JP2007061519A - Disaster prevention appliance applied to apparatus for producing and storing hydrogen - Google Patents

Disaster prevention appliance applied to apparatus for producing and storing hydrogen Download PDF

Info

Publication number
JP2007061519A
JP2007061519A JP2005254351A JP2005254351A JP2007061519A JP 2007061519 A JP2007061519 A JP 2007061519A JP 2005254351 A JP2005254351 A JP 2005254351A JP 2005254351 A JP2005254351 A JP 2005254351A JP 2007061519 A JP2007061519 A JP 2007061519A
Authority
JP
Japan
Prior art keywords
valve
hydrogen
fire extinguishing
gas
disaster prevention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005254351A
Other languages
Japanese (ja)
Other versions
JP4624215B2 (en
Inventor
Shigenori Adachi
成紀 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP2005254351A priority Critical patent/JP4624215B2/en
Publication of JP2007061519A publication Critical patent/JP2007061519A/en
Application granted granted Critical
Publication of JP4624215B2 publication Critical patent/JP4624215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a disaster prevention appliance applied to an apparatus for producing and storing hydrogen which can rapidly detect the leakage of hydrogen gas and allows reduction of the appliance cost. <P>SOLUTION: The disaster prevention appliance applied to an apparatus 100 for producing and storing hydrogen comprises a prevention pipe P, a detector 10, a fire extinguisher 20, and a controller 30, wherein the prevention pipe P is positioned around the apparatus 100 and is supplied with a plurality of nozzles D; the detector 10 is connected to the prevention pipe P via a steadily opened valve V1 and sucks gas through the nozzles D to analyze the composition; the fire extinguisher 20 is connected to the prevention pipe P via a steadily closed valve V2 and irradiates the object to prevent with an fire extinguishant through the nozzles D; and the controller 30 controls the detector 10 and the fire extinguisher 20. The controller 30, which accords to a result from the detector 10 to judge the hydrogen to get over a prescribed concentration, closes the valve V1 and opens the valve V2 to irradiate the object to prevent with the fire extinguishant through the nozzles D. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水素製造・貯蔵装置の防災設備に関する。   The present invention relates to a disaster prevention facility for a hydrogen production / storage device.

従来、水素ステーション等における防災設備には、例えば火災検知装置、及び水素ステーションの設備に向けて噴射液を噴射する消火装置が設けられ、火災検知装置が水素ガスの火災を検知すると、消火装置が起動して噴射ヘッドから噴射液を放射し、火災熱を奪うことにより消火を行う方式のものが提案されている(例えば特許文献1参照)。また、火災を早期発見するために、質量分析によりサンプリングしたガスを分析して可燃性ガスの漏洩を検知する火災検知装置が提案されている(例えば特許文献2参照)。   Conventionally, disaster prevention equipment in a hydrogen station or the like has been provided with, for example, a fire detection device and a fire extinguishing device that injects a jet toward the hydrogen station equipment. When the fire detection device detects a hydrogen gas fire, There has been proposed a system in which fire is extinguished by starting and radiating a jet liquid from a jet head to take out the heat of fire (see, for example, Patent Document 1). In addition, in order to detect fire early, a fire detection device that analyzes gas sampled by mass spectrometry and detects leakage of combustible gas has been proposed (see, for example, Patent Document 2).

特開2005−155824号公報Japanese Patent Laying-Open No. 2005-155824 特開平5−89387号公報JP-A-5-89387

しかし、従来の水素ステーションにおける防災設備は、半導体式のスポット型センサをガス検知器として使っており、また、水素ステーションの設備周囲に火災に備えて消火ノズルを設けているが、スポット型センサは感度が周囲の気流に左右され、検知精度が低く反応速度も遅いという問題点がある。更に、水素ガスの引火点は非常に低いので、微量な水素ガスをできるだけ早く検知しなければならないが、半導体式のスポット型センサはそのような要求に応えることができず、水素ガスの検知手段として理想な検知装置ではなかった。一方、ガスを吸引してサンプリングする質量分析法は可燃性ガスの漏洩を早期発見することができるが、この場合には、サンプリングのための吸引管と消火用の消火配管とを敷設しなければならず、配管の敷設が二重となり、防災設備が煩雑となりコストが高くなってしまうという問題点がある。   However, conventional disaster prevention equipment at hydrogen stations uses semiconductor spot type sensors as gas detectors, and fire extinguishing nozzles are provided around the hydrogen station equipment in preparation for fire. There is a problem that the sensitivity depends on the surrounding airflow, the detection accuracy is low, and the reaction speed is slow. Furthermore, since the flash point of hydrogen gas is very low, a small amount of hydrogen gas must be detected as soon as possible. However, the semiconductor spot type sensor cannot meet such a demand, and means for detecting hydrogen gas. It was not an ideal detector. On the other hand, mass spectrometry that sucks in and samples gas can detect flammable gas leaks at an early stage, but in this case, a suction pipe for sampling and a fire extinguishing pipe for fire extinguishing must be installed. However, there is a problem that the piping is doubled, the disaster prevention equipment becomes complicated, and the cost becomes high.

