JP2007059721A - Method and system for manufacturing semiconductor - Google Patents

Method and system for manufacturing semiconductor Download PDF

Info

Publication number
JP2007059721A
JP2007059721A JP2005244861A JP2005244861A JP2007059721A JP 2007059721 A JP2007059721 A JP 2007059721A JP 2005244861 A JP2005244861 A JP 2005244861A JP 2005244861 A JP2005244861 A JP 2005244861A JP 2007059721 A JP2007059721 A JP 2007059721A
Authority
JP
Japan
Prior art keywords
semiconductor
manufacturing
wafer
characteristic
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005244861A
Other languages
Japanese (ja)
Inventor
Kensho Sugimoto
憲昭 杉本
Shigeru Makino
滋 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005244861A priority Critical patent/JP2007059721A/en
Publication of JP2007059721A publication Critical patent/JP2007059721A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably manufacture a semiconductor product of high quality with high yield even from the start of a manufacturing process. <P>SOLUTION: A correlation analysis arithmetic unit 7 forms analysis data on a correlation between a semiconductor characteristic value and a product characteristic value, and performs a correlation analysis using the formed correlation analysis data so as to subject process specifications to feedback control. By this setup, a usual system for manufacturing semiconductor requires a process of previously modeling a correlation between process parameters and device characteristics so as to optimize process specifications, but this manufacturing system does not require the above process, so that semiconductor products of high quality can be stably manufactured with high yield from the start of a manufacturing process through this manufacturing system. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体ウエハから半導体素子を製造する半導体製造方法及び半導体製造システムに関する。   The present invention relates to a semiconductor manufacturing method and a semiconductor manufacturing system for manufacturing a semiconductor element from a semiconductor wafer.

従来より、半導体素子製造プロセスの管理に用いる評価パラメータを算出し、プロセスパラメータとデバイス特性の相関を示す評価関数を用いて評価パラメータの変動に対応するデバイス特性を解析し、解析結果に基づいて半導体素子の製造条件を最適化する半導体製造システムが知られている(特許文献1を参照)。そしてこのようなシステムによれば、高品質の半導体製品を歩留まりよく安定的に製造することが可能となる。
特開平10−163080号公報
Conventionally, evaluation parameters used for semiconductor element manufacturing process management are calculated, device characteristics corresponding to fluctuations in the evaluation parameters are analyzed using an evaluation function indicating the correlation between the process parameters and the device characteristics, and semiconductors are analyzed based on the analysis results. 2. Description of the Related Art A semiconductor manufacturing system that optimizes device manufacturing conditions is known (see Patent Document 1). According to such a system, it is possible to stably manufacture a high-quality semiconductor product with a high yield.
Japanese Patent Laid-Open No. 10-163080

しかしながら、従来の半導体製造システムでは、半導体素子の製造条件を最適化する際、プロセスパラメータとデバイス特性の相関関係が過去のプロセスデータを用いてモデル化されている必要があるために、プロセスデータが整っていない製造プロセスの立ち上げ時には、製造条件を最適化することにより高品質の半導体製品を歩留まりよく安定的に製造することはできない。   However, in the conventional semiconductor manufacturing system, when optimizing the manufacturing conditions of semiconductor elements, the correlation between process parameters and device characteristics needs to be modeled using past process data. At the start of an incomplete manufacturing process, it is impossible to stably manufacture a high-quality semiconductor product with a high yield by optimizing the manufacturing conditions.

本発明は、上記課題を解決するためになされたものであり、その目的は、製造プロセスの立ち上げ時において早期に高品質の半導体製品を歩留まりよく安定的に製造することが可能な半導体製造方法及び半導体製造システムを提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a semiconductor manufacturing method capable of stably manufacturing a high-quality semiconductor product with high yield at an early stage when the manufacturing process is started up. And providing a semiconductor manufacturing system.

上記課題を解決するために、本発明に係る半導体製造方法及び半導体製造システムは、製造プロセス途中の半導体ウエハの半導体特性検値と半導体素子の製品特性検査値の相関関係を分析し、分析結果に従って半導体素子の製造条件を変更するフィードバック制御を行う。   In order to solve the above problems, a semiconductor manufacturing method and a semiconductor manufacturing system according to the present invention analyze a correlation between a semiconductor characteristic test value of a semiconductor wafer and a product characteristic test value of a semiconductor element during the manufacturing process, and according to the analysis result. Feedback control is performed to change the manufacturing conditions of the semiconductor element.

本発明に係る半導体製造方法及び半導体製造システムによれば、製造条件を最適化するためにプロセスパラメータとデバイス特性の相関関係を予めモデル化しておく必要がないので、製造プロセスの立ち上げ時において早期に高品質の半導体製品を歩留まりよく安定的に製造することができる。   According to the semiconductor manufacturing method and the semiconductor manufacturing system according to the present invention, it is not necessary to model the correlation between process parameters and device characteristics in advance in order to optimize the manufacturing conditions. In addition, high-quality semiconductor products can be stably manufactured with a high yield.

