JP2007057463A - Preparing method of solder sample, solder sample, and analysis method of solder sample - Google Patents

Preparing method of solder sample, solder sample, and analysis method of solder sample Download PDF

Info

Publication number
JP2007057463A
JP2007057463A JP2005245594A JP2005245594A JP2007057463A JP 2007057463 A JP2007057463 A JP 2007057463A JP 2005245594 A JP2005245594 A JP 2005245594A JP 2005245594 A JP2005245594 A JP 2005245594A JP 2007057463 A JP2007057463 A JP 2007057463A
Authority
JP
Japan
Prior art keywords
solder
sample
solder sample
lead
solder material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005245594A
Other languages
Japanese (ja)
Other versions
JP4556810B2 (en
Inventor
Tamao Kojima
環生 小島
Satoru Otake
悟 大竹
Yoshinori Wada
義則 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005245594A priority Critical patent/JP4556810B2/en
Publication of JP2007057463A publication Critical patent/JP2007057463A/en
Application granted granted Critical
Publication of JP4556810B2 publication Critical patent/JP4556810B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem, wherein quantitative analysis of a solder material cannot be performed by an X-ray fluorescence analysis device because a solder sample used as a quantitative reference does not exist and sufficient analysis accuracy is not acquired by a surface analyzing apparatus because a component contained in a molten solder segregates during cooling and solidification. <P>SOLUTION: A solder sample of which the contained component hardly segregates can be prepared by a process of cooling and solidifying a molten solder material to produce a solder sample, a process of folding and stacking the cooled and solidified solder sample, and a process of rolling the solder sample. A simple and accurate analysis can be performed by quantitatively analyzing the solder sample with the surface analyzing apparatus. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子部品等の接合に用いるハンダ材料からなるハンダ試料の作製方法、ハンダ試料及びハンダ試料の分析方法に関するものである。   The present invention relates to a method for producing a solder sample made of a solder material used for joining electronic components and the like, a solder sample, and a method for analyzing a solder sample.

種々の電気製品及び/又は電子機器に用いられる電子回路基板を作製するための実装技術に採用されているプロセスの1つにフローハンダ付けプロセスがある。   One of the processes adopted in the mounting technology for producing an electronic circuit board used for various electric products and / or electronic devices is a flow soldering process.

以下、一般的なフローハンダ付けプロセスについて説明する。このプロセスは、ハンダ付けに先立って、まず、電子部品のリード線をスルーホールに挿入し、電子部品が上面側に配置されたプリント基板を準備する。この時点で、スルーホールの壁面ならびにプリント基板の上面側および下面側のスルーホールを取り囲む領域には、銅箔などからなるランドが形成されており、このランドはプリント基板の回路パターンに接続されている。   Hereinafter, a general flow soldering process will be described. In this process, prior to soldering, first, a lead wire of an electronic component is inserted into a through hole to prepare a printed board on which the electronic component is arranged on the upper surface side. At this time, land made of copper foil or the like is formed on the wall surface of the through hole and the region surrounding the through hole on the upper surface side and the lower surface side of the printed circuit board, and this land is connected to the circuit pattern of the printed circuit board. Yes.

次に、このようなプリント基板を、フローハンダ付け装置内で搬送手段によってほぼ一定速度で多数搬送して、ハンダ槽の上方を通過させる。ハンダ槽内ではハンダ材料が予め溶融状態にされており、更にハンダ槽に設けられているポンプ手段等によって、溶融しているハンダ材料はハンダ噴流を形成している。このプロセスにおいてハンダ槽には、基板のスルーホールに入り込み得る量よりも遙かに多量のハンダ材料が溶融状態で入れられている。そのハンダ材料を溶融状態に維持するために、ハンダ槽は使用するハンダ材料の融点よりも10〜50℃程高い温度に設定されている。従って、ハンダ材料は、このハンダ槽内では溶融状態で存在するので、液状の挙動を示すことになる。従って、ハンダ槽内のハンダ噴流は、上述したハンダ槽の上方を通過しつつあるプリント基板の下面側表面に振りかけられて接触する。   Next, a large number of such printed circuit boards are conveyed at a substantially constant speed by the conveying means in the flow soldering apparatus, and passed over the solder tank. In the solder tank, the solder material is melted in advance, and the melted solder material forms a solder jet by pump means or the like provided in the solder tank. In this process, a much larger amount of solder material is put in the solder tank in a molten state than the amount that can enter the through hole of the substrate. In order to maintain the solder material in a molten state, the solder bath is set to a temperature higher by about 10 to 50 ° C. than the melting point of the solder material to be used. Accordingly, since the solder material exists in a molten state in the solder tank, it exhibits a liquid behavior. Therefore, the solder jet in the solder tank is sprinkled on and contacted with the lower surface of the printed circuit board passing through the solder tank described above.

プリント基板の下面側表面に適用された液状のハンダ材料は、電子部品のリード線とスルーホールの内壁との間の環状空間を、プリント基板の下面側から毛細管現象によって濡れ上がりながらスルーホール内を満たし、その後、温度低下により固化して、ハンダ材料からなる接合部を形成する。このようにして、ハンダ材料によって、電子部品のリード線とプリント基板のランドが電気的に接合され、電子回路基板が作製される。   The liquid solder material applied to the lower surface of the printed circuit board passes through the annular space between the lead wire of the electronic component and the inner wall of the through hole while getting wet by capillary action from the lower surface of the printed circuit board. After that, it is solidified by lowering the temperature to form a joint made of a solder material. In this way, the lead wire of the electronic component and the land of the printed board are electrically joined by the solder material, and the electronic circuit board is manufactured.

一方、上記のようにして供給された大部分のハンダ材料は、スルーホールの中に入ることなく重力により溶融状態のままハンダ槽内に落下し、再び溶融ハンダ材料の一部となって、循環して使用される。この循環の過程で、基板の下面側に接触した溶融状態のハンダ材料は、実際には、基板のみではなく、基板表面に形成されている配線パターン、並びに電子部品のリード線部分のメッキ部及び母材等にも接触し得る。高温で溶融状態のハンダ材料が接触することによって、配線パターン並びに電子部品のリード線部分のメッキ部及び母材等に使用されている材料の成分はハンダ材料に溶出し、溶融ハンダ材料中の不純物となる。   On the other hand, most of the solder material supplied as described above falls into the solder tank in a molten state by gravity without entering the through hole, and becomes a part of the molten solder material again and circulates. Used. In this circulation process, the molten solder material in contact with the lower surface side of the substrate is actually not only the substrate, but also the wiring pattern formed on the substrate surface, and the plating portion of the lead wire portion of the electronic component and It can also contact the base material. By contact with the molten solder material at a high temperature, the components of the material used in the wiring pattern and the plated portion of the lead part of the electronic component and the base material are eluted into the solder material, and impurities in the molten solder material It becomes.

