦ x / (x + y) ≦ 0.90. Here, when the oxygen content index is less than 0.30, the water vapor barrier property tends to be poor although the water vapor barrier property is high. On the other hand, when the oxygen content index exceeds 0.90, the water vapor barrier property itself. Tends to decrease. The minimum value of the oxygen content index is more preferably 0.35 or more, while the maximum value of the oxygen content index is more preferably 0.81 or less.
Here, a method for obtaining the oxygen element ratio x and the nitrogen element ratio y in the silicon oxynitride layer by the RBS method will be briefly described. He ions were incident on the surface of the silicon oxynitride layer on the substrate sample having the silicon oxynitride layer, and each element in the silicon oxynitride layer was identified and identified by the scattering direction and energy of the generated scattered He. The abundance ratio of each element can be obtained, and the abundance ratio of elements at a certain depth can be obtained without requiring calibration using a standard substance. The oxygen element ratio x and the nitrogen element ratio y in the present invention are represented by the average values of the oxygen element ratio and the nitrogen element ratio observed in the depth direction of the silicon oxynitride layer. In the RBS method, in the case of a laminate including a silicon nitride layer as an upper layer of the silicon oxynitride layer, the surface of the upper silicon nitride layer is irradiated with He ions and the oxygen element ratio in the depth direction is observed. The oxygen element ratio x and the nitrogen element ratio y in the upper silicon nitride layer and the lower silicon oxynitride layer can also be determined, respectively.
前記の、酸素含有指標が0.30以上0.90以下の酸窒化ケイ素層を製造する方法としては、通常、スパッタリング法、CVD法等では、導入ガス種、導入ガス流量又は圧力等の製造因子を調節することで達成され、適宜予備実験を行うことで決定できる。該予備実験としては、前記の製造因子を種々変更しながら、透明樹脂基板上に酸窒化ケイ素層の製造を行い、得られた酸窒化ケイ素層の酸素含有指標を上述のRBS法で求めることで、酸窒化ケイ素膜の製造方法を決定する方法が挙げられる。また、前記の予備実験において、透明樹脂基板に替えて、シリコンウェハーを用い、酸窒化ケイ素層の製造に係る予備実験を行い、求められた酸窒化ケイ素層の製造条件を、透明樹脂基板上に使用する方法でもよい。このように、シリコンウェハーを用いた予備実験では、酸素含有指標の制御だけでなく、後述のように、目標とする層厚の酸窒化ケイ素層が得られる製造条件を容易に求めることができるため、好ましい。 As a method for producing the silicon oxynitride layer having an oxygen content index of 0.30 or more and 0.90 or less, the sputtering method, the CVD method or the like is usually a production factor such as an introduced gas type, an introduced gas flow rate or a pressure. This can be achieved by adjusting the value and can be determined by conducting preliminary experiments as appropriate. As the preliminary experiment, a silicon oxynitride layer was produced on a transparent resin substrate while variously changing the production factors described above, and an oxygen content index of the obtained silicon oxynitride layer was obtained by the RBS method described above. And a method for determining a method for producing a silicon oxynitride film. Further, in the preliminary experiment, a silicon wafer was used instead of the transparent resin substrate, and a preliminary experiment related to the production of the silicon oxynitride layer was performed. The obtained production conditions of the silicon oxynitride layer were set on the transparent resin substrate. The method used may be used. Thus, in the preliminary experiment using a silicon wafer, not only the control of the oxygen content index but also the production conditions for obtaining the silicon oxynitride layer having the target layer thickness can be easily obtained as described later. ,preferable.
また、本発明の透明ガスバリア基板において、透明樹脂基板の両面に酸窒化ケイ素層が積層された基板の場合、前記第1の酸窒化ケイ素層及び前記第2の酸窒化ケイ素層の酸素含有指標は、互いに同じであっても異なっていても良く、これらのなかで、どちらかの酸窒化ケイ素層の酸素含有指標が0.30以上0.9以下の範囲内であることが好ましく、両方の酸窒化ケイ素層の酸素含有指標が0.30以上0.90以内の範囲内であることが最も好ましい。 In the transparent gas barrier substrate of the present invention, when the silicon oxynitride layer is laminated on both sides of the transparent resin substrate, the oxygen content index of the first silicon oxynitride layer and the second silicon oxynitride layer is May be the same or different from each other, and among these, it is preferable that the oxygen content index of one of the silicon oxynitride layers is within a range of 0.30 or more and 0.9 or less. Most preferably, the oxygen content index of the silicon nitride layer is in the range of 0.30 to 0.90.