以下、図面を参照して、本発明の実施形態となる半導体製造システムの構成について説明する。   Hereinafter, a configuration of a semiconductor manufacturing system according to an embodiment of the present invention will be described with reference to the drawings.

[半導体製造システムの構成]
始めに、図1を参照して、本発明の実施形態となる半導体製造システムの構成について説明する。
[Configuration of semiconductor manufacturing system]
First, the configuration of a semiconductor manufacturing system according to an embodiment of the present invention will be described with reference to FIG.

本発明の実施形態となる半導体製造システム1は、図1に示すように、工程規格値(装置設定値)に従ってロットを構成する複数の半導体ウエハの各々を処理することにより半導体素子を製造する半導体製造装置2と、処理途中の半導体ウエハ(中間製品)の半導体特性を検査する半導体特性検査装置3と、半導体特性検査装置3により得られた半導体特性値を用いて半導体ウエハ内の任意の位置における半導体特性値を近似補間により演算する近似補間演算装置4と、半導体製造装置2により製造された半導体素子(製品)の素子特性を製品特性値として検査する製品検査装置5とを備える。   As shown in FIG. 1, a semiconductor manufacturing system 1 according to an embodiment of the present invention is a semiconductor that manufactures a semiconductor element by processing each of a plurality of semiconductor wafers constituting a lot according to a process standard value (apparatus setting value). The manufacturing apparatus 2, the semiconductor characteristic inspection apparatus 3 for inspecting the semiconductor characteristic of the semiconductor wafer (intermediate product) being processed, and the semiconductor characteristic value obtained by the semiconductor characteristic inspection apparatus 3 are used at any position in the semiconductor wafer. An approximate interpolation calculation device 4 that calculates semiconductor characteristic values by approximate interpolation, and a product inspection device 5 that inspects element characteristics of semiconductor elements (products) manufactured by the semiconductor manufacturing apparatus 2 as product characteristic values.

また、この半導体製造システム1は、半導体特性検査装置3により得られた半導体特性値,近似補間演算装置4により演算された半導体特性値,及び製品検査装置5により得られた製品特性値を収集する特性値収集装置6と、特性値収集装置6により収集された値を用いて半導体特性値と製品特性値の相関分析用データを作成し、作成された相関分析用データを利用して相関分析を行うことにより工程規格値をフィードバック制御する相関分析演算装置7とを備える。なお、上記近似補間演算装置4,特性値収集装置6,及び相関分析演算装置7は、ワークステーションやパーソナルコンピュータ等の公知の情報処理装置により構成されている。   Further, the semiconductor manufacturing system 1 collects the semiconductor characteristic value obtained by the semiconductor characteristic inspection device 3, the semiconductor characteristic value calculated by the approximate interpolation calculation device 4, and the product characteristic value obtained by the product inspection device 5. Using the characteristic value collection device 6 and the values collected by the characteristic value collection device 6, the data for correlation analysis between the semiconductor characteristic value and the product characteristic value is created, and the correlation analysis is performed using the created correlation analysis data. And a correlation analysis calculation device 7 that feedback-controls the process standard value. The approximate interpolation calculation device 4, the characteristic value collection device 6, and the correlation analysis calculation device 7 are configured by known information processing devices such as workstations and personal computers.

[相関分析用データの作成方法]
次に、相関分析用データの作成方法について説明する。
[How to create data for correlation analysis]
Next, a method for creating data for correlation analysis will be described.

一般に、半導体素子は複数の半導体製造装置を利用して100以上の製造プロセスを経て製造される。また各製造プロセスは、半導体ウエハ数十枚を1ロットとして行われ、1つの製造プロセスが完了した時点で半導体特性値を検査することによりその製造プロセスの出来具合を確認する。   Generally, a semiconductor element is manufactured through 100 or more manufacturing processes using a plurality of semiconductor manufacturing apparatuses. In addition, each manufacturing process is performed by using several tens of semiconductor wafers as one lot, and when one manufacturing process is completed, the semiconductor characteristic value is inspected to confirm the quality of the manufacturing process.