本発明は、このような問題点を解決するためになされたものであり、水素ガスの漏洩を迅速に検出することができるとともに、設備のコストを軽減することを可能にした水素製造・貯蔵装置の防災設備を提供することを目的とする。   The present invention has been made to solve such problems, and is capable of quickly detecting a leakage of hydrogen gas and reducing the cost of the equipment, thereby producing and storing hydrogen. The purpose is to provide disaster prevention facilities.

本発明に係る水素製造・貯蔵装置における防災設備は、水素製造・貯蔵装置の設備の周囲に配設され、複数のノズル孔が設けられた防護配管と、定常的に開となっている第1のバルブを介して前記防護配管と接続され、前記ノズルを介してガスを吸引し、その成分を分析する検知部と、定常的に閉となっている第2のバルブを介して前記防護配管と接続され、前記ノズルを介して消火剤を保護対象物に放射させる消火部と、前記検知部及び前記消火部をそれぞれ制御する制御装置とを備え、前記制御装置は、前記検知部の分析結果により水素が所定濃度以上であると判定すると前記第1のバルブを閉にし、且つ前記第2のバルブを開にし、前記消火部により前記ノズルを介して消火剤を保護対象物に放射させるものである。なお、本発明において、水素製造・貯蔵装置とは、水素製造装置の他に、水素を貯蔵する設備も包含する概念である。
また、本発明に係る水素製造・貯蔵装置における防災設備において、前記検知部は、質量分析法によりガス分析を行うものである。
また、本発明に係る水素製造装置等における防災設備において、前記消火部は、前記消火剤として噴霧水又は不燃性ガスを噴射するものである。
また、本発明に係る水素製造・貯蔵装置における防災設備は、前記防護配管に接続され、定常的に開となっている第3のバルブを備え、前記制御装置は、前記検知部の分析結果により水素が所定濃度以上であると判定すると、前記第3のバルブを閉にし、前記第2のバルブと前記第3のバルブとによって特定される領域に対して消火剤を噴射させる。
The disaster prevention facility in the hydrogen production / storage device according to the present invention is disposed around the facility of the hydrogen production / storage device, and the first protection pipe is provided with a plurality of nozzle holes and is constantly open. Connected to the protective piping via the valve, and sucks the gas through the nozzle and analyzes its components, and the protective piping via the second valve that is steadily closed And a fire extinguishing unit that radiates a fire extinguishing agent to an object to be protected through the nozzle, and a control device that controls the detection unit and the fire extinguishing unit, respectively. The control device is based on the analysis result of the detection unit. When it is determined that the hydrogen concentration is equal to or higher than a predetermined concentration, the first valve is closed and the second valve is opened, and the fire extinguishing unit radiates a fire extinguishing agent to the object to be protected through the nozzle. . In the present invention, the hydrogen production / storage device is a concept including equipment for storing hydrogen in addition to the hydrogen production device.
In the disaster prevention facility in the hydrogen production / storage apparatus according to the present invention, the detection unit performs gas analysis by mass spectrometry.
Moreover, in the disaster prevention equipment in the hydrogen production apparatus or the like according to the present invention, the fire extinguishing unit injects spray water or nonflammable gas as the fire extinguishing agent.
Moreover, the disaster prevention equipment in the hydrogen production / storage device according to the present invention includes a third valve that is connected to the protective piping and is constantly open, and the control device is based on the analysis result of the detection unit. When it is determined that the hydrogen concentration is equal to or higher than the predetermined concentration, the third valve is closed, and a fire extinguisher is injected into a region specified by the second valve and the third valve.

