JP2007061897A - Manufacturing method for stainless-steel-claded copper wire - Google Patents

Manufacturing method for stainless-steel-claded copper wire Download PDF

Info

Publication number
JP2007061897A
JP2007061897A JP2005291672A JP2005291672A JP2007061897A JP 2007061897 A JP2007061897 A JP 2007061897A JP 2005291672 A JP2005291672 A JP 2005291672A JP 2005291672 A JP2005291672 A JP 2005291672A JP 2007061897 A JP2007061897 A JP 2007061897A
Authority
JP
Japan
Prior art keywords
wire
stainless steel
copper wire
core material
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005291672A
Other languages
Japanese (ja)
Other versions
JP4868304B2 (en
Inventor
Kazuhiro Iwamoto
一浩 岩元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP2005291672A priority Critical patent/JP4868304B2/en
Publication of JP2007061897A publication Critical patent/JP2007061897A/en
Application granted granted Critical
Publication of JP4868304B2 publication Critical patent/JP4868304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Wire Processing (AREA)
  • Metal Extraction Processes (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a stainless-steel-claded copper wire of high quality, with good productivity. <P>SOLUTION: The manufacturing method for a stainless-steel-claded copper wire of high quality includes; (1) a step of preparing a copper strand as a core material; (2) a step of obtaining a claded wire rod, is which the copper strand is conered with a stainless steel outer package strap so that the core material is finally 70-95% by volume ratio to the total volume and the surface of the core material is prevented from being exposed by butt-welding the edges of the strap; (3) a step of making a composite wire rod by doubly covering the claded wire rod with a 2nd outer package material, which is finally to be removed; (4) a diameter reduction step, in which a heat treatment work and a size-reduction work are repeatedly applied to the composite wire rod as needed, and the welded part structure of the stainless steel outer package strap is stabilized to an austenite structure during these works; and (5) a step of separating and removing only the 2nd outer package material from the composite wire rod at any time during or after the diameter reduction step. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、耐熱性と耐食性に優れ、かつ安定した導電性を有するステンレス鋼クラッド銅線の製造方法に関し、特に表面欠陥のない高品質なクラッド銅細線を安定的に製造する為の新規製造方法に関する。  The present invention relates to a method for producing a stainless steel clad copper wire having excellent heat resistance and corrosion resistance and having a stable conductivity, and in particular, a novel production method for stably producing a high-quality clad copper wire without surface defects. About.

従来技術Conventional technology

燃料電池は、電気化学反応によって燃料の持つ化学エネルギーを直接電気エネルギーに変換することから、エネルギー損失が少なく高い発電効率が得られる次世代のエネルギーとして注目され、またその反応も数百度の高温であることから、この排熱を蒸気タービンやガスタービンなどを回す熱源としてコーゼネレーションシステムに利用できること、また有害な排ガスなどの発生のない低環境負荷型の発電方式であること等の利点が挙げられている。  Fuel cells are attracting attention as the next-generation energy that generates high power generation efficiency with low energy loss because the chemical energy of fuel is directly converted into electrical energy by electrochemical reaction, and the reaction is also performed at a high temperature of several hundred degrees. Therefore, there are advantages such as being able to use this exhaust heat as a heat source for turning steam turbines and gas turbines in a cogeneration system, and being a low environmental load power generation system that does not generate harmful exhaust gas. It has been.

ところで、このような装置では電池本体と電源制御機器を結ぶ電線材料として種々のフレキシブルケーブルなどが用いられるが、特に前記高温環境下でも所定の導電率を備える特性が必要となることから、例えば特許文献1では、導電用の銅線の表面にステンレス鋼をクラッド加工したステンレスクラッドCu線を編組加工した編組線を用いることを開示している。またこの中で、該ステンレスクラッドCu線では、銅線の純度は99%以上の高純度を有すること、ステンレス鋼は炭素0.06重量%以下のSUS304Lが好ましいこと、導電率はCu素線を100とするとき85%以上であること、などの点を説明している。  By the way, in such a device, various flexible cables and the like are used as a wire material connecting the battery body and the power supply control device. However, since a characteristic having a predetermined conductivity is required even in the high temperature environment, for example, a patent Document 1 discloses that a braided wire obtained by braiding a stainless clad Cu wire obtained by clad stainless steel on the surface of a copper wire for conduction is disclosed. Among these, in the stainless clad Cu wire, the purity of the copper wire is 99% or more, the stainless steel is preferably SUS304L of carbon 0.06% by weight or less, and the conductivity is Cu wire. The point of being 85% or more when 100 is explained.

また特許文献2は、前記文献1と同様に、銅線の芯部と、これを被覆するステンレス鋼外皮で構成される、引張強さ600N/mm2以上で、絞り値が30%以上のステンレス鋼被覆銅線について、冷間伸線加工と中間熱処理を行い、最終回の冷間伸線加工をダイス減面率20%以上で行うこと(請求項6)、ステンレス鋼はSUS304L,316Lが好ましいこと(  Patent Document 2 is a stainless steel having a tensile strength of 600 N / mm 2 or more and a drawing value of 30% or more, which is composed of a core portion of a copper wire and a stainless steel sheath covering the same, as in Reference 1 above. The coated copper wire is subjected to cold drawing and intermediate heat treatment, and the final cold drawing is performed with a die area reduction of 20% or more (Claim 6), and SUS304L and 316L are preferable for stainless steel. (

)、適用仕上げ線径は0.07〜1.5mmであること() The applied finish wire diameter is 0.07 to 1.5 mm (

)、伸線加工は湿式連続多段伸線機によること(), Wire drawing is done by a wet continuous multi-stage wire drawing machine (

)、使用ダイスはアプローチ角が8〜14度、ベアリング長さが空孔径の約0.3〜1.0倍程度であること() The die used has an approach angle of 8 to 14 degrees and a bearing length of about 0.3 to 1.0 times the hole diameter (

)などの点を開示している。) Etc. are disclosed.

特開2002−208314号公報  JP 2002-208314 A 特開2000−176534号公報  JP 2000-176534 A

このように前記各特許文献は、いずれも銅線を芯材としてその表面にステンレス鋼を被覆した複合線材を開示し、その容積比率を所定範囲になるように調整するものとしているが、前記ステンレス鋼の被覆形成をより確実に行ない、芯材の露出を防止することについては何ら開示されていない。  As described above, each of the above patent documents discloses a composite wire in which a copper wire is used as a core material and the surface thereof is covered with stainless steel, and the volume ratio is adjusted to be within a predetermined range. There is no disclosure of more reliably forming the steel coating and preventing the core from being exposed.

すなわち前記文献は、フレキシブルケーブル等の用途に用いる場合の品質特性として、予め設計された所定導電率を備える必要があるものの、一般的に銅金属を前記高温環境下で使用するものでは容易に酸化してしまい、導電率が低下することから、前記ステンレス鋼の被覆によって内部の銅芯材の酸化を抑え導電率維持を図ろうとするものである。  In other words, although the above-mentioned document needs to have a predetermined electrical conductivity designed as a quality characteristic when used for applications such as flexible cables, it is generally easy to oxidize when copper metal is used in the high temperature environment. As a result, the electrical conductivity is lowered, so that the stainless steel coating suppresses the oxidation of the internal copper core material to maintain the electrical conductivity.

したがって該被覆銅線では、前記ステンレス鋼外装材は内部の銅線の全体を確実に包み、クラックや無被覆部等のない正常な被覆状態を備える必要がある。しかしながら、一般的にこれらに用いられる被覆銅線は例えば線径0.2mm程度の非常に細い長尺材でもあることから、仮に特許文献2が開示するような単にステンレス鋼板を外装材として巻き付けて被覆し伸線加工したものでは、その合わせ部に隙間が形成されたり、これを編組加工する際の曲げに伴って隙間が拡がる等の問題があり、結果的にその部分から酸化が進んで導電率低下の原因になることが懸念されており、その改善が求められている。 例えばF.L.Antisell:Trans.AIME,64(1921)432では、銅金属中の酸素量と電気伝導率の関係について、酸素量0%では102IACS%、0.1%の酸素量では98IACS%に比例的に減少することを示しており、酸素量は導電率に大きく影響することが伺える。  Therefore, in the coated copper wire, the stainless steel sheathing material must surely wrap the entire internal copper wire and have a normal coated state without cracks or uncovered portions. However, in general, the coated copper wire used for these is also a very thin long material having a wire diameter of about 0.2 mm, for example, so that a stainless steel plate as disclosed in Patent Document 2 is simply wrapped as an exterior material. In the case of coating and wire drawing, there is a problem that a gap is formed at the mating portion, or that the gap is widened with bending when braiding it, and as a result, oxidation proceeds from that portion and the conductive property is increased. There is concern that it will cause a decline in the rate, and there is a need for improvement. For example, F.R. L. Antisell: Trans. AIME, 64 (1921) 432 shows that the relationship between the amount of oxygen in copper metal and the electrical conductivity is proportionally reduced to 102 IACS% when the oxygen amount is 0% and to 98 IACS% when the oxygen amount is 0.1%. It can be seen that the amount of oxygen greatly affects the conductivity.

なお文献2の場合、前記ステンレス鋼外装材の被覆段階で、その縁部同士を例えば電子ビーム溶接などの方法で結合してチューブ状にすることも考えられるが、ステンレス鋼を溶接すると、局部的加熱あるいは溶融した金属が凝固する際の析出状態によって、例えば図4に示すような局部的な樹枝状組織(デンドライド組織)や炭化物の発生、加熱部近傍での結晶粒の粗大化するなど異質組織状態り、こうした金属組織は母相のオーステナイト組織に比して比較的脆いことから、その後の減寸加工や編組加工等の影響から部分的なクラック発生を生じるなど、表面欠陥を招きやすく生産性を低下させる原因になっている。  In the case of Document 2, it is conceivable that the edges of the stainless steel sheathing material are joined to each other by a method such as electron beam welding in the covering stage, but when stainless steel is welded, it is localized. Depending on the precipitation state when the heated or molten metal solidifies, for example, a local dendritic structure (dendrid structure) or carbide is generated as shown in FIG. 4, and a heterogeneous structure such as crystal grains are coarsened in the vicinity of the heated part. As the metal structure is relatively brittle compared to the austenite structure of the matrix, it is prone to surface defects such as partial cracking due to the effects of subsequent reduction and braiding. It is a cause of lowering.

しかもこの場合、外装のステンレス鋼と芯材である銅金属とは非常に拡散しやすく、ステンレス鋼中に銅が侵入すると粒界腐食なども発生しやすく、この現象もまた前記表面欠陥の原因となることから、この熱影響を受けない溶接方法を採用する必要があるあるものの、こうした問題の改善について前記文献2は何ら具体的な解決策を提供していない。まして同公報の実施例では2〜3mm程度の細い線材を用いることとしていることから見ても、外装材被包後に溶接する技術手段は意識されておらず、したがって、この方法では高品質のステンレス鋼被覆銅線を生産性よく製造することは困難である。  In addition, in this case, the stainless steel of the exterior and the copper metal as the core material are very easily diffused, and when copper penetrates into the stainless steel, intergranular corrosion is likely to occur, and this phenomenon also causes the surface defects. Therefore, although it is necessary to employ a welding method that is not affected by the heat, the above-mentioned document 2 does not provide any specific solution for improving such a problem. In addition, in the embodiment of the same publication, even if it is decided to use a thin wire of about 2 to 3 mm, the technical means for welding after enveloping the exterior material is not conscious. Therefore, in this method, high quality stainless steel is used. It is difficult to produce a steel-coated copper wire with high productivity.

そこで本発明は、このような従来技術における問題点の改善を図り、高品質のステンレス鋼被覆銅線を生産性よく製造する新規製造方法の提供を目的とし、次の構成を有するものである。  Therefore, the present invention aims to improve such problems in the prior art and provide a new production method for producing a high-quality stainless steel-coated copper wire with high productivity, and has the following configuration.

まず請求項1に係わる発明は、銅線でなる芯材と、該芯材の外面をステンレス鋼外装材で覆ってなるステンレ鋼スクラッド銅線を製造する方法であって、
(イ)前記芯材となる銅素線を準備し、
(ロ)該芯材が最終的に全容積の70〜95%の比率となるステンレス外装帯材で被包するとともに、その縁部の突合せ溶接によって前記芯材の表面露出を防止したクラッド線材を得る段階と、
(ハ)該クラッド線材を最後には除去される第二外装材で更に被覆して複合線材を形成する段階と、
(ハ)該複合線材に減寸加工と熱処理加工を必要に応じて繰り返し行い、かつその加工の間に前記ステンレス外装帯材の溶接部組織をオーステナイト組織に安定化する安定細径化段階と、
(ニ)前記細径化段階又は細径化後のいずれか時点で、前記複合線材から前記第二外装材を分離除去する段階、
を含むことを特徴とするステンレス鋼クラッド銅線の製造方法である。
The invention according to claim 1 is a method of manufacturing a stainless steel clad copper wire in which a core material made of copper wire and an outer surface of the core material are covered with a stainless steel exterior material,
(A) Prepare a copper wire to be the core material,
(B) A clad wire rod in which the core material is encapsulated with a stainless steel outer strip material having a ratio of 70 to 95% of the total volume, and the surface of the core material is prevented from being exposed by butt welding of the edge portion. And getting
(C) a step of forming a composite wire by further covering the clad wire with a second exterior material that is finally removed;
(C) performing a reduction process and a heat treatment process on the composite wire as necessary, and stabilizing the diameter of the welded portion of the stainless steel exterior strip to an austenite structure during the process;
(D) a step of separating and removing the second exterior material from the composite wire at any time after the diameter reduction step or after the diameter reduction;
It is a manufacturing method of the stainless steel clad copper wire characterized by including.

さらに請求項2に係わる発明は、前記第二外装材が鉄又は軟鋼の冷延帯材によるものであり、請求項3に係わる発明は、前記溶接が電子ビーム溶接により、かつ溶接熱影響が前記芯材に及ぼさないよう、該芯材と距離を設けて行うものであり、請求項4に係わる発明は、前記細径加工の延べ加工率が、80%以上で行われるものであり、請求項5に係わる発明は、前記減寸加工は、アプローチ角度6〜10°のダイヤモンドダイスにより、溶融粘度10mm2/S以下の低粘性水溶液中で行う冷間伸線加工によるものであり、請求項6に係わる発明は、最終寸法が線径0.5mm以下に細径化される前記製造方法である。  Further, in the invention according to claim 2, the second exterior material is made of a cold-rolled strip material of iron or mild steel, and the invention according to claim 3 is characterized in that the welding is performed by electron beam welding and the influence of welding heat is the above. The invention according to claim 4 is carried out at a total machining rate of the small diameter machining of 80% or more, so as not to affect the core material. The invention according to No. 5 is based on cold drawing performed in a low viscosity aqueous solution having a melt viscosity of 10 mm 2 / S or less by using a diamond die having an approach angle of 6 to 10 °. The related invention is the above-described manufacturing method in which the final dimension is reduced to a diameter of 0.5 mm or less.

本件請求項1の発明は、前記構成を備えることから、前記ステンレス鋼外装材は芯材である銅線の表面を被包したクラッド線材の成形に当たり、長尺材の製造が可能となり、しかも外装材の縁部同士を溶接することで開口部のない完全チューブ状に結合することを基本とし、また該溶接に伴い発生するステンレス鋼外装材の溶接組織(樹枝状組織,炭化物,結晶粒の粗大化)は、その後の減寸加工や熱処理加工による細径化段階で母相であるオーステナイト組織に回復させ安定化させることができる。またこの
ステンレス鋼外装材の細径化加工は、その表面に設けた第二外装材によって常に強圧保護しながら加工できることから、例えば減寸加工時の伸線ダイス等の工具とは直接接触しない構造であり、前記クラック等の欠陥発生を大幅に改善できる。
Since the invention of claim 1 comprises the above-described configuration, the stainless steel exterior material can be used to produce a long material when forming a clad wire material encapsulating the surface of a copper wire that is a core material, and the exterior material can be manufactured. The welded structure of the stainless steel exterior material (dendritic structure, carbide, coarse crystal grains) generated by welding is basically based on joining the edges of the material to form a complete tube with no openings. Can be recovered and stabilized in the austenite structure, which is the parent phase, at the stage of diameter reduction by subsequent reduction or heat treatment. In addition, the diameter reduction processing of this stainless steel exterior material can be performed while always protecting with high pressure by the second exterior material provided on its surface, so that it does not come into direct contact with tools such as wire drawing dies during reduction processing, for example. Thus, the occurrence of defects such as cracks can be greatly improved.

したがって、この方式によれば、細径で長尺のステンレス鋼クラッド銅線を効率よく、また高い製造歩留まりで得ることができ、割れやクラック等の表面欠陥が大幅に改善でき、しかも前記溶接段階で発生していた溶接組織を解消して安定したオーステナイト組織に回復することから、特性的にも良好なクラッド銅線を得ることができる。  Therefore, according to this method, it is possible to efficiently obtain a long and narrow stainless steel clad copper wire with a high production yield, and to greatly improve surface defects such as cracks and cracks, and in the welding stage. Since the welded structure generated in step 1 is eliminated and a stable austenite structure is recovered, a clad copper wire having good characteristics can be obtained.

また該第二外装材は、細径化段階又は細径化後のいずれか時点に分離除去することで目的のステンレス鋼クラッド銅線を得ることができる。  In addition, the desired stainless steel clad copper wire can be obtained by separating and removing the second exterior material at any time after the diameter reduction step or after the diameter reduction.

さらに請求項2〜6の構成による発明によれば、さらにステンレスクラッド銅線の品質及び生産性を高めることができる。  Furthermore, according to the invention with the structure of Claims 2-6, the quality and productivity of a stainless clad copper wire can be improved further.

以下、本発明のステンレスクラッド銅線の製造方法(以下、単に製造方法ということがある)について、好ましい形態を図面とともに説明する。 本発明の製造方法は、図1のブロック図に示すごとく、
(イ)クラッド銅線1の芯材1aとなる銅素線1bを準備して、
(ロ)該芯材1aが最終的に全容積の70〜95%の比率になるステンレス鋼外装材2aで被覆し、
さらに外装材2aの縁部を溶接したクラッド線材3を形成し、
(ハ)このクラッド線材3を第二外装材4で更に被覆して複合線材5とし、
(ニ)該複合線材5を所定線径まで細径化して、外装材の組織をオーステナイト組織に安定化し、
(ホ)最後に、細径化された複合線材5aから前記第二外装材4を分離除去する段階、を含んでなる。
Hereinafter, preferred embodiments of the method for producing a stainless clad copper wire of the present invention (hereinafter, simply referred to as a production method) will be described with reference to the drawings. As shown in the block diagram of FIG.
(A) Prepare a copper strand 1b to be the core material 1a of the clad copper wire 1,
(B) The core material 1a is finally coated with a stainless steel exterior material 2a that has a ratio of 70 to 95% of the total volume;
Furthermore, the clad wire 3 is formed by welding the edge of the exterior material 2a,
(C) The clad wire 3 is further covered with a second exterior material 4 to form a composite wire 5;
(D) The composite wire 5 is reduced to a predetermined wire diameter, and the structure of the exterior material is stabilized to an austenite structure,
(E) Finally, a step of separating and removing the second exterior material 4 from the composite wire 5a having a reduced diameter.

図2は、この一連の加工状態を連続的な斜視図として示すものであって、実際の作業では各段階毎に各々分割した作業が行われる。本発明では、まず芯材1aとなる銅素線1bの準備に始まり、予め設定された組成の銅金属線材が準備され、この芯材1aの表面を所定のステンレス鋼外装材2aで包んでなるクラッド線材3が成形される。  FIG. 2 shows this series of machining states as a continuous perspective view. In actual work, work divided into each stage is performed. In the present invention, first, a copper metal wire having a preset composition is prepared, starting with preparation of a copper element wire 1b to be a core material 1a, and the surface of the core material 1a is wrapped with a predetermined stainless steel exterior material 2a. The clad wire 3 is formed.

このクラッド線材3では、最終的に前記芯材1aとステンレス鋼外装材2aが予め設定された容積率になるように調整されてなるものであって、本発明では導電率の観点から芯材1aが70〜95%の容積を占めるように設定されている。すなわち、この比率が70%未満のものでは、純銅に対する導電率が例えば80%以上の特性を達成し得ず、また外装材2aの容積が増加すことからその後の例えば撚り合わせやコイル巻きする場合などでの加工性を低下させることとなり、一方容積率が95%を超えるのものでは外装材2a厚さが極端に薄くなって芯材1aの表面保護が十分になし得ない。なお、導電率は、単位大きさの試料について求めた電気抵抗の測定値から、試料の長さ、線径を調整した値と、純銅線の比抵抗であるとの関係の比率、すなわち次式で求めることができる。  In this clad wire 3, the core material 1 a and the stainless steel exterior material 2 a are finally adjusted to have a preset volume ratio. In the present invention, the core material 1 a is used from the viewpoint of conductivity. Is set to occupy a volume of 70 to 95%. That is, when the ratio is less than 70%, the electrical conductivity with respect to pure copper cannot achieve the characteristics of, for example, 80% or more, and the volume of the exterior material 2a increases, so that for example, twisting or coiling thereafter On the other hand, when the volume ratio exceeds 95%, the thickness of the exterior material 2a becomes extremely thin, and the surface protection of the core material 1a cannot be sufficiently achieved. Note that the conductivity is a ratio of the relationship between the measured value of the electrical resistance obtained for the unit size sample, the value of the sample length and the wire diameter adjusted, and the specific resistance of the pure copper wire, that is, the following formula: Can be obtained.

導電率(%)=純銅の比抵抗(≒1.7421μΩcm)/試料の比抵抗×100
試料の比抵抗=抵抗測定値(μΩ)×断面積(cm2)/測定長さ(cm)
Electrical conductivity (%) = specific resistance of pure copper (≈1.7421 μΩcm) / specific resistance of sample × 100
Specific resistance of sample = measured resistance value (μΩ) × cross-sectional area (cm 2) / measured length (cm)

前記芯材1aの銅素線1bについては、本形態では例えば純度99.9%以上の無酸素銅によるものが好適するが、より好ましくは真空溶解した真空溶解銅による銅線材が用いられる。またステンレス鋼外装材2aについては、使用時の高温環境中での炭化物などの発生を抑制する観点から、例えばSUS316Lや304L等の低炭素系ステンレス鋼の帯材によるものであって、この段階での両者の複合比は、最終製品までの加工処理条件によっても異なることから、予め試作などを通じて確認しておくことが望まれる。  The copper wire 1b of the core 1a is preferably made of oxygen-free copper having a purity of 99.9% or more, for example, but more preferably a copper wire made of vacuum-dissolved copper that has been vacuum-dissolved. In addition, the stainless steel exterior material 2a is made of a low-carbon stainless steel strip such as SUS316L or 304L, for example, from the viewpoint of suppressing generation of carbides in a high-temperature environment during use. Since the composite ratio of the two varies depending on the processing conditions up to the final product, it is desirable to confirm in advance through trial manufacture or the like.

一次複合材であるクラッド銅線3は、こうして選定された前記芯材1aとステンレス鋼外装材2aを各々連続的に供給しながら、例えば図4に示すような成形ロールR1及び/又は伸線ダイスD1によって前記芯線1aの外面を完全に被包するとともに、更にその縁部20同士を突き合わて溶接W1され、チユューブ状の外装材となる。この場合の溶接加工では、溶接トーチwでの加熱が内側に配置されている芯材1aに影響しないよう、若干広幅の前記帯材により少し持上げて芯材1aとの距離を持つように調整して行うのがよく、この溶接状態の一例を図4に見ることができる。この方法の採用によって、該溶接に伴う芯材1aとステンレス鋼外装材2aとの拡散を防止するとともに、生じた空洞部20は次段での伸線ダイスD1によって解消することができる。  The clad copper wire 3 as the primary composite material is supplied with the core material 1a and the stainless steel exterior material 2a selected in this way, while forming the roll R1 and / or wire drawing die as shown in FIG. The outer surface of the core wire 1a is completely encapsulated by D1, and the edges 20 of the core wire 1a are abutted and welded W1 to form a tube-shaped exterior material. In the welding process in this case, adjustment is performed so that the heating with the welding torch w does not affect the core material 1a arranged on the inner side, so that the belt material is slightly lifted by the slightly wide band material and has a distance from the core material 1a. An example of this welding state can be seen in FIG. By adopting this method, diffusion of the core material 1a and the stainless steel exterior material 2a due to the welding can be prevented, and the generated cavity 20 can be eliminated by the wire drawing die D1 at the next stage.

なお溶接方法としては、例えば電子ビーム溶接や被覆アーク溶接、ティグ溶接などの種々方法が採用できるが、特に前記電子ビーム溶接では溶接部が局部で行われ、また前記芯材1a等の送給に連動して連続的に処理できることから好適する。しかしながらこうした局部溶接法でも、微視的には前記樹枝状組織の発生やその近傍での結晶粒の粗大化は避けることはできないことから、これら溶接組織はその後に行う細径化段階での伸線加工や熱処理によって解消するものとする。    As a welding method, for example, various methods such as electron beam welding, covering arc welding, and TIG welding can be adopted. In particular, in the electron beam welding, a welded portion is locally formed, and the core material 1a and the like are fed. It is preferable because it can be continuously processed in conjunction. However, even with such a local welding method, the generation of the dendritic structure and the coarsening of the crystal grains in the vicinity thereof cannot be avoided microscopically. Therefore, these welded structures are expanded at the subsequent diameter reduction stage. It shall be resolved by wire processing or heat treatment.

次にこのクラッド線材は、第二次成形段階として、その外面を第二外装材4で更に被覆した複合線材5を形成することとなる。この第二外装材5は、最終的には分離除去される加工用の資材とするものであって、次段階での細径化処理する際の表面保護、すなわちこれを用いることで、前記ステンレス鋼外装材の溶接部W1を含めて強固に保持するとともに、これによって前記溶接部に発生する組織的な影響を抑制して前記欠陥の発生を防止するものとしている。    Next, this clad wire will form a composite wire 5 whose outer surface is further covered with a second exterior material 4 as a secondary forming step. This second exterior material 5 is a material for processing that is finally separated and removed, and the surface protection at the time of diameter reduction processing in the next stage, that is, by using this, the stainless steel is used. While firmly holding the welded portion W1 of the steel exterior material, the systematic influence generated in the welded portion is suppressed thereby preventing the occurrence of the defect.

こうした目的から、前記第二外装材4には細径化段階での伸線加工における加工性に優れた材料、例えば鉄や軟鋼、中炭素鋼等の金属帯材が用いられるが、中炭素鋼(S35C,S45C)は前記ステンレス鋼外装材2aとの加工硬化率が近似していることから安定作業ができるが、大きなトータル加工率を付与することができない。一方、鉄や炭素量が0.15%以下の軟鋼の冷間圧延鋼板(NBC−SB)による帯材では、軟質で熱処理間でのトータル加工率が大きくできるが、両者の機械的特性の違いから伸線加工時のダイス角度が大きいものでは表面の第二外装材だけが引き伸ばされて団子状に集合したものとなる。こうした問題を解消する為には、使用するダイスのアプローチ角度が6〜10°の低角度ダイスあるいはローラーダイスを用いるのがよく、また前記ステンレス鋼外装材2aの場合と同様に、その突き合せ縁部を溶接結合することで、1本の通常の線材となり比較的大きな加工率が付与できる。  For this purpose, the second exterior material 4 is made of a material excellent in workability in the wire drawing process at the diameter reduction stage, for example, a metal strip such as iron, mild steel, medium carbon steel, etc. (S35C, S45C) can perform a stable operation because the work hardening rate with the stainless steel exterior material 2a is approximate, but cannot provide a large total work rate. On the other hand, in the case of a strip made of cold rolled steel plate (NBC-SB) of mild steel with an iron or carbon content of 0.15% or less, it is soft and can increase the total processing rate between heat treatments, but the difference in mechanical properties between the two In the case where the die angle at the time of wire drawing is large, only the second exterior material on the surface is stretched and assembled into a dumpling shape. In order to solve these problems, it is preferable to use a low-angle die or a roller die whose approach angle is 6 to 10 °, and the butt edge is the same as in the case of the stainless steel exterior material 2a. By welding the portions together, it becomes a single ordinary wire and can provide a relatively large processing rate.

こうしたことから、前記第二外装材4は前記金属帯材により、クラッド線材の表面を平滑かつ十分に被包するクラッド法が採用され、その成形にあたって突き合せ縁部段差や隙間が生じないように調整された寸法のものが用いられる。またクラッド方法として、前記したような突き合せ縁部を溶接結合したもの、単に被覆したもののいずれでもよいが、後者の場合は外装材4の縁部同士が重なり合ったり隙間が生じないようにして、内部のクラッド線材3に表面凹凸が発生しないようにし、またこの第二外装材4によって前記ステンレス外装材2aの溶接部に生じた溶接組織を十分に挟持しながら表面保護することで、その後の伸線加工でも欠陥が発生しないものとしている。したがって、該第二外装材にはこうした現象に耐え、かつ十分な加工性を備える特性と容積を備えるものとし、例えば前記ステンレス鋼外装材2a厚さの少なくとも0.5倍以上(0.5〜3倍)の厚さを有するものが用いられる。こうした複合状態の横断面を図3に示している。  For this reason, the second exterior material 4 is applied with a clad method in which the surface of the clad wire is smoothly and sufficiently encapsulated by the metal strip, so that a butt edge step or gap does not occur in the molding. Adjusted dimensions are used. In addition, as a cladding method, any of the above-mentioned butted edge weld-bonded or simply covered may be used, but in the latter case, the edges of the exterior material 4 are not overlapped with each other so that no gap is generated, Surface roughness is prevented from occurring in the inner clad wire 3, and the surface is protected while sufficiently sandwiching the welded structure formed in the welded portion of the stainless steel exterior material 2 a by the second exterior material 4. It is assumed that no defects occur even in wire processing. Therefore, the second exterior material has such a characteristic and volume that can withstand such a phenomenon and has sufficient workability, for example, at least 0.5 times the thickness of the stainless steel exterior material 2a (0.5 to Those having a thickness of 3 times) are used. A cross section of such a composite state is shown in FIG.

次に前記細径加工については、減寸工程と熱処理工程とを必要に応じて繰り返し行い最終寸法にするものであって、それ以外の効果として、この一連の加工を通じて前記クラッド線材3の成形段階で発生していた、前記溶接による樹枝状組織や炭化物を解消して安定したオーステナイト組織に回復させるものである。こうした組織変化は、該伸線工程と熱処理工程の併用、あるいはその繰り返しによって徐々に回復させることができ、例えば溶接後に延べ加工率80%以上での細径化と熱処理を行ったものでは組織的にほぼオーステナイト組織に回復し、また95%以上の高加工率では完全に回復させることができ、その確認は、例えば400倍程度以上の金属顕微鏡や電子顕微鏡による観察など種々の計測装置によって行うことができる。  Next, with respect to the small diameter processing, a reduction process and a heat treatment process are repeated as necessary to obtain a final dimension. As other effects, the forming step of the clad wire 3 through this series of processing is performed. In this case, the dendritic structure and carbides generated by welding are eliminated, and a stable austenite structure is recovered. Such a structural change can be gradually recovered by the combined use of the wire drawing step and the heat treatment step, or repetition thereof. For example, in the case where the diameter is reduced and the heat treatment is performed at a total processing rate of 80% or more after welding. It can be recovered to almost an austenite structure and can be fully recovered at a high processing rate of 95% or more, and the confirmation can be performed by various measuring devices such as observation with a metal microscope or an electron microscope of about 400 times or more. Can do.

なお減寸加工は、得ようとするクラッド銅線1の製品形態に応じて伸線加工や圧延加工が採用され、伸線加工の場合、1ヒート間での加工率は線径が0.5mmを超える太径のものでは乾式伸線による冷間加工として加工率50%以下とし、またそれより細いものでは溶融粘度が5mm2/S以下の低粘性水溶性潤滑オイル中で行う湿式伸線加工により例えば50〜80%程度の加工率で実施されるが、この場合の伸線ダイスも、前記したようにダイスアプローチ角度が5〜10°の低角度ダイスが好適する。  For the reduction processing, wire drawing or rolling is adopted according to the product form of the clad copper wire 1 to be obtained. In the case of wire drawing, the processing rate between 1 heat is 0.5 mm in wire diameter. For those with a large diameter exceeding 50 mm, the processing rate is 50% or less as a cold working by dry drawing, and for thinner ones, the wet drawing is performed in a low-viscosity water-soluble lubricating oil having a melt viscosity of 5 mm2 / S or less. For example, the processing is performed at a processing rate of about 50 to 80%, and the wire drawing die in this case is preferably a low angle die having a die approach angle of 5 to 10 ° as described above.

また前記熱処理加工については、銅金属との前記拡散等の反応を抑える目的から、例えば銅の融点以下の温度、例えば900〜1050℃×5sec〜10min.程度の条件で実施するのが好ましく、必要に応じて前記減寸加工と熱処理加工は設定寸法になるまで繰り返し行うこともできる。  Moreover, about the said heat processing, in order to suppress reaction, such as said diffusion with copper metal, the temperature below the melting | fusing point of copper, for example, 900-1050 degreeC x 5 sec-10 min. It is preferable to carry out under the condition of the degree, and if necessary, the reduction process and the heat treatment process can be repeated until the set dimension is reached.

本発明に係わるクラッド銅線1は、最終的には前記第二外装材4は前記細径化の任意段階又は細径化後に分離除去されることで得られ、最終的には熱処理仕上げされてなるものであって、製品形態としては例えば線径0.05〜3mm程度(前記フレキシブルケーブル用では例えば0.1〜0.5mm)の丸形細線や、平線や角線などの多角形、さらには楕円などの不定形形状に形成されてなる。したがって、製品形状に応じて、前記減寸加工は、伸線加工や圧延加工、その他種々の加工方法が採用されるとともに、さらにその仕上げ寸法に応じて例えば前記減寸加工と熱処理加工を繰り返し行うこともできる。  The clad copper wire 1 according to the present invention is finally obtained by separating and removing the second outer packaging material 4 at any stage of the diameter reduction or after the diameter reduction, and finally is heat-treated. As a product form, for example, a round thin wire having a wire diameter of about 0.05 to 3 mm (for example, 0.1 to 0.5 mm for the flexible cable), a polygon such as a flat wire or a square wire, Further, it is formed in an irregular shape such as an ellipse. Therefore, in accordance with the shape of the product, the reduction process employs a wire drawing process, a rolling process, and other various processing methods. Further, for example, the reduction process and the heat treatment process are repeated according to the finished dimensions. You can also

このように細径化された複合線材5から前記第二外装材4を除去する方法については、例えばその被処理金属が前記鉄などの場合は、化学的方法(例えば硝酸溶液中での溶解除去)や種々電解処理、その他物理的方法で容易に分離除去することができ、また加速処理として加温した溶液を用いることも有効である。なお、このように処理したものは、その表面が粗雑で光輝表面が得られないことから、できれば脱外皮処理後に更に仕上げ加工を施すことが好ましい。  With respect to the method of removing the second sheathing material 4 from the composite wire 5 thus reduced in diameter, for example, when the metal to be treated is the iron or the like, a chemical method (for example, dissolution removal in a nitric acid solution) ), Various electrolytic treatments, and other physical methods, and it is also effective to use a heated solution as an acceleration treatment. In addition, since the surface processed in this way is rough and a brilliant surface cannot be obtained, it is preferable to perform a finishing process after the dehulling process if possible.

本発明は、最終的には除去される第二外装材を用いたダブルクラッド方式の採用によって、特性の安定した高品質のステンレス鋼クラッド銅線を生産性よく製造できるとともに、被覆欠陥から生ずる問題もないことから長寿命で耐久性に優れたクラッド銅線の提供が可能となる。  By adopting the double clad method using the second exterior material to be finally removed, the present invention can produce a high-quality stainless steel clad copper wire with stable characteristics with high productivity and a problem caused by a coating defect. Therefore, it is possible to provide a clad copper wire having a long life and excellent durability.

次に本発明の実施例について説明する。  Next, examples of the present invention will be described.

原材料の芯材1aとして、純度99.99%の真空溶解された無酸素銅線(線径10.3mm)をクラッド成形機の前輪(図示せず)にセットし、またステンレス鋼外装材2aとなるSUS304Lステンレス鋼帯材(厚さ0.5mm,幅35mm)を準備して、両者を連続的に図1の成形ロールR1に供給するとともに、第一次成形段階として、該ロールR1による前記芯材1aの外面を前記ステンレス鋼帯材2aで被包工程と、この帯材2aの縁部2b同士を突き合せて溶接工程と、更に該帯材2aを前記芯材1aに密着させる為の絞り成形工程を一連で行い、線径11.3mmのクラッド線材を得た。  As a raw material core material 1a, a vacuum-dissolved oxygen-free copper wire (wire diameter 10.3 mm) having a purity of 99.99% is set on the front wheel (not shown) of a clad molding machine, and the stainless steel exterior material 2a SUS304L stainless steel strip (thickness 0.5 mm, width 35 mm) to be prepared, and both are continuously supplied to the forming roll R1 of FIG. 1, and the core by the roll R1 is used as a primary forming step. A process for encapsulating the outer surface of the material 1a with the stainless steel band material 2a, a welding process in which the edge portions 2b of the band material 2a are butted together, and further, a diaphragm for bringing the band material 2a into close contact with the core material 1a The forming process was performed in a series to obtain a clad wire having a wire diameter of 11.3 mm.

この溶接工程では、該溶接ビームが内側の銅線に直接影響しないように若干距離を設けて行うようにするとともに、溶接ビームが広範囲に拡大しないように電子ビーム溶接で行っており、得られた溶接部近傍の組織状態を50倍に拡大して図4に示している。この顕微鏡写真に見られるように、該ステンレス鋼自体は元々オーステナイト組織を有するものであるが、溶接部では溶接後の凝固に伴って樹枝状組織が見られ、またその近傍では熱影響によって結晶が粗大化した粗大結晶部などの溶接組織が見られていた。  In this welding process, the welding beam was carried out at a slight distance so as not to directly affect the inner copper wire, and was performed by electron beam welding so that the welding beam did not expand over a wide range. FIG. 4 shows the structure in the vicinity of the welded portion enlarged 50 times. As can be seen in this micrograph, the stainless steel itself originally has an austenite structure, but a dendritic structure is observed in the weld zone as it solidifies after welding, and in the vicinity, crystals are formed due to thermal effects. A welded structure such as a coarsened crystal part was observed.

こうして得られたクラッド線材3を更に第二外装材で被覆する第二次成形段階として、第二外装材4に厚さ1.0mm,幅35mmの冷間圧延鉄フープ(NBC−SB)材を選定し、前記第一次成形段階と同様に成形ロールR2と絞り用伸線ダイスD2によって線径12.3mmの複合線材5を得た。  As a secondary forming step of further covering the thus obtained clad wire 3 with a second exterior material, a cold rolled iron hoop (NBC-SB) material having a thickness of 1.0 mm and a width of 35 mm is applied to the second exterior material 4. In the same manner as in the first forming step, a composite wire 5 having a wire diameter of 12.3 mm was obtained by the forming roll R2 and the drawing wire die D2.

その後、連続熱処理炉による中間熱処理(900〜1050℃)T1と中間伸線加工D3を適宜繰り返し行う、最終仕上げ線径1.0mmに細径化した複合細線を形成した。なおこの場合の伸線加工については、その素線の線径が例えば0.5mm以下の細線領域ではダイスアプローチ角度が10°の低角度ダイヤモンドダイスによる湿式伸線で、伸線オイルには溶融粘度が5.2mm2/Sの低粘性水溶液である商品名:メタルシン(共栄社)を用い、またそれより太い領域では同様のダイス角度を持つ合金ダイスによって乾式伸線で行っており、それぞれ1回当たりの伸線加工率は50〜70%の範囲で行った。  Thereafter, intermediate heat treatment (900 to 1050 ° C.) T1 and intermediate wire drawing D3 in a continuous heat treatment furnace were repeated as appropriate to form a composite fine wire that was thinned to a final finished wire diameter of 1.0 mm. In this case, the wire drawing is performed by wet drawing with a low-angle diamond die having a die approach angle of 10 ° in a fine wire region where the wire diameter is 0.5 mm or less. Is a low viscosity aqueous solution of 5.2 mm2 / S. Product name: Metal Shin (Kyoeisha) is used, and in thicker areas, it is dry drawn with an alloy die having the same die angle. The drawing rate was in the range of 50 to 70%.

こうした一連の成形加工の後、温度900℃での最終熱処理して十分に柔軟性を持たせるとともに前記第二外装材4を硝酸溶液で溶解することで最終製品である線径0.29mmのクラッド銅線を得た。
なお得られたクラッド銅線は、前記芯材の容積率が82%で、引張強さ303N/mm2、伸び18%、導電率83%の特性を有し、またその表面状態を目視検査した結果でも特にクラック等の表面欠陥の発生は見られず、前記溶接組織も完全に回復していたことから、93%の良好な製造歩留まりが得られた。
After such a series of forming processes, a final heat treatment at a temperature of 900 ° C. is performed to give sufficient flexibility, and the second outer packaging material 4 is dissolved with a nitric acid solution to form a clad having a final diameter of 0.29 mm. A copper wire was obtained.
The obtained clad copper wire had the characteristics that the core material had a volume ratio of 82%, a tensile strength of 303 N / mm 2, an elongation of 18%, and an electrical conductivity of 83%, and the surface condition was visually inspected. However, the occurrence of surface defects such as cracks was not particularly observed, and the weld structure was completely recovered, and a good production yield of 93% was obtained.

前記製造工程において、最終段階で行った硝酸による外装材の溶解除去P1を、中間加工段階での伸線ダイスD3前に行い、その後最終伸線加工と最終熱処理を行うことで良好な表面状態のクラッド銅線が得られ、この試料についても、第一次成形段階で行った溶接部の前記溶接組織は、その前の熱処理加工T1によって回復していたことから、ステンレス鋼外装材にはクラック発生は見られなかった。  In the manufacturing process, the dissolution removal P1 of the packaging material with nitric acid performed in the final stage is performed before the wire drawing die D3 in the intermediate processing stage, and then the final wire drawing and the final heat treatment are performed to obtain a good surface state. A clad copper wire was obtained, and also for this sample, the weld structure of the welded portion performed in the primary forming stage was recovered by the previous heat treatment T1, so that a crack was generated in the stainless steel exterior material. Was not seen.

前記第二次成形段階で、第一次成形段階で行ったのと同様の溶接方法で溶接処理した複合線材についてもその試作を試みたが、この場合は該複合線体5が通常の線材と同様のものであったことから、伸線加工で大きな加工率が設定でき、結果的に工程短縮を図ることができた。  In the second forming stage, a trial was also made for a composite wire that was welded by the same welding method as that performed in the first forming stage. In this case, the composite wire 5 was replaced with a normal wire. Since it was the same thing, a big processing rate could be set by wire drawing, and as a result, process shortening could be aimed at.

比較例Comparative example

実施例1と同様に第一次成形したクラッド線材を出発材料とし、これをそのまま伸線加工と中間熱処理を繰り返しながら細径化し、線径1.5mmの中間製品に加工した。この段階で線の表面状態を目視検査したところ、図5に見られるようなクラック部がいくつか見られ、その原因を調査した結果、該クラック部は前記溶接部において発生していることが判明した。このことは、該欠陥が一直線上に発生していること、また溶接部は若干肉厚になっていることなどから確認されたものであって、溶接組織である樹枝状組織が直接ダイスで加工されることで発生したものと推測された。
したがって、この場合のクラッド銅線の製造歩留まりは48%に留まるものであった。
The clad wire that was primarily formed in the same manner as in Example 1 was used as a starting material, and this was reduced in diameter while repeating the wire drawing and intermediate heat treatment, and processed into an intermediate product having a wire diameter of 1.5 mm. When the surface condition of the line was visually inspected at this stage, some cracks as shown in FIG. 5 were found, and as a result of investigating the cause, it was found that the cracks occurred in the welded part. did. This is confirmed by the fact that the defects occur in a straight line and the welded part is slightly thick. The dendritic structure, which is a welded structure, is directly processed by a die. It was speculated that this occurred.
Therefore, the production yield of the clad copper wire in this case was only 48%.

本発明の製造方法を示す工程のブロック図である。  It is a block diagram of the process which shows the manufacturing method of this invention. 伸線加工の場合を例として、一連の連続図で例示する斜視図である。  It is a perspective view illustrated in a series of continuous figures, taking the case of wire drawing as an example. 複合線材の断面図である。  It is sectional drawing of a composite wire. ステンレス鋼外装材の溶接部における金属組織の一例を示す顕微鏡写真である。  It is a microscope picture which shows an example of the metal structure in the welding part of a stainless steel exterior material. 実施例中の比較例で見られた表面欠陥の一例の拡大写真である。  It is an enlarged photograph of an example of the surface defect seen in the comparative example in an example.

符号の説明Explanation of symbols

1 クラッド銅線
1a 芯材
1b 銅線
2a ステンレス鋼外装材
3 クラッド線材
4 第二外装材
5 複合線材
DESCRIPTION OF SYMBOLS 1 Clad copper wire 1a Core material 1b Copper wire 2a Stainless steel exterior material 3 Clad wire 4 Second exterior material 5 Composite wire

Claims (6)

銅線でなる芯材と、該芯材の外面をステンレス鋼外装材で被包してなるステンレ鋼スクラッド銅線を製造する方法であって、
(イ)前記芯材となる銅素線を準備する段階と、
(ロ)該芯材が最終的に全容積の70〜95%の比率となるステンレス外装帯材で被包するとともに、その縁部の突合せ溶接によって前記芯材の表面露出を防止したクラッド線材を得る段階と、
(ハ)該クラッド線材を最後には除去される第二外装材で更に被覆して複合線材を形成する段階と、
(ニ)該複合線材に減寸加工と熱処理加工を必要に応じて繰り返し行い、かつその加工の間に前記ステンレス外装帯材の溶接部組織をオーステナイト組織に安定化する安定細径化段階と、
(ホ)前記細径化段階又は細径化後のいずれか時点で、前記複合線材から前記第二外装材を分離除去する段階と、
を含むことを特徴とするステンレス鋼クラッド銅線の製造方法。
A core material made of copper wire, and a method for producing a stainless steel sclad copper wire formed by encapsulating the outer surface of the core material with a stainless steel exterior material,
(A) preparing a copper element wire as the core material;
(B) A clad wire rod in which the core material is encapsulated with a stainless steel outer strip material having a ratio of 70 to 95% of the total volume, and the surface of the core material is prevented from being exposed by butt welding of the edge portion. And getting
(C) a step of forming a composite wire by further covering the clad wire with a second exterior material that is finally removed;
(D) A reduction in diameter and heat treatment of the composite wire are repeated as necessary, and a stable thinning step of stabilizing the weld zone structure of the stainless steel outer strip material to an austenite structure during the processing;
(E) separating and removing the second exterior material from the composite wire at any time after the diameter reduction step or after the diameter reduction;
The manufacturing method of the stainless steel clad copper wire characterized by including these.
第二外装材は、鉄又は軟鋼の冷延帯材によるものである請求項1に記載のステンレス鋼クラッド銅線の製造方法。  The method for producing a stainless steel clad copper wire according to claim 1, wherein the second exterior material is made of a cold-rolled strip material of iron or mild steel. 前記溶接は電子ビーム溶接により、かつ溶接熱影響が前記芯材に及ぼさないよう、該芯材と距離を設けて行うものである請求項1又は2に記載のステンレス鋼クラッド銅線の製造方法。  The method of manufacturing a stainless steel clad copper wire according to claim 1 or 2, wherein the welding is performed by electron beam welding and is provided at a distance from the core material so that welding heat does not affect the core material. 前記細径加工の延べ加工率が、80%以上で行われるものである請求項2又は3に記載のステンレス鋼クラッド銅線の製造方法。  The method for producing a stainless steel clad copper wire according to claim 2 or 3, wherein a total processing rate of the small diameter processing is 80% or more. 前記減寸加工は、アプローチ角度6〜10°のダイヤモンドダイスにより、溶融粘度10mm2/S_以下の低粘性水溶液中で行う冷間伸線加工である請求項3に記載のステンレス鋼クラッド銅線の製造方法。  4. The production of a stainless steel clad copper wire according to claim 3, wherein the reduction processing is cold wire drawing performed in a low-viscosity aqueous solution having a melt viscosity of 10 mm 2 / S_ or less with a diamond die having an approach angle of 6 to 10 °. Method. 最終寸法が線径0.5mm以下に細径化されるものである請求項1〜4のいずれかに記載のステンレス鋼クラッド銅線の製造方法。  The method for producing a stainless steel clad copper wire according to any one of claims 1 to 4, wherein the final dimension is reduced to a wire diameter of 0.5 mm or less.
JP2005291672A 2005-08-31 2005-08-31 Manufacturing method of stainless steel clad copper wire Active JP4868304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005291672A JP4868304B2 (en) 2005-08-31 2005-08-31 Manufacturing method of stainless steel clad copper wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005291672A JP4868304B2 (en) 2005-08-31 2005-08-31 Manufacturing method of stainless steel clad copper wire

Publications (2)

Publication Number Publication Date
JP2007061897A true JP2007061897A (en) 2007-03-15
JP4868304B2 JP4868304B2 (en) 2012-02-01

Family

ID=37924708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005291672A Active JP4868304B2 (en) 2005-08-31 2005-08-31 Manufacturing method of stainless steel clad copper wire

Country Status (1)

Country Link
JP (1) JP4868304B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103531301A (en) * 2013-09-16 2014-01-22 浙江百川导体技术股份有限公司 Process for producing soft-state copper clad steel conductor by adopting welding cladding method
JP2014057994A (en) * 2012-09-19 2014-04-03 Toshiba Corp Method for manufacturing coated conductive wire connection body, and method for connecting coated conductive wire
CN110421016A (en) * 2019-08-09 2019-11-08 上海科发电子产品有限公司 A kind of manufacturing method of ladle copper core composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344021A (en) * 1993-06-07 1994-12-20 Bridgestone Metarufua Kk Production of composite metallic fiber
JP2000015327A (en) * 1998-07-06 2000-01-18 Meiji Ishikawa Manufacture of multilayered bar and multilayered tube made of metal
JP2000176534A (en) * 1998-12-21 2000-06-27 Bridgestone Corp Stainless steel covered copper wire and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344021A (en) * 1993-06-07 1994-12-20 Bridgestone Metarufua Kk Production of composite metallic fiber
JP2000015327A (en) * 1998-07-06 2000-01-18 Meiji Ishikawa Manufacture of multilayered bar and multilayered tube made of metal
JP2000176534A (en) * 1998-12-21 2000-06-27 Bridgestone Corp Stainless steel covered copper wire and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014057994A (en) * 2012-09-19 2014-04-03 Toshiba Corp Method for manufacturing coated conductive wire connection body, and method for connecting coated conductive wire
CN103531301A (en) * 2013-09-16 2014-01-22 浙江百川导体技术股份有限公司 Process for producing soft-state copper clad steel conductor by adopting welding cladding method
CN103531301B (en) * 2013-09-16 2015-10-14 浙江百川导体技术股份有限公司 A kind of technique adopting welding cladding process to produce soft state copper covered steel wire
CN110421016A (en) * 2019-08-09 2019-11-08 上海科发电子产品有限公司 A kind of manufacturing method of ladle copper core composite material

Also Published As

Publication number Publication date
JP4868304B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
EP2258493B1 (en) Welded steel pipe welded with a high energy density beam, and a manufacturing method therefor
US20190061044A1 (en) Method for manufacturing double pipe
JP2007141930A (en) Electrode wire for solar battery and its manufacturing method
US9806500B2 (en) Tape material having clad structure for manufacturing ignition plug electrode
TWI632959B (en) Titanium composite and titanium for hot rolling
KR20170096413A (en) Clad steel wire and method thereof
JP4868304B2 (en) Manufacturing method of stainless steel clad copper wire
CN101670521A (en) Preparation method of metal tantalum belt
TW201718893A (en) Titanium composite material and titanium material for hot working
US20080280767A1 (en) Method For Producing Superconducting Wire Material
JP2006193765A (en) Method for producing member made of aluminum alloy
JPS5910522B2 (en) copper coated aluminum wire
CN110936050A (en) Stranded welding wire for high-strength steel and preparation process thereof
JPS59183906A (en) Method for rolling ti-base alloy
KR102230872B1 (en) Manufacturing method of titanium ring for electro-deposition drum and titanium ring manufactured thereof
JP3520767B2 (en) Method of manufacturing electrode wire for electric discharge machining
JP2008147129A (en) Cold-cathode electrode, cold-cathode fluorescent lamp, and liquid crystal display using it
JP2007296560A (en) Method for manufacturing metallic fiber bundle and metallic fiber bundle
JPH0647130B2 (en) Method for manufacturing electrode wire for wire cut electric discharge machining
JP2003013162A (en) Electric wire of anti-corrosion aluminum alloy and anti- corrosion composite electric wire using the aluminum alloy on outermost layer
TW201718121A (en) Titanium composite material and titanium material for hot rolling
JP4089551B2 (en) High-strength wire EDM electrode wire
JP2005211932A (en) Method for manufacturing compound material for brazing and brazed product
CN118086719A (en) High-strength high-plasticity titanium alloy continuous pipe and manufacturing method thereof
JP2006100063A (en) MANUFACTURING METHOD OF Nb3X COMPOUND BASED SUPERCONDUCTING WIRE MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111104

R150 Certificate of patent or registration of utility model

Ref document number: 4868304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250