本発明における酸窒化ケイ素層および窒化ケイ素層の製造方法としては、上記の製膜方法の中でもCVD法が、特に好ましく、さらにCVD法の中でも、触媒化学気相堆積法がとりわけ好ましい。
触媒化学気相堆積法とは、ガス分子を加熱した触媒体表面で接触分解することにより発生する活性種を用いたCVD法であり、近年注目されている成膜方法である。触媒化学気相堆積法によれば、100℃以下の低温で、広い面積に渡り均一な酸窒化ケイ素層あるいは窒化ケイ素層を製造することができ、特に本発明のように、樹脂基板に対し、積層する場合において、量産化が容易であり、特に好適である。さらに樹脂基板をロールのまま装置内に設置して連続的に成膜を行う「Roll to Roll方式」が適用できることから、生産性がより高くなるため、特に好ましい。
As a method for producing the silicon oxynitride layer and the silicon nitride layer in the present invention, the CVD method is particularly preferable among the above film forming methods, and the catalytic chemical vapor deposition method is particularly preferable among the CVD methods.
The catalytic chemical vapor deposition method is a CVD method using active species generated by catalytic decomposition of gas molecules on the surface of a heated catalyst body, and is a film forming method that has attracted attention in recent years. According to the catalytic chemical vapor deposition method, it is possible to produce a uniform silicon oxynitride layer or silicon nitride layer over a wide area at a low temperature of 100 ° C. or lower. In the case of stacking, mass production is easy and it is particularly suitable. Furthermore, since the “Roll to Roll method” in which the resin substrate is placed in a roll as it is in the apparatus and continuously forms a film can be applied, it is particularly preferable because productivity becomes higher.
触媒化学気相堆積法の一例を挙げると、窒化ケイ素層を製造する場合には、ケイ素源としてシランガス、窒素源としてアンモニアガスを用い、積層する基板(被積層基板)を予め真空チャンバー下部にセットしておき、一旦10-4Pa程度まで減圧した後、チャンバー上部に備えたタングステン線に電流を流して抵抗加熱により表面温度を2000℃程度まで加熱しながら、チャンバー最上部に設けたシャワーヘッドから原料ガスを導入して、該原料ガスが、タングステン表面で接触分解して生じる活性種を、被積層基板に堆積することで積層させる。 As an example of catalytic chemical vapor deposition, when manufacturing a silicon nitride layer, silane gas is used as the silicon source and ammonia gas is used as the nitrogen source, and the substrate to be stacked (layer substrate) is set in the lower part of the vacuum chamber in advance. Once the pressure is reduced to about 10 −4 Pa, a current is passed through a tungsten wire provided in the upper part of the chamber and the surface temperature is heated to about 2000 ° C. by resistance heating. A raw material gas is introduced, and active species generated by catalytic decomposition of the raw material gas on the tungsten surface are deposited on the substrate to be laminated.
上記方法により成膜される窒化ケイ素層の層厚の制御は、原料ガス導入時間および流量、タングステン線と被積層基板間の距離、チャンバー内の制御圧力等により容易に行うことができる。
また、原料ガスについて上記例示には、シランガス、アンモニアガスを挙げたが代わりにジシランガス、ヒドラジンガス等を用いることもできる。さらに希釈ガスとして水素ガスを任意の割合で混合することも可能である。
The layer thickness of the silicon nitride layer formed by the above method can be easily controlled by the material gas introduction time and flow rate, the distance between the tungsten wire and the laminated substrate, the control pressure in the chamber, and the like.
Moreover, although the silane gas and ammonia gas were mentioned in the said illustration about source gas, Disilane gas, hydrazine gas, etc. can also be used instead. Furthermore, it is also possible to mix hydrogen gas as a dilution gas at an arbitrary ratio.
また、酸窒化ケイ素層を製造する場合には、上記窒化ケイ素層の製造と同様の装置を用い、原料ガスに上記窒化ケイ素層の場合に用いたシランガス、アンモニアガス以外に新たにヘリウムガスで希釈された酸素ガス(ヘリウム希釈酸素ガス)を用い、当該ヘリウム希釈酸素ガスのみチャンバー上部のタングステン線近くに設置されたガスリングから導入する以外は窒化ケイ素層の製造時と同じ条件で成膜することができる。 In addition, when manufacturing a silicon oxynitride layer, the same apparatus as that for manufacturing the silicon nitride layer is used, and the raw material gas is diluted with helium gas in addition to the silane gas and ammonia gas used in the case of the silicon nitride layer. The film is formed under the same conditions as in the production of the silicon nitride layer except that the oxygen gas (helium diluted oxygen gas) is used and only the helium diluted oxygen gas is introduced from a gas ring installed near the tungsten wire at the top of the chamber. Can do.