また通常、半導体特性値は(1)図2に示すように1ロットを構成する複数の半導体ウエハ(本ウエハ)10の中に半導体素子を形成しない半導体ウエハをダミーウエハ11として挿入し、ダミーウエハ11の半導体特性値を測定する、又は、(2)図3に示すように本ウエハ10上に検査用回路12を形成し、この検査用回路12の位置における半導体特性値を測定するのいずれかの方法により取得される。   Usually, the semiconductor characteristic values are as follows: (1) As shown in FIG. 2, a semiconductor wafer in which no semiconductor element is formed is inserted as a dummy wafer 11 into a plurality of semiconductor wafers (main wafers) 10 constituting one lot. Either a semiconductor characteristic value is measured, or (2) a test circuit 12 is formed on the wafer 10 as shown in FIG. 3 and the semiconductor characteristic value at the position of the test circuit 12 is measured. Obtained by

ここで、本ウエハ10上に形成された半導体素子を利用せずに検査用回路12を用いる理由は、検査内容が破壊検査になることがあることや本ウエハ10上に回路を形成しない方が安定して半導体特性値を測定できるためである。なお、本明細書中において、「半導体特性値」とは、半導体ウエハ自体の特性を示す物理量であり、ウエハ抵抗,ウエハ厚み,ウエハ反り量等を例示することができる。   Here, the reason for using the inspection circuit 12 without using the semiconductor element formed on the wafer 10 is that the inspection content may be a destructive inspection or that the circuit is not formed on the wafer 10. This is because the semiconductor characteristic value can be measured stably. In the present specification, the “semiconductor characteristic value” is a physical quantity indicating the characteristics of the semiconductor wafer itself, and examples thereof include wafer resistance, wafer thickness, and wafer warpage.

また、製品特性値は全半導体素子(1枚の本ウエハ上には数百〜数千個の半導体素子が形成される)を対象として測定されるが、半導体特性検査では、生産性を考慮して、図4に示すようにダミーウエハ11上に設けられた数点の半導体特性検査ポイント13においてのみ測定される場合が多い。なお、本明細書中において、「製品特性値」とは、半導体素子の電気特性を示す物理量であり、半導体素子の種類により異なるが回路抵抗,リーク電流,感度電圧等を例示することができる。   Product characteristic values are measured for all semiconductor elements (hundreds to thousands of semiconductor elements are formed on a single wafer). In the semiconductor characteristic inspection, productivity is taken into consideration. Therefore, the measurement is often performed only at several semiconductor characteristic inspection points 13 provided on the dummy wafer 11 as shown in FIG. In the present specification, the “product characteristic value” is a physical quantity indicating the electrical characteristics of a semiconductor element, and may be exemplified by circuit resistance, leakage current, sensitivity voltage, etc., although it varies depending on the type of semiconductor element.

従って、半導体特性値と製品特性値の相関分析用データは、(1)半導体特性値を測定した本ウエハ上の位置に形成された半導体素子の製品特性値を抜き出して作成する、又は、(2)各半導体素子の位置に対応する半導体特性値を推定して作成するのいずれかの方法により作成する必要がある。そこで、本実施形態では、以下に示す4つの方法のうちのいずれかの方法により相関分析用データを作成する。以下、各方法について詳しく説明する。   Therefore, the correlation analysis data between the semiconductor characteristic value and the product characteristic value is created by extracting (1) the product characteristic value of the semiconductor element formed at the position on the wafer where the semiconductor characteristic value is measured, or (2 It is necessary to create a semiconductor characteristic value corresponding to the position of each semiconductor element by estimating the semiconductor characteristic value. Therefore, in this embodiment, the correlation analysis data is created by any one of the following four methods. Hereinafter, each method will be described in detail.

〔方法1〕
方法1では、本ウエハ10の検査用回路12の測定値を半導体特性値として用い、本ウエハ10の検査用回路12の周辺に形成された半導体素子の製品特性値から検査用回路12の位置における半導体素子の製品特性値を推定することにより、相関分析用データを作成する。具体的には、この方法1では、図5に示すように本ウエハ10上にn個の検査用回路12を設け、各検査用回路12の測定値を半導体特性値Hi(i=1〜n)とする。一方、図6に示すように検査用回路12の周辺の半導体素子をCi1〜Ci8、これら半導体素子の製品特性値をSi1〜Si8とすると、検査用回路12の位置における半導体素子の製品特性値Siは以下に示す数式1のように推定できる。

Figure 2007059721
[Method 1]
In the method 1, the measurement value of the inspection circuit 12 of the wafer 10 is used as the semiconductor characteristic value, and the product characteristic value of the semiconductor element formed around the inspection circuit 12 of the wafer 10 is used to determine the position of the inspection circuit 12. Data for correlation analysis is created by estimating the product characteristic value of the semiconductor element. Specifically, in this method 1, as shown in FIG. 5, n inspection circuits 12 are provided on the wafer 10, and the measured values of the inspection circuits 12 are converted into semiconductor characteristic values Hi (i = 1 to n). ). On the other hand, as shown in FIG. 6, if the semiconductor elements around the inspection circuit 12 are Ci1 to Ci8 and the product characteristic values of these semiconductor elements are Si1 to Si8, the product characteristic value Si of the semiconductor element at the position of the inspection circuit 12 is obtained. Can be estimated as shown in Equation 1 below.
Figure 2007059721