本発明は、上記の構成を採用したことにより次のような効果が得られる。
(a)検知部は吸引式のガスサンプリング方式を採用しており、検知感度は環境要素、例えば風等の影響を受けず、安定したガスを測定することができる。また、ノズル孔はガス吸引孔と消火剤放射孔とを兼用しており、吸引管と消火用の配管が一本化されることによって、配管等設備の二重配置は不要となり、システム全体のコストは低減できる。
(b)感知部は質量分析法によりガス分を行っており、その高精度、高速応答の特徴を利用して水素ガス漏洩の早期発見ができる。
(c)制御装置の制御により消火剤を放射する消火部は、ガス漏洩を検知する検知部とを連携して異常を早期発見するとともに、消火活動を迅速に行うことができる。すなわち、霧状の水は、水素が製造装置周辺の湿度を高め、設備や壁に溜まっている静電気による水素ガスの燃焼爆発を抑制することができ、また、不燃性ガス(例えば窒素ガス、二酸化炭素ガス)の放射は、空気中の酸素分圧を低下させ、水素ガスが燃焼爆発の発生がしにくくなり、水素ガスの漏洩による災害を最小程度で抑えることができる。
(d)防護配管の途中に第3のバルブを備え、第2のバルブと第3のバルブとによって特定される領域に対して消火剤を噴射するので、消火効果をさらに高めることができるとともに、消火剤の使用量を軽減させることができる。
In the present invention, the following effects can be obtained by adopting the above configuration.
(A) The detection unit employs a suction-type gas sampling method, and the detection sensitivity is not affected by environmental elements such as wind, so that stable gas can be measured. In addition, the nozzle hole is used both as a gas suction hole and a fire extinguishing agent radiation hole. By integrating the suction pipe and the fire extinguishing pipe, it is not necessary to double-arrange equipment such as pipes. Cost can be reduced.
(B) The sensing unit performs gas analysis by mass spectrometry, and early detection of hydrogen gas leakage can be performed by utilizing the features of high accuracy and high speed response.
(C) A fire extinguishing unit that emits a fire extinguishing agent under the control of a control device can detect an abnormality early in cooperation with a detection unit that detects gas leakage and can quickly perform a fire extinguishing activity. That is, the mist-like water can increase the humidity around the production apparatus, suppress the combustion explosion of hydrogen gas due to static electricity accumulated on the facilities and walls, and can also prevent non-combustible gases (for example, nitrogen gas, dioxide dioxide). (Carbon gas) radiation lowers the oxygen partial pressure in the air, making it difficult for hydrogen gas to cause a combustion explosion, and can minimize disasters caused by hydrogen gas leakage.
(D) Since the third valve is provided in the middle of the protective piping and the fire extinguishing agent is injected to the area specified by the second valve and the third valve, the fire extinguishing effect can be further enhanced, The amount of extinguishing agent used can be reduced.

実施形態1.
図1は本発明の実施形態1に係る水素製造装置の防災設備及びその関連設備の構成を示したブロック図である。水素製造装置100は建物200の室内201に設置されており、建物200には排気ダクト202が設けられており、部屋内部の空気を換気している。水素製造装置100は、原料の天然ガスから水素ガスを生成するまでの製造工程が、一次処理工程101、二次処理工程102及び水素生成処理工程103の三つの工程に分かれており、この製造工程自体は従来から行われているものであるが、その概要を説明する。一次処理工程101においては、天然ガス又はプロパンガスと水蒸気とを混合し、加熱された触媒と反応させ、水素と一酸化炭素に改質する。二次処理工程102においては、改質ガス中の一酸化炭素と水蒸気等をさらに反応させて、二酸化炭素と水素に転換する。水素生成処理工程103においては、生成ガス中の炭酸ガス・水蒸気等の不純物を除去し、水素ガスを取り出す。
Embodiment 1. FIG.
FIG. 1 is a block diagram showing a configuration of a disaster prevention facility and related facilities of a hydrogen production apparatus according to Embodiment 1 of the present invention. The hydrogen production apparatus 100 is installed in a room 201 of a building 200, and an exhaust duct 202 is provided in the building 200 to ventilate the air inside the room. In the hydrogen production apparatus 100, the production process until the production of hydrogen gas from the natural gas as a raw material is divided into three processes, a primary treatment process 101, a secondary treatment process 102, and a hydrogen production treatment process 103. Although it has been conventionally performed, an outline thereof will be described. In the primary treatment step 101, natural gas or propane gas and water vapor are mixed, reacted with a heated catalyst, and reformed into hydrogen and carbon monoxide. In the secondary treatment step 102, carbon monoxide and steam in the reformed gas are further reacted to convert to carbon dioxide and hydrogen. In the hydrogen generation treatment step 103, impurities such as carbon dioxide and water vapor in the generated gas are removed, and hydrogen gas is taken out.

水素製造装置100に対する防災設備300は、サンプリングしてガスを質量分析する検知部10と、消火剤を放射する消火部20と、検知部10及び消火部20をそれぞれ制御する制御装置30と、水素製造装置100の周囲に配設された防護配管Pとから構成されている。防護配管Pは水素製造装置100の配置形態に沿って水素製造装置100の上側に敷設されおり、ノズルDが所定の間隔に沿って設けられている。水素は軽く上昇が速いので、防護配管Pを室内201の天井面に沿って配設してもよい。また、排気ダクト202内の水素を早期発見するため、排気ダクト202にもノズルDが設置されている。上記ノズルDは、ガスを吸引する吸引孔と、消火剤を放射する放射孔として兼用されるものであり、常時開放状態になっている。このノズルDは消火剤放射時に流量が大きくなるように、逆止弁構造のオリフィスを設けることができる。   The disaster prevention equipment 300 for the hydrogen production apparatus 100 includes a detection unit 10 that samples and mass-analyzes a gas, a fire extinguishing unit 20 that emits a fire extinguishing agent, a control device 30 that controls the detection unit 10 and the fire extinguishing unit 20, and hydrogen The protective pipe P is disposed around the manufacturing apparatus 100. The protective piping P is laid on the upper side of the hydrogen production apparatus 100 along the arrangement form of the hydrogen production apparatus 100, and the nozzles D are provided along a predetermined interval. Since hydrogen is light and rises quickly, the protective piping P may be disposed along the ceiling surface of the room 201. Further, a nozzle D is also installed in the exhaust duct 202 in order to detect hydrogen in the exhaust duct 202 at an early stage. The nozzle D serves both as a suction hole for sucking gas and a radiation hole for radiating a fire extinguishing agent, and is always open. The nozzle D can be provided with an orifice having a check valve structure so that the flow rate becomes large when the extinguishing agent is emitted.

検知部10は、ガスをサンプリングするための吸引用のポンプ11、質量分析装置12、及びデータ変換装置13を備えている。消火部20は、消火剤を貯蔵する容器21、及び容器21を開放する起動装置22を備えている。制御装置30は、防災設備300全体の動作を制御し、例えば検知部10と消火部20との連動や信号線31を介してバルブV1〜V3の開閉等を制御する。なお、本実施形態1においては、バルブV4は後述の実施形態2の説明に用いられるものであり、本実施形態1においては無視するものとする。   The detection unit 10 includes a suction pump 11 for sampling gas, a mass spectrometer 12, and a data converter 13. The fire extinguishing unit 20 includes a container 21 that stores a fire extinguishing agent and an activation device 22 that opens the container 21. The control device 30 controls the overall operation of the disaster prevention facility 300, and controls, for example, the interlocking between the detection unit 10 and the fire extinguishing unit 20 and the opening and closing of the valves V1 to V3 via the signal line 31. In the first embodiment, the valve V4 is used for the description of the second embodiment described later, and is ignored in the first embodiment.

図2は防災設備300の処理過程を示したフローチャートである。制御装置30はバルブV1(本発明の第1のバルブ)、V3を開き、バルブV2(本発明の第2のバルブ)を閉じる(S11)。検知部10のポンプ11を駆動させて防護配管PのノズルDから室内201及び排気ダクト202の空気を吸引させる(S12)。質量分析装置12は吸引された空気をサンプリングして分析し、分析結果はデータ変換装置13によりデータ変換されて制御装置30に出力する(S13)。制御装置30はその分析結果に基づいて水素が含まれているかどうかを判定し(S14)、水素が含まれていない場合には、検知部10に上記の処理(S13)を繰り返させる。制御装置30は水素が含まれていたと判定した場合には、それが所定の濃度以上であるかどうかを判定し(S15)、所定の濃度未満であった場合には予備警報を出力し(S16)、検知部10に上記の処理(S13)を繰り返させる。制御装置30は水素が所定の濃度以上であると判定した場合には、ポンプ11の駆動を停止させ、それまで開いていたバルブV1,V3を閉じ、それまで閉じていたバルブV2を開く(S17)。これにより、防護配管Pと検知部10とは遮断され、防護配管Pと消火部20とは連通状態になる。制御装置30は消火部20の起動装置22を駆動し、起動装置22は容器21を開放して消火剤を防護配管Pに送給し、防護配管Pに設けられたノズルDから消火剤が水素製造装置100に向けて噴射し、消火活動を行う(S18)。なお、消火剤の放射や消火活動等では「消火」と表現されているが、必ずしも水素ガスにより火災が発生した後に行う活動ではなく、水素ガス火災の発生を抑制する意味も含まれている。例えば消火剤として霧状の水を噴射した場合には、水素が製造装置周辺の湿度を高め、設備や壁に溜まっている静電気による水素ガスの燃焼爆発を抑制することができる。また、消火剤として不燃性ガス(例えば窒素ガス、二酸化炭素ガス)を放射した場合には、空気中の酸素分圧を低下させ、水素ガスが燃焼爆発の発生がしにくくなり、水素ガスの漏洩による災害を最小程度で抑えることができる。   FIG. 2 is a flowchart showing a processing process of the disaster prevention equipment 300. The control device 30 opens the valves V1 (first valve of the present invention) and V3, and closes the valve V2 (second valve of the present invention) (S11). The pump 11 of the detector 10 is driven to suck the air in the room 201 and the exhaust duct 202 from the nozzle D of the protective piping P (S12). The mass spectrometer 12 samples and analyzes the sucked air, and the analysis result is converted into data by the data converter 13 and output to the controller 30 (S13). The control device 30 determines whether or not hydrogen is contained based on the analysis result (S14), and if it does not contain hydrogen, the detection unit 10 repeats the above processing (S13). When it is determined that hydrogen is contained, the control device 30 determines whether or not the concentration is higher than a predetermined concentration (S15), and outputs a preliminary alarm if it is lower than the predetermined concentration (S16). ), The detection unit 10 is made to repeat the above process (S13). When the control device 30 determines that the hydrogen concentration is equal to or higher than the predetermined concentration, the driving of the pump 11 is stopped, the valves V1 and V3 that have been opened so far are closed, and the valve V2 that has been closed so far is opened (S17). ). Thereby, the protective piping P and the detection part 10 are interrupted | blocked, and the protective piping P and the fire extinguishing part 20 will be in a communication state. The control device 30 drives the activation device 22 of the fire extinguishing unit 20, and the activation device 22 opens the container 21 to supply the extinguishing agent to the protective piping P, and the extinguishing agent is hydrogen from the nozzle D provided in the protective piping P. It injects toward the manufacturing apparatus 100 and fire extinguishing activity is performed (S18). In addition, although it is expressed as "fire extinguishing" in radiation of fire extinguishing agent or fire extinguishing activity, it is not necessarily an activity to be performed after a fire is caused by hydrogen gas, but also includes the meaning of suppressing the occurrence of hydrogen gas fire. For example, when mist-like water is injected as a fire extinguisher, hydrogen increases the humidity around the manufacturing apparatus, and combustion and explosion of hydrogen gas due to static electricity accumulated on the equipment and walls can be suppressed. In addition, when non-combustible gas (for example, nitrogen gas or carbon dioxide gas) is radiated as a fire extinguisher, the oxygen partial pressure in the air is reduced, making it difficult for hydrogen gas to cause a combustion explosion and leakage of hydrogen gas. Disasters caused by can be minimized.

以上のように本実施形態1においては、検知部10は吸引式のガスサンプリング方式を採用したため、検知感度は環境要素、例えば風等の影響を受けず、安定したガスを測定することができる。また、ガス吸引孔と消火剤放射孔とが兼用されており、吸引管と消火用配管とが一本化されることによって、配管等設備の二重配置が不要となり、システム全体のコストは低減できる。また、質量分析装置12を使用したことにより、その高精度、高速応答の特徴を活かして水素ガス漏洩の早期発見が可能になった。また、制御装置30は消火剤を放射する消火部20とガス漏洩を検知する検知部10とを連携し、異常を早期発見するとともに、上記の消火活動を迅速に行うことができる。   As described above, in the first embodiment, since the detection unit 10 employs the suction-type gas sampling method, the detection sensitivity is not affected by environmental elements such as wind, and stable gas can be measured. In addition, since the gas suction hole and the fire extinguishing agent radiation hole are combined, the suction pipe and the fire-extinguishing pipe are unified, eliminating the need for double arrangement of piping and other equipment, and reducing the overall system cost. it can. In addition, the use of the mass spectrometer 12 enables early detection of hydrogen gas leakage by taking advantage of the features of its high accuracy and high speed response. Moreover, the control apparatus 30 can cooperate with the fire extinguishing part 20 which radiates | emits a fire extinguishing agent, and the detection part 10 which detects gas leakage, can detect an abnormality early, and can perform said fire extinguishing activity rapidly.

実施形態2.
水素製造装置100では、水素漏洩の可能性は主に水素生成処理工程103にある。そのため、防護配管Pに仕切用のバルブV4を設けて(図1参照)、その開閉によって消火剤の放射を水素生成処理工程103の周囲に集中させるようにしてもよい。その場合には、図2の処理(S11)においてバルブV1、V3の他にV4を開き、処理(S17)においてバルブV1、V3の他にV4を閉じる、という点が上記の実施形態1と相違するだけであり、その他は同じである。
ところで、この実施形態2においては、水素製造装置100の水素生成処理工程103に着目したものであるから、防護配管Pは水素生成処理工程103に関連する設備の近傍に配置することが好ましい。なお、防護配管PのバルブV4は、1個に限らず、設備の大きさに応じて複数設けても構わない。
Embodiment 2. FIG.
In the hydrogen production apparatus 100, the possibility of hydrogen leakage is mainly in the hydrogen generation process 103. For this reason, a partitioning valve V4 may be provided in the protective piping P (see FIG. 1), and the radiation of the extinguishing agent may be concentrated around the hydrogen generation treatment step 103 by opening and closing the valve. In that case, V4 is opened in addition to the valves V1 and V3 in the process (S11) of FIG. 2, and V4 is closed in addition to the valves V1 and V3 in the process (S17). Just do it, the others are the same.
By the way, in this Embodiment 2, since it pays attention to the hydrogen production | generation process process 103 of the hydrogen production apparatus 100, it is preferable to arrange | position the protective piping P in the vicinity of the equipment relevant to the hydrogen production | generation process process 103. FIG. The number of valves V4 of the protective piping P is not limited to one, and a plurality of valves V4 may be provided according to the size of the equipment.

以上のように本実施形態2においては水素漏洩の可能性がある水素生成処理工程103の領域に消火剤の放射を限定するようにしたので、消火効果をさらに高めるとともに、消火剤の使用量を軽減させることができる。   As described above, in the second embodiment, since the emission of the extinguishing agent is limited to the region of the hydrogen generation processing step 103 where there is a possibility of hydrogen leakage, the extinguishing effect is further enhanced and the usage amount of the extinguishing agent is reduced. It can be reduced.

実施形態3.
なお、上記の実施形態1,2は何れも水素製造装置の例であるが、本発明は水素ステーション等の水素を貯蔵する設備においても同様に適用される。また、ここで水素は天然ガスが原料として使われて製造された例について記載したが、これに限らずに、水を電気分解して水素を製造する製造装置にも本発明は同様に適用される。
Embodiment 3. FIG.
In addition, although both said Embodiment 1, 2 is an example of a hydrogen production apparatus, this invention is applied similarly also in the facilities which store hydrogen, such as a hydrogen station. In addition, although an example in which hydrogen is produced using natural gas as a raw material has been described here, the present invention is similarly applied to a production apparatus that produces hydrogen by electrolyzing water, without being limited thereto. The

本発明の実施形態1に係る水素製造装置の防災設備及びその関連設備の構成を示したブロック図である。It is the block diagram which showed the structure of the disaster prevention equipment of the hydrogen production apparatus which concerns on Embodiment 1 of this invention, and its related equipment. 防災設備の処理過程を示したフローチャートである。It is the flowchart which showed the process of the disaster prevention facility.

符号の説明Explanation of symbols

10 検知部、11 吸引ポンプ、12 質量分析装置、13 データ変換装置、20 消火部、21 容器、22 起動装置、30 制御装置、31 信号線、100 水素製造装置、200 建物、201 室内、202 排気ダクト、300 防災設備、D ノズル、P 防護配管。
DESCRIPTION OF SYMBOLS 10 Detection part, 11 Suction pump, 12 Mass spectrometer, 13 Data converter, 20 Fire extinguishing part, 21 Container, 22 Start-up apparatus, 30 Control apparatus, 31 Signal line, 100 Hydrogen production apparatus, 200 Building, 201 Room, 202 Exhaust Duct, 300 disaster prevention equipment, D nozzle, P protective piping.

Claims (4)

水素製造・貯蔵装置の設備の周囲に配設され、複数のノズル孔が設けられた防護配管と、
前記防護配管と、定常的に開となっている第1のバルブを介して接続され、前記ノズルを介してガスを吸引し、その成分を分析する検知部と、
前記防護配管と、定常的に閉となっている第2のバルブを介して接続され、前記ノズルを介して消火剤を保護対象物に放射させる消火部と、
前記検知部及び前記消火部をそれぞれ制御する制御装置とを備え、
前記制御装置は、前記検知部の分析結果により水素が所定濃度以上であると判定すると前記第1のバルブを閉にし、且つ前記第2のバルブを開にし、前記消火部により前記ノズルを介して消火剤を保護対象物に放射することを特徴とする水素製造・貯蔵装置の防災設備。
A protective piping provided around the facility of the hydrogen production / storage device and provided with a plurality of nozzle holes;
A detector that is connected to the protective piping via a first valve that is constantly open, sucks gas through the nozzle, and analyzes its components;
A fire extinguishing unit that is connected to the protective piping through a second valve that is normally closed, and that radiates a fire extinguishing agent to the object to be protected through the nozzle;
A control device for controlling the detection unit and the fire extinguishing unit,
When the control device determines that hydrogen is a predetermined concentration or more based on the analysis result of the detection unit, the control device closes the first valve and opens the second valve, and the fire extinguishing unit passes the nozzle through the nozzle. Disaster prevention equipment for hydrogen production and storage equipment, characterized by radiating extinguishing agent to the object to be protected.
前記検知部は、質量分析法によりガス分析を行うことを特徴とする請求項1記載の水素製造・貯蔵装置の防災設備。   The said detection part performs gas analysis by mass spectrometry, The disaster prevention equipment of the hydrogen production / storage apparatus of Claim 1 characterized by the above-mentioned. 前記消火部は、前記消火剤として水又は不燃性ガスを噴射することを特徴とする請求項1又は2記載の水素製造・貯蔵装置の防災設備。   The said fire extinguishing part injects water or a nonflammable gas as said extinguishing agent, The disaster prevention equipment of the hydrogen production / storage apparatus of Claim 1 or 2 characterized by the above-mentioned. 前記防護配管に接続され、定常的に開となっている第3のバルブを備え、前記制御装置は、前記検知部の分析結果により水素が所定濃度以上であると判定すると、前記第3のバルブを閉にし、前記第2のバルブと前記第3のバルブとによって特定される領域に対して消火剤を噴射させることを特徴とする請求項1〜3の何れかに記載の水素製造・貯蔵装置の防災設備。
A third valve connected to the protective piping and being constantly open is provided, and when the control device determines that hydrogen is a predetermined concentration or more based on an analysis result of the detection unit, the third valve The hydrogen production / storage apparatus according to any one of claims 1 to 3, wherein a fire extinguisher is injected into a region specified by the second valve and the third valve. Disaster prevention equipment.
JP2005254351A 2005-09-02 2005-09-02 Disaster prevention facilities for hydrogen production and storage equipment Active JP4624215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254351A JP4624215B2 (en) 2005-09-02 2005-09-02 Disaster prevention facilities for hydrogen production and storage equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005254351A JP4624215B2 (en) 2005-09-02 2005-09-02 Disaster prevention facilities for hydrogen production and storage equipment

Publications (2)

Publication Number Publication Date
JP2007061519A true JP2007061519A (en) 2007-03-15
JP4624215B2 JP4624215B2 (en) 2011-02-02

Family

ID=37924394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254351A Active JP4624215B2 (en) 2005-09-02 2005-09-02 Disaster prevention facilities for hydrogen production and storage equipment

Country Status (1)

Country Link
JP (1) JP4624215B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010148668A (en) * 2008-12-25 2010-07-08 Shimizu Corp Hydrogen combustion control system
KR20110053352A (en) * 2008-09-10 2011-05-20 에보니크 데구사 게엠베하 Universal infrastructure for chemical processes
KR101439860B1 (en) 2013-06-21 2014-09-16 최진상 Sensing System and Method for fire in realtime
JP6352565B1 (en) * 2018-02-01 2018-07-04 株式会社キーテクノロジー Fire extinguishing system
CN115300855A (en) * 2021-12-15 2022-11-08 苏州大学 Composite fire extinguishing agent for hydrogen fire, fire extinguishing system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101659431B1 (en) * 2015-02-25 2016-09-23 주식회사 이에스지케이 System for preventing fire explosion of house by gas leakage and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589387A (en) * 1991-09-26 1993-04-09 Hochiki Corp Fire detecting device
JPH0644472A (en) * 1992-07-15 1994-02-18 Yoshikatsu Ijichi Fire detection method
JP2005155824A (en) * 2003-11-27 2005-06-16 Hochiki Corp Disaster preventing facility of hydrogen station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589387A (en) * 1991-09-26 1993-04-09 Hochiki Corp Fire detecting device
JPH0644472A (en) * 1992-07-15 1994-02-18 Yoshikatsu Ijichi Fire detection method
JP2005155824A (en) * 2003-11-27 2005-06-16 Hochiki Corp Disaster preventing facility of hydrogen station

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110053352A (en) * 2008-09-10 2011-05-20 에보니크 데구사 게엠베하 Universal infrastructure for chemical processes
JP2012501770A (en) * 2008-09-10 2012-01-26 エボニック デグサ ゲーエムベーハー Universal infrastructure for chemical processes
JP2014217782A (en) * 2008-09-10 2014-11-20 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Universal infrastructure for chemical process
KR101686684B1 (en) * 2008-09-10 2016-12-14 에보니크 데구사 게엠베하 Universal infrastructure for chemical processes
JP2010148668A (en) * 2008-12-25 2010-07-08 Shimizu Corp Hydrogen combustion control system
KR101439860B1 (en) 2013-06-21 2014-09-16 최진상 Sensing System and Method for fire in realtime
JP6352565B1 (en) * 2018-02-01 2018-07-04 株式会社キーテクノロジー Fire extinguishing system
JP2019130160A (en) * 2018-02-01 2019-08-08 株式会社キーテクノロジー Fire-extinguishing system
CN115300855A (en) * 2021-12-15 2022-11-08 苏州大学 Composite fire extinguishing agent for hydrogen fire, fire extinguishing system and method

Also Published As

Publication number Publication date
JP4624215B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP4624215B2 (en) Disaster prevention facilities for hydrogen production and storage equipment
JP5931135B2 (en) Universal infrastructure for chemical processes
JP2009515242A (en) Fire detection equipment in racks of electrical equipment
KR20090042878A (en) Air conditioner having fire extinguishing system
CN201232854Y (en) Household fuel gas leakage multiaspect control device
KR20200098317A (en) Fire extinguish system
EP3246556B1 (en) Ventilation and leak detection system
CN110624198A (en) Fire extinguishing system for urban switching station
JP2010046316A (en) Fire-extinguishing system
JP5319480B2 (en) Control panel fire extinguishing equipment
CN110618636A (en) Laboratory safety monitoring and early warning system
RU2730962C1 (en) System and methods of fire extinguishing
JP4571530B2 (en) Draft chamber fire extinguisher
JP2015533518A (en) Method for diluting and / or discharging a cloud of flammable gas
MY168785A (en) Security system for operation of a habitat on installations
US20240001167A1 (en) Method and system of automatic switching between sources of breathable air in a firefighter air replenishment system in accordance with air parameter based automatic purging of a compromised form thereof
JP2008215715A (en) Ventilation system
RU2005128875A (en) FIRE PREVENTION METHOD AND SYSTEM FOR ITS IMPLEMENTATION
KR102205027B1 (en) Checking Method Of Kitchen Fire Extinguisher Using Kitchen Fire Extinguisher Checking Kit
US20240001166A1 (en) Method and system of air parameter based automatic bypassing of a source of breathable air in a firefighter air replenishment system implemented within a structure
ES2966075T3 (en) Procedure and arrangement for detecting hydrogen from leaks in a hydrogen-capable heating appliance
JP7192459B2 (en) Evacuation support system, evacuation support method, and program
KR102195041B1 (en) A Locking Valve Device Operating Based on a Detection of Carbon Monoxide
KR102138478B1 (en) Smoke detection fire disaster prevention system
JPH11262541A (en) Inactive gas sprinkler unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

R150 Certificate of patent or registration of utility model

Ref document number: 4624215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3