ここで、触媒化学気相堆積法による酸窒化ケイ素層の製造方法において、該酸窒化ケイ素層の酸素含有指標を制御する方法は、ガスリングから導入するヘリウム希釈の酸素ガス流量で調整することができる。さらに好ましくは、通常、酸素混合比2体積%に調製したヘリウム/酸素混合ガスを用い、10sccm〜1000sccmの流量範囲で、得られる酸窒化ケイ素層中の酸素含有指標を、RBS法で求め、当該酸素含有指標が0.30以上0.90以下の範囲内に入るように、前記酸素/ヘリウム混合ガスの流量を調整することで透明樹脂基板上に酸窒化ケイ素層を製造することができる。
また、前記のように、酸窒化ケイ素層を製造する製膜条件を、シリコンウェハー等を用いた予備実験で求めてもよい。
Here, in the method of manufacturing a silicon oxynitride layer by catalytic chemical vapor deposition, the method for controlling the oxygen content index of the silicon oxynitride layer can be adjusted by the oxygen gas flow rate of helium diluted introduced from the gas ring. it can. More preferably, usually, an oxygen content index in the obtained silicon oxynitride layer is determined by the RBS method using a helium / oxygen mixed gas prepared at an oxygen mixing ratio of 2% by volume in a flow rate range of 10 sccm to 1000 sccm. The silicon oxynitride layer can be manufactured on the transparent resin substrate by adjusting the flow rate of the oxygen / helium mixed gas so that the oxygen content index falls within the range of 0.30 to 0.90.
Further, as described above, the film forming conditions for producing the silicon oxynitride layer may be obtained by a preliminary experiment using a silicon wafer or the like.
触媒化学気相堆積法を用いて、酸窒化ケイ素層と、窒化ケイ素層とを順次積層する場合、2種類の層を逐次製造(逐次製膜法)しても、連続で製造(連続製膜法)しても良い。
前記逐次製膜法では、まず、透明樹脂基板上に、酸窒化ケイ素層の製造を行った後、チャンバー内の残存ガスを所定の減圧度まで真空排気してから、当該酸窒化ケイ素層上に、窒化ケイ素層を製造することで実施できる。
一方、前記連続製膜法では、酸窒化ケイ素層の製造終了後、タングステン線への電力供給を止めることなくチャンバー内に導入していたヘリウムガス希釈酸素ガス流量を0sccmにして、窒化ケイ素層の製造を行うことにより容易に実施できる。
When a silicon oxynitride layer and a silicon nitride layer are sequentially laminated using a catalytic chemical vapor deposition method, even if two types of layers are sequentially manufactured (sequential film formation method), they are manufactured continuously (continuous film formation). Act).
In the sequential film formation method, first, a silicon oxynitride layer is manufactured on a transparent resin substrate, and then the residual gas in the chamber is evacuated to a predetermined pressure reduction degree, and then the silicon oxynitride layer is formed on the silicon oxynitride layer. It can be carried out by producing a silicon nitride layer.
On the other hand, in the continuous film forming method, after the production of the silicon oxynitride layer is completed, the flow of helium gas diluted oxygen gas introduced into the chamber without stopping power supply to the tungsten wire is set to 0 sccm, and the silicon nitride layer is formed. It can be easily carried out by manufacturing.
本発明の透明ガスバリア基板において、酸窒化ケイ素層及び窒化ケイ素層の層厚については、特に限定されるものではないが、酸窒化ケイ素層の層厚が10nm以上500nm以下であることが好ましく、50nm以上200nm以下がとりわけ好ましい。一方、窒化ケイ素層の層厚は、10nm以上200nm以下であることが好ましく、20nm以上100nm以下がとりわけ好ましい。 In the transparent gas barrier substrate of the present invention, the thicknesses of the silicon oxynitride layer and the silicon nitride layer are not particularly limited, but the layer thickness of the silicon oxynitride layer is preferably 10 nm or more and 500 nm or less, and 50 nm. Above 200 nm is particularly preferable. On the other hand, the thickness of the silicon nitride layer is preferably 10 nm or more and 200 nm or less, and particularly preferably 20 nm or more and 100 nm or less.
酸窒化ケイ素層の層厚および窒化ケイ素層の層厚がともに、10nm未満の厚さでは水蒸気バリア性が不十分となる傾向があり、酸窒化ケイ素層の層厚が500nmを超える場合あるいは窒化ケイ素層の膜厚が200nmを越える場合は、各層の製造段階において、成膜中に発生する内部応力が原因でクラックが生じたり、酸窒化ケイ素層あるいは窒化ケイ素層の光線透過率が大きく低下し、透明性が悪化する傾向があり、好ましくない。 When both the thickness of the silicon oxynitride layer and the thickness of the silicon nitride layer are less than 10 nm, the water vapor barrier property tends to be insufficient. When the thickness of the silicon oxynitride layer exceeds 500 nm or silicon nitride When the thickness of the layer exceeds 200 nm, in the manufacturing stage of each layer, cracks are caused due to internal stress generated during film formation, or the light transmittance of the silicon oxynitride layer or silicon nitride layer is greatly reduced, The transparency tends to deteriorate, which is not preferable.