従って、n個の検査用回路12それぞれについて同様の処理を行うことにより、以下の表1に示すようなn個の半導体特性値と製品特性値との関係を相関分析用データとして作成することができる。

Figure 2007059721
Therefore, by performing the same processing for each of the n inspection circuits 12, the relationship between the n semiconductor characteristic values and the product characteristic values as shown in Table 1 below can be created as correlation analysis data. it can.
Figure 2007059721

〔方法2〕
方法2では、ダミーウエハ11の半導体特性検査ポイント13における半導体特性値から半導体特性検査ポイント13の位置に対応する本ウエハ10上の位置における半導体特性値を推定すると共に、半導体特性検査ポイント13の位置に対応する本ウエハ10上の位置における製品特性値を測定することにより、相関分析用データを作成する。具体的には、図7に示すように2枚のダミーウエハ11a,11b間にm枚の本ウエハ10があり、図8に示すようにダミーウエハ11a,11bに半導体特性検査ポイント13をn点配置し、ダミーウエハ11a,11bの半導体特性検査ポイント13における半導体特性値をそれぞれHi1,Hi2(i=1〜n)とすると、ダミーウエハ11aからP枚目の本ウエハ10上の半導体特性検査ポイント13の位置に対応する位置における半導体特性値Hiは半導体特性値H1i,H2iの加重平均によって以下の数式2のように推定できる。

Figure 2007059721
[Method 2]
In the method 2, the semiconductor characteristic value at the position on the wafer 10 corresponding to the position of the semiconductor characteristic inspection point 13 is estimated from the semiconductor characteristic value at the semiconductor characteristic inspection point 13 of the dummy wafer 11 and at the position of the semiconductor characteristic inspection point 13. Correlation analysis data is created by measuring product characteristic values at corresponding positions on the wafer 10. Specifically, there are m main wafers 10 between two dummy wafers 11a and 11b as shown in FIG. 7, and n semiconductor characteristic inspection points 13 are arranged on the dummy wafers 11a and 11b as shown in FIG. Assuming that the semiconductor characteristic values at the semiconductor characteristic inspection points 13 of the dummy wafers 11a and 11b are Hi1 and Hi2 (i = 1 to n), respectively, the positions of the semiconductor characteristic inspection points 13 on the P-th main wafer 10 from the dummy wafer 11a. The semiconductor characteristic value Hi at the corresponding position can be estimated by the weighted average of the semiconductor characteristic values H1i and H2i as shown in Equation 2 below.
Figure 2007059721

従って、半導体特性検査ポイント13の各位置に対応する位置についてP枚目の本ウエハ10の半導体特性値Hiを算出すると共に、本ウエハ10上の半導体特性検査ポイント13の位置に対応する位置における製品特性値を測定することにより、上述の表1と同様な相関分析用データを作成することができる。   Accordingly, the semiconductor characteristic value Hi of the P-th main wafer 10 is calculated for the position corresponding to each position of the semiconductor characteristic inspection point 13 and the product at the position corresponding to the position of the semiconductor characteristic inspection point 13 on the main wafer 10. By measuring the characteristic value, the same correlation analysis data as in Table 1 above can be created.

〔方法3〕
方法3では、本ウエハ10上の検査用回路12の測定値から本ウエハ10の全素子の位置における半導体特性値を推定すると共に、本ウエハ10の全素子の製品特性値を測定することにより相関分析用データを作成する。具体的には、図5に示すように本ウエハ10上にn個の検査用回路12を設け、検査用回路i(i=1〜n)の測定値を半導体特性値zi(i=1〜n)とする。そして、半導体特性値ziの位置に対する変化が連続であり、曲面状に変化すると考え、以下の方法により半導体特性値ziから本ウエハ10上の任意の位置における半導体特性値を算出する。なお、一般に、曲面の表現方法としては、陽関数表現,陰関数表現,パラメトリック表現が使われることが多いが、ここでは一例として陽関数表現を用いた場合について説明する。
[Method 3]
In the method 3, the semiconductor characteristic values at the positions of all the elements of the wafer 10 are estimated from the measured values of the inspection circuit 12 on the wafer 10, and the product characteristic values of all the elements of the wafer 10 are measured to correlate. Create analytical data. Specifically, as shown in FIG. 5, n inspection circuits 12 are provided on the wafer 10, and measured values of the inspection circuit i (i = 1 to n) are converted into semiconductor characteristic values zi (i = 1 to 1). n). Then, assuming that the semiconductor characteristic value zi changes continuously with respect to the position and changes into a curved surface, the semiconductor characteristic value at an arbitrary position on the wafer 10 is calculated from the semiconductor characteristic value zi by the following method. In general, an explicit function expression, an implicit function expression, or a parametric expression is often used as a method of expressing a curved surface. Here, a case where an explicit function expression is used will be described as an example.