近年、地球環境保護の関心が高まる中、電子回路基板などの産業廃棄物の処理についての法規制も進みつつあり、鉛も世界的に法規制の対象となりつつある。そのような法規制に対応して、電子部品実装に用いられるハンダ材料は、鉛ハンダ(Pb−Sn系ハンダ)材料から、鉛を含まないハンダ材料、いわゆる鉛フリーハンダ材料への移行が図られつつある。   In recent years, with increasing interest in protecting the global environment, laws and regulations concerning the disposal of industrial waste such as electronic circuit boards are also progressing, and lead is also becoming the subject of legal regulations worldwide. Corresponding to such laws and regulations, the solder material used for electronic component mounting is shifted from lead solder (Pb-Sn solder) material to lead-free solder material, so-called lead-free solder material. It's getting on.

ハンダ材料として鉛フリーハンダ材料が使用される場合には、上述のようなフローハンダ付けプロセスにおいて、高温で溶融状態のハンダ材料が接触する電子部品から、特に電子部品のリード線部分のメッキ部から、そこに用いられている鉛成分が溶融状態のハンダ材料に溶出し、そのハンダ材料がハンダ槽に戻ることによって、鉛成分がハンダ材料中の不純物成分となり得る。鉛フリーハンダ材料が含有し得る鉛成分の許容値は、例えばEUにおけるRoHS(Restriction of Hazardous Substances)指令によれば1000ppmと非常に低い値であるので、フローハンダ付けプロセスに用いられるハンダ槽を管理する上で、槽内のハンダ材料の組成をモニタリングする必要がある。   When lead-free solder material is used as the solder material, in the above-described flow soldering process, from the electronic component that contacts the molten material at a high temperature, particularly from the plating portion of the lead wire portion of the electronic component The lead component used therein elutes into the molten solder material, and the solder material returns to the solder bath, so that the lead component can become an impurity component in the solder material. The allowable value of the lead component that can be contained in the lead-free solder material is, for example, a very low value of 1000 ppm according to the RoHS (Restriction of Hazardous Substances) directive in the EU, so the solder tank used in the flow soldering process is controlled. Therefore, it is necessary to monitor the composition of the solder material in the tank.

ハンダ材料の組成をモニタリングするために用い得る方法として、原子吸光分析法、ICP(高周波誘導結合プラズマ)発光分光分析法、蛍光X線分析法等のいくつかの方法が知られている。これらの方法はそれぞれ目的及び用途に応じて使い分けられているが、サンプリングしてからその結果が得られるまでの時間的間隔(タイムスパン)が相対的に短いという点を重視する場合には、蛍光X線分析法が適している。   As methods that can be used to monitor the composition of the solder material, several methods such as atomic absorption spectrometry, ICP (radio frequency inductively coupled plasma) emission spectroscopy, and fluorescent X-ray analysis are known. These methods are used according to the purpose and application. However, if the importance is placed on the relatively short time interval (time span) from sampling until the result is obtained, fluorescence can be used. X-ray analysis is suitable.

蛍光X線分析に用いる試料については、液体若しくは粉体のような流動性を有する形態よりも固体であることが好ましいこと、及びその固体試料は一方の面が平滑面であることが好ましいこと、並びに、1mm程度の厚みを有することが必要であることが、例えば特許文献1等から知られている。このような試料の主成分が金属材料である場合には、照射したX線がサンプル内部に入射する深度は、照射したX線の強度とサンプルの組成に基づいて詳細にみると異なるが、金属材料の場合には一般に、表面から数百nm深さまでの情報が得られる。
特開平07−128262号公報
About the sample used for X-ray fluorescence analysis, it is preferable that it is solid rather than the form which has fluidity | liquidity like a liquid or powder, and it is preferable that the one side of the solid sample is a smooth surface, In addition, it is known from Patent Document 1 and the like that it is necessary to have a thickness of about 1 mm. When the main component of such a sample is a metal material, the depth at which the irradiated X-ray enters the sample differs depending on the intensity of the irradiated X-ray and the composition of the sample. In the case of materials, information from the surface to a depth of several hundreds of nanometers is generally obtained.
JP 07-128262 A

蛍光X線分析法の操作は簡便であるが、十分な定量分析精度を得るためには、定量基準となる試料を準備して、あらかじめ装置の補正をしておく必要がある。現在、樹脂系材料および一般的な金属材料の定量基準試料については良好な市販品が存在するが、ハンダ材料について良好な市販品は存在していない。その理由は、溶融状態のハンダ材料を冷却固化させる際に、偏析が生じ易いためであると考えられている。   Although the operation of the fluorescent X-ray analysis method is simple, in order to obtain sufficient quantitative analysis accuracy, it is necessary to prepare a sample serving as a quantitative reference and correct the apparatus in advance. Currently, there are good commercial products for quantitative reference samples of resin-based materials and general metal materials, but there are no good commercial products for solder materials. The reason is considered to be that segregation is likely to occur when the molten solder material is cooled and solidified.

ハンダ材料の固化した試料に偏析が生じている場合には、試料の表面若しくは表面に近い部分と、それより内部との間で、従って厚み方向に関して組成が異なっている。特に、ハンダ材料中の鉛成分を定量分析する場合に、鉛成分が偏析することによって、鉛成分の含有率が試料の表面部分と試料の内部とで異なり、一般に試料の内部よりも試料の表面部分の方がより高い鉛成分の含有率を示す傾向がある。そのような試料を蛍光X線分析にかけたとしても、試料の表面又は表面に近い部分についての情報しか得られず、正確な分析結果を得ることができない。従って、これまでは十分な精度の分析を簡便に行うことが困難であった。   When segregation occurs in the solidified sample of the solder material, the composition differs between the surface of the sample or a portion close to the surface and the inside thereof, and thus in the thickness direction. In particular, when quantitatively analyzing the lead component in the solder material, the segregation of the lead component causes the lead component content to differ between the sample surface and the sample interior, and generally the sample surface is greater than the sample interior. The part tends to show a higher content of lead component. Even if such a sample is subjected to fluorescent X-ray analysis, only information about the surface of the sample or a portion close to the surface can be obtained, and an accurate analysis result cannot be obtained. Therefore, until now, it has been difficult to easily perform analysis with sufficient accuracy.