ここで、前記酸窒化ケイ素層および窒化ケイ素層の、層厚を求める方法としては、ガスバリア基板を破断した断面をSEM等の顕微鏡観察を行うことで求めることができる。製造上、簡便である観点からは、前記の酸素含有指標と同様に、シリコンウェハーを用いた予備実験を行い、予め、目的とする層厚が得られる製造条件を決定しておくほうが好ましい。通常、触媒化学気相堆積法における、酸窒化ケイ素層又は窒化ケイ素層の製造においては、製造条件が同等であれば、シリコンウェハー上で得られた層厚とほぼ同等の層厚のものを、透明樹脂基板上に製造することができる。 Here, as a method of obtaining the layer thicknesses of the silicon oxynitride layer and the silicon nitride layer, it can be obtained by observing a cross section of the gas barrier substrate with a microscope such as SEM. From the viewpoint of simplicity in production, it is preferable to carry out a preliminary experiment using a silicon wafer as in the case of the oxygen-containing index, and to determine the production conditions for obtaining the target layer thickness in advance. Usually, in the production of a silicon oxynitride layer or a silicon nitride layer in the catalytic chemical vapor deposition method, if the production conditions are the same, a layer having a layer thickness approximately equivalent to the layer thickness obtained on the silicon wafer is obtained. It can be manufactured on a transparent resin substrate.
本発明の透明ガスバリア基板に用いられる、透明樹脂基板を構成する樹脂としては、透明であり、且つ、表面が平坦な基板が得られれば、特に制限は無く、例えば、ポリアリレート、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリスルホン、ポリアミド、セルローストリアセテート、さらにはポリノルボルネン等の環状ポリオレフィンなどの、いずれも使用することができる。とりわけ、表面平坦性が良好な基板を得ることが容易な、ポリエーテルスルホン、ポリエチレンナフタレート、ポリノルボルネンが好ましく、これらの樹脂から選ばれた2種以上の樹脂を組み合わせて使用することもできる。ここで2種以上の樹脂を組み合わせる場合、溶融混練等でアロイ化した樹脂基板でも、2種以上の樹脂基板を、熱融着法等を用いて積層させた積層樹脂基板でもよく、透明性、及び樹脂基板自体の表面平坦性を損なわない範囲で使用することができる。
さらに、これら透明樹脂基板の表面に、表面平滑性向上、積層する酸窒化ケイ素層との密着性向上を目的としてアンダーコート処理を行うこともできる。
The resin constituting the transparent resin substrate used for the transparent gas barrier substrate of the present invention is not particularly limited as long as a transparent substrate having a flat surface is obtained. For example, polyarylate, polycarbonate, polyethylene terephthalate Polyethylene naphthalate, polyethersulfone, polysulfone, polyamide, cellulose triacetate, and cyclic polyolefins such as polynorbornene can be used. In particular, polyethersulfone, polyethylene naphthalate, and polynorbornene are preferable because it is easy to obtain a substrate having good surface flatness, and two or more resins selected from these resins can be used in combination. Here, when two or more kinds of resins are combined, a resin substrate that has been alloyed by melt kneading or the like, or a laminated resin substrate in which two or more kinds of resin substrates are laminated using a thermal fusion method or the like may be used. And it can be used in the range which does not impair the surface flatness of resin substrate itself.
Furthermore, an undercoat treatment can be performed on the surface of the transparent resin substrate for the purpose of improving the surface smoothness and improving the adhesion with the laminated silicon oxynitride layer.
以下、本発明を実施例により説明するが、本発明は実施例により限定されるものでない。 EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited by an Example.
水蒸気透過度の評価方法
透明ガスバリア基板の水蒸気バリア性は、JIS K7129Aの感湿センサー法に準拠した水蒸気透過度測定装置(LYSSY社製PERMEABILITY TESTER L80−4000)を用いて、40℃/90%RHの条件下にて水蒸気透過度を測定し、水蒸気透過度初期値(A)を求めることで評価した。
さらに、熱処理後の水蒸気バリア性は、上記透明ガスバリア基板を通風乾燥器中で150℃×10分処理した後、上記の水蒸気透過度測定装置を用いて40℃/90%RHの条件下にて水蒸気透過度を測定し、熱処理後の水蒸気透過度(B)を求めた。
Evaluation Method of Water Vapor Permeability The water vapor barrier property of the transparent gas barrier substrate is 40 ° C./90% RH using a water vapor permeability measuring device (PERMEABILITY TESTER L80-4000 manufactured by LYSSY) based on the moisture sensitive sensor method of JIS K7129A. The water vapor permeability was measured under the above conditions, and the water vapor permeability initial value (A) was determined and evaluated.