いま、図9に示すように、検査用回路iの位置及び測定値をそれぞれ(xi,yi),zi(1≦i≦n,n:測定点数)とし、半導体特性値分布F(x,y)は以下の数式3で近似できると仮定すると、最小二乗法により以下に示す数式3から定数a,b,cの値を算出することにより以下の数式4が得られる。従って、数式4の連立方程式を解くことにより、半導体特性値分布F(x,y)は以下の数式5のように近似できる。なお、この例では説明を簡単にするために、半導体特性値分布F(x,y)を1次式で近似したが、高次の多項式であってもよい。

Figure 2007059721
Figure 2007059721
Figure 2007059721
Now, as shown in FIG. 9, the position and measurement value of the inspection circuit i are (xi, yi) and zi (1 ≦ i ≦ n, n: number of measurement points), respectively, and the semiconductor characteristic value distribution F (x, y ) Can be approximated by the following formula 3, the following formula 4 is obtained by calculating the values of the constants a, b, and c from the following formula 3 by the least square method. Therefore, the semiconductor characteristic value distribution F (x, y) can be approximated as the following Expression 5 by solving the simultaneous equations of Expression 4. In this example, in order to simplify the description, the semiconductor characteristic value distribution F (x, y) is approximated by a linear expression, but it may be a high-order polynomial.
Figure 2007059721
Figure 2007059721
Figure 2007059721

このことから、この方法3では、上記数式5を利用して検査用回路iにより得られた半導体特性値ziから本ウエハ10の全素子の位置(xi,yi)における半導体特性値を推定し、これらの半導体特性値を本ウエハ10上のk個の半導体素子の製品特性値Siと対応付けすることにより、以下の表2に示すようなk個の半導体特性値と製品特性値の関係を示す相関分析用データを作成する。

Figure 2007059721
Therefore, in this method 3, the semiconductor characteristic values at the positions (xi, yi) of all the elements of the wafer 10 are estimated from the semiconductor characteristic value zi obtained by the inspection circuit i using the above formula 5, By associating these semiconductor characteristic values with the product characteristic values Si of k semiconductor elements on the wafer 10, the relationship between the k semiconductor characteristic values and the product characteristic values as shown in Table 2 below is shown. Create data for correlation analysis.
Figure 2007059721

〔方法4〕
方法4では、ダミーウエハ11の半導体特性検査ポイント13における半導体特性値から本ウエハ10の全素子の位置における半導体特性値を推定し、本ウエハ10の全素子の製品特性値を測定することにより、相関分析用データを作成する。具体的には、ダミーウエハ11の任意の位置における半導体特性値は、上記方法3と同様、以下の数式6に示すように半導体特性検査ポイント13における測定値を利用して算出できる。従って、ダミーウエハ11a,11bの位置(xi,yi)における半導体特性値はそれぞれF1(xi,yi),F2(xi,yi)と算出される。

Figure 2007059721
[Method 4]
In the method 4, the semiconductor characteristic values at the positions of all the elements of the wafer 10 are estimated from the semiconductor characteristic values at the semiconductor characteristic inspection point 13 of the dummy wafer 11, and the product characteristic values of all the elements of the wafer 10 are measured, thereby obtaining the correlation. Create analytical data. Specifically, the semiconductor characteristic value at an arbitrary position of the dummy wafer 11 can be calculated by using the measured value at the semiconductor characteristic inspection point 13 as shown in the following Expression 6, similarly to the method 3 described above. Accordingly, the semiconductor characteristic values at the positions (xi, yi) of the dummy wafers 11a and 11b are calculated as F1 (xi, yi) and F2 (xi, yi), respectively.
Figure 2007059721

一方、ダミーウエハ11aからp枚目の本ウエハ10上の位置(xi,yi)における半導体特性値Hiは、上記方法2と同様、ダミーウエハ11a,11bの位置(xi,yi)における半導体特性値F1(xi,yi),F2(xi,yi)の加重平均によって以下の数式7のように推定できる。

Figure 2007059721
On the other hand, the semiconductor characteristic value Hi at the position (xi, yi) on the p-th main wafer 10 from the dummy wafer 11a is the semiconductor characteristic value F1 (at the position (xi, yi) of the dummy wafers 11a, 11b, as in the above method 2. x i, y i) and F 2 (xi, y i) can be estimated as the following Expression 7.
Figure 2007059721

従って、上記処理を本ウエハ10上のk個の半導体素子全てに行うことにより、k個の半導体特性値と製品特性値の関係を示す上記表1と同様の相関分析用データを作成することができる。   Therefore, by performing the above processing on all k semiconductor elements on the wafer 10, it is possible to create correlation analysis data similar to Table 1 showing the relationship between the k semiconductor characteristic values and the product characteristic values. it can.

[相関分析方法]
最後に、相関分析用データを用いた相関分析方法について説明する。
[Correlation analysis method]
Finally, a correlation analysis method using correlation analysis data will be described.

いま、半導体特性J及び製品特性KのデータをそれぞれHi,Si(i=1〜n)とすると、半導体特性Jと製品特性Kの相関係数Rは以下の数式8により算出できる。

Figure 2007059721
Now, assuming that the data of the semiconductor characteristic J and the product characteristic K are Hi and Si (i = 1 to n), the correlation coefficient R between the semiconductor characteristic J and the product characteristic K can be calculated by the following formula 8.
Figure 2007059721

そして、半導体特性J及び製品特性Kのデータの全ての組み合わせについて相関関数Rを求めると以下の表3に示すようになる。

Figure 2007059721
Then, when the correlation function R is obtained for all combinations of the data of the semiconductor characteristic J and the product characteristic K, it is as shown in Table 3 below.
Figure 2007059721

そこで、本実施形態では、相関分析演算装置7は、上記表3から相関係数Rが大きい半導体特性J及び製品特性Kのデータの組み合わせを抽出し回帰分析を行う。具体的には、半導体特性J及び製品特性KのデータをそれぞれHi,Si(i=1〜n)とすると、半導体特性JのデータHと製品特性KのデータSの関係は以下の数式9のように表される。

Figure 2007059721
Therefore, in this embodiment, the correlation analysis calculation device 7 extracts a combination of data of the semiconductor characteristic J and the product characteristic K having a large correlation coefficient R from Table 3 and performs regression analysis. Specifically, assuming that the data of the semiconductor characteristic J and the product characteristic K are Hi and Si (i = 1 to n), respectively, the relationship between the data H of the semiconductor characteristic J and the data S of the product characteristic K is expressed by Equation 9 below. It is expressed as follows.
Figure 2007059721

そこで、相関分析演算装置7は、図10に示すように製品特性Kの良品規格値の上限値及び下限値をそれぞれSmax,Sminとし、上記数式9を用いて半導体特性Jの工程規格値の上限値Hmax及び下限値Hminを以下の数式10のように算出し、製品特性Kが良品規格値の範囲内に収まるように工程規格値を変更するフィードバック制御を行う。

Figure 2007059721
Therefore, as shown in FIG. 10, the correlation analysis calculation device 7 sets the upper limit value and lower limit value of the non-defective standard value of the product characteristic K as Smax and Smin, respectively, and uses the above formula 9 to set the upper limit of the process standard value of the semiconductor characteristic J The value Hmax and the lower limit value Hmin are calculated as in the following Equation 10, and feedback control is performed to change the process standard value so that the product characteristic K is within the range of the non-defective product standard value.
Figure 2007059721

以上の説明から明らかなように、本発明の実施形態となる半導体製造システム1では、相関分析演算装置7が、半導体特性値と製品特性値の相関分析用データを作成し、作成された相関分析用データを利用して相関分析を行うことにより工程規格値をフィードバック制御するので、従来までの半導体製造システムのように、工程規格値を最適化するためにプロセスパラメータとデバイス特性の相関関係を予めモデル化しておく必要がなく、製造プロセスの立ち上げ時において早急に高品質の半導体製品を歩留まりよく安定的に製造することができる。   As is clear from the above description, in the semiconductor manufacturing system 1 according to the embodiment of the present invention, the correlation analysis calculation device 7 creates data for correlation analysis between the semiconductor characteristic value and the product characteristic value, and the created correlation analysis. Since the process specification value is feedback controlled by performing correlation analysis using the data for the process, the correlation between the process parameter and the device characteristic is preliminarily set in order to optimize the process specification value as in the conventional semiconductor manufacturing system. There is no need for modeling, and a high-quality semiconductor product can be quickly and stably manufactured with high yield at the start of the manufacturing process.

なお、半導体特性値は、本ウエハからではなくダミーウエハから取得することが望ましい。ダミーウエハは実際に半導体素子になるものではないので、このような処理によれば、製造プロセスの状態を精度よく把握することができる。また、半導体特性値としては、複数のダミーウエハの厚さの値を外挿又は内挿することにより半導体素子の位置に対応するダミーウエハの位置の厚さを算出することが望ましい。   It should be noted that it is desirable to obtain the semiconductor characteristic value from a dummy wafer instead of from this wafer. Since the dummy wafer does not actually become a semiconductor element, according to such processing, it is possible to accurately grasp the state of the manufacturing process. Further, as the semiconductor characteristic value, it is desirable to calculate the thickness of the dummy wafer position corresponding to the position of the semiconductor element by extrapolating or interpolating the thickness values of the plurality of dummy wafers.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。   As mentioned above, although embodiment which applied the invention made by the present inventors was described, this invention is not limited by the description and drawing which make a part of indication of this invention by this embodiment. That is, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above-described embodiments are all included in the scope of the present invention.

本発明の実施形態となる半導体製造システムの構成を示すブロック図である。It is a block diagram which shows the structure of the semiconductor manufacturing system used as embodiment of this invention. 本ウエハと1枚のダミーウエハからなるロットの一例を示す模式図である。It is a schematic diagram which shows an example of the lot which consists of this wafer and one dummy wafer. 本ウエハ上に設けられた検査用回路を示す模式図である。It is a schematic diagram which shows the circuit for a test | inspection provided on this wafer. ダミーウエハ上に設けられた半導体特性検査ポイントを示す模式図である。It is a schematic diagram which shows the semiconductor characteristic test | inspection point provided on the dummy wafer. 本ウエハ上に設けられたn個の検査用回路を示す模式図である。It is a schematic diagram which shows n test | inspection circuits provided on this wafer. 検査用回路周辺の半導体素子の製品特性値から検査用回路の位置における半導体素子の製品特性値を推定する方法を説明するための図である。It is a figure for demonstrating the method to estimate the product characteristic value of the semiconductor element in the position of a test circuit from the product characteristic value of the semiconductor element around a test circuit. 本ウエハと2枚のダミーウエハからなるロットの一例を示す模式図である。It is a schematic diagram which shows an example of the lot which consists of this wafer and two dummy wafers. ダミーウエハ上に設けられたn個の半導体特性検査ポイントを示す模式図である。It is a schematic diagram which shows n semiconductor characteristic test | inspection points provided on the dummy wafer. 半導体特性値分布の算出方法を説明するための図である。It is a figure for demonstrating the calculation method of semiconductor characteristic value distribution. 半導体特性に対する製品特性の関係を示す図である。It is a figure which shows the relationship of the product characteristic with respect to a semiconductor characteristic.

符号の説明Explanation of symbols

1:半導体製造システム
2:半導体製造装置
3:半導体特性検査装置
4:近似補間演算装置
5:製品検査装置
6:特性値収集装置
7:相関分析演算装置
1: Semiconductor manufacturing system 2: Semiconductor manufacturing apparatus 3: Semiconductor characteristic inspection apparatus 4: Approximate interpolation calculation apparatus 5: Product inspection apparatus 6: Characteristic value collection apparatus 7: Correlation analysis calculation apparatus

Claims (4)

半導体ウエハから半導体素子を製造する半導体製造方法であって、
製造条件に従ってロットを構成する複数の半導体ウエハの各々に対して所定の処理を行い半導体素子を製造する第1工程と、
前記所定の処理途中の半導体ウエハについて、半導体ウエハ内の位置に対する半導体特性の関係を示すデータを半導体特性分布として取得する第2工程と、
前記第1工程により製造された半導体素子の素子特性を製品特性値として取得する第3工程と、
前記製品特性値と前記半導体特性分布の相関関係を評価する第4工程と、
前記第4工程の評価結果に基づいて前記製造条件を変更するフィードバック制御を行う第5工程と
を有することを特徴とする半導体製造方法。
A semiconductor manufacturing method for manufacturing a semiconductor element from a semiconductor wafer,
A first step of manufacturing a semiconductor element by performing a predetermined process on each of a plurality of semiconductor wafers constituting a lot according to manufacturing conditions;
A second step of acquiring, as a semiconductor characteristic distribution, data indicating a relationship of semiconductor characteristics with respect to a position in the semiconductor wafer for the semiconductor wafer in the middle of the predetermined process;
A third step of acquiring, as a product characteristic value, the element characteristic of the semiconductor element manufactured by the first step;
A fourth step of evaluating a correlation between the product characteristic value and the semiconductor characteristic distribution;
And a fifth step of performing feedback control for changing the manufacturing condition based on the evaluation result of the fourth step.
請求項1に記載の半導体製造方法であって、
前記ロットには半導体素子を製造しないダミーウエハが含まれ、前記第2工程は当該ダミーウエハについて行うことを特徴とする半導体製造方法。
A semiconductor manufacturing method according to claim 1,
The lot includes a dummy wafer that does not manufacture a semiconductor element, and the second step is performed on the dummy wafer.
請求項2に記載の半導体製造方法であって、
前記ダミーウエハは1ロットあたり複数枚含まれ、複数のダミーウエハの厚さの値を外挿又は内挿することにより半導体素子の位置に対応するダミーウエハの位置の厚さのデータを前記半導体特性分布として算出することを特徴とする半導体製造方法。
A semiconductor manufacturing method according to claim 2,
A plurality of dummy wafers are included per lot, and the thickness data of the dummy wafer corresponding to the position of the semiconductor element is calculated as the semiconductor characteristic distribution by extrapolating or interpolating the thickness values of the plurality of dummy wafers. A method of manufacturing a semiconductor.
半導体ウエハから半導体素子を製造する半導体製造システムであって、
製造条件に従ってロットを構成する複数の半導体ウエハの各々に対して所定の処理を行い半導体素子を製造する半導体製造装置と、
前記所定の処理途中の半導体ウエハについて、半導体ウエハ内の位置に対する半導体特性の関係を示すデータを半導体特性分布として取得する半導体特性検査装置と、
前記半導体製造装置により製造された半導体素子の素子特性を製品特性値として取得する製品検査装置と、
前記製品特性値と前記半導体特性分布の相関関係を評価し、評価結果に基づいて製造条件を変更するフィードバック制御を行う相関分析演算装置と
を備えることを特徴とする半導体製造システム。
A semiconductor manufacturing system for manufacturing a semiconductor element from a semiconductor wafer,
A semiconductor manufacturing apparatus for manufacturing a semiconductor element by performing predetermined processing on each of a plurality of semiconductor wafers constituting a lot according to manufacturing conditions;
For a semiconductor wafer in the middle of the predetermined processing, a semiconductor characteristic inspection apparatus that acquires data indicating a relationship of semiconductor characteristics with respect to a position in the semiconductor wafer as a semiconductor characteristic distribution;
A product inspection apparatus for obtaining the element characteristic of the semiconductor element manufactured by the semiconductor manufacturing apparatus as a product characteristic value;
A semiconductor manufacturing system comprising: a correlation analysis computing device that performs a feedback control for evaluating a correlation between the product characteristic value and the semiconductor characteristic distribution and changing a manufacturing condition based on the evaluation result.
JP2005244861A 2005-08-25 2005-08-25 Method and system for manufacturing semiconductor Pending JP2007059721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005244861A JP2007059721A (en) 2005-08-25 2005-08-25 Method and system for manufacturing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005244861A JP2007059721A (en) 2005-08-25 2005-08-25 Method and system for manufacturing semiconductor

Publications (1)

Publication Number Publication Date
JP2007059721A true JP2007059721A (en) 2007-03-08

Family

ID=37922931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005244861A Pending JP2007059721A (en) 2005-08-25 2005-08-25 Method and system for manufacturing semiconductor

Country Status (1)

Country Link
JP (1) JP2007059721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526148A (en) * 2011-07-25 2014-10-02 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Method and apparatus for characterizing an object and monitoring a manufacturing process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526148A (en) * 2011-07-25 2014-10-02 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Method and apparatus for characterizing an object and monitoring a manufacturing process

Similar Documents

Publication Publication Date Title
JP4568786B2 (en) Factor analysis apparatus and factor analysis method
JP5116307B2 (en) Integrated circuit device abnormality detection device, method and program
TWI639203B (en) Method and system for diagnosing a semiconductor wafer
WO2011065428A1 (en) Analysis display method of defective factors and analysis display device of defective factors
JPH11260879A (en) Method and device for correlation analysis of semiconductor chip, and method for adjusting semiconductor chip yield and storage medium
US7272460B2 (en) Method for designing a manufacturing process, method for providing manufacturing process design and technology computer-aided design system
CN101118422A (en) Virtual measurement prediction generated by semi-conductor, method for establishing prediction model and system
KR101998972B1 (en) Method of analyzing and visualizing the cause of process failure by deriving the defect occurrence index by variable sections
CN104732005A (en) Terminal pulling-out force detecting method
KR101959627B1 (en) Method and System for Providing a Virtual Semiconductor Product Replicating a Real Semiconductor Product
JP2002334912A (en) Method and device for evaluating semiconductor device, method of managing manufacture of the semiconductor device, method of manufacturing the semiconductor device, and recording medium
JP2007059721A (en) Method and system for manufacturing semiconductor
JP2009076772A (en) Process monitoring method
TWI647770B (en) Yield rate determination method for wafer and method for multiple variable detection of wafer acceptance test
JP2012058816A (en) Method for designing sampling test
US8232809B2 (en) Determining critical current density for interconnect
CN104952750A (en) Early-stage detecting system and method for silicon chip electrical test
CN109219871A (en) Use the electric placed in connection of the metering target of design analysis
JP2015220379A (en) Potential failure detecting device, method and program for integrated circuit device
WO2022092289A1 (en) Information processing method, and information processing device
Seifi et al. Designing different sampling plans based on process capability index
JP2019173096A (en) Production process, information processing device, relational expression calculating device, and production system
TW201832167A (en) Method for determining abnormal equipment in semiconductor processing system and program product
Ji et al. A study on the statistical comparison methods for engineering applications
JP2005191301A (en) Model parameter sampling method, and circuit simulation system