JP2007059248A - Fuel cell and membrane electrode junction - Google Patents

Fuel cell and membrane electrode junction Download PDF

Info

Publication number
JP2007059248A
JP2007059248A JP2005244353A JP2005244353A JP2007059248A JP 2007059248 A JP2007059248 A JP 2007059248A JP 2005244353 A JP2005244353 A JP 2005244353A JP 2005244353 A JP2005244353 A JP 2005244353A JP 2007059248 A JP2007059248 A JP 2007059248A
Authority
JP
Japan
Prior art keywords
catalyst
electrode
solution
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005244353A
Other languages
Japanese (ja)
Inventor
Hideo Daimon
英夫 大門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2005244353A priority Critical patent/JP2007059248A/en
Publication of JP2007059248A publication Critical patent/JP2007059248A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance catalytic activity by controlling particle size of a Pt catalyst to less than 5 nm to improve catalyst activity, and enhance a catalyst utilization efficiency by increasing a catalyst particle ratio existing on the surface of a carbon carrier using the carbon carrier with a reduced specific surface area and with less micropores. <P>SOLUTION: In a fuel cell having a fuel electrode, an oxygen electrode, and a polymer electrolyte membrane interposed between the fuel electrode and the oxygen electrode, the fuel electrode and/or the oxygen electrode contain/contains the catalyst formed by carrying particles containing at least Pt and an oxide of P on the carbon carrier. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は新規な触媒を燃料極及び/又は酸素極に有する燃料電池及び膜電極接合体に関する。更に詳細には、カーボン担体上に少なくともPtとPの酸化物を含む粒子が担持された触媒を燃料極及び/又は酸素極に有する燃料電池及び膜電極接合体に関する。   The present invention relates to a fuel cell and a membrane electrode assembly having a novel catalyst at a fuel electrode and / or an oxygen electrode. More specifically, the present invention relates to a fuel cell and a membrane electrode assembly having, in a fuel electrode and / or an oxygen electrode, a catalyst in which particles containing at least Pt and P oxide are supported on a carbon support.

従来、電気エネルギーの大部分は、火力発電、水力発電又は原子力発電などにより供給されてきた。しかし、火力発電は石油や石炭などの化石燃料を燃焼させるため大規模な環境汚染をもたらすばかりか、石油などの資源枯渇が問題視されるようになってきた。また、水力発電は大規模なダム建設を必要とし、それによる自然破壊が懸念されるばかりか、建設適地も限られている。原子力発電は事故の際の放射能汚染が致命的であるばかりか、寿命を迎えた原子炉の廃炉問題などもあり、世界的には建設が抑制される方向に動いている。   Conventionally, most of electric energy has been supplied by thermal power generation, hydroelectric power generation or nuclear power generation. However, thermal power generation not only causes large-scale environmental pollution because it burns fossil fuels such as oil and coal, but depletion of resources such as oil has become a problem. In addition, hydropower generation requires large-scale dam construction, and not only is there concern about the destruction of nature, but there are also limited areas for construction. Nuclear power generation is not only fatal in the radioactive contamination at the time of the accident, but also has a problem of decommissioning nuclear reactors that have reached the end of their life, and is moving in a direction that suppresses construction worldwide.

大規模な施設を必要とせず、環境汚染も起こさない発電方法として風力発電や太陽光発電が世界各国で利用されるようになり、我が国でも一部の地域で実際に風力発電や太陽光発電が実用化されている。しかし、風力発電は風が吹かなければ発電できず、また太陽光発電は日光照射がなければ発電できないなど、自然現象に左右され、安定的な電力供給ができないという欠点がある。また、風力発電では、風の強さにより、発電した電力の周波数が変動し、電気機器の故障原因となっていた。   Wind power generation and solar power generation have been used around the world as power generation methods that do not require large-scale facilities and do not cause environmental pollution. In Japan, wind power generation and solar power generation are actually used in some areas. It has been put into practical use. However, wind power generation has a drawback in that it cannot generate power without wind, and solar power generation cannot generate power without sunlight, and is affected by natural phenomena and cannot provide stable power supply. Further, in wind power generation, the frequency of the generated power fluctuates due to the strength of the wind, causing a failure of electrical equipment.

そこで、最近は、水素エネルギーから電気エネルギーを取り出すことができる発電装置、例えば、水素燃料電池などの開発研究が活発になってきた。水素は水を分解することにで得られ、地球上に無尽蔵に存在するばかりか、物質量当たりに含まれる化学エネルギー量が大きく、しかも、エネルギー源として利用するときに有害物質や地球温暖化ガスを発生しないという利点を有する。   Therefore, recently, research and development on a power generation apparatus that can extract electric energy from hydrogen energy, such as a hydrogen fuel cell, has become active. Hydrogen is obtained by decomposing water and is not only inexhaustible on the earth, but also contains a large amount of chemical energy per substance, and when used as an energy source, harmful substances and global warming gases Has the advantage of not generating.

水素ガスの代わりに、メタノールを使用する燃料電池の研究も活発に行われている。液体燃料であるメタノールを直接使用する直接メタノール型燃料電池は、燃料の取り扱い易さに加え、安価な燃料ということで家庭用や産業用の比較的小出力規模の電源として期待されている。メタノール−酸素燃料電池の理論出力電圧は、水素燃料のものとほぼ同じ1.2V(25℃)であり、原理的には同様の特性が期待できる。   Research on fuel cells using methanol instead of hydrogen gas is also actively conducted. A direct methanol fuel cell that directly uses methanol, which is a liquid fuel, is expected to be a relatively small output power source for household use and industrial use because it is an inexpensive fuel in addition to easy handling of the fuel. The theoretical output voltage of the methanol-oxygen fuel cell is 1.2 V (25 ° C.) which is almost the same as that of hydrogen fuel, and in principle the same characteristics can be expected.

固体高分子型燃料電池や直接メタノール型燃料電池ではアノードで水素やメタノールを酸化させると同時に、カソードでは酸素を還元して電気エネルギーを取り出している。これらの酸化還元反応は常温では進み難いため、燃料電池には触媒が使用されている。初期の燃料電池では白金(Pt)を炭素基材上に析出担持させ触媒として使用してきた。Ptは水素酸化、メタノール酸化及び酸素還元に対して充分な触媒活性を有しており、これまで炭素基材上へのPt触媒の析出雰囲気、つまり、析出時の外部因子を制御することにより、Pt触媒粒子の粒径を出来るだけ小さくし、Pt触媒の反応表面積を高めて使用することが試みられてきた。   In solid polymer fuel cells and direct methanol fuel cells, hydrogen and methanol are oxidized at the anode, and at the same time, oxygen is reduced at the cathode to extract electric energy. Since these oxidation-reduction reactions are difficult to proceed at room temperature, a catalyst is used in the fuel cell. In early fuel cells, platinum (Pt) has been deposited on a carbon substrate and used as a catalyst. Pt has sufficient catalytic activity for hydrogen oxidation, methanol oxidation and oxygen reduction, so far by controlling the precipitation atmosphere of the Pt catalyst on the carbon substrate, that is, by controlling external factors at the time of precipitation, Attempts have been made to use the Pt catalyst particles by reducing the particle size as much as possible and increasing the reaction surface area of the Pt catalyst.

例えば、特許文献1では、アルコールでPtイオンを還元してPtを炭素基材上に担持させる際、反応溶液中に有機保護基としてポリビニルアルコールを添加し、Pt触媒粒子表面に有機保護基を弱く吸着させ、Pt触媒の微粒子化を図っている。この方法では、Pt触媒表面に有機保護基が吸着している。従って、触媒合成後、有機保護基を触媒表面から取り除く必要がある。このため、Pt微粒子生成後に水素気流中400℃で熱処理を行う方法が提案されている。しかし、この処理方法では有機保護基を完全にPt触媒表面から取り去ることは出来ないばかりか、400℃の熱処理によりPt触媒微粒子同士が焼結してPt触媒粒子径が増大し、触媒活性が低下するという問題があった。   For example, in Patent Document 1, when Pt ions are reduced with alcohol and Pt is supported on a carbon substrate, polyvinyl alcohol is added as an organic protecting group to the reaction solution to weaken the organic protecting group on the surface of the Pt catalyst particles. It is adsorbed to make the Pt catalyst finer. In this method, an organic protecting group is adsorbed on the surface of the Pt catalyst. Therefore, after the catalyst synthesis, it is necessary to remove the organic protecting group from the catalyst surface. For this reason, a method of performing heat treatment at 400 ° C. in a hydrogen stream after the production of Pt fine particles has been proposed. However, this treatment method not only removes the organic protecting group completely from the surface of the Pt catalyst, but also heats the 400 ° C. to sinter the Pt catalyst fine particles to increase the Pt catalyst particle size and decrease the catalytic activity. There was a problem to do.

また、含浸法や無電解メッキ法或いはアルコール還元法でPt触媒を合成すると、その粒径は5〜10nmの範囲内に集中する。粒径が5〜10nmではPt触媒の比表面積は小さく触媒活性は向上しない。従って、Pt触媒の活性を高めるためには、Ptの粒径を5nm未満とし、触媒の比表面積を高めることが必要である。この場合、有機保護基を添加してPt触媒粒径を微細化する方法は前記の理由により使用できない。   Further, when the Pt catalyst is synthesized by an impregnation method, an electroless plating method, or an alcohol reduction method, the particle size thereof is concentrated within a range of 5 to 10 nm. When the particle size is 5 to 10 nm, the specific surface area of the Pt catalyst is small and the catalytic activity is not improved. Therefore, in order to increase the activity of the Pt catalyst, it is necessary to increase the specific surface area of the catalyst by setting the Pt particle size to less than 5 nm. In this case, the method of adding an organic protecting group and reducing the particle size of the Pt catalyst cannot be used for the reason described above.

一方、これまでPt触媒粒径を微細化するためには比表面積の大きいカーボン担体が使用されてきた。例えば、非特許文献1によれば、比表面積1,500m2/gのカーボン担体を使用する事により粒径1nmのPt触媒を得る事ができ、触媒を高活性化できる。しかしこのように大きな比表面積を有するカーボン担体は多孔質であり多くの微細孔が存在する。この微細孔中に多くの触媒が埋没する。微細孔中に埋没した触媒は燃料や電解質膜に接する機会を失い触媒として作用しない。比表面積の大きいカーボン担体を使用すれば触媒粒径を微細化でき高活性化が図れるが、触媒の多くが微細孔に埋没し、その利用率を高める事が出来ない。従ってこれまでの触媒では、比表面積の大きいカーボン担体使用し、触媒を微細にして高活性化を図る事と触媒の利用率を高める事の間にはトレードオフの関係が存在していた。 On the other hand, carbon supports having a large specific surface area have been used so far in order to reduce the Pt catalyst particle size. For example, according to Non-Patent Document 1, a Pt catalyst having a particle diameter of 1 nm can be obtained by using a carbon support having a specific surface area of 1,500 m 2 / g, and the catalyst can be highly activated. However, the carbon support having such a large specific surface area is porous and has many fine pores. Many catalysts are buried in the micropores. The catalyst buried in the micropores loses the opportunity to contact the fuel and the electrolyte membrane and does not act as a catalyst. If a carbon support with a large specific surface area is used, the catalyst particle size can be made finer and high activation can be achieved, but most of the catalyst is buried in the fine pores, and the utilization rate cannot be increased. Therefore, in the conventional catalysts, there is a trade-off relationship between using a carbon support having a large specific surface area and increasing the catalyst utilization rate by making the catalyst finer and increasing the utilization rate of the catalyst.

特開昭56−155645号公報JP-A-56-155645 M. Uchida et al., J. Electrochem. Soc., 143, 2245 (1996).M. Uchida et al., J. Electrochem. Soc., 143, 2245 (1996).

従って本発明の目的は、触媒の微細化による高活性化と触媒利用率向上を同時に達成する新規な触媒を提供することである。   Accordingly, an object of the present invention is to provide a novel catalyst that simultaneously achieves high activation by refinement of the catalyst and improvement in catalyst utilization.

前記課題を解決するための手段として、請求項1に係る発明は、燃料極と、酸素極と、これら燃料極と酸素極との間に間挿された固体高分子電解質膜を有する燃料電池において、前記燃料極及び/又は酸素極が、カーボン担体上に少なくともPtとPの酸化物を含む粒子が担持された触媒を含むことを特徴とする燃料電池である。   As a means for solving the above-mentioned problem, the invention according to claim 1 is a fuel cell having a fuel electrode, an oxygen electrode, and a solid polymer electrolyte membrane interposed between the fuel electrode and the oxygen electrode. The fuel electrode and / or the oxygen electrode includes a catalyst in which particles containing at least Pt and P oxides are supported on a carbon support.

前記課題を解決するための手段として、請求項2に係る発明は、前記粒子中のPの含有量が1〜50at%であることを特徴とする請求項1記載の燃料電池である。   As means for solving the problem, the invention according to claim 2 is the fuel cell according to claim 1, wherein the content of P in the particles is 1 to 50 at%.

前記課題を解決するための手段として、請求項3に係る発明は、前記粒子の粒径が1〜3nmの範囲内であることを特徴とする請求項1記載の燃料電池である。   As means for solving the above-mentioned problems, the invention according to claim 3 is the fuel cell according to claim 1, wherein the particle diameter of the particles is in the range of 1 to 3 nm.

前記課題を解決するための手段として、請求項4に係る発明は、前記カーボン担体の比表面積が20〜300m2/gである事を特徴とする請求項1記載の燃料電池である。 As a means for solving the above-mentioned problems, the invention according to claim 4 is the fuel cell according to claim 1, wherein the specific surface area of the carbon support is 20 to 300 m 2 / g.

前記課題を解決するための手段として、請求項5に係る発明は、燃料極と、酸素極と、これら燃料極と酸素極との間に間挿された固体高分子電解質膜を有する固体高分子型燃料電池において、前記燃料極及び/又は酸素極が、カーボン担体上に少なくともPtとPの酸化物を含む粒子が担持された触媒を含むことを特徴とする固体高分子型燃料電池である。   As a means for solving the above problems, the invention according to claim 5 is directed to a solid polymer having a fuel electrode, an oxygen electrode, and a solid polymer electrolyte membrane interposed between the fuel electrode and the oxygen electrode. In the solid fuel cell, the fuel electrode and / or the oxygen electrode includes a catalyst in which particles containing at least Pt and P oxide are supported on a carbon support.

前記課題を解決するための手段として、請求項6に係る発明は、燃料極触媒層と、酸素極触媒層と、これら燃料極触媒層と酸素極触媒層との間に間挿された固体高分子電解質膜とからなる膜電極接合体において、前記燃料極触媒層及び/又は酸素極触媒層が、カーボン担体上に少なくともPtとPの酸化物を含む粒子が担持された触媒を含むことを特徴とする膜電極接合体である。   As means for solving the above-mentioned problems, the invention according to claim 6 is directed to a fuel electrode catalyst layer, an oxygen electrode catalyst layer, and a solid height interposed between the fuel electrode catalyst layer and the oxygen electrode catalyst layer. In the membrane electrode assembly comprising a molecular electrolyte membrane, the fuel electrode catalyst layer and / or the oxygen electrode catalyst layer include a catalyst in which particles containing at least Pt and P oxide are supported on a carbon support. Is a membrane electrode assembly.

前記課題を解決するための手段として、請求項7に係る発明は、前記粒子中のPの含有量が1〜50at%であることを特徴とする請求項6記載の膜電接合体である。   As a means for solving the above-mentioned problems, the invention according to claim 7 is the membrane electrode assembly according to claim 6, wherein the content of P in the particles is 1 to 50 at%.

前記課題を解決するための手段として、請求項8に係る発明は、前記粒子の粒径が1〜3nmの範囲内であることを特徴とする請求項6記載の膜電極接合体である。   As a means for solving the above-mentioned problems, the invention according to claim 8 is the membrane electrode assembly according to claim 6, wherein the particle diameter of the particles is in the range of 1 to 3 nm.

前記課題を解決するための手段として、請求項9に係る発明は、前記カーボン担体の比表面積が20〜300m2/gである事を特徴とする請求項6記載の膜電極接合体である。 As a means for solving the above-mentioned problems, the invention according to claim 9 is the membrane electrode assembly according to claim 6, wherein the specific surface area of the carbon support is 20 to 300 m 2 / g.

前記課題を解決するための手段として、請求項10に係る発明は、固体高分子型燃料電池において使用されることを特徴とする請求項6記載の膜電極接合体である。   As a means for solving the problems, the invention according to claim 10 is a membrane electrode assembly according to claim 6, which is used in a polymer electrolyte fuel cell.

本発明によれば、無電解メッキ法、アルコール還元法又は、超音波還元法によりカーボン担体上にPt触媒微粒子を析出させる際、Pt触媒に対してPを添加してニ元系触媒とすると、触媒粒子がカーボン担体上に析出する際、Pが粒子の内部及び外部から作用し、析出するPt触媒粒子を微細化し、触媒の表面積を増大させ、その結果、触媒活性が向上する事が発見された。   According to the present invention, when depositing Pt catalyst fine particles on a carbon support by an electroless plating method, an alcohol reduction method, or an ultrasonic reduction method, when adding P to the Pt catalyst to form a binary catalyst, It was discovered that when catalyst particles are deposited on the carbon support, P acts from the inside and outside of the particles to refine the deposited Pt catalyst particles and increase the surface area of the catalyst, resulting in improved catalyst activity. It was.

図1及び図2は本発明より得られた触媒微粒子1の模式的断面図である。X線光電子分光分析(XPS分析)から、アルコール還元法で合成された触媒粒子では図1に示すように、カーボン担体3に担持されたPt粒子5の外表面にP7が酸化物として存在しており、無電解メッキ法により合成された触媒では、図2に示したようにPt粒子5の外表面にP7が酸化物として存在すると共にPt粒子5の内部にP8が金属リン化物或いはリン単体として存在していることが示唆されている。従って、P7及びP8がPt粒子5の外部あるいは内部から作用し、その粒子成長が抑制され、触媒微粒子1全体が微細化されるものと考えられる。   1 and 2 are schematic cross-sectional views of catalyst fine particles 1 obtained from the present invention. From the X-ray photoelectron spectroscopic analysis (XPS analysis), in the catalyst particles synthesized by the alcohol reduction method, as shown in FIG. 1, P7 is present as an oxide on the outer surface of the Pt particles 5 supported on the carbon support 3. In the catalyst synthesized by the electroless plating method, as shown in FIG. 2, P7 is present as an oxide on the outer surface of the Pt particle 5, and P8 is present as a metal phosphide or phosphorus alone inside the Pt particle 5. It is suggested that it exists. Therefore, it is considered that P7 and P8 act from the outside or the inside of the Pt particle 5, the particle growth is suppressed, and the entire catalyst fine particle 1 is miniaturized.

一般的に燃料電池の燃料極触媒層と酸素極触媒層との間には、固体高分子電解質膜としてデュポン社製のナフィオン膜が使用されている。ナフィオン膜ではスルホン酸基の水素原子がHとなってプロトン導電性を発揮するため、ナフィオン膜自体は極めて高い酸性を示す。従って、ナフィオン膜と電極触媒層との界面及びナフィオン樹脂でペースト化された触媒粒子とナフィオン界面は強酸性になる。これまでPt触媒の酸素還元活性を高めるため、第三金属元素(例えば、Mo、Mn、Fe,Co等)の添加が試みられてきた。 In general, a Nafion membrane manufactured by DuPont is used as a solid polymer electrolyte membrane between a fuel electrode catalyst layer and an oxygen electrode catalyst layer of a fuel cell. In the Nafion membrane, the hydrogen atom of the sulfonic acid group becomes H + and exhibits proton conductivity, so that the Nafion membrane itself exhibits extremely high acidity. Therefore, the interface between the Nafion membrane and the electrode catalyst layer and the catalyst particles pasted with the Nafion resin and the Nafion interface become strongly acidic. In the past, addition of a third metal element (for example, Mo, Mn, Fe, Co, etc.) has been attempted to increase the oxygen reduction activity of the Pt catalyst.

しかし、これらの遷移金属は十分な耐酸性を有していないため、強酸性のナフィオン樹脂と接触する事により、金属イオンとして溶出する。溶出した金属イオンはナフィオン膜中のHとイオン変換する結果、ナフィオンのプロトン導電性が低下し、電池特性が劣化する。しかし、Pは従来の第三金属元素とは異なり、耐酸性があるため酸に溶出する事無く、燃料電池用触媒の添加元素として極めて好適であることも発見された。 However, since these transition metals do not have sufficient acid resistance, they are eluted as metal ions when in contact with a strongly acidic Nafion resin. As a result of ion conversion of the eluted metal ions with H + in the Nafion membrane, the proton conductivity of Nafion is lowered and the battery characteristics are deteriorated. However, P was found to be extremely suitable as an additive element for a fuel cell catalyst without acid elution because it has acid resistance unlike conventional third metal elements.

本発明においては触媒の担体には比表面積が20〜300m2/gのカーボン担体を使用することが出来る。この範囲の比表面積を有するカーボン担体の多孔性は低く、カーボン担体中に存在する微細孔は少ない。また、アセチレンブラック(AB)やマルチウォールカーボンナノチューブ(MWCNT)等は全く微細孔を有さない非多孔質カーボン担体である。これら、低多孔質或いは非多孔質カーボン担体を使用すれば、微細孔中に埋没する触媒粒子が減少し、多くの触媒粒子をカーボン担体表面に析出させる事が可能となる。触媒粒子がカーボン担体表面に存在すれば、燃料と電解質高分子と接触する確立が高まり、その結果、触媒利用率を向上させる事ができる。 In the present invention, a carbon support having a specific surface area of 20 to 300 m 2 / g can be used as the catalyst support. The porosity of the carbon support having a specific surface area in this range is low, and there are few micropores present in the carbon support. Acetylene black (AB), multi-wall carbon nanotubes (MWCNT) and the like are non-porous carbon carriers having no micropores. If these low-porous or non-porous carbon carriers are used, the catalyst particles buried in the micropores are reduced, and a large amount of catalyst particles can be deposited on the carbon carrier surface. If the catalyst particles are present on the surface of the carbon support, the establishment of contact between the fuel and the electrolyte polymer increases, and as a result, the catalyst utilization rate can be improved.

また、MWCNTは従来使用されてきたカーボンブラックに比べて嵩高い。このため触媒をナフィオン樹脂でペースト化し、プレス機により電極触媒膜にした場合、従来のカーボンブラック担体に比較して電極触媒膜中に物理的な空隙が多く存在する。このため、触媒上への燃料の拡散が十分確保される。また、カソード触媒上で生成した水の拡散性が向上し、素早く生成水が電極触媒膜表面に移動する事ができ、結果として電池特性を高める事が可能となる。さらにMWCNTは従来使用されてきたカーボンブラックに比較して比抵抗が低い。このためIR損失を抑える事ができ、結果として電池電圧の低下を抑制できる事も発見された。   In addition, MWCNT is bulky compared to conventionally used carbon black. For this reason, when the catalyst is pasted with Nafion resin and is made into an electrode catalyst film by a press machine, there are more physical voids in the electrode catalyst film than in the conventional carbon black support. For this reason, sufficient diffusion of fuel on the catalyst is ensured. Moreover, the diffusibility of the water produced | generated on the cathode catalyst improves, and produced water can move to the electrode catalyst membrane surface quickly, As a result, it becomes possible to improve battery characteristics. Furthermore, MWCNT has a lower specific resistance than carbon black that has been used conventionally. For this reason, it was discovered that IR loss can be suppressed, and as a result, the decrease in battery voltage can be suppressed.

本発明による燃料電池は、カーボン担体上に少なくともPtとPの酸化物を含む粒子が担持された触媒を含む。前記粒子中のPの含有量は、1〜50at.%であることが好ましい。P含有量1at.%以上では、粒径の微細化を促進することができ、触媒活性をより高められる。また、P含有量が50at.%以下であると、その分Ptの含有量が増え、やはり触媒活性が向上する。   The fuel cell according to the present invention includes a catalyst in which particles containing at least Pt and P oxides are supported on a carbon support. The content of P in the particles is preferably 1 to 50 at.%. When the P content is 1 at.% Or more, the particle size can be reduced and the catalytic activity can be further increased. Further, when the P content is 50 at.% Or less, the Pt content is increased correspondingly, and the catalytic activity is also improved.

本発明の前記粒子の粒径は1〜3nmが適する。粒径が1〜3nmの範囲では、触媒表面エネルギーの点でも安定し、かつ比表面積も十分に大きく、より高い触媒活性を得られる。   The particle size of the particles of the present invention is suitably 1 to 3 nm. When the particle size is in the range of 1 to 3 nm, the catalyst surface energy is stable, the specific surface area is sufficiently large, and higher catalyst activity can be obtained.

本発明の触媒担体となるカーボン担体の比表面積は20〜300m2/gが適する。比表面積20m2/g以上では、触媒担持量が増加する点で好ましく、また比表面積300m2/g以下では、カーボン中の微細孔が少なく、微細孔内の触媒埋没を防止できる点で優れている。 The specific surface area of the carbon support used as the catalyst support of the present invention is suitably 20 to 300 m 2 / g. A specific surface area of 20 m 2 / g or more is preferable from the viewpoint of increasing the amount of catalyst supported, and a specific surface area of 300 m 2 / g or less is excellent in that the number of micropores in the carbon is small and catalyst embedding in the micropores can be prevented. Yes.

アルコール還元法による本発明の触媒の製造方法は基本的に、
(1)一種類以上のアルコールまたはアルコール水溶液中にカーボン担体を分散させるステップと、
(2)前記カーボン担体が分散されたアルコールまたはアルコール水溶液中に、Pt供給源と還元性P含有化合物を添加するステップと、
(3)前記カーボン担体、Pt供給源およびP含有化合物を含むアルコールまたはアルコール水溶液のpHを調整するステップと、
(4)不活性雰囲気中で前記pHを調整したアルコールまたはアルコール水溶液を加熱還流するステップ
を含み、カーボン担体上に、少なくともPtとPの酸化物を含む粒子が担持した燃料電池用触媒を生成する事からなる。
The production method of the catalyst of the present invention by the alcohol reduction method is basically:
(1) dispersing a carbon carrier in one or more types of alcohol or alcohol aqueous solution;
(2) adding a Pt supply source and a reducing P-containing compound to an alcohol or an alcohol aqueous solution in which the carbon carrier is dispersed;
(3) adjusting the pH of the alcohol or alcohol aqueous solution containing the carbon support, the Pt supply source and the P-containing compound;
(4) A step of heating and refluxing the alcohol or the aqueous alcohol solution adjusted to the pH in an inert atmosphere, and generating a fuel cell catalyst in which particles containing at least Pt and P oxide are supported on a carbon support. Consists of things.

無電解メッキ法による本発明触媒の製造方法は基本的に、
(1)純水中にカーボン担体を分散させるステップと、
(2)前記カーボン担体が分散された純水溶液中に、Pt供給源と還元性P含有化合物を添加するステップと、
(3)カーボン担体、Pt供給源および還元性P含有化合物を含む水溶液のpHを調整するステップと、
(4)大気中或いは不活性雰囲気中で上記カーボン担体、Pt供給源および還元性P含有化合物を含む水溶液を昇温するステップ
を含み、前記カーボン担体上に少なくともPtとPの酸化物を含む粒子が担持された燃料電池用触媒を生成する事からなる。
The production method of the catalyst of the present invention by electroless plating is basically
(1) dispersing a carbon carrier in pure water;
(2) adding a Pt supply source and a reducing P-containing compound to a pure aqueous solution in which the carbon support is dispersed;
(3) adjusting the pH of the aqueous solution containing the carbon support, the Pt supply source and the reducing P-containing compound;
(4) a step of raising the temperature of the aqueous solution containing the carbon support, the Pt supply source and the reducing P-containing compound in the air or in an inert atmosphere, and particles containing at least Pt and P oxides on the carbon support To produce a fuel cell catalyst on which is supported.

超音波還元法による本発明の触媒の製造方法は基本的に、
(1)純水中にカーボン担体を分散させるステップと、
(2)前記カーボン担体が分散された水溶液中に、Pt供給源と還元性P含有化合物を添加するステップと、
(3)カーボン担体が分散され、Pt供給源と還元性P含有化合物を含む水溶液のpHを調整するステップと、
(4)大気中或いは不活性雰囲気中で上記水溶液に超音波を照射するステップ
を含み、前記カーボン担体上に少なくともPtとPの酸化物を含む粒子が担持された燃料電池用触媒を生成する事からなる。
The production method of the catalyst of the present invention by the ultrasonic reduction method is basically
(1) dispersing a carbon carrier in pure water;
(2) adding a Pt supply source and a reducing P-containing compound to the aqueous solution in which the carbon support is dispersed;
(3) adjusting the pH of the aqueous solution in which the carbon support is dispersed and containing the Pt supply source and the reducing P-containing compound;
(4) A step for irradiating the aqueous solution with an ultrasonic wave in the air or in an inert atmosphere to produce a fuel cell catalyst in which particles containing at least Pt and P oxide are supported on the carbon support. Consists of.

本発明の製造方法により生成された触媒の粒径は、Pの存在により従来のPt触媒の粒径に比較して減少する。一般的に、従来の製造方法により生成されたPt触媒の粒径は〜10nmであるが、本発明による触媒の粒径は5nm未満に減少する。この粒径減少により触媒の比表面積が増加し、水素酸化と酸素還元活性が大きく向上する。   The particle size of the catalyst produced by the production method of the present invention is reduced by the presence of P compared to the particle size of the conventional Pt catalyst. Generally, the particle size of the Pt catalyst produced by the conventional production method is ˜10 nm, but the particle size of the catalyst according to the present invention is reduced to less than 5 nm. This particle size reduction increases the specific surface area of the catalyst and greatly improves hydrogen oxidation and oxygen reduction activity.

また、本発明の触媒の別の特徴は、その粒径が比表面積の小さいカーボン担体を使用しても維持される事である。これまで、比表面積の小さなカーボン担体を使用すれば、微細孔が少なく、微細孔中に触媒が埋没せず触媒利用率を高める事ができた。しかしその半面、触媒粒径が増大し、触媒活性を高める事ができなかった。本発明によるPtP触媒の粒径は使用するカーボン担体の比表面積に依存しない。従って、比表面積が大きいカーボン担体上にPtP触媒を析出させても微細な粒径が維持され、高活性を保ちつつ触媒利用率を高める事ができる。   Another feature of the catalyst of the present invention is that the particle size is maintained even when a carbon support having a small specific surface area is used. Until now, if a carbon support having a small specific surface area was used, the number of micropores was small, and the catalyst was not buried in the micropores, and the catalyst utilization rate could be increased. However, on the other hand, the catalyst particle size increased, and the catalytic activity could not be increased. The particle size of the PtP catalyst according to the present invention does not depend on the specific surface area of the carbon support used. Therefore, even if a PtP catalyst is deposited on a carbon support having a large specific surface area, the fine particle size is maintained, and the catalyst utilization rate can be increased while maintaining high activity.

合成溶液のpHを酸性側に調整するために使用する酸としては沸点が200℃より高い硫酸であることが好ましい。アルコール還元法では還流を200℃程度の高温で行う場合があり、酸の沸点が200℃未満の酸の場合、高温の還流によって酸が消散しまう可能性があり、合成系内のpHを所定範囲内に維持することが困難になる。従って、塩酸及び硝酸は沸点が低く加熱還流中に消散するため好ましくない。同様の理由から、合成溶液のpHをアルカリ側に調整するにはNaOH或いはKOHが適する。   The acid used for adjusting the pH of the synthesis solution to the acidic side is preferably sulfuric acid having a boiling point higher than 200 ° C. In the alcohol reduction method, the reflux may be performed at a high temperature of about 200 ° C. If the acid has a boiling point of less than 200 ° C, the acid may be dissipated due to the high-temperature reflux, and the pH in the synthesis system is within a predetermined range. It becomes difficult to maintain within. Therefore, hydrochloric acid and nitric acid are not preferred because they have low boiling points and dissipate during heating to reflux. For the same reason, NaOH or KOH is suitable for adjusting the pH of the synthesis solution to the alkali side.

本発明の触媒の製造方法において使用できる還元性P含有化合物としては、亜燐酸、亜燐酸塩(正塩及び酸性塩の両方を含む)、次亜燐酸、次亜燐酸塩である。塩としてはアルカリ金属塩(例えば、亜燐酸ナトリウム、亜燐酸水素ナトリウム、次亜燐酸ナトリウム等)又はアンモニウム塩(亜燐酸アンモニウム、亜燐酸水素アンモニウム、次亜燐酸アンモニウム等)が好ましい。燐酸や燐酸塩中のPの酸化数は+5価である。+5価の原子価はPの最高原子価であり、その電子配置はNeと同じ希ガス電子配置である。このため、オクテット則により燐酸や燐酸塩中のP原子は化学的に安定化し、P供給源とならないため、本発明には適さない。従って、+5価のP原子を有する燐酸及び燐酸塩は本発明では使用できない。   Examples of the reducing P-containing compound that can be used in the method for producing the catalyst of the present invention include phosphorous acid, phosphite (including both normal salt and acid salt), hypophosphorous acid, and hypophosphite. The salt is preferably an alkali metal salt (for example, sodium phosphite, sodium hydrogen phosphite, sodium hypophosphite, etc.) or an ammonium salt (ammonium phosphite, ammonium hydrogen phosphite, ammonium hypophosphite, etc.). The oxidation number of P in phosphoric acid and phosphate is +5. The +5 valence is the highest valence of P, and its electron configuration is the same noble gas electron configuration as Ne. For this reason, P atoms in phosphoric acid and phosphate are chemically stabilized by the octet rule, and do not serve as a P supply source, and thus are not suitable for the present invention. Accordingly, phosphoric acid and phosphate having +5 valent P atoms cannot be used in the present invention.

本発明で使用されるPt供給源には、例えばジニトロジアミン白金錯体、白金トリフェニルホスフィン錯体、ビス(アセチルアセトナト)白金(II)及び六塩化白金酸、テトラクロロ白金(II)酸カリウムなどが使用できる。これらの白金化合物を単独で使用しても、或いは2種類以上を併用してもよい。   Examples of the Pt source used in the present invention include a dinitrodiamine platinum complex, a platinum triphenylphosphine complex, bis (acetylacetonato) platinum (II), hexachloroplatinic acid, and potassium tetrachloroplatinum (II). Can be used. These platinum compounds may be used alone or in combination of two or more.

アルコール還元法では、アルコール系溶媒に触媒を合成するための化合物を添加し、アルコール系溶媒の沸点近傍の温度で還流すると、アルコール(R−OH)が加熱還流中に電子を放出してPtイオンを還元し、自らは酸化されてアルデヒド(R’−CHO)に変化する。また、無電解メッキ法では、例えば次亜燐酸イオンが亜燐酸イオン或いは燐酸イオンに酸化される際、電子を放出し、この電子をPtイオンが受け取って金属に還元される。超音波還元法ではキャビテーションにより高圧、高温の場が形成されて還元性の化学種が発生し、これによりPtイオンが還元される。   In the alcohol reduction method, when a compound for synthesizing a catalyst is added to an alcohol solvent and refluxed at a temperature near the boiling point of the alcohol solvent, the alcohol (R—OH) emits electrons during the heating and reflux to generate Pt ions. And is oxidized to aldehyde (R′—CHO). In the electroless plating method, for example, when hypophosphite ions are oxidized to phosphite ions or phosphate ions, electrons are released, and these electrons are received by Pt ions and reduced to metal. In the ultrasonic reduction method, a high-pressure and high-temperature field is formed by cavitation to generate a reducing chemical species, thereby reducing Pt ions.

本発明におけるアルコール還元法で使用されるアルコールとしては、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、sec−ブチルアルコール、エチレングリコール、グリセリン、テトラエチレングリコール、プロピレングリコール、イソアミルアルコール、n−アミルアルコール、アリルアルコール、2−エトキシアルコール及び1,2−ヘキサデカンジオールが挙げられる。これらアルコールを1種類又は2種類以上を適宜選択して使用することができる。還流の際、Pt微粒子の酸化を防止するため、反応系内を窒素或いはアルゴン等の不活性ガスで置換しながら還流を行うことが好ましい。   Examples of the alcohol used in the alcohol reduction method in the present invention include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, ethylene glycol, glycerin, tetraethylene glycol, Examples include propylene glycol, isoamyl alcohol, n-amyl alcohol, allyl alcohol, 2-ethoxy alcohol, and 1,2-hexadecanediol. One kind or two or more kinds of these alcohols can be appropriately selected and used. In refluxing, in order to prevent oxidation of Pt fine particles, it is preferable to perform refluxing while replacing the inside of the reaction system with an inert gas such as nitrogen or argon.

アルコール還元法における加熱温度及び還流時間は使用するアルコールの種類に応じて変化する。一般的には、加熱温度は60〜300℃程度であり、還流時間は30分間〜6時間の範囲内である。無電解メッキ法の場合、一般的浴温は50〜90℃であり、還元時間は30分〜2時間である。超音波還元法の場合、超音波照射時間は30分〜4時間である。   The heating temperature and reflux time in the alcohol reduction method vary depending on the type of alcohol used. Generally, the heating temperature is about 60 to 300 ° C., and the reflux time is in the range of 30 minutes to 6 hours. In the case of the electroless plating method, the general bath temperature is 50 to 90 ° C., and the reduction time is 30 minutes to 2 hours. In the case of the ultrasonic reduction method, the ultrasonic irradiation time is 30 minutes to 4 hours.

本発明において、アルコール還元法の場合、Pt供給源と還元性P含有化合物は、少なくとも一種類のアルコールに溶解される。このアルコールは、アルコールのみからなる場合の他、水を含有しても良い。また、無電解メッキ法及び超音波還元法の場合、Pt供給源と還元性P含有化合物は基本的に純水に添加される。無電解メッキ法及び超音波還元法では、還元助剤として、上記したアルコールを添加しても良い。   In the present invention, in the alcohol reduction method, the Pt supply source and the reducing P-containing compound are dissolved in at least one kind of alcohol. This alcohol may contain water in addition to the case of consisting only of alcohol. In the case of the electroless plating method and the ultrasonic reduction method, the Pt supply source and the reducing P-containing compound are basically added to pure water. In the electroless plating method and the ultrasonic reduction method, the above-described alcohol may be added as a reduction aid.

ビス(アセチルアセトナト)白金(II)2.56ミリモルと次亜燐酸ナトリウム1.28ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、非多孔質担体であるマルチウォールカーボンナノチューブ(MWCNT,比表面積30m/g)0.5gを分散させた200mlのエチレングリコール溶液に加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、PtP触媒をマルチウォールカーボンナノチューブ上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 Bis (acetylacetonato) platinum (II) 2.56 mmol and sodium hypophosphite 1.28 mmol were dissolved in 100 ml of ethylene glycol, respectively, and a multi-wall carbon nanotube (MWCNT, specific surface area 30 m 2 / g) 0 as a non-porous support was obtained. .5 g was added to 200 ml ethylene glycol solution dispersed. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. The solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and the PtP catalyst was deposited and supported on the multi-wall carbon nanotubes. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

ビス(アセチルアセトナト)白金(II)2.56ミリモルと次亜燐酸ナトリウム1.28ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、非多孔質担体であるアセチレンブラック(AB,比表面積68m/g)0.5gを分散させた200mlのエチレングリコール溶液に加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、PtP触媒をアセチレンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 Bis (acetylacetonato) platinum (II) 2.56 mmol and sodium hypophosphite 1.28 mmol were dissolved in 100 ml of ethylene glycol, respectively, and 0.5 g of acetylene black (AB, specific surface area 68 m 2 / g) as a non-porous support. Was added to 200 ml of the dispersed ethylene glycol solution. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and a PtP catalyst was deposited and supported on acetylene black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

ビス(アセチルアセトナト)白金(II)2.56ミリモルと次亜燐酸ナトリウム1.28ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、多孔質担体であるカーボンブラック(CB,比表面積140m/g)0.5gを分散させた200mlのエチレングリコール溶液に加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、PtP触媒をカーボンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 Dissolve 2.56 mmol of bis (acetylacetonato) platinum (II) and 1.28 mmol of sodium hypophosphite in 100 ml of ethylene glycol, respectively, and add 0.5 g of carbon black (CB, specific surface area 140 m 2 / g) as a porous carrier. To the dispersed 200 ml ethylene glycol solution. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and a PtP catalyst was deposited and supported on carbon black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

ビス(アセチルアセトナト)白金(II)2.56ミリモルと次亜燐酸ナトリウム1.28ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、多孔質担体であるカーボンブラック(CB,比表面積254m/g)0.5gを分散させた200mlのエチレングリコール溶液に加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、PtP触媒をカーボンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 Dissolve 2.56 mmol of bis (acetylacetonato) platinum (II) and 1.28 mmol of sodium hypophosphite in 100 ml of ethylene glycol, and add 0.5 g of carbon black (CB, specific surface area of 254 m 2 / g) as a porous carrier. To the dispersed 200 ml ethylene glycol solution. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and a PtP catalyst was deposited and supported on carbon black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

ビス(アセチルアセトナト)白金(II)2.56ミリモルと亜燐酸ナトリウム1.28ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、非多孔質担体であるマルチウォールカーボンナノチューブ(MWCNT,比表面積30m/g)0.5gを分散させた200mlのエチレングリコール溶液に加えた。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、PtP触媒をマルチウォールカーボンナノチューブ上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 Bis (acetylacetonato) platinum (II) 2.56 mmol and sodium phosphite 1.28 mmol were dissolved in 100 ml of ethylene glycol, respectively, and multi-wall carbon nanotubes (MWCNT, specific surface area 30 m 2 / g) as non-porous support It was added to 200 ml of ethylene glycol solution in which 5 g was dispersed. The solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and the PtP catalyst was deposited and supported on the multi-wall carbon nanotubes. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

ビス(アセチルアセトナト)白金(II)2.56ミリモルと亜燐酸ナトリウム1.28ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、非多孔質担体であるアセチレンブラック(AB,比表面積68m/g)0.5gを分散させた200mlのエチレングリコール溶液に加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、PtP触媒をアセチレンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 Dissolve 2.56 mmol of bis (acetylacetonato) platinum (II) and 1.28 mmol of sodium phosphite in 100 ml of ethylene glycol, respectively, and add 0.5 g of acetylene black (AB, specific surface area 68 m 2 / g) as a non-porous carrier. To the dispersed 200 ml ethylene glycol solution. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and a PtP catalyst was deposited and supported on acetylene black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

ビス(アセチルアセトナト)白金(II)2.56ミリモルと亜燐酸ナトリウム1.28ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、多孔質担体であるカーボンブラック(CB,比表面積140m/g)0.5gを分散させた200mlのエチレングリコール溶液に加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、PtP触媒をカーボンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 Dissolve 2.56 mmol of bis (acetylacetonato) platinum (II) and 1.28 mmol of sodium phosphite in 100 ml of ethylene glycol, and disperse 0.5 g of carbon black (CB, specific surface area 140 m 2 / g) as a porous carrier. To the 200 ml ethylene glycol solution. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and a PtP catalyst was deposited and supported on carbon black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

ビス(アセチルアセトナト)白金(II)2.56ミリモルと亜燐酸ナトリウム1.28ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、多孔質担体であるカーボンブラック(CB,比表面積254m/g)0.5gを分散させた200mlのエチレングリコール溶液に加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、PtP触媒をカーボンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 Dissolve 2.56 mmol of bis (acetylacetonato) platinum (II) and 1.28 mmol of sodium phosphite in 100 ml of ethylene glycol, and disperse 0.5 g of carbon black (CB, specific surface area 254 m 2 / g) as a porous carrier. To the 200 ml ethylene glycol solution. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and a PtP catalyst was deposited and supported on carbon black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

イオン交換水に非多孔質担体であるマルチウォールカーボンナノチューブ(MWCNT,比表面積30m/g)0.5gを分散させた。六塩化白金酸・六水和物2.56ミリモルと次亜燐酸ナトリウム5.12ミリモルをイオン交換水500mlに溶解させ加えた。水酸化ナトリウム水溶液を滴下し、pHメーターを用いて溶液をpH11に調整した。大気中、攪拌しながらホットプレートを用いて浴温を80℃に昇温して2時間無電解メッキを行い、PtP触媒をマルチウォールカーボンナノチューブ上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 0.5 g of multi-wall carbon nanotubes (MWCNT, specific surface area 30 m 2 / g), which is a non-porous carrier, was dispersed in ion-exchanged water. 2.56 mmol of hexachloroplatinic acid hexahydrate and 5.12 mmol of sodium hypophosphite were dissolved in 500 ml of ion-exchanged water and added. An aqueous sodium hydroxide solution was added dropwise, and the solution was adjusted to pH 11 using a pH meter. The bath temperature was raised to 80 ° C. using a hot plate while stirring in the atmosphere, and electroless plating was performed for 2 hours to deposit and support the PtP catalyst on the multi-wall carbon nanotubes. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

イオン交換水に非多孔質担体であるアセチレンブラック(AB,比表面積68m/g)0.5g純水中に分散させた。六塩化白金酸・六水和物2.56ミリモルと次亜燐酸ナトリウム5.12ミリモルをイオン交換水500mlに溶解させて加えた。水酸化ナトリウム水溶液を滴下し、pHメーターを用いて溶液をpH11に調整した。大気中、攪拌しながらホットプレートを用いて液温を80℃に昇温して2時間無電解メッキを行い、PtP触媒をアセチレンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 Acetylene black (AB, specific surface area 68 m 2 / g) 0.5 g, which is a non-porous carrier, was dispersed in deionized water in pure water. 2.56 mmol of hexachloroplatinic acid hexahydrate and 5.12 mmol of sodium hypophosphite were dissolved in 500 ml of ion-exchanged water and added. An aqueous sodium hydroxide solution was added dropwise, and the solution was adjusted to pH 11 using a pH meter. The liquid temperature was raised to 80 ° C. using a hot plate while stirring in the atmosphere, and electroless plating was performed for 2 hours to deposit and support the PtP catalyst on acetylene black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

イオン交換水に多孔質担体であるカーボンブラック(CB,比表面積140m/g)0.5gを分散させた。六塩化白金酸・六水和物2.56ミリモルと次亜燐酸ナトリウム5.12ミリモルをイオン交換水500mlに溶解させて加えた。水酸化ナトリウム水溶液を滴下し、pHメーターを用いて溶液をpH11に調整した。大気中、攪拌しながらホットプレートを用いて液温を80℃に昇温して2時間無電解メッキを行い、PtP触媒をカーボンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 Carbon ion (CB, specific surface area 140 m 2 / g) 0.5 g as a porous carrier was dispersed in ion exchange water. 2.56 mmol of hexachloroplatinic acid hexahydrate and 5.12 mmol of sodium hypophosphite were dissolved in 500 ml of ion-exchanged water and added. An aqueous sodium hydroxide solution was added dropwise, and the solution was adjusted to pH 11 using a pH meter. The liquid temperature was raised to 80 ° C. using a hot plate while stirring in the atmosphere, and electroless plating was performed for 2 hours to deposit and support the PtP catalyst on the carbon black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

イオン交換水に多孔質担体であるカーボンブラック(CB,比表面積254m/g)0.5gを分散させた。六塩化白金酸・六水和物2.56ミリモルと次亜燐酸ナトリウム5.12ミリモルをイオン交換水500mlに溶解させて加えた。水酸化ナトリウム水溶液を滴下し、pHメーターを用いて溶液をpH11に調整した。大気中、攪拌しながらホットプレートを用いて液温を80℃に昇温して2時間無電解メッキを行い、PtP触媒をカーボンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 In ion-exchanged water, 0.5 g of carbon black (CB, specific surface area of 254 m 2 / g) as a porous carrier was dispersed. 2.56 mmol of hexachloroplatinic acid hexahydrate and 5.12 mmol of sodium hypophosphite were dissolved in 500 ml of ion-exchanged water and added. An aqueous sodium hydroxide solution was added dropwise, and the solution was adjusted to pH 11 using a pH meter. The liquid temperature was raised to 80 ° C. using a hot plate while stirring in the atmosphere, and electroless plating was performed for 2 hours to deposit and support the PtP catalyst on the carbon black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

イオン交換水に非多孔質担体であるマルチウォールカーボンナノチューブ(MWCNT,比表面積30m/g)0.5gを分散させた。六塩化白金酸・六水和物2.56ミリモルと亜燐酸ナトリウム5.12ミリモルをイオン交換水500mlに溶解させて加えた。水酸化ナトリウム水溶液を滴下し、pHメーターを用いて溶液をpH11に調整した。大気中、攪拌しながらホットプレートを用いて液温を80℃に昇温して2時間無電解メッキを行い、PtP触媒をマルチウォールカーボンナノチューブ上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 0.5 g of multi-wall carbon nanotubes (MWCNT, specific surface area 30 m 2 / g), which is a non-porous carrier, was dispersed in ion-exchanged water. 2.56 mmol of hexachloroplatinic acid hexahydrate and 5.12 mmol of sodium phosphite were dissolved in 500 ml of ion-exchanged water and added. An aqueous sodium hydroxide solution was added dropwise, and the solution was adjusted to pH 11 using a pH meter. The liquid temperature was raised to 80 ° C. using a hot plate while stirring in the atmosphere, and electroless plating was performed for 2 hours to deposit and support the PtP catalyst on the multi-wall carbon nanotubes. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

イオン交換水に非多孔質担体であるアセチレンブラック(AB,比表面積68m/g)0.5gを分散させた。六塩化白金酸・六水和物2.56ミリモルと亜燐酸ナトリウム5.12ミリモルをイオン交換水500mlに溶解させて加えた。水酸化ナトリウム水溶液を滴下し、pHメーターを用いて溶液をpH11に調整した。大気中、攪拌しながらホットプレートを用いて液温を80℃に昇温して2時間無電解メッキを行い、PtP触媒をアセチレンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 In ion-exchanged water, 0.5 g of acetylene black (AB, specific surface area 68 m 2 / g), which is a non-porous carrier, was dispersed. 2.56 mmol of hexachloroplatinic acid hexahydrate and 5.12 mmol of sodium phosphite were dissolved in 500 ml of ion-exchanged water and added. An aqueous sodium hydroxide solution was added dropwise, and the solution was adjusted to pH 11 using a pH meter. The liquid temperature was raised to 80 ° C. using a hot plate while stirring in the atmosphere, and electroless plating was performed for 2 hours to deposit and support the PtP catalyst on acetylene black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

イオン交換水に多孔質担体であるカーボンブラック(CB,比表面積140m/g)0.5gを分散させた。六塩化白金酸・六水和物2.56ミリモルと亜燐酸ナトリウム5.12ミリモルをイオン交換水500mlに溶解させて加えた。水酸化ナトリウム水溶液を滴下し、pHメーターを用いて溶液をpH11に調整した。大気中、攪拌しながらホットプレートを用いて液温を80℃に昇温して2時間無電解メッキを行い、PtP触媒をカーボンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 Carbon ion (CB, specific surface area 140 m 2 / g) 0.5 g as a porous carrier was dispersed in ion exchange water. 2.56 mmol of hexachloroplatinic acid hexahydrate and 5.12 mmol of sodium phosphite were dissolved in 500 ml of ion-exchanged water and added. An aqueous sodium hydroxide solution was added dropwise, and the solution was adjusted to pH 11 using a pH meter. The liquid temperature was raised to 80 ° C. using a hot plate while stirring in the atmosphere, and electroless plating was performed for 2 hours to deposit and support the PtP catalyst on the carbon black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

イオン交換水に多孔質担体であるカーボンブラック(CB,比表面積254m/g)0.5gを分散させた。六塩化白金酸・六水和物2.56ミリモルと亜燐酸ナトリウム5.12ミリモルをイオン交換水500mlに溶解させて加えた。水酸化ナトリウム水溶液を滴下し、pHメーターを用いて溶液をpH11に調整した。大気中、攪拌しながらホットプレートを用いて液温を80℃に昇温して2時間無電解メッキを行い、PtP触媒をカーボンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 In ion-exchanged water, 0.5 g of carbon black (CB, specific surface area of 254 m 2 / g) as a porous carrier was dispersed. 2.56 mmol of hexachloroplatinic acid hexahydrate and 5.12 mmol of sodium phosphite were dissolved in 500 ml of ion-exchanged water and added. An aqueous sodium hydroxide solution was added dropwise, and the solution was adjusted to pH 11 using a pH meter. The liquid temperature was raised to 80 ° C. using a hot plate while stirring in the atmosphere, and electroless plating was performed for 2 hours to deposit and support the PtP catalyst on the carbon black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

イオン交換水に非多孔質担体であるマルチウォールカーボンナノチューブ(MWCNT,比表面積30m/g)0.5gを分散させた。六塩化白金酸・六水和物2.56ミリモルと次亜燐酸ナトリウム2.56ミリモルをイオン交換水500mlに溶解させて加えた。水酸化ナトリウム水溶液を滴下し、pHメーターを用いて溶液をpH10に調整した。大気中、この溶液を市販の超音波洗浄装置を使用して2時間超音波照射処理し、PtP触媒をマルチウォールカーボンナノチューブ上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 0.5 g of multi-wall carbon nanotubes (MWCNT, specific surface area 30 m 2 / g), which is a non-porous carrier, was dispersed in ion-exchanged water. 2.56 mmol of hexachloroplatinic acid hexahydrate and 2.56 mmol of sodium hypophosphite were dissolved in 500 ml of ion-exchanged water and added. An aqueous sodium hydroxide solution was added dropwise, and the solution was adjusted to pH 10 using a pH meter. In the atmosphere, this solution was subjected to ultrasonic irradiation treatment for 2 hours using a commercially available ultrasonic cleaning device, and the PtP catalyst was deposited and supported on the multi-wall carbon nanotubes. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

イオン交換水に非多孔質担体であるアセチレンブラック(AB,比表面積68m/g)0.5gを分散させた。六塩化白金酸・六水和物2.56ミリモルと次亜燐酸ナトリウム2.56ミリモルをイオン交換水500mlに溶解させて加えた。水酸化ナトリウム水溶液を滴下し、pHメーターを用いて溶液をpH10に調整した。大気中、この溶液を市販の超音波洗浄装置を使用して2時間超音波照射処理し、PtP触媒をアセチレンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 In ion-exchanged water, 0.5 g of acetylene black (AB, specific surface area 68 m 2 / g), which is a non-porous carrier, was dispersed. 2.56 mmol of hexachloroplatinic acid hexahydrate and 2.56 mmol of sodium hypophosphite were dissolved in 500 ml of ion-exchanged water and added. An aqueous sodium hydroxide solution was added dropwise, and the solution was adjusted to pH 10 using a pH meter. In the atmosphere, this solution was subjected to ultrasonic irradiation treatment for 2 hours using a commercially available ultrasonic cleaning device, and the PtP catalyst was deposited and supported on acetylene black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

イオン交換水に多孔質担体であるカーボンブラック(CB,比表面積140m/g)0.5gを分散させた。六塩化白金酸・六水和物2.56ミリモルと次亜燐酸ナトリウム2.56ミリモルをイオン交換水500mlに溶解させて加えた。水酸化ナトリウム水溶液を滴下し、pHメーターを用いて溶液をpH10に調整した。大気中、この溶液を市販の超音波洗浄装置を使用して2時間超音波照射処理し、PtP触媒をカーボンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 Carbon ion (CB, specific surface area 140 m 2 / g) 0.5 g as a porous carrier was dispersed in ion exchange water. 2.56 mmol of hexachloroplatinic acid hexahydrate and 2.56 mmol of sodium hypophosphite were dissolved in 500 ml of ion-exchanged water and added. An aqueous sodium hydroxide solution was added dropwise, and the solution was adjusted to pH 10 using a pH meter. In the atmosphere, this solution was subjected to ultrasonic irradiation treatment for 2 hours using a commercially available ultrasonic cleaning device, and a PtP catalyst was deposited and supported on carbon black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

イオン交換水に多孔質担体であるカーボンブラック(CB,比表面積254m/g)0.5gを分散させた。六塩化白金酸・六水和物2.56ミリモルと次亜燐酸ナトリウム2.56ミリモルをイオン交換水500mlに溶解させて加えた。水酸化ナトリウム水溶液を滴下し、pHメーターを用いて溶液をpH10に調整した。大気中、この溶液を市販の超音波洗浄装置を使用して2時間超音波照射処理し、PtP触媒をカーボンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 In ion-exchanged water, 0.5 g of carbon black (CB, specific surface area of 254 m 2 / g) as a porous carrier was dispersed. 2.56 mmol of hexachloroplatinic acid hexahydrate and 2.56 mmol of sodium hypophosphite were dissolved in 500 ml of ion-exchanged water and added. An aqueous sodium hydroxide solution was added dropwise, and the solution was adjusted to pH 10 using a pH meter. In the atmosphere, this solution was subjected to ultrasonic irradiation treatment for 2 hours using a commercially available ultrasonic cleaning device, and a PtP catalyst was deposited and supported on carbon black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

イオン交換水に非多孔質担体であるマルチウォールカーボンナノチューブ(MWCNT,比表面積30m/g)0.5gを分散させた。六塩化白金酸・六水和物2.56ミリモルと亜燐酸ナトリウム2.56ミリモルをイオン交換水500mlに溶解させて加えた。水酸化ナトリウム水溶液を滴下し、pHメーターを用いて溶液をpH10に調整した。大気中、この溶液を市販の超音波洗浄装置を使用して2時間超音波照射処理し、PtP触媒をマルチウォールカーボンナノチューブ上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 0.5 g of multi-wall carbon nanotubes (MWCNT, specific surface area 30 m 2 / g), which is a non-porous carrier, was dispersed in ion-exchanged water. 2.56 mmol of hexachloroplatinic acid hexahydrate and 2.56 mmol of sodium phosphite were dissolved in 500 ml of ion-exchanged water and added. An aqueous sodium hydroxide solution was added dropwise, and the solution was adjusted to pH 10 using a pH meter. In the atmosphere, this solution was subjected to ultrasonic irradiation treatment for 2 hours using a commercially available ultrasonic cleaning device, and the PtP catalyst was deposited and supported on the multi-wall carbon nanotubes. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

イオン交換水に非多孔質担体であるアセチレンブラック(AB,比表面積68m/g)0.5gを分散させた。六塩化白金酸・六水和物2.56ミリモルと亜燐酸ナトリウム2.56ミリモルをイオン交換水500mlに溶解させて加えた。水酸化ナトリウム水溶液を滴下し、pHメーターを用いて溶液をpH10に調整した。大気中、この溶液を市販の超音波洗浄装置を使用して2時間超音波照射処理し、PtP触媒をアセチレンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 In ion-exchanged water, 0.5 g of acetylene black (AB, specific surface area 68 m 2 / g), which is a non-porous carrier, was dispersed. 2.56 mmol of hexachloroplatinic acid hexahydrate and 2.56 mmol of sodium phosphite were dissolved in 500 ml of ion-exchanged water and added. An aqueous sodium hydroxide solution was added dropwise, and the solution was adjusted to pH 10 using a pH meter. In the atmosphere, this solution was subjected to ultrasonic irradiation treatment for 2 hours using a commercially available ultrasonic cleaning device, and the PtP catalyst was deposited and supported on acetylene black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

イオン交換水に多孔質担体であるカーボンブラック(CB,比表面積140m/g)0.5gを分散させた。六塩化白金酸・六水和物2.56ミリモルと亜燐酸ナトリウム2.56ミリモルをイオン交換水500mlに溶解させて加えた。水酸化ナトリウム水溶液を滴下し、pHメーターを用いて溶液をpH10に調整した。大気中、この溶液を市販の超音波洗浄装置を使用して2時間超音波照射処理し、PtP触媒をカーボンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 Carbon ion (CB, specific surface area 140 m 2 / g) 0.5 g as a porous carrier was dispersed in ion exchange water. 2.56 mmol of hexachloroplatinic acid hexahydrate and 2.56 mmol of sodium phosphite were dissolved in 500 ml of ion-exchanged water and added. An aqueous sodium hydroxide solution was added dropwise, and the solution was adjusted to pH 10 using a pH meter. In the atmosphere, this solution was subjected to ultrasonic irradiation treatment for 2 hours using a commercially available ultrasonic cleaning device, and a PtP catalyst was deposited and supported on carbon black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

イオン交換水に多孔質担体であるカーボンブラック(CB,比表面積254m/g)0.5gを分散させた。六塩化白金酸・六水和物2.56ミリモルと亜燐酸ナトリウム2.56ミリモルをイオン交換水500mlに溶解させて加えた。水酸化ナトリウム水溶液を滴下し、pHメーターを用いて溶液をpH10に調整した。大気中、この溶液を市販の超音波洗浄装置を使用して2時間超音波照射処理し、PtP触媒をカーボンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 In ion-exchanged water, 0.5 g of carbon black (CB, specific surface area of 254 m 2 / g) as a porous carrier was dispersed. 2.56 mmol of hexachloroplatinic acid hexahydrate and 2.56 mmol of sodium phosphite were dissolved in 500 ml of ion-exchanged water and added. An aqueous sodium hydroxide solution was added dropwise, and the solution was adjusted to pH 10 using a pH meter. In the atmosphere, this solution was subjected to ultrasonic irradiation treatment for 2 hours using a commercially available ultrasonic cleaning device, and a PtP catalyst was deposited and supported on carbon black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

六塩化白金酸・六水和物2.56ミリモルと次亜燐酸ナトリウム1.28ミリモルをそれぞれ100mlのエチレングリコール水溶液(エチレングリコール:イオン交換水=50vol.%:50vol.%)に溶解させ、非多孔質担体であるマルチウォールカーボンナノチューブ(MWCNT,比表面積30m/g)0.5gを分散させた200mのエチレングリコール水溶液(エチレングリコール:イオン交換水=50vol.%:50vol.%)に加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、130℃でこの溶液を攪拌しながら4時間還流し、PtP触媒をマルチウォールカーボンナノチューブ上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 Dissolve 2.56 mmol of hexachloroplatinic acid hexahydrate and 1.28 mmol of sodium hypophosphite in 100 ml of ethylene glycol aqueous solution (ethylene glycol: ion-exchanged water = 50 vol.%: 50 vol.%), Respectively. It was added to a 200 m ethylene glycol aqueous solution (ethylene glycol: ion-exchanged water = 50 vol.%: 50 vol.%) In which 0.5 g of a certain multi-wall carbon nanotube (MWCNT, specific surface area 30 m 2 / g) was dispersed. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. The solution was refluxed for 4 hours with stirring at 130 ° C. in a nitrogen gas atmosphere, and a PtP catalyst was deposited and supported on the multi-wall carbon nanotubes. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

六塩化白金酸・六水和物2.56ミリモルと次亜燐酸ナトリウム1.28ミリモルをそれぞれ100mlのエタノール水溶液(エタノール:イオン交換水=50vol.%:50vol.%)に溶解させ、非多孔質担体であるマルチウォールカーボンナノチューブ(MWCNT,比表面積30m/g)0.5gを分散させた200mのエタノール水溶液(エタノール:イオン交換水=50vol.%:50vol.%)に加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、95℃でこの溶液を攪拌しながら4時間還流し、PtP触媒微粒子をマルチウォールカーボンナノチューブ上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 A multiporous solid carrier is obtained by dissolving 2.56 mmol of hexachloroplatinic acid hexahydrate and 1.28 mmol of sodium hypophosphite in 100 ml of an aqueous ethanol solution (ethanol: ion-exchanged water = 50 vol.%: 50 vol.%). This was added to a 200 m aqueous ethanol solution (ethanol: ion-exchanged water = 50 vol.%: 50 vol.%) In which 0.5 g of wall carbon nanotubes (MWCNT, specific surface area 30 m 2 / g) was dispersed. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. Under a nitrogen gas atmosphere, this solution was refluxed for 4 hours at 95 ° C. with stirring, and PtP catalyst fine particles were deposited and supported on the multi-wall carbon nanotubes. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

ビス(アセチルアセトナト)白金(II)2.56ミリモルと次亜燐酸ナトリウム1.28ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、多孔質担体であるカーボンブラック(CB,比表面積800m/g)0.5gを分散させた200mlのエチレングリコール溶液に加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、PtP触媒をカーボンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。
(比較例1)
Dissolve 2.56 mmol of bis (acetylacetonato) platinum (II) and 1.28 mmol of sodium hypophosphite in 100 ml of ethylene glycol, and add 0.5 g of carbon black (CB, specific surface area 800 m 2 / g) as a porous carrier. To the dispersed 200 ml ethylene glycol solution. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and a PtP catalyst was deposited and supported on carbon black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.
(Comparative Example 1)

ビス(アセチルアセトナト)白金(II)2.56ミリモルを200mlのエチレングリコールに溶解させ、非多孔質担体であるマルチウォールカーボンナノチューブ(MWCNT,比表面積30m/g)0.5gを分散させた200mlのエチレングリコール溶液に加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、Pt触媒をマルチウォールカーボンナノチューブ上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。
(比較例2)
Dissolve 2.56 mmol of bis (acetylacetonato) platinum (II) in 200 ml of ethylene glycol, and disperse 0.5 g of multi-wall carbon nanotubes (MWCNT, specific surface area of 30 m 2 / g) as a non-porous carrier. Added to ethylene glycol solution. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and a Pt catalyst was deposited and supported on the multi-wall carbon nanotubes. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.
(Comparative Example 2)

ビス(アセチルアセトナト)白金(II)2.56ミリモルを200mlのエチレングリコールに溶解させ、非多孔質担体であるアセチレンブラック(AB,比表面積68m/g)0.5gを分散させた200mlのエチレングリコール溶液に加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、Pt触媒をアセチレンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。
(比較例3)
200 ml of ethylene glycol in which 2.56 mmol of bis (acetylacetonato) platinum (II) was dissolved in 200 ml of ethylene glycol and 0.5 g of acetylene black (AB, specific surface area 68 m 2 / g) as a non-porous carrier was dispersed. Added to the solution. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and the Pt catalyst was deposited and supported on acetylene black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.
(Comparative Example 3)

ビス(アセチルアセトナト)白金(II)2.56ミリモルを200mlのエチレングリコールに溶解させ、多孔質担体であるカーボンブラック(CB,比表面積140m/g)0.5gを分散させた200mlのエチレングリコール溶液に加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、Pt触媒をカーボンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。
(比較例4)
200 ml of ethylene glycol solution in which 2.56 mmol of bis (acetylacetonato) platinum (II) is dissolved in 200 ml of ethylene glycol and 0.5 g of carbon black (CB, specific surface area 140 m 2 / g) as a porous carrier is dispersed. Added to. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and the Pt catalyst was deposited and supported on carbon black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.
(Comparative Example 4)

ビス(アセチルアセトナト)白金(II)2.56ミリモルを200mlのエチレングリコールに溶解させ、多孔質担体であるカーボンブラック(CB,比表面積254m/g)0.5gを分散させた200mlのエチレングリコール溶液に加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、Pt触媒をカーボンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 200 ml of ethylene glycol solution in which 2.56 mmol of bis (acetylacetonato) platinum (II) is dissolved in 200 ml of ethylene glycol and 0.5 g of carbon black (CB, specific surface area 254 m 2 / g) as a porous carrier is dispersed. Added to. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and the Pt catalyst was deposited and supported on carbon black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

実施例1〜27及び比較例1〜4で得られた各触媒の組成を蛍光X線分析(XRF)で調べた。またその粒径を透過型電子顕微鏡(TEM)で調べた。結果を表1に示す。実施例1〜27では合成系内に次亜燐酸ナトリウム或いは亜燐酸ナトリウムを添加する事により、Pt触媒中にPが添加されている事が分かる。実施例で得られたPtP触媒の粒径は2nmに減少している。   The composition of each catalyst obtained in Examples 1 to 27 and Comparative Examples 1 to 4 was examined by fluorescent X-ray analysis (XRF). The particle size was examined with a transmission electron microscope (TEM). The results are shown in Table 1. In Examples 1 to 27, it can be seen that P is added to the Pt catalyst by adding sodium hypophosphite or sodium phosphite into the synthesis system. The particle size of the PtP catalyst obtained in the examples is reduced to 2 nm.

実施例1〜26では、P添加は比表面積の小さい非多孔質カーボン担体を使用した場合においても、Pt触媒の粒径を2nmに減少させる効果を有している。比表面積の小さい非多孔質カーボン担体の使用は、触媒を全て担体表面に析出させ、触媒利用効率を向上させる。P添加は低比表面積の非多孔質カーボン担体を使用しても、その触媒粒径を2nmに減少させ、高い触媒活性を維持出来る。従って、本発明の触媒は高活性化と触媒利用率向上を同時に達成させる事が出来る極めて有用な触媒材料である。   In Examples 1 to 26, addition of P has an effect of reducing the particle size of the Pt catalyst to 2 nm even when a non-porous carbon support having a small specific surface area is used. The use of a non-porous carbon carrier having a small specific surface area improves the catalyst utilization efficiency by precipitating all the catalyst on the surface of the carrier. Even when a non-porous carbon support having a low specific surface area is used, the addition of P can reduce the catalyst particle size to 2 nm and maintain high catalytic activity. Therefore, the catalyst of the present invention is a very useful catalyst material that can achieve high activation and improvement in catalyst utilization at the same time.

更に、実施例25ではアルコールとしてエチレングリコール水溶液を使用し、還流温度を200℃から130℃に低下させてPtP触媒を合成している。微粒子の成長は合成温度の低減により抑制される。従って、合成温度を130℃に低下させることにより、粒径1.8nmのPtP触媒が得られている。同様に、実施例26では、エタノール水溶液を使用し、還流温度95℃でPtP触媒を合成している。その結果、粒径1.5nmのPtP触媒が得られている。   Furthermore, in Example 25, an ethylene glycol aqueous solution was used as the alcohol, and the reflux temperature was lowered from 200 ° C. to 130 ° C. to synthesize a PtP catalyst. The growth of fine particles is suppressed by reducing the synthesis temperature. Therefore, by reducing the synthesis temperature to 130 ° C., a PtP catalyst having a particle size of 1.8 nm is obtained. Similarly, in Example 26, an aqueous ethanol solution was used and a PtP catalyst was synthesized at a reflux temperature of 95 ° C. As a result, a PtP catalyst having a particle size of 1.5 nm is obtained.

一方、比較例1〜4ではPを含有しないため、Pt触媒の粒径は6〜10nmと大きい。使用するカーボン担体の比表面積増加に従い、Pt触媒の粒径は減少する傾向を示すが、比表面積254m/gのCBを使用しても、その粒径は〜5nm程度である。 On the other hand, since Comparative Examples 1 to 4 do not contain P, the particle size of the Pt catalyst is as large as 6 to 10 nm. Although the particle size of the Pt catalyst tends to decrease as the specific surface area of the carbon support used increases, the particle size is about ˜5 nm even when CB having a specific surface area of 254 m 2 / g is used.

Figure 2007059248
MWCNT:マルチウォールカーボンナノチューブ AB:アセチレンブラック CB:カーボンブラック
Figure 2007059248
MWCNT: Multi-wall carbon nanotubes AB: Acetylene black CB: Carbon black

実施例1〜27で得られたカーボン担持触媒に純水とナフィオン(デュポン社製)のアルコール溶液を加えて撹拌した後、その粘度を調整して触媒用インクとした。これをテフロン(登録商標)シート上に、PtP触媒の塗布量が0.3mg/cm(水素極用)、0.6mg/cm(酸素極用)になるように塗布した。乾燥後、上記で作製した触媒電極を固体高分子電解質膜(デュポン社製ナフィオン膜112)の両側にホットプレスにて転写後、テフロン(登録商標)シートを剥がし、膜電極接合体を作製した。この膜電極接合体を用い、図3に示す固体高分子型燃料電池を作製した。図3において、符号40は固体高分子型燃料電池を示す。また、符号44は酸素極側集電体、43は酸素極側拡散層、41は固体高分子電解質膜、48は水素極側拡散層、47は水素極側集電体、42は空気導入孔、45は酸素極PtP触媒層、46は水素極PtP触媒層、49は水素燃料導入孔をそれぞれ示す。酸素極側集電体44は、空気導入孔42を介して空気(酸素)を取り込む構造体としての機能を有すると共に、集電機能も有している。固体高分子電解質膜(デュポン社製ナフィオン膜112)41は、水素極で発生したプロトンを酸素極側に輸送する機能と、更に水素極と酸素極の短絡を防止するセパレータとしての機能を備えてなるものである。このように構成される固体高分子型燃料電池40において、水素極側集電体47から供給される水素ガスは水素極側拡散層48を介して水素極触媒層46に導かれて酸化され電子とプロトンに変換され、このプロトンは固体高分子電解質膜41を介して酸素極側に移動する。酸素極では酸素極側集電体44から取り込まれた酸素が水素極で生成した電子により還元され、これと上記のプロトンとが反応して水を生成する。図3に示される固体高分子型燃料電池40では、このような水素の酸化反応及び酸素の還元反応により発電が起こる。
(比較例5)
After adding and stirring the alcohol solution of a pure water and Nafion (made by Du Pont) to the carbon carrying catalyst obtained in Examples 1-27, the viscosity was adjusted and it was set as the ink for catalysts. This was applied onto a Teflon (registered trademark) sheet so that the application amount of the PtP catalyst was 0.3 mg / cm 2 (for hydrogen electrode) and 0.6 mg / cm 2 (for oxygen electrode). After drying, the catalyst electrode prepared above was transferred to both sides of the solid polymer electrolyte membrane (Nafion membrane 112 manufactured by DuPont) by hot pressing, and then the Teflon (registered trademark) sheet was peeled off to prepare a membrane electrode assembly. Using this membrane electrode assembly, a polymer electrolyte fuel cell shown in FIG. 3 was produced. In FIG. 3, reference numeral 40 denotes a polymer electrolyte fuel cell. Reference numeral 44 denotes an oxygen electrode side current collector, 43 denotes an oxygen electrode side diffusion layer, 41 denotes a solid polymer electrolyte membrane, 48 denotes a hydrogen electrode side diffusion layer, 47 denotes a hydrogen electrode side current collector, and 42 denotes an air introduction hole. , 45 represents an oxygen electrode PtP catalyst layer, 46 represents a hydrogen electrode PtP catalyst layer, and 49 represents a hydrogen fuel introduction hole. The oxygen electrode side current collector 44 has a function as a structure that takes in air (oxygen) through the air introduction hole 42 and also has a current collecting function. The solid polymer electrolyte membrane (Nafion membrane 112 manufactured by DuPont) 41 has a function of transporting protons generated at the hydrogen electrode to the oxygen electrode side and a function as a separator for preventing a short circuit between the hydrogen electrode and the oxygen electrode. It will be. In the polymer electrolyte fuel cell 40 configured as described above, the hydrogen gas supplied from the hydrogen electrode side current collector 47 is led to the hydrogen electrode catalyst layer 46 through the hydrogen electrode side diffusion layer 48 and is oxidized and electrons. These protons move to the oxygen electrode side through the solid polymer electrolyte membrane 41. At the oxygen electrode, oxygen taken in from the oxygen electrode side current collector 44 is reduced by electrons generated at the hydrogen electrode, and this reacts with the protons to generate water. In the polymer electrolyte fuel cell 40 shown in FIG. 3, power generation occurs due to such hydrogen oxidation reaction and oxygen reduction reaction.
(Comparative Example 5)

実施例28における本発明のカーボン担持触媒の代わりに、比較例1〜4で得られたPt触媒を電極触媒として使用したこと以外は、実施例28と同様にして固体高分子型燃料電池を作製した。   A polymer electrolyte fuel cell was produced in the same manner as in Example 28 except that the Pt catalyst obtained in Comparative Examples 1 to 4 was used as an electrode catalyst instead of the carbon-supported catalyst of the present invention in Example 28. did.

実施例28及び比較例5で得られた固体高分子型燃料電池について出力密度を測定した。測定結果を表2に示す。実施例28では本発明の触媒を使用しているため、触媒粒径が2nm以下である。また、実施例1から26で作製した触媒は、触媒担体として、非多孔質カーボン担体或いは多孔質担体であるが比表面積が300m2/g未満で微細孔が少ないカーボン担体を使用している。そのため、触媒活性が高まると同時に、触媒利用率が高まり、出力密度は235mW/cm以上の高い値が得られている。担体として比表面積が800m2/gと大きなCBを用いた実施例27では、出力密度は、200mW/cmであった。 The power density of the polymer electrolyte fuel cells obtained in Example 28 and Comparative Example 5 was measured. The measurement results are shown in Table 2. In Example 28, since the catalyst of the present invention was used, the catalyst particle size was 2 nm or less. The catalysts prepared in Examples 1 to 26 are non-porous carbon supports or porous supports, but use a carbon support having a specific surface area of less than 300 m 2 / g and few micropores. Therefore, at the same time as the catalyst activity is increased, the catalyst utilization rate is increased, and a high power density of 235 mW / cm 2 or more is obtained. In Example 27 in which CB having a large specific surface area of 800 m 2 / g was used as the carrier, the power density was 200 mW / cm 2 .

表中、出力密度はカーボン担体がCB、AB、MWCNTの順に高まっている事が分かる。CBが最も低い出力密度を与えた原因は、CBが多孔質担体であるため、一部のPtP触媒が微細孔中に埋没し、水素酸化および酸素還元反応に寄与できなくなっているためである。ABは非多孔質担体であるため、CB担体に比較して高い出力密度を与える。MWCNT担体は非多孔質であることに加え、その形状から、電極触媒層中に多くの物理的空隙を有している。このため、燃料である水素ガスと酸素ガス及びカソード極で発生する水の拡散が促進される。更に、MWCNTの比抵抗がCBに比べて低いため、IR損失を低減させる事ができ、電池電圧の低下を抑制できた結果、高い出力密度を与えたと考えられる。   In the table, it can be seen that the power density of the carbon support increases in the order of CB, AB, and MWCNT. The reason why CB gave the lowest power density is that because CB is a porous carrier, some PtP catalysts are buried in the micropores and cannot contribute to hydrogen oxidation and oxygen reduction reactions. Since AB is a non-porous support, it provides a higher power density than CB support. In addition to being non-porous, the MWCNT support has many physical voids in the electrode catalyst layer due to its shape. This promotes diffusion of hydrogen gas and oxygen gas as fuel and water generated at the cathode electrode. Furthermore, since the specific resistance of MWCNT is lower than that of CB, IR loss can be reduced, and as a result of suppressing the decrease in battery voltage, it is considered that a high output density was given.

また、実施例25では還流温度を200℃から130℃へ、実施例26では95℃に下げてPtP触媒を合成している。この合成温度低減によって触媒粒子成長が抑制され、PtP触媒の粒径は1.8nm及び1.5nmに減少している。この粒径減少によって、触媒の比表面積が増加し、触媒活性が高まり、出力密度は260mW/cm以上の高い値が得られている。 In Example 25, the reflux temperature was reduced from 200 ° C. to 130 ° C., and in Example 26, the temperature was lowered to 95 ° C. to synthesize a PtP catalyst. This reduction in the synthesis temperature suppresses catalyst particle growth, and the particle size of the PtP catalyst is reduced to 1.8 nm and 1.5 nm. Due to this particle size reduction, the specific surface area of the catalyst is increased, the catalytic activity is enhanced, and a high power density of 260 mW / cm 2 or higher is obtained.

一方、比較例5において、Pを含有しないPt触媒の粒径は、〜5から〜10nmと大きく、出力密度は170〜185mW/cmと低い結果であった。 On the other hand, in Comparative Example 5, the particle size of the Pt catalyst not containing P was as large as ˜5 to 10 nm, and the output density was as low as 170 to 185 mW / cm 2 .

Figure 2007059248
MWCNT:マルチウォールカーボンナノチューブ AB:アセチレンブラック CB:カーボンブラック
Figure 2007059248
MWCNT: Multi-wall carbon nanotubes AB: Acetylene black CB: Carbon black

ビス(アセチルアセトナト)白金(II)2.56ミリモルと次亜燐酸ナトリウム(NaPH2O2)0〜10.24ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、多孔質担体であるカーボンナノチューブ(CB,比表面積140m/g)0.5gを分散させた200mlのエチレングリコール溶液に加えた。硫酸水溶液を滴下し、pH試験紙を用いて溶液をpH3に調整した。窒素ガス雰囲気下、200℃でこの溶液を攪拌しながら4時間還流し、Pt及びPtP触媒をカーボンブラック上に析出担持させた。反応終了後、濾過、洗浄、乾燥させ触媒を得た。 Bis (acetylacetonato) platinum (II) 2.56 mmol and sodium hypophosphite (NaPH 2 O 2 ) 0 to 0.14 mmol were dissolved in 100 ml of ethylene glycol, respectively, and carbon nanotubes (CB, specific surface area 140 m) as a porous carrier were dissolved. 2 / g) was added to 200 ml of ethylene glycol solution in which 0.5 g was dispersed. A sulfuric acid aqueous solution was dropped, and the solution was adjusted to pH 3 using pH test paper. This solution was refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere, and Pt and PtP catalysts were deposited and supported on carbon black. After completion of the reaction, the catalyst was obtained by filtration, washing and drying.

触媒の粒径を電子顕微鏡で調べ、組成を蛍光Xで分析した。さらに合成した触媒を使用し、実施例28と同様に固体高分子型燃料電池を作製して電池特性を評価した。結果を纏めて表3に示す。P含有量1〜45at.%までは200mW/cm2以上の高出力密度を与える事が分かった。 The particle size of the catalyst was examined with an electron microscope, and the composition was analyzed with fluorescence X. Further, using the synthesized catalyst, a polymer electrolyte fuel cell was produced in the same manner as in Example 28, and the cell characteristics were evaluated. The results are summarized in Table 3. It was found that high power density of 200 mW / cm 2 or more was obtained with a P content of 1 to 45 at.%.

Figure 2007059248
Figure 2007059248

本発明の触媒微粒子の模式的断面図である。It is a typical sectional view of catalyst fine particles of the present invention. 本発明の触媒微粒子の模式的断面図である。It is a typical sectional view of catalyst fine particles of the present invention. 固体高分子型燃料電池の一例の部分概要構成図である。It is a partial schematic block diagram of an example of a polymer electrolyte fuel cell.

符号の説明Explanation of symbols

1 本発明のPtP触媒微粒子
3 カーボン担体
5 Pt粒子
7 P
8 P
40 固体高分子型燃料電池
41 固体高分子電解質膜
42 空気導入孔
43 酸素極側拡散層
44 酸素極側集電体
45 酸素極PtP触媒層
46 水素極PtRu触媒層
47 水素極側集電体
48 水素極側拡散層
49 水素燃料導入孔
1 PtP catalyst fine particles of the present invention 3 Carbon support 5 Pt particles 7 P
8 P
40 polymer electrolyte fuel cell 41 polymer electrolyte membrane 42 air introduction hole 43 oxygen electrode side diffusion layer 44 oxygen electrode side current collector 45 oxygen electrode PtP catalyst layer 46 hydrogen electrode PtRu catalyst layer 47 hydrogen electrode side current collector 48 Hydrogen electrode side diffusion layer 49 Hydrogen fuel introduction hole

Claims (10)

燃料極と、酸素極と、これら燃料極と酸素極との間に間挿された固体高分子電解質膜を有する燃料電池において、
前記燃料極及び/又は酸素極が、
カーボン担体上に少なくともPtとPの酸化物を含む粒子が担持された触媒を含むことを特徴とする燃料電池。
In a fuel cell having a fuel electrode, an oxygen electrode, and a solid polymer electrolyte membrane interposed between the fuel electrode and the oxygen electrode,
The fuel electrode and / or oxygen electrode,
A fuel cell comprising a catalyst having particles containing at least Pt and P oxide supported on a carbon support.
前記粒子中のPの含有量が1〜50at%であることを特徴とする請求項1記載の燃料電池。 2. The fuel cell according to claim 1, wherein the content of P in the particles is 1 to 50 at%. 前記粒子の粒径が1〜3nmの範囲内であることを特徴とする請求項1記載の燃料電池。 The fuel cell according to claim 1, wherein the particle diameter is in the range of 1 to 3 nm. 前記カーボン担体の比表面積が20〜300m2/gである事を特徴とする請求項1記載の燃料電池。 2. The fuel cell according to claim 1, wherein the specific surface area of the carbon support is 20 to 300 m < 2 > / g. 燃料極と、酸素極と、これら燃料極と酸素極との間に間挿された固体高分子電解質膜を有する固体高分子型燃料電池において、
前記燃料極及び/又は酸素極が、
カーボン担体上に少なくともPtとPの酸化物を含む粒子が担持された触媒を含むことを特徴とする固体高分子型燃料電池。
In a polymer electrolyte fuel cell having a fuel electrode, an oxygen electrode, and a polymer electrolyte membrane interposed between the fuel electrode and the oxygen electrode,
The fuel electrode and / or oxygen electrode,
A solid polymer fuel cell comprising a catalyst in which particles containing at least Pt and P oxides are supported on a carbon support.
燃料極触媒層と、酸素極触媒層と、これら燃料極触媒層と酸素極触媒層との間に間挿された固体高分子電解質膜とからなる膜電極接合体において、
前記燃料極触媒層及び/又は酸素極触媒層が、
カーボン担体上に少なくともPtとPの酸化物を含む粒子が担持された触媒を含むことを特徴とする膜電極接合体。
In a membrane electrode assembly comprising a fuel electrode catalyst layer, an oxygen electrode catalyst layer, and a solid polymer electrolyte membrane interposed between the fuel electrode catalyst layer and the oxygen electrode catalyst layer,
The fuel electrode catalyst layer and / or the oxygen electrode catalyst layer,
A membrane electrode assembly comprising a catalyst in which particles containing at least Pt and P oxides are supported on a carbon support.
前記粒子中のPの含有量が1〜50at%であることを特徴とする請求項6記載の膜電接合体。 7. The membrane electrode assembly according to claim 6, wherein the content of P in the particles is 1 to 50 at%. 前記粒子の粒径が1〜3nmの範囲内であることを特徴とする請求項6記載の膜電極接合体。 The membrane electrode assembly according to claim 6, wherein the particle diameter is in the range of 1 to 3 nm. 前記カーボン担体の比表面積が20〜300m2/gである事を特徴とする請求項6記載の膜電極接合体。 7. The membrane electrode assembly according to claim 6, wherein the carbon carrier has a specific surface area of 20 to 300 m < 2 > / g. 固体高分子型燃料電池において使用されることを特徴とする請求項6記載の膜電極接合体。
7. The membrane electrode assembly according to claim 6, which is used in a polymer electrolyte fuel cell.
JP2005244353A 2005-08-25 2005-08-25 Fuel cell and membrane electrode junction Pending JP2007059248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005244353A JP2007059248A (en) 2005-08-25 2005-08-25 Fuel cell and membrane electrode junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005244353A JP2007059248A (en) 2005-08-25 2005-08-25 Fuel cell and membrane electrode junction

Publications (1)

Publication Number Publication Date
JP2007059248A true JP2007059248A (en) 2007-03-08

Family

ID=37922544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005244353A Pending JP2007059248A (en) 2005-08-25 2005-08-25 Fuel cell and membrane electrode junction

Country Status (1)

Country Link
JP (1) JP2007059248A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205394A (en) * 2003-12-26 2005-08-04 Hitachi Maxell Ltd Catalyst for fuel cell and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205394A (en) * 2003-12-26 2005-08-04 Hitachi Maxell Ltd Catalyst for fuel cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4656576B2 (en) Method for producing Pt / Ru alloy catalyst for fuel cell anode
KR101679809B1 (en) Preparation method of N-doped carbon-supported Pt catalyst and N-doped carbon-supported Pt catalyst using the same
US20050142428A1 (en) Fuel cell and membrane electrode assembly
CN106571474B (en) Preparation method of platinum-nickel alloy nanocluster and fuel cell adopting platinum-nickel alloy nanocluster
US7625659B2 (en) Fuel cell, membrane electrode assembly, catalyst used therefor, and method of producing catalyst
JP2007157711A (en) Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell, and fuel cell system
CN102078816A (en) Selenium/carbon compound material, preparation of selenium/carbon compound material and application of selenium/carbon compound material in fuel-cell catalyst preparation
CN100479240C (en) Fuel cell, membrane electrode assembly, catalyst used therefor, and method of producing catalyst
Wang et al. Core-shell Co/CoO integrated on 3D nitrogen doped reduced graphene oxide aerogel as an enhanced electrocatalyst for the oxygen reduction reaction
JP2006252797A (en) Manufacturing method of oxygen electrode catalyst for fuel cell, and of direct methanol fuel cell and catalyst
Lan et al. Membrane-less Direct Formate Fuel Cell Using an Fe–N-Doped Bamboo Internode as the Binder-Free and Monolithic Air-Breathing Cathode
JP2006269096A (en) Fuel cell and membrane electrode assembly
US7625660B2 (en) Fuel cell and membrane electrode assembly
Liu et al. Core‐shell FeCo N‐doped biocarbons as stable electrocatalysts for oxygen reduction reaction in fuel cells
JP2009238442A (en) Method of manufacturing ptru catalyst, catalyst manufactured by the manufacturing method, and fuel cell and membrane electrode assembly using the catalyst
Wang et al. Nitrogen-doped hierarchical porous carbons derived from biomass for oxygen reduction reaction
JP2006278217A (en) Fuel cell and membrane electrode assembly
JP2006252798A (en) Manufacturing method of oxygen electrode catalyst for fuel cell, and of direct methanol fuel cell and catalyst
JP2009266623A (en) MANUFACTURING METHOD OF PtP-BASED CATALYST, CATALYST MANUFACTURED BY THE SAME, FUEL CELL USING IT, AND MEMBRANE-ELECTRODE ASSEMBLY
Wu et al. Platinum nanoparticles on interconnected Ni3P/Carbon nanotube–carbon nanofiber hybrid supports with enhanced catalytic activity for fuel cells
JP2005322430A (en) Ternary alloy, catalyst for fuel cell, and fuel cell
JP2006114469A (en) Fuel-cell and membrane electrode assembly
Su et al. Three-dimensional porous electrodes for direct formate fuel cells
JP2006278194A (en) Fuel cell and membrane electrode assembly
JP4498843B2 (en) Catalyst for fuel cell and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110816