本発明は、前記従来の課題を解決するもので、ハンダ試料の作製方法、ハンダ試料、及びハンダ試料の分析方法を提供するものである。   The present invention solves the above-described conventional problems, and provides a solder sample preparation method, a solder sample, and a solder sample analysis method.

上記目的を達成するため、本発明のハンダ試料の作製方法は、溶融状態のハンダ材料を冷却固化してハンダ試料とする工程と、冷却固化したハンダ試料を折畳んで重ね合わせる工程と、前記ハンダ試料を圧延する工程を有することを特徴とする。このような構成にすることで、溶融状態のハンダ材料を冷却固化してハンダ試料とする工程において、ハンダ材料の含有成分の偏析が発生しても、冷却固化したハンダ試料を折畳んで重ね合わせる工程とハンダ試料を圧延する工程により、均質化が可能であり、表面分析装置の定量基準となるハンダ試料が作製できる。   In order to achieve the above object, a method for producing a solder sample according to the present invention includes a step of cooling and solidifying a molten solder material to form a solder sample, a step of folding and superimposing the cooled and solidified solder sample, and the solder It has the process of rolling a sample. With such a configuration, in the process of cooling and solidifying the molten solder material to obtain a solder sample, even if segregation of the components contained in the solder material occurs, the cooled and solidified solder sample is folded and overlapped. Homogenization is possible by the process and the process of rolling the solder sample, and a solder sample that serves as a quantitative reference for the surface analyzer can be produced.

また、本発明のハンダ試料は、複層構造であって、単層の厚みが990nm以下であることを特徴とする。また複層構造内の各々の単層が同一組成からなることを特徴とする。このような構成にすることで、表面分析によるハンダ試料の定量分析が可能となり、また、予めハンダ試料の組成を明確にしておくことで、表面分析装置の定量基準試料として活用できる。   The solder sample of the present invention has a multilayer structure, and a single layer has a thickness of 990 nm or less. In addition, each single layer in the multilayer structure has the same composition. With such a configuration, it is possible to quantitatively analyze the solder sample by surface analysis, and by clarifying the composition of the solder sample in advance, it can be used as a quantitative reference sample for the surface analyzer.

また、本発明のハンダ試料の分析方法は、前記ハンダ試料の作製方法によって作製されたハンダ試料を表面分析装置で定量分析することを特徴とする。組成が均質化されたハンダ試料を用いることで、前記ハンダ試料を表面分析装置で簡便かつ高精度に分析できる。   The solder sample analysis method of the present invention is characterized in that the solder sample produced by the solder sample production method is quantitatively analyzed by a surface analyzer. By using a solder sample having a homogenized composition, the solder sample can be easily and accurately analyzed with a surface analyzer.

以上のように、本発明のハンダ試料の作製方法によれば、ハンダ試料の含有成分の均質化が可能で、表面分析装置の定量基準となるハンダ試料を得ることができる。   As described above, according to the method for producing a solder sample of the present invention, the components contained in the solder sample can be homogenized, and a solder sample serving as a quantitative reference for the surface analyzer can be obtained.

また、本発明のハンダ試料は、表面分析による定量分析が可能であるため、ハンダ試料の組成を予め明確にしておくことで、表面分析装置の定量基準として活用できる。   In addition, since the solder sample of the present invention can be quantitatively analyzed by surface analysis, it can be used as a quantitative reference for a surface analyzer by clarifying the composition of the solder sample in advance.

また、本発明のハンダ試料の分析方法によれば、組成が均質化されたハンダ試料を用いることで、表面分析によるハンダ材料組成の簡便かつ高精度な分析が実現できる。   Further, according to the solder sample analysis method of the present invention, by using a solder sample whose composition is homogenized, a simple and highly accurate analysis of a solder material composition by surface analysis can be realized.

以下本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明のハンダ試料の作製方法は、溶融状態のハンダ材料を冷却固化してハンダ試料とする工程と、冷却固化したハンダ材料を折畳んで重ね合わせる工程と、ハンダ試料を圧延する工程を有することを特徴とする。   The method for producing a solder sample of the present invention includes a step of cooling and solidifying a molten solder material to form a solder sample, a step of folding and superimposing the cooled and solidified solder material, and a step of rolling the solder sample. It is characterized by.

蛍光X線分析装置でハンダ試料を分析する場合、一般的に表面から数百nm深さまでの情報が得られる。従って、圧延によって、数百nm以下の厚みに成型すれば、蛍光X線分析装置での定量分析においては、ハンダ試料の厚み方向の偏析は問題がなくなる。   When analyzing a solder sample with a fluorescent X-ray analyzer, information from the surface to a depth of several hundred nm is generally obtained. Therefore, if the film is formed to a thickness of several hundred nm or less by rolling, there is no problem with segregation in the thickness direction of the solder sample in the quantitative analysis using the fluorescent X-ray analyzer.

また、折畳んで重ね合わせる工程と圧延する工程を繰返すことで、面方向の偏析も低減できる。   Moreover, segregation in the surface direction can also be reduced by repeating the folding and overlapping step and the rolling step.

厚みが数百nmのハンダ材料シートは、剛性が低いため、シワや破れなど、取扱い上の課題がある。しかしながら、圧力を適正値に設定し、折畳んで重ね合わせる工程と圧延する工程を繰返すことで、薄層の重なった多層形状のハンダ試料にすることが可能で、十分な剛性が確保できるため、容易に取扱うことができる。   Since the solder material sheet having a thickness of several hundreds of nm has low rigidity, there are problems in handling such as wrinkles and tearing. However, by setting the pressure to an appropriate value and repeating the folding and overlapping process and the rolling process, it is possible to make a multilayered solder sample with thin layers, and sufficient rigidity can be secured. It can be handled easily.

本発明では、まず、ハンダ槽などから溶融状態のハンダ材料を取出し、冷却固化する。ハンダ槽には、Sn−Ag系、Sn−Bi系、Sn−Zn系、Sn−Cu系、Sn−Au系、Sn−Sb系、Sn−Ag−Cu系、Sn−Ag−Bi系、及びSn−Ag−Bi−Cu系から選ばれる何れかの鉛フリーハンダ材料が貯留されている。ハンダ材料の取出し量は、特に限定するものではなく、取出したハンダ材料の一部または全量を冷却固化すればよい。冷却方法は、自然放冷や冷却治具を用いた強制冷却など限定するものではない。ハンダ試料の折畳んで重ね合わせる工程には、工具やプレス機などを使用することが可能で、ハンダ試料の強度が高く、折畳めない場合は、プレス機などでハンダ試料を薄膜化した後に折畳んでもよい。次に、折畳んだハンダ試料の圧延は、ローラー圧延機や平板圧延機などを用いて行い、圧力の設定は、ハンダ試料の千切れなどが無く、かつ効率的に圧延できる条件に設定するのが好ましい。折畳んで重ね合わせる工程と圧延する工程の繰り返し回数は、1回目から均質化の効果が得られるが、好ましくは、層状構造となるハンダ試料の各層の厚みが990nm以下、さらに好ましくは、120nm以下になるように設定する。図1は、本発明のハンダ試料1の断面図を示す図である。   In the present invention, first, a molten solder material is taken out from a solder tank or the like, and cooled and solidified. The solder bath includes Sn-Ag, Sn-Bi, Sn-Zn, Sn-Cu, Sn-Au, Sn-Sb, Sn-Ag-Cu, Sn-Ag-Bi, and Any lead-free solder material selected from the Sn—Ag—Bi—Cu system is stored. The amount of the solder material taken out is not particularly limited, and a part or all of the taken out solder material may be cooled and solidified. The cooling method is not limited to natural cooling or forced cooling using a cooling jig. In the process of folding and stacking the solder sample, tools or a press machine can be used. If the solder sample has high strength and cannot be folded, after the solder sample is thinned with a press machine, etc. You may fold it. Next, the folded solder sample is rolled using a roller mill, a flat plate mill, etc., and the pressure is set so that the solder sample is not broken and can be rolled efficiently. Is preferred. The number of repetitions of the folding and superimposing step and the rolling step can provide a homogenizing effect from the first time. Preferably, the thickness of each layer of the solder sample having a layered structure is 990 nm or less, more preferably 120 nm or less. Set to be. FIG. 1 is a cross-sectional view of a solder sample 1 of the present invention.

また、折畳んで重ね合わせる工程と圧延する工程の繰り返しについては、折畳みと圧延を1回ずつ交互に行うことに限定するものではなく、折畳みと圧延の頻度は、任意に設定してよい。   In addition, the repetition of the folding and overlapping process and the rolling process is not limited to alternately performing folding and rolling once, and the frequency of folding and rolling may be arbitrarily set.

さらに、作製したハンダ試料1を、表面分析装置の定量基準として活用するためには、ハンダ試料1の組成を定量化する必要がある。本発明のハンダ試料1の作製方法における同一条件で、複数個のハンダ試料1を作製し、前記複数個のハンダ試料1の一部をJISZ3910などの分析方法で定量測定することで、同一条件で作製したハンダ試料1の組成を定量表現することができる。   Furthermore, in order to utilize the produced solder sample 1 as a quantitative standard for the surface analyzer, it is necessary to quantify the composition of the solder sample 1. A plurality of solder samples 1 are manufactured under the same conditions in the method of manufacturing the solder sample 1 of the present invention, and a part of the plurality of solder samples 1 is quantitatively measured by an analysis method such as JISZ3910, so that the same conditions are satisfied. The composition of the manufactured solder sample 1 can be quantitatively expressed.

本発明のハンダ材料組成の定量分析方法は、前記のハンダ試料1の作製方法によって作製されたハンダ試料1を用いて定量分析することを特徴とする。   The quantitative analysis method of the solder material composition of the present invention is characterized in that quantitative analysis is performed using the solder sample 1 produced by the method for producing the solder sample 1 described above.

本発明における溶融ハンダを冷却固化および前記冷却固化したハンダ材料を折畳む工程および前記折畳んだハンダ材料を圧延する工程は、前記表面分析装置の定量基準となるハンダ試料1の作製方法における工程と同様で良い。溶融状態のハンダ材料を冷却固化および前記冷却固化したハンダ材料を折畳む工程および前記折畳んだハンダ材料を圧延する工程を経て作製したハンダ試料1は、表面分析用サンプルとして均質である状態で、蛍光X線分析や発光分光分析などの表面分析装置で定量分析を行うことが可能である。   The step of cooling and solidifying the molten solder in the present invention, the step of folding the cooled and solidified solder material, and the step of rolling the folded solder material are the steps in the method for producing the solder sample 1 which is a quantitative reference of the surface analyzer. The same is good. The solder sample 1 produced through the process of cooling and solidifying the molten solder material and folding the cooled and solidified solder material and the process of rolling the folded solder material is in a homogeneous state as a sample for surface analysis, Quantitative analysis can be performed with a surface analyzer such as fluorescent X-ray analysis or emission spectroscopic analysis.

特に、蛍光X線分析は操作が簡単で、均質である状態のハンダ試料1であれば、簡便かつ高精度に定量分析できる。   In particular, the fluorescent X-ray analysis can be performed easily and with high accuracy if the solder sample 1 is simple and homogeneous.

図2に、本発明のハンダ材料組成の簡便かつ高精度な定量分析方法の工程フローチャートを示した。   FIG. 2 shows a process flowchart of a simple and highly accurate quantitative analysis method of the solder material composition of the present invention.

(実施の形態1)
以下、本発明の実施の形態1における表面分析装置の定量基準となるハンダ試料1の作製方法について詳細に説明する。
(Embodiment 1)
Hereinafter, a method for producing the solder sample 1 serving as a quantitative reference for the surface analyzer according to Embodiment 1 of the present invention will be described in detail.

主成分が錫、銀および銅からなり、含有比率が錫96.5%、銀3%および銅0.5%の3元系鉛フリーハンダ材料が溶融したハンダ槽から、SUS製の柄杓を用いて前記鉛フリーハンダ材料を約2g取出し、前記SUS製の柄杓内で自然冷却して、前記鉛フリーハンダ材料を固化した。次に、前記固化した鉛フリーハンダ材料を油圧式平板圧延機を用いて平方センチメートルあたり2000kgの圧力で、1分間圧延した。前記圧延処理後に、前記固化した鉛フリーハンダ材料の厚みをマイクロメータで測定した結果、約1mmであった。次に、ペンチを用いて、前記圧延した鉛フリーハンダ材料を中央部分で半分に折畳んだ。次に、前記折畳んだ鉛フリーハンダ材料を前記圧延と同一条件で圧延し、厚みを測定した結果、約1mmであった。さらに、前記折畳みと、前記圧延を繰返し行い、前記圧延の都度、前記固化した鉛フリーハンダ材料の厚み測定を行った。その結果、前記鉛フリーハンダ材料の厚みは、前記圧延の都度、約1mm厚みになっていた。   Using a handle made of SUS from a solder tank in which a ternary lead-free solder material consisting mainly of tin, silver and copper and containing 96.5% tin, 3% silver and 0.5% copper is melted. Then, about 2 g of the lead-free solder material was taken out and naturally cooled in the handle cage made of SUS to solidify the lead-free solder material. Next, the solidified lead-free solder material was rolled for 1 minute using a hydraulic flat plate mill at a pressure of 2000 kg per square centimeter. As a result of measuring the thickness of the solidified lead-free solder material with a micrometer after the rolling treatment, it was about 1 mm. Next, the rolled lead-free solder material was folded in half at the center using pliers. Next, the folded lead-free solder material was rolled under the same conditions as the rolling, and the thickness was measured. As a result, it was about 1 mm. Further, the folding and the rolling were repeated, and the thickness of the solidified lead-free solder material was measured each time the rolling was performed. As a result, the thickness of the lead-free solder material was about 1 mm each time the rolling was performed.

また、前記折畳みと、前記圧延を1回行うと、前記固化した鉛フリーハンダ材料は2層構造になり、2回行うと4層構造になる。このように前記折畳みと、前記圧延を1回行う毎に、前記固化した鉛フリーハンダ材料の複層構造の層数は2倍になる。また、前述のように、前記折畳みと、前記圧延を繰返しても、前記固化した鉛フリーハンダ材料の総厚みはほぼ一定である。このため、前記折畳みと、前記圧延を1回行うと、前記固化した鉛フリーハンダ材料の複層構造内の単層の厚みは約1/2になると考えられる。   When the folding and rolling are performed once, the solidified lead-free solder material has a two-layer structure, and when it is performed twice, a four-layer structure is formed. Thus, each time the folding and rolling are performed once, the number of layers of the solidified lead-free solder material doubles. Further, as described above, even if the folding and the rolling are repeated, the total thickness of the solidified lead-free solder material is substantially constant. For this reason, when the folding and the rolling are performed once, the thickness of the single layer in the multilayer structure of the solidified lead-free solder material is considered to be about ½.

次に、電子顕微鏡を用いて、前記固化した鉛フリーハンダ材料の断面観察を行い、前記複層構造内の単層の厚みを任意で20ポイント測定し、平均値を算出した。   Next, a cross-sectional observation of the solidified lead-free solder material was performed using an electron microscope, the thickness of the single layer in the multilayer structure was arbitrarily measured at 20 points, and an average value was calculated.

表1は、前記折畳みと、前記圧延の繰返し回数と、前記複層構造内の単層の厚みの関係を示したものである。   Table 1 shows the relationship between the folding, the number of repetitions of the rolling, and the thickness of the single layer in the multilayer structure.

Figure 2007057463
Figure 2007057463

表1からは、前記折畳みと、前記圧延を1回行うと、前記複層構造内の単層の厚みが約1/2になることが確認できた。   From Table 1, it was confirmed that when the folding and the rolling were performed once, the thickness of the single layer in the multilayer structure was about ½.

次に、前記固化した鉛フリーハンダ材料中の鉛の偏析状況を、蛍光X線分析装置を用いて測定した。前記固化した鉛フリーハンダ材料の各部位から得られる鉛の特定X線強度の比較を行うことで、鉛の偏析状況の評価を行った。面内の鉛の偏析状況は、前記固化した鉛フリーハンダ材料の表面内の中央部分1点と外周部分4点の合計5部位の鉛の特定X線強度を測定し、そのバラツキから算出した。   Next, the state of segregation of lead in the solidified lead-free solder material was measured using a fluorescent X-ray analyzer. The segregation situation of lead was evaluated by comparing specific X-ray intensities of lead obtained from each part of the solidified lead-free solder material. The in-plane lead segregation situation was calculated from the variation of the specific X-ray intensities of the lead in a total of five sites including one central portion and four outer peripheral portions in the surface of the solidified lead-free solder material.

厚み方向の鉛の偏析状況は、蛍光X線分析と厚み方向の研磨を繰返し行い、厚み方向5部位の鉛の特定X線強度のバラツキから算出した。まず、表裏の中央部分の蛍光X線分析を行い、次に、表面から約0.5g研磨した後、研磨面の中央部位を蛍光X線分析を行った。前記研磨処理と研磨面の中央部分の蛍光X線分析を3回繰返し、表裏の分析結果と合わせて、厚み方向に5部位の鉛の特定X線強度データを得た。   The segregation situation of lead in the thickness direction was calculated from the variation in specific X-ray intensity of lead in five portions in the thickness direction by repeatedly performing fluorescent X-ray analysis and polishing in the thickness direction. First, fluorescent X-ray analysis was performed on the center portions of the front and back surfaces. Next, after polishing about 0.5 g from the surface, the central portion of the polished surface was subjected to fluorescent X-ray analysis. The polishing process and the fluorescent X-ray analysis of the central portion of the polished surface were repeated three times, and together with the analysis results of the front and back surfaces, specific X-ray intensity data of lead at five sites in the thickness direction was obtained.

蛍光X線分析は、エスアイアイナノテクノロジー製SEA2210Aを用いて、管電流1mA、励起電圧31kv、測定時間30分の条件で行った。前記条件で、同一ハンダ試料1の同一部位の鉛の特定X線強度を繰返し測定した結果を表2に示す。   X-ray fluorescence analysis was performed using SEA2210A manufactured by SII Nano Technology under the conditions of tube current 1 mA, excitation voltage 31 kv, and measurement time 30 minutes. Table 2 shows the results of repeatedly measuring the specific X-ray intensity of lead in the same part of the same solder sample 1 under the above conditions.

Figure 2007057463
Figure 2007057463

表2のように前記条件では、繰返し測定の変動係数が1.320となった(変動係数=σ/平均値×100)。   As shown in Table 2, under the above conditions, the coefficient of variation in repeated measurement was 1.320 (variation coefficient = σ / average value × 100).

同一測定条件による同一部位の繰返し測定なので、変動係数1.320は、測定バラツキを示す値と考えられる。   Since the same part is repeatedly measured under the same measurement conditions, the coefficient of variation 1.320 is considered to be a value indicating measurement variation.

表3は、表面の面内5部位の鉛の特性X線強度の測定結果および変動係数の計算結果である。   Table 3 shows the measurement result of the characteristic X-ray intensity and the calculation result of the coefficient of variation of the lead at five sites in the surface.

Figure 2007057463
Figure 2007057463

表3の変動係数は、測定バラツキとハンダ試料1に含まれる鉛量の面内バラツキの合算値であると考えられる。前記折畳みおよび前記圧延を行わないハンダ試料では、外周部で鉛濃度が高くなる傾向が認められ、変動係数が4.472で、表2の繰返し測定時のバラツキを示した変動係数よりも大幅に増大している。前記折畳みおよび前記圧延を繰返すことで、中央部と外周部の鉛濃度差が小さくなり、10回繰返すと変動係数が1.343、13回繰返すと変動係数が1.336となり、偏析が緩和されることが確認できた。   The coefficient of variation in Table 3 is considered to be the sum of the measurement variation and the in-plane variation of the amount of lead contained in the solder sample 1. In the solder sample not subjected to the folding and rolling, the lead concentration tends to be high at the outer periphery, and the coefficient of variation is 4.472, which is much larger than the coefficient of variation showing the variation at the time of repeated measurement in Table 2. It is increasing. By repeating the folding and rolling, the lead concentration difference between the central portion and the outer peripheral portion is reduced, and when it is repeated 10 times, the coefficient of variation is 1.343, and when it is repeated 13 times, the coefficient of variation is 1.336, and segregation is alleviated. It was confirmed that

表4は、厚み方向5部位の鉛の特性X線強度の測定結果およびバラツキの計算結果である。   Table 4 shows the measurement result of the characteristic X-ray intensity and the calculation result of variation of the lead in the five parts in the thickness direction.

Figure 2007057463
Figure 2007057463

前記折畳みおよび前記圧延を行わないハンダ試料では、表層部に鉛濃度が高くなる傾向があり、表面分析では、ハンダ試料全体の定量分析ができないことが確認できた。   In the solder sample not subjected to the folding and the rolling, the lead concentration tends to be high in the surface layer portion, and it was confirmed that the entire solder sample cannot be quantitatively analyzed by the surface analysis.

表5は、同一のハンダ試料1に対して、前記折畳みおよび前記圧延を繰返し、圧延の都度、蛍光X線分析を行うことで、前記折畳みおよび前記圧延によるハンダ試料1表面の鉛の特性X線強度の推移を測定した結果である。   Table 5 shows the characteristic X-rays of the lead on the surface of the solder sample 1 by the folding and the rolling by repeating the folding and the rolling for the same solder sample 1 and performing the fluorescent X-ray analysis at each rolling. It is the result of measuring the transition of strength.

Figure 2007057463
Figure 2007057463

前記折畳みおよび前記圧延を繰返し行うことにより、ハンダ試料1表面の鉛濃度が低下していることが分かった。これは、前記折畳みおよび前記圧延により、表層部に偏析した鉛が分散され、ハンダ試料1が均質化されたこと、および複層構造内の単層厚みが低減されることに起因する現象である。   It was found that the lead concentration on the surface of the solder sample 1 was lowered by repeatedly performing the folding and the rolling. This is a phenomenon caused by the fact that lead segregated in the surface layer portion is dispersed by the folding and rolling, the solder sample 1 is homogenized, and the thickness of the single layer in the multilayer structure is reduced. .

前記折畳みおよび前記圧延の繰返し回数が10回以上になると、繰返し回数の増加に伴い、表層部の鉛濃度の低下が顕著になる。また、13回以上では、繰返し回数を増加しても、鉛濃度の変動はほとんどなく、ほぼ一定の値になった。   When the number of repetitions of the folding and the rolling is 10 times or more, the decrease in the lead concentration in the surface layer becomes remarkable with the increase in the number of repetitions. In addition, when the number of repetitions was increased at 13 times or more, there was almost no change in the lead concentration, and the value was almost constant.

前記折畳みおよび前記圧延の繰返し回数が10回以上になると、複層構造内の単層厚みが990nm以下になる。一般に、蛍光X線分析装置でハンダ試料1を分析する場合、表面から数百nm深さまでの情報が得られるため、複層構造内の単層厚みが990nm以下になると、厚みの影響が顕著に現れるものと考えられる。   When the number of times of folding and rolling is 10 times or more, the single layer thickness in the multilayer structure is 990 nm or less. Generally, when analyzing the solder sample 1 with a fluorescent X-ray analyzer, information from the surface to a depth of several hundred nanometers is obtained. Therefore, when the thickness of the single layer in the multilayer structure becomes 990 nm or less, the influence of the thickness becomes remarkable. It is thought to appear.

また、前記折畳みおよび前記圧延の繰返し回数が13回以上では、複層構造内の単層厚みが120nm以下になる。蛍光X線分析では表面から数百nm深さまでの情報が得られるため、複層構造内の単層厚みが120nm以下になると、厚みおよび偏析の影響が大幅に削減されるものと考えられる。   Further, when the folding and rolling are repeated 13 times or more, the single layer thickness in the multilayer structure is 120 nm or less. In the fluorescent X-ray analysis, information from the surface to a depth of several hundred nm is obtained. Therefore, when the thickness of the single layer in the multilayer structure is 120 nm or less, it is considered that the influence of thickness and segregation is greatly reduced.

次に、前記折畳みおよび前記圧延を13回繰返す方法で、ハンダ試料1を10個作製した。前記作製した10個のハンダ試料1の表裏面の中央部を蛍光X線分析し、鉛の特性X線強度を測定した。次に、前記作製した10個のハンダ試料1のうち5個をJISZ3910の方法を活用して原子吸光分析し、鉛含有量の定量分析を行った。表6に蛍光X線分析および原子吸光分析結果を示す。   Next, ten solder samples 1 were produced by a method of repeating the folding and rolling 13 times. The center part of the front and back surfaces of the ten solder samples 1 produced was subjected to fluorescent X-ray analysis, and the characteristic X-ray intensity of lead was measured. Next, five of the ten solder samples 1 produced were analyzed by atomic absorption using the method of JISZ3910, and the lead content was quantitatively analyzed. Table 6 shows the results of fluorescent X-ray analysis and atomic absorption analysis.

Figure 2007057463
Figure 2007057463

蛍光X線分析からはハンダ試料1のサンプル内の表裏差やハンダ試料1のサンプル間バラツキは認められなかった。また、原子吸光分析からもハンダ試料1のサンプル間のバラツキは認められなかった。   From the X-ray fluorescence analysis, there was no difference between the front and back in the sample of the solder sample 1 and the variation between the samples of the solder sample 1. Moreover, the variation between the samples of the solder sample 1 was not recognized also from the atomic absorption analysis.

前記蛍光X線分析によって測定した鉛の特性X線強度と、前記原子吸光分析によって測定した鉛含有量の関係を蛍光X線装置の定量基準データとして活用し、前記作製した10個のハンダ試料1のうち、前記原子吸光分析を行わなかった5個のハンダ試料1を、蛍光X線分析装置の定量基準となるハンダ試料1として活用した。   Using the relationship between the characteristic X-ray intensity of lead measured by the fluorescent X-ray analysis and the lead content measured by the atomic absorption analysis as quantitative reference data of the fluorescent X-ray apparatus, the 10 solder samples 1 produced as described above Among them, five solder samples 1 that were not subjected to the atomic absorption analysis were used as solder samples 1 that serve as a quantitative reference for the fluorescent X-ray analyzer.

(実施の形態2)
以下、本発明の実施の形態2における本発明のハンダ材料組成の定量分析方法について、詳細に説明する。
(Embodiment 2)
Hereinafter, the quantitative analysis method of the solder material composition of the present invention in Embodiment 2 of the present invention will be described in detail.

主成分が錫、銀および銅からなり、含有比率が錫96.5%、銀3%および銅0.5%の3元系鉛フリーハンダ材料が溶融したハンダ槽中の鉛含有量の定量分析を行った。   Quantitative analysis of lead content in a solder bath in which ternary lead-free solder material consisting mainly of tin, silver and copper and containing 96.5% tin, 3% silver and 0.5% copper is melted Went.

溶融状態のハンダ材料を冷却固化する工程およびハンダ材料を折畳む工程および前記折畳んだハンダ材料を圧延する工程は、前記実施の形態1と同様であるため、説明を省略する。   Since the step of cooling and solidifying the molten solder material, the step of folding the solder material, and the step of rolling the folded solder material are the same as those in the first embodiment, description thereof will be omitted.

前記のハンダ材料を折畳む工程および前記折畳んだハンダ材料を圧延する工程を13回繰返しハンダ試料1を作製した。次に、前記ハンダ試料1の鉛含有量を、蛍光X線分析装置で定量分析した後、確認のため、JISZ3910の原子吸光分析で鉛含有量を定量分析した。その結果、蛍光X線分析での定量値が705ppm、原子吸光分析での定量値が711ppmであり、簡便かつ高精度な定量分析が可能であることを確認した。   A solder sample 1 was produced by repeating the step of folding the solder material and the step of rolling the folded solder material 13 times. Next, after quantitatively analyzing the lead content of the solder sample 1 with a fluorescent X-ray analyzer, the lead content was quantitatively analyzed by atomic absorption analysis of JISZ3910 for confirmation. As a result, the quantitative value in the fluorescent X-ray analysis was 705 ppm and the quantitative value in the atomic absorption analysis was 711 ppm, and it was confirmed that simple and highly accurate quantitative analysis was possible.

本発明のハンダ試料の作製方法によれば、ハンダ試料の含有成分の均質化が可能で、表面分析装置の定量基準となるハンダ試料を得ることができ、電子部品等の接合に用いるハンダ材料の組成分析に適用できる。   According to the method for producing a solder sample of the present invention, it is possible to homogenize the components contained in the solder sample, to obtain a solder sample as a quantitative reference for a surface analyzer, and to obtain a solder material used for joining electronic components and the like. Applicable to composition analysis.

本発明のハンダ試料の断面図Sectional view of the solder sample of the present invention 本発明のハンダ材料組成の定量分析方法の工程フローチャートProcess flow chart of quantitative analysis method of solder material composition of the present invention

符号の説明Explanation of symbols

1 ハンダ試料   1 Solder sample

Claims (8)

溶融状態のハンダ材料を冷却固化してハンダ試料とする工程と、
冷却固化した前記ハンダ試料を折畳んで重ね合わせる工程と、
折畳んで重ね合わせた前記ハンダ試料を圧延する工程を有することを特徴とするハンダ試料の作製方法。
A step of cooling and solidifying the molten solder material to form a solder sample;
Folding and stacking the cooled and solidified solder sample;
A method for producing a solder sample, comprising a step of rolling the solder sample folded and overlapped.
溶融状態のハンダ材料を冷却固化してハンダ試料とする工程と、
冷却固化した前記ハンダ試料を圧延する工程と、
圧延した前記ハンダ試料を折畳んで重ね合わせる工程を有することを特徴とするハンダ試料の作製方法。
A step of cooling and solidifying the molten solder material to form a solder sample;
Rolling the cooled and solidified solder sample;
A method for producing a solder sample, comprising the step of folding and overlapping the rolled solder sample.
前記折畳んで重ね合わせる工程と前記圧延する工程は、
ハンダ試料の単層の厚みが所定の範囲の厚みとなるまで繰り返し行うことを特徴とする請求項1または2に記載のハンダ試料の作製方法。
The folding and overlapping step and the rolling step are:
The method for producing a solder sample according to claim 1, wherein the solder sample is repeatedly performed until the thickness of the single layer of the solder sample becomes a thickness in a predetermined range.
対象とするハンダ材料は、鉛フリーハンダ材料であり、Sn−Ag系、Sn−Bi系、Sn−Zn系、Sn−Cu系、Sn−Au系、Sn−Sb系、Sn−Ag−Cu系、Sn−Ag−Bi系、及びSn−Ag−Bi−Cu系から選ばれる何れかの材料であることを特徴とする請求項1乃至3の何れかに記載のハンダ試料の作製方法。 The target solder material is a lead-free solder material, Sn—Ag, Sn—Bi, Sn—Zn, Sn—Cu, Sn—Au, Sn—Sb, Sn—Ag—Cu. The method for producing a solder sample according to any one of claims 1 to 3, wherein the material is any material selected from a Sn-Ag-Bi system and a Sn-Ag-Bi-Cu system. 複層構造であるハンダ試料であって、単層の厚みが990nm以下であることを特徴とするハンダ試料。 A solder sample having a multilayer structure, wherein a single layer has a thickness of 990 nm or less. 前記複層構造内の各々の単層が、同一組成からなることを特徴とする請求項5に記載のハンダ試料。 The solder sample according to claim 5, wherein each single layer in the multilayer structure has the same composition. 請求項1乃至4の何れかに記載のハンダ試料の作製方法によって作製されたハンダ試料を表面分析装置で定量分析することを特徴とするハンダ試料の分析方法。 A method for analyzing a solder sample, characterized in that a solder sample produced by the method for producing a solder sample according to claim 1 is quantitatively analyzed by a surface analyzer. 表面分析装置が、蛍光X線分析装置であることを特徴とする請求項7に記載のハンダ試料の分析方法。 8. The method for analyzing a solder sample according to claim 7, wherein the surface analyzer is an X-ray fluorescence analyzer.
JP2005245594A 2005-08-26 2005-08-26 Solder sample preparation method Expired - Fee Related JP4556810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005245594A JP4556810B2 (en) 2005-08-26 2005-08-26 Solder sample preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005245594A JP4556810B2 (en) 2005-08-26 2005-08-26 Solder sample preparation method

Publications (2)

Publication Number Publication Date
JP2007057463A true JP2007057463A (en) 2007-03-08
JP4556810B2 JP4556810B2 (en) 2010-10-06

Family

ID=37921081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005245594A Expired - Fee Related JP4556810B2 (en) 2005-08-26 2005-08-26 Solder sample preparation method

Country Status (1)

Country Link
JP (1) JP4556810B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090343A (en) * 2007-10-10 2009-04-30 Sii Nanotechnology Inc Lead-free solder reference substance and method for fabrication thereof
CN102253067A (en) * 2011-04-18 2011-11-23 武汉铁锚焊接材料股份有限公司 Method for measuring chemical compositions of deposited metal
CN111562280A (en) * 2020-04-26 2020-08-21 宁波市计量测试研究院(宁波市衡器管理所、宁波新材料检验检测中心) Method for testing carbon content distribution of neodymium iron boron blank

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247550A (en) * 1989-03-20 1990-10-03 Fuji Electric Co Ltd Composition analysis of solder alloy
JPH07128262A (en) * 1993-10-30 1995-05-19 Horiba Ltd Fluorescent x-ray analyzing device and analyzing method
JP2004108871A (en) * 2002-09-17 2004-04-08 Nagoya Electric Works Co Ltd X-ray inspection device, x-ray inspection method and x-ray inspection control program
JP2005003520A (en) * 2003-06-12 2005-01-06 Matsushita Electric Ind Co Ltd Method and device for detecting composition of lead-free solder in dip tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247550A (en) * 1989-03-20 1990-10-03 Fuji Electric Co Ltd Composition analysis of solder alloy
JPH07128262A (en) * 1993-10-30 1995-05-19 Horiba Ltd Fluorescent x-ray analyzing device and analyzing method
JP2004108871A (en) * 2002-09-17 2004-04-08 Nagoya Electric Works Co Ltd X-ray inspection device, x-ray inspection method and x-ray inspection control program
JP2005003520A (en) * 2003-06-12 2005-01-06 Matsushita Electric Ind Co Ltd Method and device for detecting composition of lead-free solder in dip tank

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090343A (en) * 2007-10-10 2009-04-30 Sii Nanotechnology Inc Lead-free solder reference substance and method for fabrication thereof
CN102253067A (en) * 2011-04-18 2011-11-23 武汉铁锚焊接材料股份有限公司 Method for measuring chemical compositions of deposited metal
CN111562280A (en) * 2020-04-26 2020-08-21 宁波市计量测试研究院(宁波市衡器管理所、宁波新材料检验检测中心) Method for testing carbon content distribution of neodymium iron boron blank

Also Published As

Publication number Publication date
JP4556810B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
EP2675015B1 (en) Connecting structure
EP2875898B1 (en) Solder alloy, solder paste, and electronic circuit board
DE112006002497B4 (en) Process for producing a solder preform
US20130343023A1 (en) Electronic component module and method for manufacturing the same
Choubey et al. Intermetallics characterization of lead-free solder joints under isothermal aging
Hurtony et al. Investigation of intermetallic compounds (IMCs) in electrochemically stripped solder joints with SEM
Medgyes et al. Electrochemical migration of micro-alloyed low Ag solders in NaCl solution
JP4556810B2 (en) Solder sample preparation method
JP2003275892A (en) Lead-free solder alloy and solder paste composition
DE60108684T2 (en) A method for estimating the quality of a lead-free solder and method for wave soldering
KR101842738B1 (en) METHOD FOR MANUFACTURING Sn ALLOY BUMP
JP2008008856A (en) Plating standard substance, analytical method using the same, and analyzer
JP4594787B2 (en) Solder specimen preparation method and analysis method, and solder bath management system
KR101983510B1 (en) Core material and solder joint and bump electrode forming method
Bashir et al. Effects of cobalt nanoparticle on microstructure of Sn58Bi solder joint
Cong et al. Growth kinetics of (CuxNi1-x) 6Sn5 intermetallic compound at the interface of mixed Sn63Pb37/SAC305 BGA solder joints during thermal aging test
JP2007064861A (en) Analyzing method of solder material
Nobari et al. Effect of fine and ultra-fine lead-free solder powder characteristics on the reflow property of pastes
JP4958170B2 (en) Lead-free solder reference material and manufacturing method thereof
Hillman et al. The Impact of Reflowing a Pb-free Solder Alloy using a Tin/Lead Solder Alloy Reflow Profile on Solder joint Integrity
JP2012194024A (en) Silver-plated layer dissolution solution, silver-plated layer dissolution method, and quantitative method of silver-plated layer-contained element
JP5690244B2 (en) Solder composition analysis method
Whitlow et al. Micro‐Particle Induced X‐ray Emission Study of Lead‐Free and Lead‐Based Solders and Interactions with Copper Wires
Manjunath et al. Minimizing flux spatter during lead‐free reflow assembly
Izuta et al. Simplified measuring method of copper concentration in solder bath utilizing copper dissolution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees