JP2007057472A - In situ testing device for investigating anisotropy of foundation - Google Patents

In situ testing device for investigating anisotropy of foundation Download PDF

Info

Publication number
JP2007057472A
JP2007057472A JP2005245756A JP2005245756A JP2007057472A JP 2007057472 A JP2007057472 A JP 2007057472A JP 2005245756 A JP2005245756 A JP 2005245756A JP 2005245756 A JP2005245756 A JP 2005245756A JP 2007057472 A JP2007057472 A JP 2007057472A
Authority
JP
Japan
Prior art keywords
wave
block
wave propagation
inner tube
propagation block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005245756A
Other languages
Japanese (ja)
Inventor
Akihiko Uchida
明彦 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2005245756A priority Critical patent/JP2007057472A/en
Publication of JP2007057472A publication Critical patent/JP2007057472A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an in situ testing device that directly measures to investigate anisotropy of a foundation which has different rigidity in a vertical and a horizontal direction. <P>SOLUTION: The device includes an outer tube that is inserted in a borehole which is cut into a foundation to be investigated, an S-wave generation mechanism in which an inner tube is inserted into the outer tube to combine with the outer tube, an S-wave sensor at an observation point, and an observation device. A plurality of window apertures are formed on the external wall of the outer tube and an S-wave propagation block is installed movably in the inside and the outside directions of each window aperture. A projection type block is mounted in the inner tube. The outer and inner tubes are inserted into the borehole until a predetermined measuring depth, and the S-wave propagation block is pushed out to the outside of the window aperture by operating the inner tube and then is pressure stuck the wall surface of the borehole. Then, an S-wave is generated through the inner tube and an S-wave speed is measured by the S-wave sensor at the observation point and the observation device. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、鉛直方向と水平方向とでは剛性が異なる地盤の異方性を原位置で直接測定・調査する原位置試験装置の技術分野に属する。   The present invention belongs to the technical field of an in-situ test apparatus that directly measures and investigates the anisotropy of ground having different rigidity in the vertical direction and the horizontal direction.

堆積年代が古い地盤は、隆起・沈降の履歴を受けているため、地盤の鉛直方向と水平方向とでは強度や剛性(ヤング係数)が異なる場合のあることが知られている。
一般的に言う「異方性」には、地盤のひずみレベルがかなり大きなところで発揮される「強度」と、非常に小さいひずみレベルでの「剛性」の二つが含まれる。
本発明では、鉛直方向と水平方向の剛性が異なることを対象にしているが、ここではそれを単に「異方性」と定義する。そのうち、強度については「強度異方性」と呼ばれている。
地盤の強度異方性を把握する従来技術としては、例えば室内試験が知られている。この試験は、原位置から採取した乱さない試料を用いて、鉛直方向および水平方向を軸とした強度試験を行い、それぞれの結果の比較から強度異方性を把握することは調査可能である。一方、剛性の異方性については単に「異方性」と呼ばれ、強度試験と同じような方法で鉛直方向および水平方向を軸とした試料を用い、せん断弾性波(以下、これをS波と略す場合がある。)速度を測定したり、土の弾性範囲における非常に小さな荷重を与えて変位を測定したりすることにより剛性を測定することが可能である。
It is known that the ground with an older age has a history of uplift and subsidence, so that the strength and stiffness (Young's modulus) may differ between the vertical and horizontal directions of the ground.
Generally speaking, “anisotropy” includes “strength” that is exhibited when the strain level of the ground is considerably large and “stiffness” at a very small strain level.
In the present invention, it is intended that the rigidity in the vertical direction is different from that in the horizontal direction, but here it is simply defined as “anisotropic”. Among them, the strength is called “strength anisotropy”.
As a conventional technique for grasping the strength anisotropy of the ground, for example, a laboratory test is known. In this test, it is possible to investigate that the strength anisotropy is grasped from the comparison of the respective results by performing a strength test using the undisturbed sample collected from the original position and using the vertical direction and the horizontal direction as axes. On the other hand, the stiffness anisotropy is simply called “anisotropic”, and a shear elastic wave (hereinafter referred to as “S wave”) is used in the same manner as in the strength test. The stiffness can be measured by measuring the velocity or measuring the displacement by applying a very small load in the elastic range of the soil.

但し、上記した室内試験による測定は、研究的に行われている程度でしかない。実際の地盤では、鉛直方向と水平方向の差が構造物の設計に取り入れていないため、原位置で測定する方法に関しては、あまり必要性がなかったからである。したがって、原位置で直接地盤の異方性を測定する方法はほとんど提案されていない。
通常のPS検層では、地表面またはボーリング孔内でS波を発生させて地盤のS波速度を測定している。このS波には、せん断方向が鉛直成分となるSV波と、せん断方向が水平成分となるSH波の2種類があることは知られている。
However, the above-described measurements by laboratory tests are only to the extent that they have been conducted experimentally. This is because the difference between the vertical direction and the horizontal direction is not taken into the design of the structure in the actual ground, so there was not much need for the method of measuring in situ. Therefore, few methods have been proposed for directly measuring the anisotropy of the ground in situ.
In normal PS logging, S waves are generated on the ground surface or in boreholes to measure the S wave velocity of the ground. It is known that there are two types of S waves, an SV wave whose shear direction is a vertical component and an SH wave whose shear direction is a horizontal component.

下記の特許文献1に開示された弾性波速度計測方法及びその装置は、弾性波による地盤調査に使用するものである。弾性波発振源と、地盤を伝搬する弾性波の速度を測定する2個の受信器とを1本のパイプに納めてあり、地盤へ突き刺すように貫入して、地盤内で直接地盤をせん断させてせん断弾性波を発生させ、S波速度を2個の受信器の波動到達時間差から求める構成である。予めボーリング孔をあける必要が無く、深度方向に連続して精度良く安価に弾性波速度測定ができると説明されている。
特許文献2に記載されたS波振幅を用いた地盤調査方法は、先端にコーンを取り付けたロッドを地盤中へ打撃貫入し、そのとき発生する弾性波を地表のS波センサーで検出し、地盤の力学特性を評価するものである。
The elastic wave velocity measuring method and apparatus disclosed in Patent Document 1 below are used for ground investigation by elastic waves. An elastic wave oscillation source and two receivers that measure the velocity of elastic waves propagating through the ground are housed in a single pipe, penetrated into the ground, and directly sheared in the ground. Thus, a shear elastic wave is generated, and the S wave velocity is obtained from the difference in wave arrival time between the two receivers. It is described that it is not necessary to drill a boring hole in advance, and that elastic wave velocity can be measured accurately and inexpensively continuously in the depth direction.
The ground survey method using the S wave amplitude described in Patent Document 2 hits a rod with a cone attached to the tip into the ground, detects the elastic wave generated at that time by the S wave sensor on the ground surface, It evaluates the mechanical properties of

特公平7−56513号公報Japanese Examined Patent Publication No. 7-56513 特開2003−321828号公報JP 2003-321828 A

上記特許文献1に開示された弾性波速度計測方法及び装置は、弾性波発振源と、弾性波速度を測定する2個の受信器とを1本のパイプに納めたコンパクトな構成の点、および地盤へ突き刺すように貫入して使用する方法のユニークさは注目できる。しかし、弾性波発振源はモータで回転されるハンマーが棒を打撃して直接地盤をせん断させる構成であるから、せん断方向が水平成分となるSH波を1種類発生させるに過ぎない。そして、右回転の打撃と左回転の打撃による2個のS波を2個の受信器で検出し、2個の受信器間の距離と、波動到達時間差とから、地盤内を伝搬する弾性波速度を求める構成なので、波動伝搬に伴うノイズの混入と、それが測定値の精度に及ぼす悪影響の懸念が大きいと考えられる。
特許文献2に記載されたS波振幅を用いた地盤調査方法の場合は、先端にコーンを取り付けたロッドを地盤中へ打撃貫入する際の瞬時の弾性波をS波センサーで検出する方法であるから、いわば再現性に乏しい地盤調査方法であり、類推判断の要素が支配的となる欠点が認められる。
The elastic wave velocity measuring method and apparatus disclosed in Patent Document 1 described above is a compact configuration in which an elastic wave oscillation source and two receivers for measuring elastic wave velocity are housed in one pipe, and The uniqueness of the method of penetrating and using it to pierce the ground is remarkable. However, since the elastic wave oscillation source has a configuration in which a hammer rotated by a motor strikes a rod and directly shears the ground, only one type of SH wave whose shear direction is a horizontal component is generated. Then, two S-waves generated by the clockwise rotation and the counterclockwise rotation are detected by the two receivers, and the elastic wave propagating in the ground from the distance between the two receivers and the wave arrival time difference. Since the speed is obtained, it is considered that there is a great concern about noise contamination due to wave propagation and adverse effects on the accuracy of the measurement value.
In the case of the ground investigation method using the S wave amplitude described in Patent Document 2, an instantaneous elastic wave is detected by an S wave sensor when a rod having a cone attached to the tip is struck into the ground. Therefore, it is a ground survey method with poor reproducibility, and there is a drawback that the factor of analogy judgment is dominant.

本発明の目的は、ノイズ混入の懸念が少なく、また、必要な試験を同一条件下で何回も再現して行うことができ、SV波とSH波の2種類をきっちりと使い分けて、弾性波速度測定を高精度に行うことができ、地盤の異方性の有無を把握することが容易に可能であり、構造物の合理的な設計に寄与する、原位置試験装置を提供することである。   The object of the present invention is that there is little concern about noise contamination, and the necessary test can be reproduced many times under the same conditions. The two types of SV wave and SH wave are used properly, and the elastic wave It is to provide an in-situ testing device that can perform speed measurement with high accuracy, easily understand the presence or absence of ground anisotropy, and contribute to the rational design of structures. .

上記した従来技術の課題を解決するための手段として、請求項1に記載した発明に係る地盤の異方性を調査する原位置試験装置は、
調査対象地盤1中に掘削したボーリング孔2の中へ挿入される外管3と、前記外管3の中へほぼ同心配置に内管4を挿入し組み合わせて成るS波発生機構5と、観測点のS波センサー12、13および観測装置15とからなる。
前記S波発生機構5における外管3の外周壁に窓孔が複数形成され、各窓孔には、同窓孔の内外方向へ出入り可能にS波伝播ブロック6が設置されている。
前記内管4には、前記S波伝播ブロック6を窓孔の外方へ押し出す突起型ブロック8が各S波伝播ブロック6と対応する配置に設けられている。
前記S波発生機構5の外管3と内管4は、各S波伝播ブロック6が窓孔の外側開口面よりも内方へ引っ込んだ格納状態でボーリング孔2の中へ挿入され、所定の測定深度において内管4を操作し突起型ブロック8により各S波伝播ブロック6を窓孔の外方へ押し出させボーリング孔2の孔壁面へ圧着させ、内管4を通じてS波を発生させ観測点のS波センサー12、13および観測装置15によりS波速度測定を行う。測定後には内管4を操作して突起型ブロック8を退避させ、各S波伝播ブロック6を窓孔の開口面よりも内方の位置へ復元・格納させる。そして、S波発生機構5たる外管3および内管4は地上へ引き揚げられ、又は異なる測定位置へ移動されることを特徴とする。
As a means for solving the above-described problems of the prior art, an in-situ testing apparatus for investigating the anisotropy of the ground according to the invention described in claim 1 is:
An outer tube 3 to be inserted into a bored hole 2 excavated in the ground 1 to be investigated, an S wave generating mechanism 5 formed by inserting and combining the inner tube 4 into the outer tube 3 in a substantially concentric arrangement, and observation It consists of S wave sensors 12 and 13 and an observation device 15.
A plurality of window holes are formed in the outer peripheral wall of the outer tube 3 in the S wave generating mechanism 5, and an S wave propagation block 6 is installed in each window hole so as to be able to enter and exit the window hole.
The inner tube 4 is provided with a protruding block 8 that pushes the S wave propagation block 6 outward of the window hole in an arrangement corresponding to each S wave propagation block 6.
The outer tube 3 and the inner tube 4 of the S wave generating mechanism 5 are inserted into the boring hole 2 in a retracted state in which each S wave propagation block 6 is retracted inward from the outer opening surface of the window hole. At the measurement depth, the inner tube 4 is operated, and each S-wave propagation block 6 is pushed out of the window hole by the protruding block 8 and is crimped to the hole wall surface of the boring hole 2 to generate an S wave through the inner tube 4 and the observation point The S wave velocity is measured by the S wave sensors 12 and 13 and the observation device 15. After the measurement, the inner tube 4 is operated to retract the protruding block 8, and each S wave propagation block 6 is restored and stored in a position inward of the opening surface of the window hole. Then, the outer tube 3 and the inner tube 4 as the S wave generating mechanism 5 are lifted to the ground or moved to different measurement positions.

請求項2に記載した発明は、請求項1に記載した地盤の異方性を調査する原位置試験装置において、
S波発生機構5のS波伝播ブロック6は、水平回転において共通する一方の端部を垂直方向の回転軸7により外管3の窓孔の内外方向へほぼ水平方向に回転して出入り可能に設置され、且つ復元力を与えるバネ等の復元要素が設置されている。S波伝播ブロック6の内周面6aには、前記水平回転において同一の方向に、前記回転軸7の位置を基点として押し出しリフトが高くなる勾配面が形成されている。内管4の突起型ブロック8は、前記S波伝播ブロック6に接触しない退避位置から水平回転を始めて、同S波伝播ブロック6の内周面6aの終端に至る手前位置までの回転で、S波伝播ブロック6を窓孔の外方へ押し出しボーリング孔2の孔壁面へ圧着させる有効高さを有する構成とされている。前記内管4の操作で突起型ブロック8を逆回転させ退避させると、各S波伝播ブロック6に働く前記復元力により各S波伝播ブロック6は窓孔の開口面よりも内方の元位置へ復元し格納される構成である。
The invention described in claim 2 is an in-situ test apparatus for investigating the anisotropy of the ground described in claim 1,
The S wave propagation block 6 of the S wave generating mechanism 5 can move in and out by rotating one end common to the horizontal rotation in the horizontal direction in the inner and outer directions of the window hole of the outer tube 3 by the vertical rotation shaft 7. A restoring element such as a spring that is installed and gives a restoring force is installed. On the inner peripheral surface 6 a of the S wave propagation block 6, a slope surface is formed in the same direction in the horizontal rotation so that the extrusion lift becomes higher with the position of the rotary shaft 7 as a base point. The protruding block 8 of the inner tube 4 starts horizontal rotation from a retracted position where it does not contact the S wave propagation block 6, and rotates to a position before reaching the end of the inner peripheral surface 6a of the S wave propagation block 6, S The wave propagation block 6 is pushed out to the outside of the window hole and has an effective height for crimping to the hole wall surface of the boring hole 2. When the protruding block 8 is reversely rotated and retracted by the operation of the inner tube 4, each of the S wave propagation blocks 6 is in an original position inside the opening of the window hole due to the restoring force acting on each S wave propagation block 6. It is the structure which is restored and stored in.

請求項3に記載した発明は、請求項1に記載した地盤の異方性を調査する原位置試験装置において、
S波発生機構5のS波伝播ブロック6は、外管3の窓孔へ内外方向へ略水平に出入り可能に設置され、且つ復元力を与えるバネ等の復元要素16が設置されている。S波伝播ブロック6の内周面6bは上・下方向に傾斜して押し出しリフトが高くなる勾配面に形成されている。内管4の突起型ブロック8は、前記S波伝播ブロック6に接触しない上方又は下方の退避位置から上・下方向に移動させると、同S波伝播ブロック6の内周面6bの終端に至る手前位置までの移動でS波伝播ブロック6を窓孔の外方へ押し出しボーリング孔2の孔壁面へ圧着させる有効高さを有する構成とされている。前記内管4の操作で突起型ブロック8を逆方向へ移動させ退避させると、各S波伝播ブロック6に働く前記復元力により各S波伝播ブロック6は窓孔の開口面よりも内方の元位置へ復元し格納される構成である。
The invention described in claim 3 is the in-situ test apparatus for investigating the anisotropy of the ground described in claim 1,
The S-wave propagation block 6 of the S-wave generating mechanism 5 is installed so as to be able to enter and exit from the window hole of the outer tube 3 substantially horizontally in the inner and outer directions, and a restoring element 16 such as a spring that gives restoring force is installed. The inner peripheral surface 6b of the S-wave propagation block 6 is formed on a slope surface that is inclined upward and downward to increase the extrusion lift. The protruding block 8 of the inner tube 4 reaches the end of the inner peripheral surface 6b of the S-wave propagation block 6 when moved upward or downward from an upper or lower retracted position that does not contact the S-wave propagation block 6. The S-wave propagation block 6 is pushed out to the outside of the window hole by moving to the front position, and has an effective height for crimping to the hole wall surface of the boring hole 2. When the protruding block 8 is moved in the opposite direction by the operation of the inner tube 4 and retracted, the restoring force acting on each S wave propagation block 6 causes each S wave propagation block 6 to be inward of the opening surface of the window hole. In this configuration, the original position is restored and stored.

請求項4に記載した発明は、請求項1〜3のいずれか一に記載した地盤の異方性を調査する原位置試験装置において、
S波発生機構5の内管4を通じて発生させるS波は、内管4へ上下方向の打撃を加えて発生させるせん断方向が鉛直成分となるSV波、又は内管4へ水平方向の回転を加えて発生させるせん断方向が水平成分となるSH波の2種類とされる。これら2種類のS波を、観測点の2点の振動センサー12、13および観測装置15で観測を行い、同じ波形の時間差からSV波とSH波のS波速度を算定して地盤の異方性を調査することを特徴とする。
The invention described in claim 4 is an in-situ test apparatus for investigating the anisotropy of the ground described in any one of claims 1 to 3,
The S wave generated through the inner tube 4 of the S wave generating mechanism 5 is an SV wave whose vertical direction is applied to the inner tube 4 by hitting the inner tube 4 in a vertical direction, or a horizontal rotation applied to the inner tube 4. The shear direction to be generated is two types of SH waves whose horizontal components are horizontal components. These two types of S waves are observed with the vibration sensors 12 and 13 and the observation device 15 at the two observation points, and the S wave velocity of the SV wave and the SH wave is calculated from the time difference of the same waveform, and the anisotropic of the ground It is characterized by investigating sex.

本発明の原位置試験装置は、調査対象地盤1中にボーリング孔2を掘削し、その中へS波発生機構5を挿入することにより簡単、容易に実施できる。しかも同一の測定位置において必要なだけ同じ試験を繰り返す(再現する)ことができ、試験の精度、確実性を高めることができる。即ち、S波発生機構5(外管3)の挿入深度の位置を固定しておいて、内管4を回転し、或いは上下動させる操作により、各S波伝播ブロック6をボーリング孔2の孔壁面へ圧着させてS波の伝搬を確実にできる。その上で、S波発生機構5の内管4へ上下方向の打撃20を加えてSV波を、又は水平方向の回転21を加えてSH波を発生させると、それぞれ各S波伝播ブロック6を通じて地盤中に伝播するので、そのS波を観測点の2点の振動センサー12、13および観測装置15でリアルタイムに観測でき、原位置地盤の異方性を直接に正確に測定することができる。そして、ノイズが混入するおそれは殆どない。
しかも、測定後には、内管4を逆操作することにより、各S波伝播ブロック6を再び窓孔の開口面よりも内方の元位置へ格納させることができるから、S波発生機構5たる外管3および内管4はそのまま地上へ引き揚げて回収することができる。或いはボーリング孔2内で測定深度を変えた異なる測定位置において、原位置地盤の異方性を必要とされる多点にわたり効率よく調査することができる。
The in-situ testing apparatus of the present invention can be implemented simply and easily by excavating the borehole 2 in the ground 1 to be investigated and inserting the S wave generating mechanism 5 therein. Moreover, the same test can be repeated (reproduced) as necessary at the same measurement position, and the accuracy and certainty of the test can be improved. That is, by fixing the position of the insertion depth of the S wave generating mechanism 5 (outer tube 3) and rotating the inner tube 4 or moving it up and down, each S wave propagation block 6 is moved to the hole of the bore hole 2. The propagation of the S wave can be ensured by crimping to the wall surface. After that, when the vertical hit 20 is applied to the inner tube 4 of the S wave generation mechanism 5 to generate the SV wave or the horizontal rotation 21 to generate the SH wave, each of the S wave propagation blocks 6 is used. Since it propagates into the ground, the S wave can be observed in real time by the vibration sensors 12 and 13 and the observation device 15 at the two observation points, and the anisotropy of the in-situ ground can be directly and accurately measured. And there is almost no possibility of noise mixing.
Moreover, after the measurement, each S wave propagation block 6 can be stored again in the original position inside the opening surface of the window hole by reversely operating the inner tube 4. The outer tube 3 and the inner tube 4 can be lifted to the ground as they are and recovered. Alternatively, the anisotropy of the in-situ ground can be efficiently investigated over a number of required points at different measurement positions with different measurement depths in the borehole 2.

調査対象地盤1中に掘削したボーリング孔2の中へ挿入される外管3と、前記外管3の中へほぼ同心配置に内管4を挿入し組み合わせて成るS波発生機構5と、観測点のS波センサー12、13および観測装置15とで構成する。
前記S波発生機構5における外管3の外周壁に窓孔が複数形成され、各窓孔には、同窓孔の内外方向へ出入り可能にS波伝播ブロック6が設置される。
前記内管4には、前記S波伝播ブロック6を窓孔の外方へ押し出す突起型ブロック8が各S波伝播ブロック6と対応する配置に設けられる。
前記S波発生機構5(外管3と内管4)は、各S波伝播ブロック6が外管3の窓孔の開口面よりも内方へ引っ込んだ格納状態でボーリング孔2の中へ挿入され、所定の測定深度において内管4を操作し突起型ブロック8により各S波伝播ブロック6を窓孔の外方へ押し出させボーリング孔2の孔壁面へ圧着させる。そして、内管4を通じてS波を発生させ、観測点のS波センサー12、13および観測装置15によりS波速度測定を行う。測定後には内管4を操作して突起型ブロック8を退避させ、各S波伝播ブロック6を窓孔の開口面よりも内方の位置へ復元・格納させ、S波発生機構5(外管3および内管4)は地上へ引き揚げ、又は異なる測定位置へ移動する。
An outer tube 3 to be inserted into a bored hole 2 excavated in the ground 1 to be investigated, an S wave generating mechanism 5 formed by inserting and combining the inner tube 4 into the outer tube 3 in a substantially concentric arrangement, and observation A point S wave sensor 12, 13 and an observation device 15 are used.
A plurality of window holes are formed in the outer peripheral wall of the outer tube 3 in the S wave generating mechanism 5, and an S wave propagation block 6 is installed in each window hole so as to enter and exit the window hole.
The inner tube 4 is provided with a protruding block 8 that pushes the S wave propagation block 6 outward of the window hole in an arrangement corresponding to each S wave propagation block 6.
The S wave generating mechanism 5 (the outer tube 3 and the inner tube 4) is inserted into the boring hole 2 in a retracted state in which each S wave propagation block 6 is retracted inward from the opening surface of the window hole of the outer tube 3. Then, the inner tube 4 is operated at a predetermined measurement depth, and the S-wave propagation blocks 6 are pushed out of the window holes by the protruding blocks 8 and are pressed against the hole wall surfaces of the boring holes 2. Then, an S wave is generated through the inner tube 4 and the S wave velocity is measured by the S wave sensors 12 and 13 and the observation device 15 at the observation point. After the measurement, the inner tube 4 is operated to retract the projecting block 8, and each S wave propagation block 6 is restored and stored in a position inward of the opening surface of the window hole. 3 and the inner tube 4) are lifted to the ground or moved to different measuring positions.

以下に、本発明を図示した実施例により説明する。
図1〜図3に示した実施例は、原位置試験装置のS波発生機構5が、内管4を水平に回転操作して各S波伝播ブロック6を窓孔の外方へ押し出させボーリング孔2の孔壁面へ圧着させて地盤の異方性を測定、調査とする構成である場合を示している。
このS波発生機構5は、調査対象地盤1中に掘削したボーリング孔2の中へ挿入される外管3と、前記外管3の中へほぼ同心配置に内管4を挿入して組合せた構成とされている。ボーリング孔2は一例としてコアボーリング法により地中数mの深さまで掘削される。その孔径は、S波発生機構5(の外管3)の挿入に支障ないように、S波発生機構5の外管3の外径(通例70mm程度)よりも少し大きい90mm程度の大きさの孔径で掘削されている。
In the following, the present invention will be described with reference to illustrated embodiments.
In the embodiment shown in FIG. 1 to FIG. 3, the S wave generating mechanism 5 of the in-situ test apparatus rotates the inner tube 4 horizontally to push out each S wave propagation block 6 to the outside of the window hole. A case is shown in which the anisotropy of the ground is measured and investigated by crimping to the hole wall surface of the hole 2.
This S wave generating mechanism 5 is combined with an outer tube 3 inserted into a bored hole 2 excavated in the investigation ground 1 and an inner tube 4 inserted into the outer tube 3 in a substantially concentric arrangement. It is configured. As an example, the boring hole 2 is excavated to a depth of several meters underground by a core boring method. The diameter of the hole is about 90 mm, which is slightly larger than the outer diameter (usually about 70 mm) of the outer tube 3 of the S wave generating mechanism 5 so as not to interfere with the insertion of the S wave generating mechanism 5 (the outer tube 3). Drilled with a hole diameter.

S波発生機構5の外管3の外周壁(管壁)に、一例として図1A、Bに示したS波伝播ブロック6の配列に等しい配置と個数の窓孔が同数形成され、各窓孔に1個ずつの割合で、同窓孔の内外方向へ出入り自在にS波伝播ブロック6…が設置されている。
図1〜図3に示した実施例の場合、各S波伝播ブロック6は、水平方向の回転において共通する一方の端部が、垂直方向の回転軸7により、外管3の窓孔の内外方向へほぼ水平方向に回転して出入り可能に設置されている。その上で、S波伝播ブロック6に元の格納位置への復元力を与える捩りコイルバネ、又はスプリングバック機能を働く板バネ等々の復元要素が回転軸7に巻き付けられて、又はS波伝播ブロック6に直接てこの作用を働く構成で設置されている(図1A〜図3A)。
As an example, the same number and arrangement of window holes equal to the arrangement of the S wave propagation blocks 6 shown in FIGS. 1A and 1B are formed on the outer peripheral wall (tube wall) of the outer tube 3 of the S wave generating mechanism 5. The S wave propagation blocks 6 are installed in such a manner that they can enter and exit the window hole at a rate of one each.
In the case of the embodiment shown in FIGS. 1 to 3, each S wave propagation block 6 has one end common to the rotation in the horizontal direction at the inside and outside of the window hole of the outer tube 3 by the vertical rotation shaft 7. It is installed so that it can be moved in and out of the horizontal direction. In addition, a restoring element such as a torsion coil spring that applies restoring force to the original retracted position to the S-wave propagation block 6 or a leaf spring that functions as a spring back is wound around the rotary shaft 7 or the S-wave propagation block 6 It is installed in a configuration that directly acts on this (FIGS. 1A to 3A).

S波伝播ブロック6の内周面6aは、前記回転軸7を中心とする水平回転において共通する一方向に、前記回転軸7の位置を基点(又は原点)として漸次押し出しリフトが高くなる形態の押し出し勾配面が円弧形状に形成されている。しかも、前記押し出し勾配面のリフト勾配は、後述する内管4の突起型ブロック8が前記S波伝播ブロック6に接触しない退避位置から回転を始めて、同S波伝播ブロック6の内周面6aの終端に至る手前位置までの回転(図2Aを参照)で、S波伝播ブロック6を窓孔の外方へ押し出してボーリング孔2の孔壁面へS波の伝搬に必要充分な状態に圧着させるように設計して構成されている。   The inner peripheral surface 6a of the S wave propagation block 6 has a form in which the extrusion lift gradually increases in one direction common to horizontal rotation around the rotation shaft 7 with the position of the rotation shaft 7 as a base point (or origin). The extrusion gradient surface is formed in an arc shape. Moreover, the lift gradient of the extrusion gradient surface is such that the projection block 8 of the inner tube 4 to be described later starts rotating from a retracted position where it does not contact the S wave propagation block 6 and the inner circumferential surface 6a of the S wave propagation block 6 The S-wave propagation block 6 is pushed out to the outside of the window hole by the rotation to the position just before reaching the end (see FIG. 2A), and is crimped to the hole wall surface of the boring hole 2 in a state necessary and sufficient for the propagation of the S-wave. Designed and configured.

一方、内管4には、上記の伝播ブロック6を窓孔の外方へ押し出す突起型ブロック8が、各伝播ブロック6と対応する配置に、即ち、図1A〜図3Aに示すように内管4が水平な一方向に回転すると対応する配置の伝播ブロック6と接触して、各伝播ブロック6の内周面6aに形成した上記押し出し勾配面の押し出しリフトにしたがい、S波伝播ブロック6を回転軸7を中心として回転させ窓孔の外方向へ押し出す構成で設置されている。   On the other hand, in the inner tube 4, the protruding block 8 that pushes out the propagation block 6 to the outside of the window hole is arranged in an arrangement corresponding to each propagation block 6, that is, as shown in FIGS. 1A to 3A. When 4 rotates in one horizontal direction, it contacts the correspondingly arranged propagation block 6 and rotates the S-wave propagation block 6 in accordance with the extrusion lift of the extrusion gradient surface formed on the inner peripheral surface 6a of each propagation block 6. It is installed in such a configuration that it is rotated around the shaft 7 and pushed out of the window hole.

以下に、外管3と内管4とで上記のように構成されたS波発生機構5を、地盤の異方性を調査する原位置試験装置として使用する方法を、図5および図6と共に説明する。
先ず調査対象地盤1中に、ボーリング孔2および該ボーリング孔2から一定の距離を隔てた位置に2本の観測孔10、11を掘削する。前記2本の観測孔10、11にはそれぞれS波速度測定用の振動センサー12、13を所定の深度まで挿入して設置し、それぞれは地上の観測装置15(パーソナルコンピュータなど)とリード線18により結線して準備を行う。
Hereinafter, a method of using the S wave generating mechanism 5 configured as described above with the outer tube 3 and the inner tube 4 as an in-situ testing apparatus for investigating the anisotropy of the ground will be described with reference to FIGS. 5 and 6. explain.
First, two observation holes 10 and 11 are excavated in the investigation ground 1 at a position spaced apart from the boring hole 2 and the boring hole 2. In the two observation holes 10 and 11, vibration sensors 12 and 13 for measuring the S wave velocity are respectively inserted and installed to a predetermined depth. Each of the observation holes 15 and 11 has a ground observation device 15 (such as a personal computer) and a lead wire 18. Connect to make preparations.

一方、ボーリング孔2の中へは、上記のS波発生機構5を挿入し設置する。
即ち、外管3の各伝播ブロック6…が窓孔の開口面よりも内方へ引っ込んだ状態(図1Aを参照)にして、ボーリング孔2の中へ挿入してゆく。S波発生機構5がボーリング孔2内の所定の測定深度に達した段階で、先ずは外管3を、地上の図示を省略した例えばチャッキング機構付きの櫓設備などで位置決め固定する。次に、内管4を図2Aの場合には水平な反時計回り方向に回転する操作を行い、もって同内管4の突起型ブロック8で、各伝播ブロック6を窓孔の外側へ押し出させ、ボーリング孔2の孔壁面へS波の伝搬が可能な状態に圧着させる。
On the other hand, the S wave generating mechanism 5 is inserted and installed in the boring hole 2.
That is, each propagation block 6 of the outer tube 3 is inserted into the boring hole 2 in a state of being retracted inward from the opening surface of the window hole (see FIG. 1A). When the S wave generating mechanism 5 reaches a predetermined measurement depth in the borehole 2, first, the outer tube 3 is positioned and fixed by, for example, a dredging facility with a chucking mechanism not shown on the ground. Next, in the case of FIG. 2A, the inner tube 4 is rotated in the horizontal counterclockwise direction, so that each propagation block 6 is pushed out of the window hole by the protruding block 8 of the inner tube 4. Then, crimping is performed on the hole wall surface of the boring hole 2 so that the S wave can propagate.

以上の準備が整った段階で、内管4を通じてS波を発生させS波速度測定を行う。
内管4を通じてS波を発生させる手法として、先ず図5には、地上に突き出ている内管4へ上下方向の打撃20を加えてせん断方向が鉛直成分となるSV波を発生させ、これを内管4から突起型ブロック8、伝播ブロック6の経路で地盤へ伝播させる。或いは図6に示すように、内管4へ水平方向の回転21を加えてせん断方向が水平成分となるSH波を発生させ、これをやはり内管4から突起型ブロック8、伝播ブロック6の経路で地盤へ伝播させる。
前記した2種類のS波(SV波とSH波)はそれぞれ、上述した観測点の2点の振動センサー12と13で受信して、地上の観測装置15で記録・保存すると共に、同じ波形の時間差からSV波とSH波のS波速度を算定する処理を行い、地盤の異方性を調査するのである。
When the above preparation is completed, an S wave is generated through the inner tube 4 to measure the S wave velocity.
As a method for generating an S wave through the inner tube 4, first, in FIG. 5, a vertical hit 20 is applied to the inner tube 4 protruding to the ground to generate an SV wave whose shear direction is a vertical component. Propagation is made from the inner tube 4 to the ground through the path of the protruding block 8 and the propagation block 6. Alternatively, as shown in FIG. 6, a horizontal rotation 21 is applied to the inner tube 4 to generate an SH wave whose shear direction is a horizontal component, and this is also routed from the inner tube 4 to the protruding block 8 and the propagation block 6. To propagate to the ground.
The two types of S waves (SV wave and SH wave) are received by the vibration sensors 12 and 13 at the two observation points described above, recorded and stored by the observation device 15 on the ground, and having the same waveform. The process of calculating the S wave velocity of the SV wave and the SH wave from the time difference is performed to investigate the anisotropy of the ground.

上記のようにして当該測定位置での測定を終了した後には、先ずS波発生機構5の内管4を当初操作とは逆向きに操作して、即ち図3Aに示すように水平な時計回り方向に回転操作し、各伝播ブロック6を突起型ブロック8による圧縮から解放し、各々の復元要素の働きにより窓孔の開口面よりも内方の元位置復元させ格納させる(図3A、Bを参照)。
しかる後に、S波発生機構5(外管3および内管4)を地上へ引き揚げて回収する。或いは同じボーリング孔2内の異なる深度の測定位置へ設置し直し、又は異なるボーリング孔2へ挿入して更なる地盤の異方性調査の目的に供せられる。
After the measurement at the measurement position is completed as described above, first, the inner tube 4 of the S wave generating mechanism 5 is operated in the direction opposite to the initial operation, that is, as shown in FIG. The propagating block 6 is released from compression by the projecting block 8 and is restored to the original position inside the opening surface of the window hole by the action of each restoring element and stored (see FIGS. 3A and 3B). reference).
Thereafter, the S wave generating mechanism 5 (the outer tube 3 and the inner tube 4) is pulled up to the ground and recovered. Alternatively, it can be re-installed at a measurement position at a different depth within the same borehole 2 or inserted into a different borehole 2 for the purpose of further ground anisotropy investigation.

上記したように使用されるので、S波発生機構5の外管3および内管4の材質は、S波の伝搬に好ましい鋼などの金属製、更に言えば錆びに強いステンレス鋼などにより製作される。この点は、以下に説明する実施例2にも共通する事項である。   Since it is used as described above, the material of the outer tube 3 and the inner tube 4 of the S wave generating mechanism 5 is made of a metal such as steel that is preferable for the propagation of S waves, more specifically, stainless steel that is resistant to rust. The This point is common to the second embodiment described below.

次に、図4A〜Cに示した実施例は、S波発生機構5の内管4を上下方向に直動させる操作により外管3の各伝播ブロック6を窓孔の外方へ押し出させボーリング孔2の孔壁面へ圧着させて地盤の異方性を測定、調査する構成である場合を示している。
本実施例のS波発生機構5は、外管3の各伝播ブロック6が、図4Cに詳示したように窓孔内を放射方向(内外方向)へほぼ水平に滑って出入りする構成とされている。他方、内管4とその突起型ブロック8は上・下方向へ移動させる構成である。
Next, in the embodiment shown in FIGS. 4A to C, each propagation block 6 of the outer tube 3 is pushed out of the window hole by boring the inner tube 4 of the S wave generating mechanism 5 in the vertical direction. A case is shown in which the anisotropy of the ground is measured and investigated by being crimped to the hole wall surface of the hole 2.
The S wave generating mechanism 5 of the present embodiment is configured such that each propagation block 6 of the outer tube 3 slides in and out of the window hole almost horizontally in the radial direction (inside and outside direction) as detailed in FIG. 4C. ing. On the other hand, the inner tube 4 and its protruding block 8 are configured to move upward and downward.

本実施例の場合は、図4Aに示したように、内管4は、S波伝播ブロック6より上方の位置を、S波伝播ブロック6に接触しない退避位置とされている。もっとも、S波伝播ブロック6より下方の位置を、S波伝播ブロック6に接触しない退避位置とする構成で実施することもできる。
外管3のS波伝播ブロック6は、上記したように窓孔へ略水平に出入り可能に設置されていると共に、復元力を与えるバネ等の復元要素16が設置されている。図4Cに示した復元要素16は圧縮用コイルバネであるが、この限りではない。皿バネや板バネなども適宜に採用可能である。
In the case of the present embodiment, as shown in FIG. 4A, the inner tube 4 has a position above the S wave propagation block 6 as a retracted position that does not contact the S wave propagation block 6. Of course, the position below the S wave propagation block 6 may be a retracted position that does not contact the S wave propagation block 6.
As described above, the S wave propagation block 6 of the outer tube 3 is installed so as to be able to enter and exit from the window hole substantially horizontally, and a restoring element 16 such as a spring for providing restoring force is installed. The restoring element 16 shown in FIG. 4C is a compression coil spring, but is not limited thereto. A disc spring, a leaf spring, or the like can be used as appropriate.

S波伝播ブロック6の内周面6bは、図示例の場合、下向きに出っ張る形に傾斜して押し出しリフトが高くなる勾配面に形成されている。もっとも、逆に内周面6bを下向きに出っ張る形に傾斜させて押し出しリフトが高くなる勾配面に形成した構成で同様に実施することも可能である。
内管4の突起型ブロック8は、前記S波伝播ブロック6に接触しない上方の退避位置から下向き方向へ移動させると、先ずはS波伝播ブロック6の内周面6bとの接触を開始し、同内周面6bの傾斜勾配にしたがって押し出しを開始し、同内周面6bの終端に至る手前の位置(図4Bを参照)までの移動でS波伝播ブロック6を窓孔の外方へ必要充分に押し出してボーリング孔2の孔壁面へ圧着させS波の伝播を可能にする有効高さを有するように設計して構成されている。
In the case of the illustrated example, the inner peripheral surface 6b of the S wave propagation block 6 is formed in a slope surface that is inclined so as to protrude downward and the extrusion lift becomes higher. However, on the contrary, the inner peripheral surface 6b can be inclined in a downward projecting manner so as to be similarly formed with a configuration in which the inner surface 6b is formed on a sloped surface where the extrusion lift becomes high.
When the protruding block 8 of the inner tube 4 is moved in the downward direction from the upper retracted position where it does not contact the S wave propagation block 6, it first starts to contact the inner peripheral surface 6b of the S wave propagation block 6, The extrusion is started according to the slope of the inner peripheral surface 6b, and the S wave propagation block 6 is required to the outside of the window hole by moving to a position just before reaching the end of the inner peripheral surface 6b (see FIG. 4B). It is designed and constructed so as to have an effective height that can be sufficiently extruded and crimped to the hole wall surface of the boring hole 2 to allow propagation of S waves.

したがって、地盤の異方性調査を終了した後、前記内管4を操作して突起型ブロック8を上向き方向へ移動させ退避させると、S波伝播ブロック6に働く前記復元要素16の復元力により、各S波伝播ブロック6は窓孔の開口面よりも内方の元位置へ復元し格納されるのである。図4C中の符号17はS波伝播ブロック6の格納位置を規定する位置決めストッパである。   Therefore, after the ground anisotropy investigation is completed, when the inner tube 4 is operated to move the protruding block 8 upward and retract, the restoring force of the restoring element 16 acting on the S wave propagation block 6 Each S wave propagation block 6 is restored and stored in the original position inside the opening surface of the window hole. Reference numeral 17 in FIG. 4C denotes a positioning stopper that defines the storage position of the S wave propagation block 6.

以上に本発明を図示した実施例に基づいて説明したが、本発明は上記実施例の限りではない。本発明の要旨及び技術的思想を逸脱しない範囲で、いわゆる当業者が必要に応じて行う設計変更や変形、応用の態様で種々に実施されるものであり、それらを本発明が包含することを主張する。   Although the present invention has been described based on the illustrated embodiment, the present invention is not limited to the above embodiment. The present invention can be implemented in various ways in design changes, modifications, and applications that are made by those skilled in the art as needed without departing from the spirit and technical idea of the present invention. Insist.

A、Bは本発明のS波発生機構をボーリング孔内へ挿入した状態を概念的に示す水平断面図と縦断面図である。A and B are a horizontal sectional view and a longitudinal sectional view conceptually showing a state in which the S wave generating mechanism of the present invention is inserted into a borehole. A、BはS波発生機構をボーリング孔内で各伝播ブロックが孔壁面へ圧着するようにした使用状態を概念的に示す水平断面図と縦断面図である。A and B are a horizontal sectional view and a longitudinal sectional view conceptually showing a use state in which each propagation block is pressure-bonded to a hole wall surface in a boring hole with an S wave generating mechanism. A、BはS波発生機構をボーリング孔内から引き揚げられる状態にした構成を概念的に示す水平断面図と縦断面図である。A and B are a horizontal sectional view and a longitudinal sectional view conceptually showing the configuration in which the S wave generating mechanism is pulled up from the borehole. A、Bは異なる実施例のS波発生機構をボーリング孔内へ挿入した状態で概念的に示す水平断面図と縦断面図である。CはS波伝播ブロックの出入り可能構造を示す水平断面図である。FIGS. 7A and 7B are a horizontal sectional view and a longitudinal sectional view conceptually showing a state in which an S wave generating mechanism of a different embodiment is inserted into a boring hole. FIGS. C is a horizontal sectional view showing a structure allowing the S wave propagation block to enter and exit. 本発明の原位置試験装置を使用してSV波により地盤の異方性を調査する方法を概念的に示す断面図である。It is sectional drawing which shows notionally the method of investigating the anisotropy of a ground by SV wave using the in-situ test apparatus of this invention. 本発明の原位置試験装置を使用してSH波により地盤の異方性を調査する方法を概念的に示す断面図である。It is sectional drawing which shows notionally the method of investigating the anisotropy of a ground by SH wave using the in-situ test apparatus of this invention.

符号の説明Explanation of symbols

1 調査対象地盤
2 ボーリング孔
3 外管
4 内管
5 S波発生機構
6 S波伝播ブロック
20 上下方向の打撃
21 水平回転
12、13 S波センサー
6a、6b S波伝播ブロック
7 回転軸
15 観測装置
DESCRIPTION OF SYMBOLS 1 Investigation object ground 2 Boring hole 3 Outer tube 4 Inner tube 5 S wave generation mechanism 6 S wave propagation block 20 Vertical hit | damage 21 Horizontal rotation 12, 13 S wave sensor 6a, 6b S wave propagation block 7 Rotating shaft 15 Observation apparatus

Claims (4)

調査対象地盤中に掘削したボーリング孔の中へ挿入される外管と、前記外管の中へほぼ同心配置に内管を挿入し組み合わせて成るS波発生機構と、観測点のS波センサーおよび観測装置とからなり、
前記S波発生機構における外管の外周壁に窓孔が複数形成され、各窓孔には、同窓孔の内外方向へ出入り可能にS波伝播ブロックが設置されており、
前記内管には、前記S波伝播ブロックを窓孔の外方へ押し出す突起型ブロックが各S波伝播ブロックと対応する配置に設けられており、
前記S波発生機構の外管と内管は、各S波伝播ブロックが窓孔の開口面よりも内方へ引っ込んだ格納状態でボーリング孔の中へ挿入され、所定の測定深度において内管を操作し突起型ブロックにより各S波伝播ブロックを窓孔の外方へ押し出させボーリング孔の孔壁面へ圧着させること、および内管を通じてS波を発生させ、観測点のS波センサーおよび観測装置によりS波速度測定を行い、測定後には内管を操作して突起型ブロックを退避させ、各S波伝播ブロックを窓孔の開口面よりも内方の位置へ復元・格納させ、S波発生機構たる外管および内管は地上へ引き揚げられ、又は異なる測定位置へ移動されることを特徴とする、地盤の異方性を調査する原位置試験装置。
An outer tube inserted into a bored hole excavated in the surveyed ground, an S wave generation mechanism formed by inserting and combining the inner tube into the outer tube in a substantially concentric arrangement, an S wave sensor at the observation point, and Consisting of observation equipment,
A plurality of window holes are formed in the outer peripheral wall of the outer tube in the S wave generating mechanism, and an S wave propagation block is installed in each window hole so as to be able to go in and out of the window hole,
The inner tube is provided with a protruding block that pushes the S wave propagation block outward of the window hole in an arrangement corresponding to each S wave propagation block,
The outer tube and the inner tube of the S wave generating mechanism are inserted into the borehole in a retracted state in which each S wave propagation block is retracted inward from the opening surface of the window hole, and the inner tube is inserted at a predetermined measurement depth. Operate and push out each S wave propagation block to the outside of the window hole by the projection type block and press it to the hole wall surface of the boring hole, and generate S wave through the inner tube, by the S wave sensor and observation device at the observation point S wave velocity measurement is performed, and after the measurement, the inner tube is operated to retract the protruding block, and each S wave propagation block is restored and stored in a position inward of the opening surface of the window hole. An in-situ testing apparatus for investigating the anisotropy of the ground, wherein the outer and inner pipes are pulled up to the ground or moved to different measurement positions.
S波発生機構のS波伝播ブロックは、水平回転において共通する一方の端部を垂直方向の回転軸により外管の窓孔の内外方向へほぼ水平方向に回転して出入りが可能に設置され、且つ復元力を与えるバネ等の復元要素が設置されており、S波伝播ブロックの内周面には前記水平回転において同一の方向に前記回転軸の位置を基点として押し出しリフトが高くなる勾配面が形成されており、内管の突起型ブロックは前記S波伝播ブロックに接触しない退避位置から水平回転を始めて同S波伝播ブロックの内周面の終端に至る手前位置までの回転でS波伝播ブロックを窓孔の外方へ押し出しボーリング孔の孔壁面へ圧着させる有効高さを有する構成とされ、前記内管の操作で突起型ブロックを逆回転させて退避させると、各S波伝播ブロックに働く前記復元力により各S波伝播ブロックは窓孔の開口面よりも内方の元位置へ復元し格納される構成であることを特徴とする、請求項1に記載した地盤の異方性を調査する原位置試験装置。   The S wave propagation block of the S wave generating mechanism is installed so that it can be moved in and out by rotating one end common to horizontal rotation in the horizontal direction to the inside and outside of the window hole of the outer tube by the vertical rotation axis, In addition, a restoring element such as a spring for providing a restoring force is installed, and an inner surface of the S wave propagation block has a gradient surface in which the lift is increased in the same direction in the horizontal rotation with the position of the rotation axis as a base point. The projecting block of the inner tube is formed so that the S-wave propagation block is rotated by a rotation from a retracted position that does not contact the S-wave propagation block to a front position that starts horizontal rotation and reaches the end of the inner peripheral surface of the S-wave propagation block Is pushed out to the outside of the window hole and crimped to the hole wall surface of the boring hole. When the projecting block is rotated backward by the operation of the inner tube, it moves to each S wave propagation block. 2. The ground anisotropy according to claim 1, wherein each of the S wave propagation blocks is restored and stored in an original position inward of the opening surface of the window hole by the restoring force. In-situ testing equipment. S波発生機構のS波伝播ブロックは、外管の窓孔へ内外方向へ略水平に出入り可能に設置され、且つ復元力を与えるバネ等の復元要素が設置されており、S波伝播ブロックの内周面は上・下方向に傾斜して押し出しリフトが高くなる勾配面に形成されており、内管の突起型ブロックは前記S波伝播ブロックに接触しない上方又は下方の退避位置から上・下方向に移動させると同S波伝播ブロックの内周面の終端に至る手前位置までの移動でS波伝播ブロックを窓孔の外方へ押し出しボーリング孔の孔壁面へ圧着させる有効高さを有する構成とされ、前記内管の操作で突起型ブロックを逆方向へ移動させ退避させると、各S波伝播ブロックに働く前記復元力により各S波伝播ブロックは窓孔の開口面よりも内方の元位置へ復元し格納される構成であることを特徴とする、請求項1に記載した地盤の異方性を調査する原位置試験装置。   The S-wave propagation block of the S-wave generation mechanism is installed so as to be able to enter and exit from the window hole of the outer tube substantially horizontally, and a restoring element such as a spring for providing restoring force is installed. The inner peripheral surface is formed in a slope surface that inclines upward and downward to increase the extrusion lift, and the protruding block of the inner tube moves upward and downward from the upper or lower retracted position that does not contact the S wave propagation block. When moving in the direction, the structure has an effective height that pushes the S wave propagation block outward of the window hole and crimps it to the hole wall surface of the boring hole by moving to a position before reaching the end of the inner peripheral surface of the S wave propagation block When the projecting block is moved in the reverse direction and retracted by the operation of the inner tube, each S wave propagation block is moved inward from the opening surface of the window hole by the restoring force acting on each S wave propagation block. Configuration restored to location and stored Characterized in that there, in situ testing apparatus for investigating the anisotropy of the ground according to claim 1. S波発生機構の内管を通じて発生させるS波は、内管へ上下方向の打撃を加えて発生させるせん断方向が鉛直成分となるSV波、又は内管へ水平方向の回転を加えて発生させるせん断方向が水平成分となるSH波の2種類とされ、これら2種類のS波を観測点の2点の振動センサーおよび観測装置で観測を行い、同じ波形の時間差からSV波とSH波のS波速度を算定して地盤の異方性を調査することを特徴とする、請求項1〜3のいずれか一に記載した地盤の異方性を調査する原位置試験装置。   The S wave generated through the inner tube of the S wave generation mechanism is an SV wave whose vertical direction is generated by applying a vertical hit to the inner tube, or shear generated by applying a horizontal rotation to the inner tube. There are two types of SH waves whose directions are horizontal components, and these two types of S waves are observed with two vibration sensors and observation devices at the observation point. From the time difference between the same waveforms, the SV wave and the SH wave The in-situ testing apparatus for investigating the anisotropy of the ground according to any one of claims 1 to 3, wherein the anisotropy of the ground is investigated by calculating a speed.
JP2005245756A 2005-08-26 2005-08-26 In situ testing device for investigating anisotropy of foundation Pending JP2007057472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005245756A JP2007057472A (en) 2005-08-26 2005-08-26 In situ testing device for investigating anisotropy of foundation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005245756A JP2007057472A (en) 2005-08-26 2005-08-26 In situ testing device for investigating anisotropy of foundation

Publications (1)

Publication Number Publication Date
JP2007057472A true JP2007057472A (en) 2007-03-08

Family

ID=37921090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005245756A Pending JP2007057472A (en) 2005-08-26 2005-08-26 In situ testing device for investigating anisotropy of foundation

Country Status (1)

Country Link
JP (1) JP2007057472A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017687A (en) * 2009-07-07 2011-01-27 Korea Inst Of Geoscience & Mineral Resources Transverse wave generator for elastic wave exploration
JP2011508876A (en) * 2007-12-18 2011-03-17 シュルンベルジェ ホールディングス リミテッド System and method for improving surface electromagnetic exploration
KR101033645B1 (en) 2009-12-18 2011-05-12 한국철도기술연구원 Horizontal geophone with automatic alignment correction arrangement, and borehole apparatus having horizontal geophone for measuring ground-borne vibration
KR101049974B1 (en) * 2009-12-18 2011-07-15 한국철도기술연구원 Vertical velocity sensor with automatic direction correction and borehole vibration measuring device including it
KR101105744B1 (en) 2010-10-27 2012-01-17 한국철도기술연구원 Horizontal geophone with automatic alignment correction and noise control, and borehole apparatus having horizontal geophone for measuring ground-bore vibration
KR101105743B1 (en) 2010-10-27 2012-01-17 한국철도기술연구원 Vertical geophone with automatic alignment correction and noise control, and borehole apparatus having vertical geophone for measuring ground-bore vibration
JP2019124070A (en) * 2018-01-17 2019-07-25 道三 市原 Confirming method of arrival at support layer, and vibration generating device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508876A (en) * 2007-12-18 2011-03-17 シュルンベルジェ ホールディングス リミテッド System and method for improving surface electromagnetic exploration
JP2011017687A (en) * 2009-07-07 2011-01-27 Korea Inst Of Geoscience & Mineral Resources Transverse wave generator for elastic wave exploration
KR101033645B1 (en) 2009-12-18 2011-05-12 한국철도기술연구원 Horizontal geophone with automatic alignment correction arrangement, and borehole apparatus having horizontal geophone for measuring ground-borne vibration
KR101049974B1 (en) * 2009-12-18 2011-07-15 한국철도기술연구원 Vertical velocity sensor with automatic direction correction and borehole vibration measuring device including it
KR101105744B1 (en) 2010-10-27 2012-01-17 한국철도기술연구원 Horizontal geophone with automatic alignment correction and noise control, and borehole apparatus having horizontal geophone for measuring ground-bore vibration
KR101105743B1 (en) 2010-10-27 2012-01-17 한국철도기술연구원 Vertical geophone with automatic alignment correction and noise control, and borehole apparatus having vertical geophone for measuring ground-bore vibration
JP2019124070A (en) * 2018-01-17 2019-07-25 道三 市原 Confirming method of arrival at support layer, and vibration generating device
JP7025220B2 (en) 2018-01-17 2022-02-24 道三 市原 Vibration device

Similar Documents

Publication Publication Date Title
JP2007057472A (en) In situ testing device for investigating anisotropy of foundation
SA518390687B1 (en) Detecting Weak Interfacial Layers In Formations With Acoustic Logging Devices
US7897915B2 (en) Segmented tubular body
US9823374B2 (en) Methods and apparatus for wellbore evaluation
JP2013545980A (en) System and method for communicating data between an excavator and a surface device
JP2017090101A (en) Non-destructive inspection method and non-destructive inspection system of prefabricated concrete pile installed underground
JP2017009575A (en) Method and system for evaluating grout filling degree
JP2008275319A (en) Portable young&#39;s modulus measuring device and method, and breaking strength measuring device
Groccia et al. Quantifying rock mass bulking at a deep underground nickel mine
US9482087B2 (en) Geomechanical logging tool
JP4071988B2 (en) Ground survey method using S-wave amplitude associated with impact penetration
Hong et al. Evaluation of driving energy transferred to split spoon sampler for accuracy improvement of standard penetration test
KR100745036B1 (en) In-hole seismic method for measuring dynamic stiffness of subsurface materials
CN107869156B (en) Parallel seismic wave method determines the detection method of foundation pile length
JP2007010473A (en) Position measuring method of base rock injection material
JP6256880B2 (en) Ground survey method and ground survey device
US7152467B2 (en) Parallel seismic depth testing using a cone penetrometer
KR20040052961A (en) The non-destruction test method for the spot of pipe, and the program of the read to record vehicle by the computer
KR100767595B1 (en) In-hole seismic testing device for measuring dynamic stiffness of subsurface materials
JP2019109168A (en) Bedrock evaluation method
CN103675892B (en) A kind of high time precision focus hammer
CN113279435A (en) Foundation pile quality nondestructive testing method based on side-hole diffraction wave analysis
RU2444030C1 (en) Well seismic tool
US11181656B2 (en) Systems and methods for acquiring orthogonal pairs of waveforms for acoustic well logging
Gandolfo* et al. The parallel seismic method for foundation depth evaluation: A case study in Arthur Alvim, São Paulo, Brazil