Further, the water vapor barrier property after the heat treatment is as follows: after the transparent gas barrier substrate is treated at 150 ° C. for 10 minutes in the ventilation dryer, the water vapor permeability measuring device is used at 40 ° C./90% RH. The water vapor permeability was measured, and the water vapor permeability (B) after the heat treatment was determined.
実施例1
ポリエーテルスルホン基板(厚さ100μm)をガラス板に固定し、ターボ分子ポンプ、ロードロック機構、ガス導入シャワーヘッド、ヘリウム/酸素混合ガス導入ガスリング、外部取り出し電極端子付タングステン線触媒張り掛け機構を有する真空チャンバー内に導入し、チャンバー内を10-4Pa以下まで真空引きを行った。この時、触媒タングステン線と、ポリエーテルスルホン基板を支持するガラス板との距離はおよそ200mmであった。その後、シャワーヘッドよりシランガス、アンモニアガス、水素ガスをそれぞれ10sccm、20sccm、400sccmずつ、ガスリングより酸素混合比2体積%のヘリウム/酸素混合ガスを200sccm導入し、チャンバー内を20Paに制御しながら、タングステン線に100V程度の電圧をかけ、900秒間保持して、ポリエーテルスルホン基板上へ酸窒化ケイ素層をおよそ70nm堆積した。ここで、酸窒化ケイ素層の層厚は同条件で堆積したシリコンウエハー上の膜厚をエリプソメトリ法にて測定することで算出した。
このようにして得られた、酸窒化ケイ素層の元素組成をRBS法により定量したところ、酸素含有指標は0.46であった。
Example 1
A polyethersulfone substrate (thickness 100 μm) is fixed to a glass plate, a turbo molecular pump, a load lock mechanism, a gas introduction shower head, a helium / oxygen mixed gas introduction gas ring, and a tungsten wire catalyst hanging mechanism with an external extraction electrode terminal The chamber was introduced into a vacuum chamber, and the inside of the chamber was evacuated to 10 −4 Pa or less. At this time, the distance between the catalyst tungsten wire and the glass plate supporting the polyethersulfone substrate was about 200 mm. Thereafter, silane gas, ammonia gas, and hydrogen gas were introduced from the shower head at 10 sccm, 20 sccm, and 400 sccm, respectively, and 200 sccm of helium / oxygen mixed gas having an oxygen mixing ratio of 2 volume% was introduced from the gas ring, and the inside of the chamber was controlled to 20 Pa A voltage of about 100 V was applied to the tungsten wire and held for 900 seconds to deposit a silicon oxynitride layer of approximately 70 nm on the polyethersulfone substrate. Here, the thickness of the silicon oxynitride layer was calculated by measuring the film thickness on the silicon wafer deposited under the same conditions by an ellipsometry method.
When the elemental composition of the silicon oxynitride layer thus obtained was quantified by the RBS method, the oxygen content index was 0.46.
引き続き、チャンバー内をターボ分子ポンプで2分間真空引きして、チャンバー内の残存原料ガスを抜き取り、再度シャワーヘッドよりシランガス、アンモニアガス、水素ガスをそれぞれ10sccm、20sccm、400sccm導入して、チャンバー内を20Paに制御しながらタングステン線に100V程度の電圧をかけ、300秒間保持して酸窒化ケイ素層上に、窒化ケイ素層をおよそ50nm堆積した。ここで、窒化ケイ素層の層厚は、同条件で堆積したシリコンウエハー上の膜厚をエリプソメトリ法で測定することで算出した。
このようにして、片面に酸窒化ケイ素層と、窒化ケイ素層とを、この順で積層したポリエーテルスルホン基板の、積層された面の反対側の面にも、上記と同等の方法によって、酸窒化ケイ素層をおよそ70nm、さらにその上に窒化ケイ素層をおよそ50nm、積層した。このようにして得られた透明ガスバリア基板を基板Aとする。基板Aの可視光における光線透過率は70%以上であった。
得られた基板Aの水蒸気透過度(A)、熱処理後の水蒸気透過度(B)を前記の評価方法により求め、B/Aを熱処理係数として求めた。結果を表−1に示す。
Subsequently, the inside of the chamber is evacuated with a turbo molecular pump for 2 minutes, the raw material gas in the chamber is extracted, and silane gas, ammonia gas, and hydrogen gas are introduced again from the shower head by 10 sccm, 20 sccm, and 400 sccm, respectively. While controlling at 20 Pa, a voltage of about 100 V was applied to the tungsten wire and held for 300 seconds to deposit a silicon nitride layer of approximately 50 nm on the silicon oxynitride layer. Here, the layer thickness of the silicon nitride layer was calculated by measuring the film thickness on the silicon wafer deposited under the same conditions by an ellipsometry method.
In this manner, the surface of the polyethersulfone substrate on which one side of the silicon oxynitride layer and the silicon nitride layer are laminated in this order is also applied to the surface opposite to the laminated surface by the same method as described above. A silicon nitride layer was laminated to approximately 70 nm, and a silicon nitride layer was laminated thereon to approximately 50 nm. The transparent gas barrier substrate thus obtained is referred to as substrate A. The light transmittance of visible light of the substrate A was 70% or more.
The water vapor permeability (A) of the obtained substrate A and the water vapor permeability (B) after the heat treatment were determined by the above evaluation method, and B / A was determined as the heat treatment coefficient. The results are shown in Table-1.
実施例2
酸窒化ケイ素層製造時のヘリウム/酸素混合ガス流量を400sccmとする以外は、実施例1と同様の処理を行い、透明ガスバリア基板を得た。このとき、酸窒化ケイ素層の酸素含有指標は0.81であった。このようにして得られた透明ガスバリア基板を基板Bとする。基板Bの可視光における光線透過率は70%以上であった。
実施例1と同様に、基板Bの水蒸気透過度、熱処理後の水蒸気透過度及び熱処理係数を求めた。結果を表−1に示す。
Example 2
A transparent gas barrier substrate was obtained by performing the same treatment as in Example 1 except that the flow rate of the helium / oxygen mixed gas at the time of manufacturing the silicon oxynitride layer was 400 sccm. At this time, the oxygen content index of the silicon oxynitride layer was 0.81. The transparent gas barrier substrate thus obtained is referred to as substrate B. The light transmittance of visible light of the substrate B was 70% or more.
Similarly to Example 1, the water vapor permeability of the substrate B, the water vapor permeability after the heat treatment, and the heat treatment coefficient were determined. The results are shown in Table-1.
実施例3
ポリエーテルスルホン基板(厚さ100μm)を用い、実施例1と同様の方法で、該ポリエーテルスルホン基板の片面のみに、酸窒化ケイ素層(層厚 70nm、酸窒化ケイ素層の酸素含有指標は0.46)と、窒化ケイ素層(層厚 50nm)とを、この順で積層した。このようにして得られた透明ガスバリア基板を基板Cとする。ここで基板Cの可視光における光線透過率は70%以上であった。
実施例1と同様に、基板Cの水蒸気透過度、熱処理後の水蒸気透過度及び熱処理係数を求めた。結果を表−1に示す。
Example 3
A polyethersulfone substrate (thickness: 100 μm) was used in the same manner as in Example 1, and a silicon oxynitride layer (layer thickness: 70 nm, oxygen content index of the silicon oxynitride layer was 0 on only one side of the polyethersulfone substrate. .46) and a silicon nitride layer (layer thickness 50 nm) were laminated in this order. The transparent gas barrier substrate thus obtained is referred to as substrate C. Here, the light transmittance of visible light of the substrate C was 70% or more.
Similarly to Example 1, the water vapor permeability of the substrate C, the water vapor permeability after the heat treatment, and the heat treatment coefficient were determined. The results are shown in Table-1.
比較例1
ポリエーテルスルホン基板(厚さ100μm)をガラス板に固定し、実施例1と同等の真空チャンバー内に導入し、チャンバー内を10-4Pa以下まで真空引きを行った。その後、シランガス、アンモニアガス、水素ガスをそれぞれ10sccm、20sccm、400sccm導入して、チャンバー内を20Paに制御しながらタングステン線に100V程度の電圧をかけ、300秒間保持してポリエーテルスルホン基板上に、窒化ケイ素層をおよそ50nm堆積した。ここで、窒化ケイ素層の層厚は、同一の製膜条件でシリコンウェハー上に堆積した窒化ケイ素層の層厚から求めた。このようにして得られた透明ガスバリア基板を基板Dとする。基板Dの可視光における光線透過率は70%以上であった。
実施例1と同様に、基板Dの水蒸気透過度、熱処理後の水蒸気透過度及び熱処理係数を求めた。結果を表−1に示す。ここで、熱処理後の基板Dは、基板表面にクラックが生じているのが、目視で認められた。
Comparative Example 1
A polyethersulfone substrate (thickness: 100 μm) was fixed to a glass plate, introduced into a vacuum chamber equivalent to that in Example 1, and the inside of the chamber was evacuated to 10 −4 Pa or less. Thereafter, silane gas, ammonia gas, and hydrogen gas were introduced at 10 sccm, 20 sccm, and 400 sccm, respectively, and a voltage of about 100 V was applied to the tungsten wire while controlling the inside of the chamber to 20 Pa, and held for 300 seconds on the polyethersulfone substrate. A silicon nitride layer was deposited approximately 50 nm. Here, the layer thickness of the silicon nitride layer was determined from the layer thickness of the silicon nitride layer deposited on the silicon wafer under the same film forming conditions. The transparent gas barrier substrate thus obtained is referred to as substrate D. The light transmittance of visible light of the substrate D was 70% or more.
Similarly to Example 1, the water vapor permeability of the substrate D, the water vapor permeability after the heat treatment, and the heat treatment coefficient were obtained. The results are shown in Table-1. Here, it was visually confirmed that the substrate D after the heat treatment had cracks on the substrate surface.
基板A、基板B及び基板Cは、可視光に対する透明性を有し、且つ、150℃の熱履歴による水蒸気透過度の変化が、比較例1の基板Dに対して著しく小さく(熱処理係数が小さく)、熱処理によって水蒸気透過度の劣化が低い透明ガスバリア基板であることが判明した。 Substrate A, substrate B, and substrate C are transparent to visible light, and the change in water vapor permeability due to a thermal history at 150 ° C. is significantly smaller than that of substrate D of Comparative Example 1 (the heat treatment coefficient is small). ), A transparent gas barrier substrate with low deterioration of water vapor permeability by heat treatment.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005254457A JP4279816B2 (en) | 2005-09-02 | 2005-09-02 | Transparent gas barrier substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005254457A JP4279816B2 (en) | 2005-09-02 | 2005-09-02 | Transparent gas barrier substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007062305A true JP2007062305A (en) | 2007-03-15 |
JP4279816B2 JP4279816B2 (en) | 2009-06-17 |
Family
ID=37925059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005254457A Active JP4279816B2 (en) | 2005-09-02 | 2005-09-02 | Transparent gas barrier substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4279816B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008231570A (en) * | 2007-02-23 | 2008-10-02 | Tohcello Co Ltd | Thin film and manufacturing method therefor |
JP2008231571A (en) * | 2007-02-23 | 2008-10-02 | Tohcello Co Ltd | Thin film, and method for manufacturing the thin film |
WO2009001924A1 (en) * | 2007-06-27 | 2008-12-31 | Ulvac, Inc. | Resin substrate |
WO2009014099A1 (en) * | 2007-07-20 | 2009-01-29 | National University Corporation Nagaoka University Of Technology | Method and apparatus for depositing nitride film |
KR101019061B1 (en) | 2007-06-01 | 2011-03-07 | 주식회사 엘지화학 | Multiple-layer film and method for manufacturing the same |
JP2011146226A (en) * | 2010-01-14 | 2011-07-28 | Konica Minolta Holdings Inc | Barrier film and organic electronic device |
WO2012067230A1 (en) * | 2010-11-19 | 2012-05-24 | コニカミノルタホールディングス株式会社 | Gas barrier film, method of producing a gas barrier film, and electronic device |
WO2013077179A1 (en) * | 2011-11-21 | 2013-05-30 | 住友ベークライト株式会社 | Transparent composite substrate and display element substrate |
JP2013163323A (en) * | 2012-02-10 | 2013-08-22 | Sumitomo Bakelite Co Ltd | Transparent composite substrate and display element substrate |
KR20150135521A (en) * | 2013-03-29 | 2015-12-02 | 린텍 가부시키가이샤 | Gas barrier laminate, member for electronic device, and electronic device |
-
2005
- 2005-09-02 JP JP2005254457A patent/JP4279816B2/en active Active
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008231571A (en) * | 2007-02-23 | 2008-10-02 | Tohcello Co Ltd | Thin film, and method for manufacturing the thin film |
JP2008231570A (en) * | 2007-02-23 | 2008-10-02 | Tohcello Co Ltd | Thin film and manufacturing method therefor |
KR101019061B1 (en) | 2007-06-01 | 2011-03-07 | 주식회사 엘지화학 | Multiple-layer film and method for manufacturing the same |
WO2009001924A1 (en) * | 2007-06-27 | 2008-12-31 | Ulvac, Inc. | Resin substrate |
JP2009006568A (en) * | 2007-06-27 | 2009-01-15 | Ulvac Japan Ltd | Resin substrate |
KR101141941B1 (en) * | 2007-07-20 | 2012-06-26 | 도쿄엘렉트론가부시키가이샤 | Method and apparatus for depositing nitride film |
WO2009014099A1 (en) * | 2007-07-20 | 2009-01-29 | National University Corporation Nagaoka University Of Technology | Method and apparatus for depositing nitride film |
JP2011146226A (en) * | 2010-01-14 | 2011-07-28 | Konica Minolta Holdings Inc | Barrier film and organic electronic device |
WO2012067230A1 (en) * | 2010-11-19 | 2012-05-24 | コニカミノルタホールディングス株式会社 | Gas barrier film, method of producing a gas barrier film, and electronic device |
US9603268B2 (en) | 2010-11-19 | 2017-03-21 | Konica Minolta, Inc. | Gas barrier film, method of producing a gas barrier film, and electronic device |
WO2013077179A1 (en) * | 2011-11-21 | 2013-05-30 | 住友ベークライト株式会社 | Transparent composite substrate and display element substrate |
JP2013163323A (en) * | 2012-02-10 | 2013-08-22 | Sumitomo Bakelite Co Ltd | Transparent composite substrate and display element substrate |
KR20150135521A (en) * | 2013-03-29 | 2015-12-02 | 린텍 가부시키가이샤 | Gas barrier laminate, member for electronic device, and electronic device |
EP2979860A4 (en) * | 2013-03-29 | 2016-09-21 | Lintec Corp | Gas barrier laminate, member for electronic device, and electronic device |
JPWO2014157685A1 (en) * | 2013-03-29 | 2017-02-16 | リンテック株式会社 | GAS BARRIER LAMINATE, ELECTRONIC DEVICE MEMBER AND ELECTRONIC DEVICE |
JP2018171929A (en) * | 2013-03-29 | 2018-11-08 | リンテック株式会社 | Gass barrier laminate, member for electronic device, and electronic device |
JP2019107906A (en) * | 2013-03-29 | 2019-07-04 | リンテック株式会社 | Gas barrier laminate, member for electronic device, and electronic device |
KR102267093B1 (en) | 2013-03-29 | 2021-06-18 | 린텍 가부시키가이샤 | Gas barrier laminate, member for electronic device, and electronic device |
Also Published As
Publication number | Publication date |
---|---|
JP4279816B2 (en) | 2009-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Improvements of permeation barrier coatings using encapsulated parylene interlayers for flexible electronic applications | |
JP5966928B2 (en) | Gas barrier film | |
TWI791739B (en) | Organic-inorganic hybrid film , laminate and articles including organic-inorganic hybrid film | |
JP4279816B2 (en) | Transparent gas barrier substrate | |
Lee et al. | Environmental reliability and moisture barrier properties of silicon nitride and silicon oxide films using roll-to-roll plasma enhanced chemical vapor deposition | |
US10196740B2 (en) | Laminate and method of manufacturing the same, and gas barrier film and method of manufacturing the same | |
US9281420B2 (en) | Chemical vapor deposited film formed by plasma CVD method | |
TW201425016A (en) | Flexible multilayer hermetic laminate | |
Han et al. | Water vapor and hydrogen gas diffusion barrier characteristics of Al 2 O 3–alucone multi-layer structures for flexible OLED display applications | |
JP5789938B2 (en) | Gas barrier laminated film | |
Kim et al. | A thin film encapsulation layer fabricated via initiated chemical vapor deposition and atomic layer deposition | |
JP2005166400A (en) | Surface protection film | |
TWI303667B (en) | Method and apparatus of depositing low temperature inorganic films on plastic substrates | |
JP4987716B2 (en) | Substrate coated with hydrogenated silicon oxycarbide (H: SiOC) and method for producing the same | |
Cho et al. | Gas barrier and mechanical properties of a single‐layer silicon oxide film prepared by roll‐to‐roll PECVD system | |
Yang et al. | Systematic investigation on polymer layer selection for flexible thin film encapsulation | |
JP2005342975A (en) | Transparent barrier film | |
JP4106931B2 (en) | Transparent gas barrier thin film coating film | |
Zhou et al. | Effect of the crystallinity of indium tin oxide on the charge transfer at the interfaces and the performances of flexible organic light emitting diodes | |
JP2014114467A (en) | Method for producing gas barrier film | |
JP6019054B2 (en) | Gas barrier film and method for producing gas barrier film | |
JP5170788B2 (en) | New metal nitrogen oxide process | |
TW201342400A (en) | Transparent conductive film | |
US10170643B2 (en) | Method for manufacturing barrier film with enhanced moisture resistance and barrier film manufactured by the same | |
KR102732322B1 (en) | Gas-barrier metal oxide deposition film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080124 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080520 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080821 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20080821 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20080904 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090303 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090312 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4279816 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140319 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |