JP2007057460A - Device and method for analyzing vibration/sound pressure propagation characteristic - Google Patents

Device and method for analyzing vibration/sound pressure propagation characteristic Download PDF

Info

Publication number
JP2007057460A
JP2007057460A JP2005245487A JP2005245487A JP2007057460A JP 2007057460 A JP2007057460 A JP 2007057460A JP 2005245487 A JP2005245487 A JP 2005245487A JP 2005245487 A JP2005245487 A JP 2005245487A JP 2007057460 A JP2007057460 A JP 2007057460A
Authority
JP
Japan
Prior art keywords
vibration
sound pressure
detection signal
sound
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005245487A
Other languages
Japanese (ja)
Other versions
JP4028562B2 (en
Inventor
Kosuke Nomura
幸介 能村
Junji Yoshida
準史 吉田
Yuji Kato
裕治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005245487A priority Critical patent/JP4028562B2/en
Publication of JP2007057460A publication Critical patent/JP2007057460A/en
Application granted granted Critical
Publication of JP4028562B2 publication Critical patent/JP4028562B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To calculate a vibration propagation characteristic between a vibration source and a response point and a sound pressure propagation characteristic between a sound source and the response point. <P>SOLUTION: A vibration detection signal is output from an acceleration sensor 52(i) to a vibration normalizing section 96a via an FFT 54(i) and a matrix forming means 56, and is normalized by the vibration normalizing section 96a. While, a sound pressure detection signal is output from a sound pressure detecting means 90(k) to a sound pressure normalizing section 96b via an FFT 92(k) and a matrix forming means 94, and is normalized by the sound pressure normalizing section 96b. The normalized vibration detection signal and sound pressure detection signal are output to a singular value decomposition section 66 via a matrix forming section 57, and is decomposed with a singular value in the singular value decomposition section 66. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、振動源と応答点との間の振動伝達特性や、音源と前記応答点との間の音圧伝達特性を解析する振動・音圧伝達特性解析装置及び方法に関する。   The present invention relates to a vibration / sound pressure transmission characteristic analyzing apparatus and method for analyzing a vibration transmission characteristic between a vibration source and a response point and a sound pressure transmission characteristic between a sound source and the response point.

従来より、車両におけるエンジン等の振動源から発生し、シャーシ、ボディ等を伝播する振動が音(以下、固体伝播音ともいう。)に変化して車室内に騒音として伝播した際に、前記車室内の騒音を低減するための騒音制御装置が特許文献1に開示されている。   Conventionally, when a vibration generated from a vibration source such as an engine in a vehicle and propagating through a chassis, a body, etc. changes to sound (hereinafter also referred to as solid-propagating sound) and propagates as noise in the vehicle interior, the vehicle A noise control device for reducing indoor noise is disclosed in Patent Document 1.

この特許文献1に開示されている騒音制御装置では、前記車室内で検出した前記騒音と前記振動源近傍で検出した加速度とに基づいて、前記振動源と前記車室との間の前記騒音に関する伝達特性を算出し、算出した前記伝達特性に基づいて制御音源より前記騒音を打ち消す制御音を出力することにより、前記車室内の騒音低減制御を行っている。   In the noise control device disclosed in Patent Document 1, the noise between the vibration source and the passenger compartment is related to the noise detected in the passenger compartment and the acceleration detected in the vicinity of the vibration source. Noise reduction control in the passenger compartment is performed by calculating a transfer characteristic and outputting a control sound that cancels the noise from a control sound source based on the calculated transfer characteristic.

特開平8−166788号公報(段落[0005]、[0057]〜[0063]、[0067]〜[0081]、図1参照)JP-A-8-166788 (paragraphs [0005], [0057] to [0063], [0067] to [0081], see FIG. 1)

このように、特許文献1では、車室内騒音(以下、車内音ともいう。)に関する伝達特性を算出しているが、加速中の車内音には、シャーシやボディ等を通過して車室に伝播する前記固体伝播音以外にも、エンジンを音源とするエンジン放射音や、吸気系統、排気系統等を音源とする音が空気中を伝播して前記車室に伝播する、いわゆる空気伝播音も多く含まれる。そのため、実際には、前記固体伝播音に関する伝達特性(以下、振動伝達特性ともいう。)と前記空気伝播音に関する伝達特性(以下、音圧伝達特性ともいう。)とを各々算出し、算出した前記振動伝達特性と前記音圧伝達特性とに基づいて騒音低減制御を行う必要がある。   As described above, in Patent Document 1, transfer characteristics relating to vehicle interior noise (hereinafter also referred to as vehicle interior noise) are calculated, but the vehicle interior sound during acceleration passes through the chassis, body, etc., and enters the vehicle interior. In addition to the propagating solid-propagating sound, so-called air-propagating sound in which engine-generated sound using the engine as a sound source and sound using the intake system, exhaust system, etc. as a sound source propagates in the air and propagates to the passenger compartment. Many are included. Therefore, in actuality, a transmission characteristic related to the solid propagation sound (hereinafter also referred to as vibration transmission characteristic) and a transmission characteristic related to the air propagation sound (hereinafter also referred to as sound pressure transmission characteristic) are calculated and calculated. It is necessary to perform noise reduction control based on the vibration transmission characteristic and the sound pressure transmission characteristic.

しかしながら、前記振動源と前記車室との間の振動伝達特性や前記音源と前記車室との間の音圧伝達特性を各々算出しようとする場合、振動伝達特性相互間、音圧伝達特性相互間、振動伝達特性と音圧伝達特性との間のクロストークや、ノイズが重畳することにより、前記各伝達特性を精度よく算出することができず、この結果、車室内の最適な音響環境を提供することができないという問題がある。   However, when trying to calculate the vibration transmission characteristics between the vibration source and the passenger compartment and the sound pressure transmission characteristics between the sound source and the passenger compartment, As a result, crosstalk between the vibration transfer characteristic and the sound pressure transfer characteristic and noise are superimposed, so that each transfer characteristic cannot be calculated accurately. There is a problem that it cannot be provided.

また、前記車内音に関する伝達特性を求め、この伝達特性より前記振動伝達特性と前記音圧伝達特性とを分離すれば、前記各伝達特性を精度よく算出することが可能になると想定されるが、前記固体伝播音及び前記空気伝播音の伝達経路は、互いに連成する関係にあるので、これらの伝達特性を分離することは困難である。   In addition, it is assumed that if each of the transmission characteristics related to the in-vehicle sound is obtained and the vibration transmission characteristics and the sound pressure transmission characteristics are separated from the transmission characteristics, it is possible to accurately calculate the transmission characteristics. Since the transmission path of the solid propagation sound and the air propagation sound are in a relationship of mutual coupling, it is difficult to separate these transmission characteristics.

さらに、前記車内音は、固体伝播音と空気伝播音との合成音であるので、前記車内音に対する前記固体伝播音及び前記空気伝播音の寄与を解析するためには、前記固体伝播音と前記空気伝播音とを同時に計測し、計測結果に基づいて前記振動伝達特性と前記音圧伝達特性とを各々算出する必要がある。しかしながら、前述したように、これらの伝達特性を精度よく算出することが困難である上に、固体伝播音としての振動の単位は[m/s2]であり、一方で、空気伝播音としての音圧の単位は[N/m2]であるので、仮にこれらの伝播音を計測することが可能であっても、従来技術では、単位が異なる2つの伝播音の成分を分離することはできない。 Furthermore, since the vehicle interior sound is a synthesized sound of a solid propagation sound and an air propagation sound, in order to analyze the contribution of the solid propagation sound and the air propagation sound to the vehicle interior sound, the solid propagation sound and the air propagation sound are analyzed. It is necessary to measure the air propagation sound at the same time and calculate the vibration transmission characteristic and the sound pressure transmission characteristic based on the measurement result. However, as described above, it is difficult to calculate these transfer characteristics with high accuracy, and the unit of vibration as a solid propagation sound is [m / s 2 ]. Since the unit of sound pressure is [N / m 2 ], even if these propagation sounds can be measured, the conventional technology cannot separate the components of two propagation sounds having different units. .

本発明は、上述した課題を解決するためになされたものであり、振動源と応答点との間の振動伝達特性及び音源と前記応答点との間の音圧伝達特性とを各々算出することを可能とする振動・音圧伝達特性解析装置及び方法を提供することを目的とする。   The present invention has been made to solve the above-described problem, and calculates a vibration transmission characteristic between a vibration source and a response point and a sound pressure transmission characteristic between a sound source and the response point, respectively. It is an object of the present invention to provide a vibration / sound pressure transmission characteristic analysis apparatus and method that can perform the above-mentioned.

本発明に係る振動・音圧伝達特性解析装置は、振動源からの振動を検出して振動検出信号を出力する振動検出手段と、音源からの音圧を検出して音圧検出信号を出力する音圧検出手段と、前記振動源及び前記音源に対する所定の応答点における振動又は音圧を検出して振動・音圧検出信号を出力する振動・音圧検出手段と、前記振動検出信号、前記音圧検出信号及び前記振動・音圧検出信号を周波数分析する周波数分析手段と、周波数分析された前記振動検出信号、前記音圧検出信号及び前記振動・音圧検出信号に基づいて、前記振動源と前記応答点との間の振動伝達特性及び前記音源と前記応答点との間の音圧伝達特性を各々算出する主成分回帰分析手段とを有し、前記主成分回帰分析手段は、周波数分析された前記振動検出信号を正規化する振動正規化部と、周波数分析された前記音圧検出信号を正規化する音圧正規化部と、正規化された前記振動検出信号及び前記音圧検出信号を特異値分解する特異値分解部と、特異値分解された前記振動検出信号及び前記音圧検出信号と周波数分析された前記振動・音圧検出信号との間で回帰分析を行うことにより前記振動源及び前記音源と前記応答点との間の振動・音圧伝達特性を算出する回帰分析部と、算出された前記振動・音圧伝達特性を、その振動成分である前記振動伝達特性と音圧成分である前記音圧伝達特性とに分配する伝達特性分配部と、分配された前記振動伝達特性を復元する振動伝達特性復元部と、分配された前記音圧伝達特性を復元する音圧伝達特性復元部とを有することを特徴とする。   The vibration / sound pressure transmission characteristic analyzing apparatus according to the present invention detects a vibration from a vibration source and outputs a vibration detection signal, and detects a sound pressure from a sound source and outputs a sound pressure detection signal. Sound pressure detection means, vibration / sound pressure detection means for detecting vibration or sound pressure at a predetermined response point with respect to the vibration source and the sound source and outputting a vibration / sound pressure detection signal, the vibration detection signal, the sound A frequency analysis means for frequency-analyzing the pressure detection signal and the vibration / sound pressure detection signal, and the vibration source based on the vibration detection signal, the sound pressure detection signal and the vibration / sound pressure detection signal subjected to frequency analysis; Principal component regression analysis means for calculating vibration transfer characteristics between the response points and sound pressure transfer characteristics between the sound source and the response points, and the principal component regression analysis means performs frequency analysis. Normalize the vibration detection signal A vibration normalization unit, a sound pressure normalization unit that normalizes the sound pressure detection signal subjected to frequency analysis, and a singular value decomposition unit that decomposes the normalized vibration detection signal and the sound pressure detection signal into singular values And the vibration source, the sound source, and the response point by performing regression analysis between the vibration detection signal and the sound pressure detection signal subjected to singular value decomposition and the vibration / sound pressure detection signal subjected to frequency analysis. A regression analysis unit that calculates vibration / sound pressure transfer characteristics between the vibration and sound pressure transfer characteristics, and the vibration / sound pressure transfer characteristics that are calculated by the vibration transfer characteristics that are the vibration components and the sound pressure transfer characteristics that are the sound pressure components A transfer characteristic distributing unit that distributes the sound, a vibration transfer characteristic restoring unit that restores the distributed vibration transfer characteristic, and a sound pressure transfer characteristic restoring unit that restores the distributed sound pressure transfer characteristic. To do.

また、本発明に係る振動・音圧伝達特性解析方法は、振動源からの振動を振動検出手段により検出して振動検出信号を出力するステップと、音源からの音圧を音圧検出手段により検出して音圧検出信号を出力するステップと、前記振動源及び前記音源に対する所定の応答点における振動又は音圧を振動・音圧検出手段により検出して振動・音圧検出信号を出力するステップと、前記振動検出信号、前記音圧検出信号及び前記振動・音圧検出信号を周波数分析手段により周波数分析するステップと、周波数分析した前記振動検出信号、前記音圧検出信号及び前記振動・音圧検出信号に基づいて、前記振動源と前記応答点との間の振動伝達特性及び前記音源と前記応答点との間の音圧伝達特性を主成分回帰分析手段により各々算出するステップとを有し、前記主成分回帰分析手段は、周波数分析された前記振動検出信号及び前記音圧検出信号を正規化し、正規化された前記振動検出信号及び前記音圧検出信号を特異値分解し、特異値分解された前記振動検出信号及び前記音圧検出信号と周波数分析した前記振動・音圧検出信号との間で回帰分析を行うことにより前記振動源及び前記音源と前記応答点との間の振動・音圧伝達特性を算出し、算出された前記振動・音圧伝達特性を、その振動成分である前記振動伝達特性と音圧成分である前記音圧伝達特性とに分配し、分配された前記振動伝達特性と前記音圧伝達特性とを各々復元することを特徴とする。   The vibration / sound pressure transfer characteristic analysis method according to the present invention includes a step of detecting vibration from a vibration source by a vibration detection unit and outputting a vibration detection signal, and a sound pressure detection unit detecting a sound pressure from a sound source. Outputting a sound pressure detection signal, and detecting a vibration or sound pressure at a predetermined response point with respect to the vibration source and the sound source by a vibration / sound pressure detection means and outputting a vibration / sound pressure detection signal; Analyzing the frequency of the vibration detection signal, the sound pressure detection signal, and the vibration / sound pressure detection signal by frequency analysis means; and analyzing the frequency of the vibration detection signal, the sound pressure detection signal, and the vibration / sound pressure detection. Calculating a vibration transmission characteristic between the vibration source and the response point and a sound pressure transmission characteristic between the sound source and the response point by a principal component regression analysis unit based on a signal; The principal component regression analysis means normalizes the vibration detection signal and the sound pressure detection signal subjected to frequency analysis, decomposes the normalized vibration detection signal and the sound pressure detection signal by a singular value, Vibration between the vibration source and the sound source and the response point is performed by performing regression analysis between the vibration detection signal and the sound pressure detection signal subjected to the value decomposition and the vibration / sound pressure detection signal subjected to frequency analysis. Sound pressure transmission characteristics are calculated, and the calculated vibration / sound pressure transmission characteristics are distributed to the vibration transmission characteristics that are the vibration components and the sound pressure transmission characteristics that are the sound pressure components. The vibration transmission characteristic and the sound pressure transmission characteristic are restored respectively.

上記した構成によれば、周波数分析された前記振動検出信号を前記振動正規化部において正規化し、周波数分析された前記音圧検出信号を前記音圧正規化部において正規化することにより、単位の異なる前記振動検出信号と前記音圧検出信号とを同一に取り扱うことが可能となる。この結果、前記振動源からの前記振動と、前記音源からの前記音圧とを同時に計測し、且つ前記主成分回帰分析手段において前記振動検出信号及び前記音圧検出信号に対する主成分分析を同時に行うことが可能となる。   According to the above configuration, the vibration detection signal subjected to frequency analysis is normalized in the vibration normalization unit, and the sound pressure detection signal subjected to frequency analysis is normalized in the sound pressure normalization unit. Different vibration detection signals and sound pressure detection signals can be handled in the same way. As a result, the vibration from the vibration source and the sound pressure from the sound source are simultaneously measured, and the principal component analysis is simultaneously performed on the vibration detection signal and the sound pressure detection signal in the principal component regression analysis means. It becomes possible.

また、正規化された前記振動検出信号及び前記音圧検出信号を前記特異値分解部において特異値分解し、特異値分解された前記振動検出信号及び前記音圧検出信号と周波数分析された前記振動・音圧検出信号とに対して前記回帰分析部で回帰分析を行うことにより前記振動・音圧伝達特性が算出され、算出された前記振動・音圧伝達特性が前記伝達特性分配部において前記振動伝達特性と前記音圧伝達特性とに分配されるので、前記振動による固体伝播音と前記音圧による空気伝播音とを同一に取り扱うことが可能となり、前記振動伝達特性と前記音圧伝達特性とを各々算出することができる。さらに、前記応答点で検出される音に対する前記固体伝播音と前記空気伝播音との寄与の大きさを明確に把握することが可能となる。   The normalized vibration detection signal and the sound pressure detection signal are subjected to singular value decomposition in the singular value decomposition unit, and the vibration subjected to frequency analysis with the vibration detection signal and the sound pressure detection signal subjected to singular value decomposition. The vibration / sound pressure transfer characteristic is calculated by performing a regression analysis on the sound pressure detection signal in the regression analysis unit, and the calculated vibration / sound pressure transfer characteristic is converted into the vibration in the transfer characteristic distribution unit. Since it is divided into the transmission characteristic and the sound pressure transmission characteristic, it is possible to treat the solid propagation sound due to the vibration and the air propagation sound due to the sound pressure in the same way, and the vibration transmission characteristic and the sound pressure transmission characteristic Can be calculated respectively. Furthermore, it is possible to clearly grasp the magnitude of the contribution of the solid propagation sound and the air propagation sound to the sound detected at the response point.

さらに、前記主成分回帰分析手段は、前記振動伝達特性復元部と前記音圧伝達特性復元部とを有するので、正規化されている前記各伝達特性を本来の伝達特性に復元することが可能となる。   Furthermore, since the principal component regression analysis means includes the vibration transfer characteristic restoration unit and the sound pressure transfer characteristic restoration unit, it is possible to restore each normalized transfer characteristic to the original transfer characteristic. Become.

従って、本発明では、従来技術と比較して、車両に搭載して実走行、あるいは、実走行を模倣した負荷吸収可能な走行試験装置における走行で前記各伝達特性を算出することができ、前記振動及び前記音圧を計測してから前記各伝達特性を算出するまでの時間を大幅に削減することが可能になると共に、前記各伝達特性の算出精度が大幅に向上して、前記振動源における振動特性や前記音源における音圧特性を精度よく把握することが可能となる。   Therefore, in the present invention, compared to the prior art, each transfer characteristic can be calculated by running in a running test apparatus that can be mounted on a vehicle and can absorb a load imitating actual running, It is possible to greatly reduce the time from the measurement of vibration and the sound pressure to the calculation of each transfer characteristic, and the calculation accuracy of each transfer characteristic is greatly improved. It is possible to accurately grasp vibration characteristics and sound pressure characteristics of the sound source.

ここで、前記振動正規化部は、周波数分析された前記振動検出信号のうち所定周波数における標準偏差を算出し、算出した前記標準偏差を用いて前記所定周波数における前記振動検出信号を正規化し、前記音圧正規化部は、周波数分析された前記音圧検出信号のうち所定周波数における標準偏差を算出し、算出した前記標準偏差を用いて前記所定周波数における前記音圧検出信号を正規化する。前記各標準偏差を用いて前記各検出信号を正規化し、正規化した前記各検出信号に対する主成分分析を行うことにより、前記振動や前記音圧の量を同等に取り扱って主成分分析を行うことができる。   Here, the vibration normalization unit calculates a standard deviation at a predetermined frequency among the vibration detection signals subjected to frequency analysis, normalizes the vibration detection signal at the predetermined frequency using the calculated standard deviation, and The sound pressure normalization unit calculates a standard deviation at a predetermined frequency among the sound pressure detection signals subjected to frequency analysis, and normalizes the sound pressure detection signal at the predetermined frequency using the calculated standard deviation. The detection signals are normalized using the standard deviations, and the principal component analysis is performed on the normalized detection signals so that the vibrations and the sound pressures are equally handled. Can do.

この場合、前記振動伝達特性復元部は、前記振動正規化部において算出された標準偏差を用いて前記振動伝達特性を復元し、前記音圧伝達特性復元部は、前記音圧正規化部において算出された標準偏差を用いて前記音圧伝達特性を復元する。これにより、精度よく前記各伝達特性を復元して外部に出力することが可能となる。   In this case, the vibration transfer characteristic restoring unit restores the vibration transfer characteristic using the standard deviation calculated by the vibration normalizing unit, and the sound pressure transfer characteristic restoring unit is calculated by the sound pressure normalizing unit. The sound pressure transfer characteristic is restored using the standard deviation. This makes it possible to restore the transfer characteristics with high accuracy and output them to the outside.

また、前記主成分回帰分析手段は、正規化された前記振動検出信号及び前記音圧検出信号を合成し、合成された前記振動検出信号及び前記音圧検出信号を前記特異値分解部に出力する振動・音圧合成部をさらに有する。これにより、合成された前記振動検出信号及び前記音圧検出信号を前記特異値分解部において効率よく特異値分解することが可能となる。   The principal component regression analysis unit synthesizes the normalized vibration detection signal and the sound pressure detection signal, and outputs the combined vibration detection signal and the sound pressure detection signal to the singular value decomposition unit. It further has a vibration / sound pressure synthesis unit. Thereby, the synthesized vibration detection signal and sound pressure detection signal can be efficiently decomposed into singular values by the singular value decomposition unit.

さらに、前記主成分回帰分析手段は、特異値分解された前記振動検出信号及び前記音圧検出信号に含まれるノイズ成分を除去し、前記ノイズ成分が除去された前記振動検出信号及び前記音圧検出信号を前記回帰分析部に出力するノイズ除去部を有する。これにより、前記回帰分析部における前記振動・音圧伝達特性の算出精度の向上と、算出時間の短縮化とを共に実現することができる。   Further, the principal component regression analysis means removes a noise component included in the vibration detection signal and the sound pressure detection signal subjected to singular value decomposition, and the vibration detection signal and the sound pressure detection from which the noise component has been removed. A noise removing unit for outputting a signal to the regression analysis unit; As a result, it is possible to improve both the calculation accuracy of the vibration / sound pressure transmission characteristics in the regression analysis unit and shorten the calculation time.

本発明によれば、周波数分析された振動検出信号を振動正規化部において正規化し、周波数分析された音圧検出信号を音圧正規化部において正規化することにより、単位の異なる前記振動検出信号と前記音圧検出信号とを同一に取り扱うことが可能となる。この結果、振動源からの振動と、音源からの音圧とを同時に計測し、且つ主成分回帰分析手段において前記振動検出信号及び前記音圧検出信号に対する主成分分析を同時に行うことが可能となる。   According to the present invention, the vibration detection signal having different units is normalized by normalizing the vibration detection signal subjected to frequency analysis in the vibration normalization unit and normalizing the sound pressure detection signal subjected to frequency analysis in the sound pressure normalization unit. And the sound pressure detection signal can be handled in the same way. As a result, it is possible to simultaneously measure the vibration from the vibration source and the sound pressure from the sound source, and simultaneously perform the principal component analysis on the vibration detection signal and the sound pressure detection signal in the principal component regression analysis means. .

また、正規化された前記振動検出信号及び前記音圧検出信号を特異値分解部において特異値分解し、特異値分解された前記振動検出信号及び前記音圧検出信号と周波数分析された振動・音圧検出信号とに対して回帰分析部で回帰分析を行うことにより振動・音圧伝達特性が算出され、算出された前記振動・音圧伝達特性が伝達特性分配部において振動伝達特性と音圧伝達特性とに分配されるので、前記振動による固体伝播音と前記音圧による空気伝播音とを同一に取り扱うことが可能となり、前記振動伝達特性と前記音圧伝達特性とを各々算出することができる。さらに、前記応答点において検出される音に対する前記固体伝播音と前記空気伝播音との寄与の大きさを明確に把握することが可能となる。   In addition, the normalized vibration detection signal and the sound pressure detection signal are subjected to singular value decomposition in a singular value decomposition unit, and the vibration detection signal and the sound pressure detection signal subjected to singular value decomposition are subjected to frequency analysis. The vibration / sound pressure transfer characteristic is calculated by performing regression analysis on the pressure detection signal with the regression analysis unit, and the calculated vibration / sound pressure transfer characteristic is converted into the vibration transfer characteristic and the sound pressure transfer by the transfer characteristic distribution unit. Therefore, it is possible to treat the solid propagation sound due to the vibration and the air propagation sound due to the sound pressure in the same way, and the vibration transmission characteristic and the sound pressure transmission characteristic can be calculated respectively. . Furthermore, it is possible to clearly grasp the magnitude of the contribution of the solid propagation sound and the air propagation sound to the sound detected at the response point.

さらに、前記主成分回帰分析手段は、前記振動伝達特性復元部と前記音圧伝達特性復元部とを有するので、正規化されている前記各伝達特性を本来の伝達特性に復元することが可能となる。   Furthermore, since the principal component regression analysis means includes the vibration transfer characteristic restoration unit and the sound pressure transfer characteristic restoration unit, it is possible to restore each normalized transfer characteristic to the original transfer characteristic. Become.

従って、本発明では、従来技術と比較して、車両に搭載して実走行、あるいは、実走行を模倣した負荷吸収可能な走行試験装置における走行で前記各伝達特性を算出することができ、前記振動及び前記音圧を計測してから前記各伝達特性を算出するまでの時間を大幅に削減することが可能になると共に、前記各伝達特性の算出精度が大幅に向上して、前記振動源における振動特性や前記音源における音圧特性を精度よく把握することが可能となる。   Therefore, in the present invention, compared to the prior art, each transfer characteristic can be calculated by running in a running test apparatus that can be mounted on a vehicle and can absorb a load imitating actual running, It is possible to greatly reduce the time from the measurement of vibration and the sound pressure to the calculation of each transfer characteristic, and the calculation accuracy of each transfer characteristic is greatly improved. It is possible to accurately grasp vibration characteristics and sound pressure characteristics of the sound source.

本発明に係る振動・音圧伝達特性解析装置について、その解析方法との関係で車両に適用した好適な実施の形態を挙げ、添付の図面を参照しながら以下詳細に説明する。   The vibration / sound pressure transmission characteristic analysis apparatus according to the present invention will be described in detail below with reference to the accompanying drawings by giving a preferred embodiment applied to a vehicle in relation to the analysis method.

本実施形態では、(A)第1実施例:ハンマーによる加振実験に基づく車両内の振動伝達関数の算出方法(図1〜図10)、(B)第2実施例:(A)の算出方法を利用した振動・音圧伝達特性解析装置50A及びその方法(図11〜図14C)、(C)第3実施例:固体伝播音及び空気伝播音を同等に取り扱うことが可能な振動・音圧伝達特性解析装置50B及びその方法(図15〜図28)の順番で、以下詳細に説明する。   In this embodiment, (A) 1st Example: Calculation method of vibration transfer function in vehicle based on excitation experiment with hammer (FIGS. 1 to 10), (B) 2nd Example: Calculation of (A) Vibration / sound pressure transmission characteristic analysis apparatus 50A using the method and its method (FIGS. 11-14C), (C) Third embodiment: vibration / sound that can handle solid propagation sound and air propagation sound equally The pressure transfer characteristic analyzer 50B and the method thereof (FIGS. 15 to 28) will be described in detail below.

ここでは、第1実施例の説明に先立ち、本実施形態(第1〜第3実施例)の解析対象となる車両内の固体伝播音や、空気伝播音について、図1を参照しながら説明する。   Here, prior to the description of the first example, solid propagation sound and air propagation sound in the vehicle to be analyzed in this embodiment (first to third examples) will be described with reference to FIG. .

図1に示す車室10内には乗員12がおり、車両が走行中(動作中)である場合、固体伝播音の振動源は、例えば、エンジン14や排気系統20であり、該エンジン14からの振動は、エンジンマウント16、ボディ18を伝播して車室10内で固体伝播音に変化し、一方で、排気系統20の振動は、マフラーマウント22、ボディ18を伝播して車室10内で固体伝播音に変化する。また、空気伝播音の音源は、例えば、エンジン14や排気系統20の排気口であり、エンジン14の吸気口の音や該エンジン14の放射音が空気伝播音として車室10内に伝播し、一方で、前記排気口における排気音が空気伝播音として車室10内に伝播する。   When there is an occupant 12 in the passenger compartment 10 shown in FIG. 1 and the vehicle is running (operating), the vibration source of the solid propagation sound is, for example, the engine 14 or the exhaust system 20. The vibration of the exhaust system 20 propagates through the engine mount 16 and the body 18 and changes to a solid-propagating sound in the passenger compartment 10, while the vibration of the exhaust system 20 propagates through the muffler mount 22 and the body 18 in the passenger compartment 10. Changes to solid-borne sound. The sound source of the air propagation sound is, for example, the exhaust port of the engine 14 or the exhaust system 20, and the sound of the intake port of the engine 14 or the radiated sound of the engine 14 is propagated into the vehicle compartment 10 as the air propagation sound, On the other hand, the exhaust sound at the exhaust port propagates into the passenger compartment 10 as air propagation sound.

車室10内に伝播したこれらの固体伝播音や空気伝播音については、乗員12に対する最適な音響環境として提供する必要がある。   About these solid propagation sound and air propagation sound which propagated in the vehicle interior 10, it is necessary to provide as the optimal acoustic environment with respect to the passenger | crew 12. FIG.

そこで、本実施形態では、前記固体伝播音が複数の振動源から車室10内に至るまでの伝達経路と、前記空気伝播音が複数の音源から車室10内に至るまでの伝達経路とを分離し、該車室10内において車内音の音質が低下している部位や前記各伝達経路を定量的に把握して、前記車内音の音質阻害要因を定量的に解析する。   Therefore, in the present embodiment, a transmission path from the plurality of vibration sources to the interior of the passenger compartment 10 and a transmission path from the plurality of sound sources to the interior of the passenger compartment 10 from the plurality of sound sources. Separately, the part where the sound quality of the vehicle interior sound is lowered and the respective transmission paths in the vehicle interior 10 are quantitatively grasped, and the sound quality inhibiting factor of the vehicle interior sound is quantitatively analyzed.

すなわち、本実施形態では、図2に示すように、基本的には、図示しない振動源からの振動を振動検出手段により検出して振動検出信号A1〜Anを出力し、前記振動源と該振動源に対する応答点(図1では、乗員12の両耳の位置)との間の伝達関数と、前記振動検出信号A1〜Anとを掛け合わせて音圧を算出し、算出された各音圧を合成して合成音圧である振動源に係る合成音(固体伝播音)Pを算出する。また、図示しない音源からの音圧を音圧検出手段により検出して音圧検出信号A1〜Anを出力し、前記音源と該音源に対する前記応答点との間の伝達関数と、前記音圧検出信号A1〜Anとを掛け合わせて音圧を算出し、算出された各音圧を合成して合成音圧である音源に係る合成音(空気伝播音)Pを算出する。   That is, in this embodiment, as shown in FIG. 2, basically, vibration from a vibration source (not shown) is detected by a vibration detection means, and vibration detection signals A1 to An are output. The sound pressure is calculated by multiplying the transfer function between the response point to the source (in FIG. 1, the positions of both ears of the occupant 12) and the vibration detection signals A1 to An, and the calculated sound pressures are calculated. The synthesized sound (solid propagation sound) P related to the vibration source, which is the synthesized sound pressure, is calculated. Further, sound pressure from a sound source (not shown) is detected by sound pressure detecting means and sound pressure detection signals A1 to An are output, a transfer function between the sound source and the response point for the sound source, and the sound pressure detection The sound pressure is calculated by multiplying the signals A1 to An, and the calculated sound pressures are synthesized to calculate the synthesized sound (air propagation sound) P related to the sound source as the synthesized sound pressure.

この伝達経路解析では、車室10内で乗員12が感じる車内音に対する空気伝播音及び固体伝播音の寄与を伝達経路毎に解析する。   In this transmission path analysis, the contribution of the air propagation sound and the solid propagation sound to the vehicle interior sound felt by the occupant 12 in the passenger compartment 10 is analyzed for each transmission path.

ここで、固体伝播音による車内音の伝達経路解析を行う場合、振動源の総数を
n、振動検出信号をAi(i=1〜n)、各固体伝播音(振動検出信号Ai)の伝達関数をHi(i=1〜n)、及び合成音圧をPoutとすれば、合成音圧Poutは、下記の(1)式で表わされる。
Here, when analyzing the transmission path of the in-vehicle sound by the solid propagation sound, the total number of vibration sources is n, the vibration detection signal is Ai (i = 1 to n), and the transfer function of each solid propagation sound (vibration detection signal Ai). Is Hi (i = 1 to n) and the synthesized sound pressure is Pout, the synthesized sound pressure Pout is expressed by the following equation (1).

Pout=A1H1+A2H2+A3H3+…+AnHn (1)     Pout = A1H1 + A2H2 + A3H3 + ... + AnHn (1)

前記固体伝播音は、周波数fによって変化するので、前記伝達経路解析を行う場合には、所定の周波数毎に(1)式を構築する。   Since the solid propagation sound changes according to the frequency f, when performing the transmission path analysis, the equation (1) is constructed for each predetermined frequency.

以上が、本実施形態(第1〜第3実施例)の解析対象となる車両内の固体伝播音や、空気伝播音についての説明である。   The above is description about the solid propagation sound and air propagation sound in the vehicle used as the analysis object of this embodiment (1st-3rd Example).

(A)第1実施例:ハンマーによる加振実験に基づく車両内の振動伝達関数の算出方法(図1〜図10)
次に、第1実施例における車室10内における車内音の伝達経路解析の前提技術として、振動源と応答点との間の振動伝達関数を、振動検出信号の逆行列[A]-1を利用して算出する方法について、図3〜図8Bを参照しながら説明する。
(A) 1st Example: Calculation method of vibration transfer function in vehicle based on vibration experiment with hammer (FIGS. 1 to 10)
Next, as a premise technique for analyzing the transmission path of in-vehicle sound in the passenger compartment 10 in the first embodiment, the vibration transfer function between the vibration source and the response point is represented by the inverse matrix [A] −1 of the vibration detection signal. A method of using the calculation will be described with reference to FIGS.

図3Aは、トリムドボディ23から延在するフレーム30、32をハンマー38によって所定回加振する加振テストの概要を示す断面図であり、図3Bは、図3Aの加振テストによって得られた振動伝達関数の周波数特性を示すグラフであり、図4Aは、フレーム30、32を加振器で所定時間連続して加振する加振テストの概要を示す断面図であり、図4Bは、図3A、図3B及び図4Aの加振テストの結果に基づいて、トリムドボディ23内の実測音と合成音とを比較するための手順について説明したブロック図である。   3A is a cross-sectional view showing an outline of a vibration test in which the frames 30 and 32 extending from the trimmed body 23 are vibrated a predetermined number of times by the hammer 38, and FIG. 3B is obtained by the vibration test in FIG. 3A. 4A is a graph showing the frequency characteristics of the vibration transfer function. FIG. 4A is a cross-sectional view showing an outline of a vibration test in which the frames 30 and 32 are continuously vibrated with a vibrator for a predetermined time, and FIG. It is the block diagram explaining the procedure for comparing the measured sound and the synthetic sound in the trimmed body 23 based on the result of the vibration test of FIG. 3A, FIG. 3B, and FIG. 4A.

ここで、トリムドボディ23とは、車両からエンジン、内装品等を取り除き、シャーシとボディとで車室10(図1参照)を構成したものであり、このトリムドボディ23内には、乗員12の上半身を模式したダミーヘッド24が配置され、該ダミーヘッド24の両耳部分にはマイクロホン(振動・音圧検出手段)26、28が配置されている。従って、図3Aでは、マイクロホン26、28の配置位置が応答点となる。なお、マイクロホン26が配置されている側をダミーヘッド24の右耳側とし、マイクロホン28が配置されている側をダミーヘッド24の左耳側とする。   Here, the trimmed body 23 is obtained by removing the engine, interior parts, and the like from the vehicle and configuring the vehicle compartment 10 (see FIG. 1) with the chassis and the body. A dummy head 24 schematically representing the upper half of the twelve body is disposed, and microphones (vibration / sound pressure detecting means) 26 and 28 are disposed at both ears of the dummy head 24. Therefore, in FIG. 3A, the arrangement positions of the microphones 26 and 28 are the response points. The side on which the microphone 26 is disposed is the right ear side of the dummy head 24, and the side on which the microphone 28 is disposed is the left ear side of the dummy head 24.

トリムドボディ23の側部には、外方に向かって2つのフレーム30、32が平行に延在している。これらのフレーム30、32は、車両のサイドフレームであり、フレーム30、32におけるハンマー38の加振箇所の近傍には加速度センサ(振動検出手段)34、36が配置されている。   On the side of the trimmed body 23, two frames 30, 32 extend in parallel toward the outside. These frames 30 and 32 are side frames of the vehicle, and acceleration sensors (vibration detecting means) 34 and 36 are arranged in the vicinity of the vibration location of the hammer 38 in the frames 30 and 32.

ここで、フレーム30、32の加速度センサ34、36近傍をハンマー38で叩くと、該加速度センサ34、36は、ハンマー38による打撃(加振)によってフレーム30、32内に発生した振動を検出して振動検出信号Ai(i=1〜n)を出力する。この場合、加速度センサ34、36は、前記振動の3次元方向の加速度成分(X成分、Y成分及びZ成分)を検出することが可能である。   Here, when the vicinity of the acceleration sensors 34, 36 of the frames 30, 32 is hit with a hammer 38, the acceleration sensors 34, 36 detect vibrations generated in the frames 30, 32 due to striking (vibration) by the hammer 38. The vibration detection signal Ai (i = 1 to n) is output. In this case, the acceleration sensors 34 and 36 can detect acceleration components (X component, Y component, and Z component) in the three-dimensional direction of the vibration.

従って、フレーム30、32に対してX方向、Y方向又はZ方向よりハンマー38で叩くと、加速度センサ34、36は、X方向、Y方向及びZ方向のいずれか1つの加速度成分を有する合計で6つの振動検出信号Ai(i=1〜6)を出力することができる。また、前記振動は、フレーム30、32及びトリムドボディ23の外壁内を伝達して固体伝播音に変化し、この結果、マイクロホン26、28は、前記固体伝播音の音圧を検出して音圧検出信号を出力する。   Accordingly, when the frames 30 and 32 are hit with the hammer 38 from the X direction, the Y direction, or the Z direction, the acceleration sensors 34 and 36 have a total acceleration component of any one of the X direction, the Y direction, and the Z direction. Six vibration detection signals Ai (i = 1 to 6) can be output. Further, the vibration is transmitted to the inside of the outer walls of the frames 30 and 32 and the trimmed body 23 and is changed to solid propagation sound. As a result, the microphones 26 and 28 detect sound pressure of the solid propagation sound and detect sound. A pressure detection signal is output.

図3Aに示す加振テストでは、上記したように、フレーム30、32に対してX方向、Y方向及びZ方向よりハンマー38で合計で6回叩いて、これらの加振によって発生する振動に起因する固体伝播音をマイクロホン26、28で検出する。この場合、6つの入力(フレーム30のX方向、Y方向及びZ方向の振動による振動検出信号Aiと、フレーム32のX方向、Y方向及びZ方向の振動による振動検出信号Ai)と2出力(マイクロホン26、28からの音圧信号)とから、図3Bに示す12個の振動伝達関数が算出される。   In the vibration test shown in FIG. 3A, as described above, the frames 30 and 32 are struck 6 times in total by the hammer 38 from the X direction, the Y direction, and the Z direction, and are caused by vibrations generated by these vibrations. The solid propagation sound is detected by the microphones 26 and 28. In this case, six inputs (vibration detection signal Ai due to vibration in the X direction, Y direction and Z direction of the frame 30, and vibration detection signal Ai due to vibration in the X direction, Y direction and Z direction of the frame 32) and two outputs ( From the sound pressure signals from the microphones 26 and 28, twelve vibration transfer functions shown in FIG. 3B are calculated.

そして、トリムドボディ23内のマイクロホン26、28で検出された実測の音圧と前記各振動伝達関数を用いて算出した合成音圧Poutとを比較するために、図4Aに示すように、加振器40を用いてフレーム30、32を連続的に加振する加振テストを行う。   Then, in order to compare the actually measured sound pressure detected by the microphones 26 and 28 in the trimmed body 23 with the synthesized sound pressure Pout calculated using the vibration transfer functions, as shown in FIG. A vibration test for continuously vibrating the frames 30 and 32 using the vibrator 40 is performed.

この加振テストは、車両の走行中における車室10(図1参照)内での騒音の発生を模擬したものであり、加振器40は、フレーム30、32に対してZ方向にのみ加振しているが、フレーム30、32内部では前記Z方向への加振によってX方向及びY方向にも僅かに振動しており、この結果、該フレーム30、32内では3次元方向の振動が同時に発生している。   This vibration test simulates the generation of noise in the passenger compartment 10 (see FIG. 1) while the vehicle is running. The vibration exciter 40 applies vibration to the frames 30 and 32 only in the Z direction. However, in the frames 30 and 32, the vibrations in the X direction and the Y direction are slightly vibrated by the vibration in the Z direction. As a result, the vibrations in the three-dimensional direction are generated in the frames 30 and 32. It occurs at the same time.

図4Aに示す加振テストでは、加速度センサ34、36によって検出された6つの振動検出信号Ai(X方向成分、Y方向成分又はZ方向成分を有する振動検出信号と、X方向成分、Y方向成分又はZ方向成分を有する振動検出信号)と図3A及び図3Bの加振テストから得られた12個の伝達関数とを各々掛け合わせて音圧を算出し、算出された各音圧を(1)式に基づいて合成して合成音圧Poutを算出し、算出された合成音圧Poutと図4Aの加振テストにおいてマイクロホン26、28で検出した実測音の音圧とを比較する。   In the vibration test shown in FIG. 4A, six vibration detection signals Ai (vibration detection signals having an X direction component, a Y direction component, or a Z direction component, and an X direction component and a Y direction component detected by the acceleration sensors 34 and 36 are used. Or a vibration detection signal having a Z-direction component) and the twelve transfer functions obtained from the vibration tests of FIGS. 3A and 3B, respectively, to calculate the sound pressure, and calculate each sound pressure by (1 ) Based on the equation (1) to calculate the synthesized sound pressure Pout, and the calculated synthesized sound pressure Pout is compared with the sound pressure of the actually measured sound detected by the microphones 26 and 28 in the vibration test of FIG. 4A.

図5Aは、左耳側のマイクロホン28で検出された実測音の音圧と合成音圧Pout(合成音)とを比較した周波数特性であり、図5Bは、右耳側のマイクロホン26で検出された実測音の音圧と合成音圧Pout(合成音)とを比較した周波数特性である。   FIG. 5A is a frequency characteristic comparing the sound pressure of the actually measured sound detected by the left ear microphone 28 and the synthesized sound pressure Pout (synthesized sound), and FIG. 5B is detected by the right ear microphone 26. This is a frequency characteristic comparing the sound pressure of the measured sound and the synthesized sound pressure Pout (synthesized sound).

この場合、各加振テストの対象とされた周波数帯域(0[Hz]〜2000[Hz])において、実測音に対して合成音が大きいことが諒解される。これは、図6に示すように、2つの振動源からの振動を加速度センサ34、36で検出して振動検出信号(入力1及び入力2)を出力し、一方で、前記各振動に起因する固体伝播音をマイクロホン26、28で検出して音圧信号(応答)を出力する場合、前記入力1に対応する固体伝播音の伝達関数H1と前記入力2に対応する固体伝播音の伝達関数H2とのクロストークや、前記入力1や前記入力2に重畳するノイズによって正しい伝達関数を算出することができず、この結果、マイクロホン26、28で検出される音圧と上記した合成音圧Poutとが一致しないためである。   In this case, it is understood that the synthesized sound is larger than the actually measured sound in the frequency band (0 [Hz] to 2000 [Hz]) targeted for each excitation test. As shown in FIG. 6, this is because vibrations from two vibration sources are detected by the acceleration sensors 34 and 36 and vibration detection signals (input 1 and input 2) are output. When detecting a solid propagation sound with the microphones 26 and 28 and outputting a sound pressure signal (response), a solid propagation sound transfer function H1 corresponding to the input 1 and a solid propagation sound transfer function H2 corresponding to the input 2 As a result, the sound pressure detected by the microphones 26 and 28 and the synthesized sound pressure Pout described above cannot be calculated due to the crosstalk with the noise or the noise superimposed on the input 1 or the input 2. This is because they do not match.

すなわち、(入力1)×H1+(入力2)×H2≠(応答)であり、(1)式に基づいて合成音圧Poutを算出してもマイクロホン26、28で検出した実測音に対する再現性が低い。つまり、複数の振動検出信号Aiを検出しても、上記したクロストークやノイズの影響によって全ての伝達関数Hiは高いコヒーレンスを維持することが困難であり、従って、実測音に対する合成音圧Poutの再現性を高めるには、前記クロストークや前記ノイズの影響を排除して、各伝達関数Hiの計測誤差を除去する必要がある。   In other words, (input 1) × H1 + (input 2) × H2 ≠ (response), and even if the synthesized sound pressure Pout is calculated based on the equation (1), the reproducibility with respect to the actually measured sound detected by the microphones 26 and 28 is high. Low. That is, even if a plurality of vibration detection signals Ai are detected, it is difficult for all transfer functions Hi to maintain high coherence due to the influence of the above-described crosstalk and noise. In order to improve reproducibility, it is necessary to eliminate the measurement error of each transfer function Hi by eliminating the influence of the crosstalk and the noise.

ここで、図7A及び図7Bにおいて、図示しないn個の振動源での加振回数をmとし、前記各振動源からの振動を各加速度センサにより検出して振動検出信号Aij(i=1〜n、j=1〜m)を出力し、該振動検出信号Aijと前記各加速度センサと応答点との間の振動伝達関数Hとを掛け合わせた出力の総和を合成音圧Poutとする。   Here, in FIG. 7A and FIG. 7B, the number of vibrations of n vibration sources (not shown) is m, vibrations from the vibration sources are detected by the acceleration sensors, and vibration detection signals Aij (i = 1 to 1). n, j = 1 to m), and the sum of outputs obtained by multiplying the vibration detection signal Aij and the vibration transfer function H between each acceleration sensor and the response point is defined as a synthesized sound pressure Pout.

この場合、合成音圧Poutjの行列を音圧行列[Pout]とすれば、振動検出信号Aijの行列(振動検出信号行列)[A]と、伝達関数Hの行列(伝達関数行列)[H]とから下記の(2)式で表わされる。   In this case, if the matrix of the synthesized sound pressure Poutj is a sound pressure matrix [Pout], the matrix of the vibration detection signal Aij (vibration detection signal matrix) [A] and the matrix of the transfer function H (transfer function matrix) [H] From the above, it is expressed by the following equation (2).

[Pout]=[A][H] (2)       [Pout] = [A] [H] (2)

ここで、音圧行列[Pout]は下記の(3)式で表わされ、振動検出信号行列[A]は下記の(4)式で表わされ、伝達関数行列[H]は下記の(5)式で表わされる。   Here, the sound pressure matrix [Pout] is represented by the following equation (3), the vibration detection signal matrix [A] is represented by the following equation (4), and the transfer function matrix [H] is represented by the following ( 5) It is expressed by the formula.

ここで、Aij(i=1〜n、j=1〜m)は、振動検出信号行列[A]の成分であり、図7A及び図7Bに示すように、j番目の加速度センサがi回目の振動を検出した際に出力する振動検出信号である。また、前記各振動源が加振される毎に前記各振動源に対応する加速度センサにおいて振動を検出して振動検出信号Aijを出力するので、前記各振動源の加振回数と前記各加速度センサの計測回数とは一致している。   Here, Aij (i = 1 to n, j = 1 to m) is a component of the vibration detection signal matrix [A]. As shown in FIGS. 7A and 7B, the jth acceleration sensor is the i-th acceleration sensor. It is a vibration detection signal that is output when vibration is detected. Further, each time each vibration source is vibrated, vibration is detected by an acceleration sensor corresponding to each vibration source and a vibration detection signal Aij is output. Therefore, the number of vibrations of each vibration source and each acceleration sensor This is consistent with the number of measurements.

そして、(2)式より、伝達関数行列[H]は、下記の(6)式から導出される。   Then, the transfer function matrix [H] is derived from the following equation (6) from the equation (2).

[H]=[A]-1[Pout] (6) [H] = [A] −1 [Pout] (6)

ここで、[A]-1は振動検出信号行列[A]の逆行列である。 Here, [A] −1 is an inverse matrix of the vibration detection signal matrix [A].

なお、前述したように、合成音圧Pout及びマイクロホン26、28で検出される実測音の音圧は、周波数によって変化するので、図7Bに示すように、周波数毎に(2)式及び(6)式を構築して振動伝達関数Hiを算出する必要がある。   As described above, the synthesized sound pressure Pout and the sound pressure of the actually measured sound detected by the microphones 26 and 28 vary depending on the frequency. Therefore, as shown in FIG. ) To calculate the vibration transfer function Hi.

図8Aは、左耳側のマイクロホン28で検出された音圧(実測音)と、(6)式に基づいて導出された振動伝達関数Hiに基づいて算出された合成音圧Pout(合成音)とを比較した周波数特性であり、図8Bは、右耳側のマイクロホン26で検出された音圧(実測音)と合成音圧Pout(合成音)とを比較した周波数特性である。   8A shows a sound pressure (measured sound) detected by the microphone 28 on the left ear side and a synthesized sound pressure Pout (synthesized sound) calculated based on the vibration transfer function Hi derived based on the equation (6). 8B is a frequency characteristic in which the sound pressure (measured sound) detected by the microphone 26 on the right ear side and the synthesized sound pressure Pout (synthesized sound) are compared.

この場合、0[Hz]〜1500[Hz]の周波数領域においては、実測音と合成音とが略一致しており、振動検出信号行列[A]の逆行列[A]-1を用いて振動伝達関数Hiを算出したことにより、該振動伝達関数Hiからクロストークの影響が排除されている。しかしながら、1500[Hz]を越える周波数領域では、実測音に対して合成音が大きくなっている。これは、前記各加速度センサから出力される振動検出信号Aijに該各角速度センサの計測ノイズに起因する誤差成分が含まれ、この結果、振動伝達関数Hiの算出精度が大幅に低下するためである。このように、逆行列[A]-1を用いた振動伝達関数Hiの算出方法においても、1500[Hz]以上の高周波領域では、振動伝達関数Hiからクロストークや計測ノイズの成分を除去することができないという不都合がある。 In this case, in the frequency range of 0 [Hz] to 1500 [Hz], the actually measured sound and the synthesized sound substantially coincide with each other, and vibration is generated using an inverse matrix [A] −1 of the vibration detection signal matrix [A]. By calculating the transfer function Hi, the influence of crosstalk is eliminated from the vibration transfer function Hi. However, in the frequency region exceeding 1500 [Hz], the synthesized sound is larger than the actually measured sound. This is because the vibration detection signal Aij output from each acceleration sensor includes an error component due to the measurement noise of each angular velocity sensor, and as a result, the calculation accuracy of the vibration transfer function Hi is greatly reduced. . As described above, also in the method of calculating the vibration transfer function Hi using the inverse matrix [A] −1 , components of crosstalk and measurement noise are removed from the vibration transfer function Hi in a high frequency region of 1500 [Hz] or higher. There is an inconvenience that cannot be done.

以上が、第1実施例の前提技術となる振動検出信号の逆行列[A]-1を利用した振動伝達関数の算出方法の説明である。 The above is the description of the method for calculating the vibration transfer function using the inverse matrix [A] −1 of the vibration detection signal, which is the prerequisite technology of the first embodiment.

次に、第1実施例に係る振動伝達関数の算出方法について、図9及び図10を参照しながら説明する。   Next, a method for calculating the vibration transfer function according to the first embodiment will be described with reference to FIGS.

この算出方法では、図9A及び図9Bに示すように、各加速度センサで検出された振動検出信号Ajより、主成分回帰法に基づいて振動伝達関数Hiを算出することにより、該振動伝達関数Hiから前記加速度センサの計測ノイズ及びクロストークの成分(以下、ノイズ成分ともいう。)の影響を排除するようにしている。   In this calculation method, as shown in FIGS. 9A and 9B, the vibration transfer function Hi is calculated by calculating the vibration transfer function Hi from the vibration detection signal Aj detected by each acceleration sensor based on the principal component regression method. Thus, the influence of measurement noise and crosstalk components (hereinafter also referred to as noise components) of the acceleration sensor is eliminated.

すなわち、n個の振動源と加速度センサとがあり、図9Aに示すように、各振動源から発生する振動を各加速度センサで検出して振動検出信号Aj(j=1〜m)を各々出力する場合、各振動検出信号Ajより各主成分Tk{k=1〜(m−1)}を算出して各主成分Tkを互いに無相関とし、無相関化された各主成分Tkに基づいて伝達関数行列[H]及び応答点の合成音圧Poutを算出する。   That is, there are n vibration sources and acceleration sensors. As shown in FIG. 9A, vibrations generated from the vibration sources are detected by the acceleration sensors and vibration detection signals Aj (j = 1 to m) are output. In this case, the principal components Tk {k = 1 to (m−1)} are calculated from the vibration detection signals Aj to make the principal components Tk uncorrelated with each other, and based on the uncorrelated principal components Tk. The transfer function matrix [H] and the synthesized sound pressure Pout at the response point are calculated.

この場合、各主成分Tkを成分とする主成分行列を[T]とし、この主成分行列[T]を構成する対角行列としての特異値行列を[S]、主成分行列[T]の方向を決定する直交行列を[U]及び[V]とすれば、振動検出信号行列[A]は、下記の(7)式で表わされ、主成分行列[T]は、下記の(8)式で表わされる。   In this case, a principal component matrix having each principal component Tk as a component is [T], a singular value matrix as a diagonal matrix constituting the principal component matrix [T] is [S], and the principal component matrix [T] If the orthogonal matrices for determining the direction are [U] and [V], the vibration detection signal matrix [A] is expressed by the following equation (7), and the principal component matrix [T] is expressed by the following (8) ).

[A]=[T][V]T=[U][S][V]T (7) [A] = [T] [V] T = [U] [S] [V] T (7)

[T]=[U][S] (8)       [T] = [U] [S] (8)

ここで、[V]Tは、直交行列[V]の転置行列であり、(7)式では、振動検出信号行列[A]を特異値行列[S]に特異値分解している。 Here, [V] T is a transposed matrix of the orthogonal matrix [V]. In the equation (7), the vibration detection signal matrix [A] is singularly decomposed into a singular value matrix [S].

そして、直交行列[U]、特異値行列[S]及び転置行列[V]Tは、下記の(9)式〜(11)式で表わされる。 The orthogonal matrix [U], singular value matrix [S], and transposed matrix [V] T are expressed by the following equations (9) to (11).

ここで、Uji(i=1〜n、j=1〜m)は、直交行列[U]の成分であり、Vijは、転置行列[V]Tの成分である。 Here, Uji (i = 1 to n, j = 1 to m) is a component of the orthogonal matrix [U], and Vij is a component of the transposed matrix [V] T.

そして、Sjiは、特異値行列[S]の成分であり特異値という。この場合、特異値行列[S]の特異値Sjiの値は、S11、S22、…、Smnの順番で小さくなり、これら特異値を順番に第1主成分、第2主成分、…、第m(n)主成分ともいう。また、特異値行列[S]は、振動検出信号行列[A]に対する固有ベクトル(固有値行列)であるので、各特異値Sjiは、各振動検出信号Aijに対する固有値である。   Sji is a component of the singular value matrix [S] and is called a singular value. In this case, the value of the singular value Sji of the singular value matrix [S] decreases in the order of S11, S22,..., Smn, and these singular values are sequentially converted into the first principal component, the second principal component,. (N) Also referred to as a main component. Further, since the singular value matrix [S] is an eigenvector (eigenvalue matrix) for the vibration detection signal matrix [A], each singular value Sji is an eigenvalue for each vibration detection signal Aij.

(7)式及び(8)式を用いると、(2)式で示される音圧行列[Pout]は下記の(12)式に変形され、(6)式で示される伝達関数行列[H]は下記の(13)式に変形される。   Using the equations (7) and (8), the sound pressure matrix [Pout] represented by the equation (2) is transformed into the following equation (12), and the transfer function matrix [H] represented by the equation (6) is used. Is transformed into the following equation (13).

[Pout]=[A][H]=[U][S][V]T[H]
=[T][V]T[H] (12)
[Pout] = [A] [H] = [U] [S] [V] T [H]
= [T] [V] T [H] (12)

[H]=[A]-1[Pout]
=[V][S]-1[U]T[Pout] (13)
[H] = [A] −1 [Pout]
= [V] [S] -1 [U] T [Pout] (13)

ここで、図9Bに示すように、例えば、2つの加速度センサから出力される各振動検出信号について、前記各加速度センサの信号の大きさを座標軸とする2次元平面上にプロットした場合、プロットされた前記各振動検出信号(図9Bの丸印)に対して最も相関が高い信号成分軸(第1主成分軸)と該信号成分軸に直交するノイズ成分軸(第2主成分軸)とを前記2次元平面上に形成し、前記各振動検出信号を前記各加速度センサの大きさの座標から前記第1及び第2主成分軸の座標へと座標変換を行う。これにより、前記各振動検出信号のうち前記第1主成分軸の成分は、前記第2主成分軸の成分よりも大きいので、前記各振動検出信号に関する情報は、前記第1主成分軸に集約されて、合成音圧Poutに大きく寄与する情報となる。一方、前記第2主成分軸の成分は、ノイズ成分として除去することが可能である。   Here, as shown in FIG. 9B, for example, the vibration detection signals output from the two acceleration sensors are plotted when plotted on a two-dimensional plane with the magnitudes of the signals of the acceleration sensors as coordinate axes. Further, a signal component axis (first principal component axis) having the highest correlation with each vibration detection signal (circled in FIG. 9B) and a noise component axis (second principal component axis) orthogonal to the signal component axis are defined. Formed on the two-dimensional plane, the vibration detection signals are coordinate-converted from the coordinates of the sizes of the acceleration sensors to the coordinates of the first and second principal component axes. As a result, the component of the first principal component axis in each vibration detection signal is larger than the component of the second principal component axis, and therefore information on each vibration detection signal is aggregated in the first principal component axis. Thus, the information greatly contributes to the synthesized sound pressure Pout. On the other hand, the component of the second principal component axis can be removed as a noise component.

このように、主成分分析法を用いて、振動検出信号を特異値分解することにより、本来は、2つの座標軸(2つの加速度センサ)で表現される成分から構成される前記振動検出信号を、互いに無相関な2つの主成分(第1主成分及び第2主成分)に特異値分解して前記各振動検出信号の情報を1つの座標軸(第1主成分軸)に集約し、第2主成分軸の成分をノイズ成分として除去することにより、前記第1主成分軸の集約結果(特異値)に基づいて振動伝達関数を算出することが可能となる。   In this way, by using the principal component analysis method to singularly decompose the vibration detection signal, the vibration detection signal originally composed of components expressed by two coordinate axes (two acceleration sensors) Singular value decomposition is performed on two principal components that are uncorrelated with each other (first principal component and second principal component), and the information of each vibration detection signal is collected on one coordinate axis (first principal component axis). By removing the component axis component as a noise component, the vibration transfer function can be calculated based on the aggregation result (singular value) of the first principal component axis.

従って、図10に示すように、各振動源における加振回数がmで、加速度センサの個数がnである場合でも、主成分回帰法を用いて各振動検出信号Aijを特異値分解して特異値Sijを算出し、算出した特異値Sjiのうち所定の閾値よりも小さな特異値(例えば、Smn)をノイズ成分として除去すれば、伝達関数行列[H]を算出する際に、特異値Smnに係る特異値行列[S]の行及び列を削除し、且つ該特異値Smnに対応する直交行列[U]の列及び直交行列[V]の列を削除することができ、この結果、伝達関数行列[H]の算出時間を短縮することが可能となる。   Accordingly, as shown in FIG. 10, even when the number of excitations at each vibration source is m and the number of acceleration sensors is n, each vibration detection signal Aij is decomposed by singular value decomposition using the principal component regression method. When the value Sij is calculated and a singular value (for example, Smn) smaller than a predetermined threshold is removed as a noise component from the calculated singular value Sji, the singular value Smn is calculated when the transfer function matrix [H] is calculated. The row and column of the singular value matrix [S] can be deleted, and the column of the orthogonal matrix [U] and the column of the orthogonal matrix [V] corresponding to the singular value Smn can be deleted. The calculation time of the matrix [H] can be shortened.

すなわち、第1実施例に係る振動伝達関数の算出方法では、ハンマーによる加振実験で得られた振動検出信号Aijを用いて伝達関数行列[H]、換言すれば、振動伝達特性(関数)を精度よく且つ短時間で算出することが可能である。   That is, in the calculation method of the vibration transfer function according to the first embodiment, the transfer function matrix [H], in other words, the vibration transfer characteristic (function) is obtained using the vibration detection signal Aij obtained by the vibration experiment with the hammer. It is possible to calculate with high accuracy and in a short time.

(B)第2実施例:(A)の算出方法を利用した振動・音圧伝達特性解析装置50A及びその方法(図11〜図14C)
図11は、上記した主成分回帰法を用いて伝達関数行列[H]を算出するための振動・音圧伝達特性解析装置50Aの構成を示すブロック図であり、図12は、該振動・音圧伝達特性解析装置50Aにおけるデータの流れを示すブロック図である。
(B) Second Example: Vibration / Sound Pressure Transfer Characteristic Analysis Device 50A Using the Calculation Method of (A) and its Method (FIGS. 11-14C)
FIG. 11 is a block diagram showing a configuration of a vibration / sound pressure transfer characteristic analyzer 50A for calculating the transfer function matrix [H] using the above-described principal component regression method, and FIG. It is a block diagram which shows the flow of data in the pressure transfer characteristic analyzer 50A.

この振動・音圧伝達特性解析装置50Aは、図示しない車両に適用可能であり、前記車両内の振動源から発生する振動を検出して振動検出信号Ai(t)(i=1〜n)を出力する複数の加速度センサ52(i)と、振動検出信号Ai(t)を周波数分析して振動検出信号Ai(f)を出力する周波数分析手段(FFT)54(i)と、各振動検出信号Ai(f)に基づいて周波数毎の振動検出信号行列[A]を構築する行列形成手段56と、応答点における音圧又は振動を検出して振動・音圧検出信号Pout(t)を出力する振動・音圧検出手段62と、振動・音圧検出信号Pout(t)を振動・音圧検出信号Pout(f)を出力する周波数分析手段(FFT)64と、振動検出信号行列[A]及び振動・音圧検出信号Pout(f)に対して主成分分析を行って伝達関数行列[H]を算出する主成分回帰分析手段58と、算出された伝達関数行列[H]より伝達経路毎に振動伝達関数Hiを分配する伝達関数分配手段60とを有する。   The vibration / sound pressure transfer characteristic analyzing apparatus 50A is applicable to a vehicle (not shown), detects vibration generated from a vibration source in the vehicle, and generates vibration detection signals Ai (t) (i = 1 to n). A plurality of acceleration sensors 52 (i) for output, frequency analysis means (FFT) 54 (i) for frequency analysis of the vibration detection signal Ai (t) to output the vibration detection signal Ai (f), and each vibration detection signal Matrix forming means 56 that constructs a vibration detection signal matrix [A] for each frequency based on Ai (f), and detects a sound pressure or vibration at a response point and outputs a vibration / sound pressure detection signal Pout (t). Vibration / sound pressure detection means 62, frequency analysis means (FFT) 64 for outputting vibration / sound pressure detection signal Pout (t) and vibration / sound pressure detection signal Pout (f), vibration detection signal matrix [A] and Vibration / sound pressure detection signal Pout (f The principal component regression analysis means 58 for calculating the transfer function matrix [H] by performing the principal component analysis on the transfer function, and the transfer function distribution for distributing the vibration transfer function Hi for each transfer path from the calculated transfer function matrix [H] Means 60.

主成分回帰分析手段58は、振動検出信号行列[A]に対して特異値分解を行い、互いに無相関の特異値(主成分)Sjiを算出する特異値分解部66と、算出された特異値のうちノイズ成分と判定されたものを除去するノイズ除去部68と、特異値分解され且つノイズ除去された振動検出信号行列[A]と、振動・音圧検出信号Pout(f)との間で回帰分析を行うことにより、前記各振動源と前記応答点との間の振動伝達特性、すなわち、伝達関数行列[H]を算出する回帰分析部70とを有する。   The principal component regression analysis means 58 performs singular value decomposition on the vibration detection signal matrix [A], calculates a singular value (principal component) Sji that is uncorrelated with each other, and the calculated singular value. Among the noise removal unit 68 that removes a component determined as a noise component, the vibration detection signal matrix [A] subjected to singular value decomposition and noise removal, and the vibration / sound pressure detection signal Pout (f). The regression analysis unit 70 calculates a vibration transfer characteristic between each vibration source and the response point, that is, a transfer function matrix [H], by performing regression analysis.

図11及び図12において、前記振動源とは、図1に示すようなエンジン14や排気系統20であり、各加速度センサ52(i)は、車両内部におけるエンジン14近傍あるいは排気系統20近傍の所定位置に配置されている。また、振動・音圧検出手段62は、車室10内の所定位置を応答点として配置されている。   11 and 12, the vibration source is the engine 14 or the exhaust system 20 as shown in FIG. 1, and each acceleration sensor 52 (i) is a predetermined part in the vicinity of the engine 14 or the exhaust system 20 inside the vehicle. Placed in position. Further, the vibration / sound pressure detection means 62 is arranged with a predetermined position in the passenger compartment 10 as a response point.

ここで、車両の走行時あるいは動作時を想定し、エンジン14あるいは排気系統20が所定時間振動するときの加振回数をm回とした場合、各加速度センサ52(i)は、エンジン14あるいは排気系統20を加振する毎に該加振による振動を検出して振動検出信号Ai(t)をFFT54(i)に出力する。   Here, assuming that the vehicle is traveling or operating, and the number of times of vibration when the engine 14 or the exhaust system 20 vibrates for a predetermined time is m, each acceleration sensor 52 (i) Each time the system 20 is vibrated, vibration due to the vibration is detected and a vibration detection signal Ai (t) is output to the FFT 54 (i).

より詳細に説明すれば、加速度センサ52(i)は、加振回数mを行とし、振動検出信号Ai(t)の時系列データの個数lを列とする振動検出信号行列[Ai(t)]を構築し、構築した振動検出信号行列[Ai(t)]をFFT54(i)に出力する。そして、振動検出信号行列[Ai(t)]は、下記の(14)式で表わされる。   More specifically, the acceleration sensor 52 (i) uses the vibration detection signal matrix [Ai (t) with the number of excitations m as a row and the number l of time series data of the vibration detection signal Ai (t) as a column. ], And the constructed vibration detection signal matrix [Ai (t)] is output to the FFT 54 (i). The vibration detection signal matrix [Ai (t)] is expressed by the following equation (14).

ここで、Aji(o)(i=1〜n、j=1〜m、o=1〜l)は、振動検出信号行列[Ai(t)]の成分であり、i番目の加速度センサ52(i)において第j回目の計測で検出した振動に対する振動検出信号のうち第o番目の時系列データであることを示している。   Here, Aji (o) (i = 1 to n, j = 1 to m, o = 1 to 1) is a component of the vibration detection signal matrix [Ai (t)], and the i-th acceleration sensor 52 ( In i), it is the o-th time-series data among the vibration detection signals for the vibration detected in the j-th measurement.

一方、振動・音圧検出手段62は、前記振動に起因する固体伝播音を車内音(騒音)として検出して振動・音圧検出信号Pout(t)をFFT64に出力する。   On the other hand, the vibration / sound pressure detecting means 62 detects the solid propagation sound caused by the vibration as the in-vehicle sound (noise) and outputs the vibration / sound pressure detection signal Pout (t) to the FFT 64.

この場合も、振動・音圧検出手段62は、加振回数mを行とし、振動・音圧検出信号Pout(t)の時系列データの個数lを列とする振動・音圧検出信号行列[Pout(t)]を構築し、構築した振動・音圧検出信号行列[Pout(t)]をFFT64に出力する。そして、振動・音圧検出信号行列[Pout(t)]は、下記の(15)式で表わされる。   In this case as well, the vibration / sound pressure detection means 62 uses the vibration / sound pressure detection signal matrix [[m] as the row and the number l of time-series data of the vibration / sound pressure detection signal Pout (t) as a column. Pout (t)] is constructed, and the constructed vibration / sound pressure detection signal matrix [Pout (t)] is output to the FFT 64. The vibration / sound pressure detection signal matrix [Pout (t)] is expressed by the following equation (15).

ここで、Poutj(o)(j=1〜m、o=1〜l)は、振動・音圧検出信号行列[Pout(t)]の成分であり、第j回目の計測で検出した固体伝播音に対する振動・音圧検出信号のうち第o番目の時系列データであることを示している。   Here, Poutj (o) (j = 1 to m, o = 1 to 1) is a component of the vibration / sound pressure detection signal matrix [Pout (t)], and is detected by the j-th measurement. This shows the o-th time-series data among the vibration / sound pressure detection signals for the sound.

FFT54(i)は、入力された振動検出信号Ai(t){振動検出信号行列[Ai(t)]}を周波数分析して振動検出信号Ai(f)の行列[Ai(f)]を行列形成手段56に出力し、一方で、FFT64は、入力された振動・音圧検出信号Pout(t){振動・音圧検出信号行列[Pout(t)]}を周波数分析して振動・音圧検出信号Pout(f)の行列[Pout(f)]を回帰分析部70に出力する。   The FFT 54 (i) performs frequency analysis on the input vibration detection signal Ai (t) {vibration detection signal matrix [Ai (t)]} and generates a matrix [Ai (f)] of the vibration detection signal Ai (f). On the other hand, the FFT 64 outputs the vibration / sound pressure detection signal Pout (t) {vibration / sound pressure detection signal matrix [Pout (t)]} to the vibration / sound pressure. The matrix [Pout (f)] of the detection signal Pout (f) is output to the regression analysis unit 70.

この場合、振動検出信号行列[Ai(f)]は、下記の(16)式で表わされ、一方で、振動・音圧検出信号行列[Pout(f)]は、下記の(17)式で表わされる。   In this case, the vibration detection signal matrix [Ai (f)] is expressed by the following equation (16), while the vibration / sound pressure detection signal matrix [Pout (f)] is expressed by the following equation (17). It is represented by

ここで、Aji(f)は、振動検出信号行列[Ai(f)]の成分であり、振動検出信号Aji(t)を周波数fの成分に変換したものである。一方、Poutj(f)は、振動・音圧検出信号行列[Poutj(f)]の成分であり、振動・音圧検出信号Poutj(t)を周波数fの成分に変換したものである。   Here, Aji (f) is a component of the vibration detection signal matrix [Ai (f)], and is obtained by converting the vibration detection signal Aji (t) into a component of frequency f. On the other hand, Poutj (f) is a component of the vibration / sound pressure detection signal matrix [Poutj (f)], and is obtained by converting the vibration / sound pressure detection signal Poutj (t) into a component of frequency f.

行列形成手段56は、各FFT54(i)より入力された振動検出信号行列[Ai(f)]より周波数f毎の振動検出信号行列[A]を構築し、構築した各振動検出信号行列[A]を特異値分解部66に出力する。この場合、振動検出信号行列[A]は、(4)式で表わされるm行n列の行列となる。   The matrix forming means 56 constructs a vibration detection signal matrix [A] for each frequency f from the vibration detection signal matrix [Ai (f)] input from each FFT 54 (i), and constructs each vibration detection signal matrix [A ] Is output to the singular value decomposition unit 66. In this case, the vibration detection signal matrix [A] is a matrix of m rows and n columns expressed by Equation (4).

特異値分解部66は、上記した(7)式に基づいて、入力された振動検出信号行列[A]に対する特異値分解を行い、特異値分解された振動検出信号行列[A]、すなわち、該振動検出信号行列[A]を特異値分解することにより算出された特異値行列[S]、直交行列[U]及び転置行列[V]Tをノイズ除去部68に出力する。 The singular value decomposition unit 66 performs singular value decomposition on the input vibration detection signal matrix [A] based on the above equation (7), and the singular value decomposed vibration detection signal matrix [A], that is, The singular value matrix [S], the orthogonal matrix [U], and the transposed matrix [V] T calculated by performing the singular value decomposition on the vibration detection signal matrix [A] are output to the noise removing unit 68.

ノイズ除去部68は、特異値行列[S]を構成する各特異値Sjiが所定の閾値よりも小さいか否かを判定し、前記閾値よりも小さい特異値Sjiが存在する場合、該特異値Sjiがノイズ成分であると判定して、特異値行列[S]における該特異値Sjiに係る行と列とを除去すると共に、直交行列[U]及び直交行列[V]における該特異値Sjiに係る列を除去する。   The noise removing unit 68 determines whether or not each singular value Sji constituting the singular value matrix [S] is smaller than a predetermined threshold. If there is a singular value Sji smaller than the threshold, the singular value Sji Is a noise component, the row and column related to the singular value Sji in the singular value matrix [S] are removed, and the singular value Sji in the orthogonal matrix [U] and the orthogonal matrix [V] Remove a column.

図13は、主成分j(i)と特異値Sjiとの関係を示すグラフである。特異値Sjiにノイズ成分が重畳していない場合(図13の点線の直線)、主成分の数が増加すると特異値Sjiが低下し、所定の主成分数を越えると特異値Sjiは略0となる。しかしながら、特異値Sjiにノイズ成分が重畳していると、所定の主成分数になっても特異値Sjiは0とはならず、特異値Sjiは、前記主成分数において直線が屈曲する特性となる。この場合、前記直線が屈曲する変曲点での特異値Sjiの値を前記閾値とすれば、この閾値以下の主成分では、その特異値Sjiは全てノイズ成分となる。   FIG. 13 is a graph showing the relationship between the principal component j (i) and the singular value Sji. When the noise component is not superimposed on the singular value Sji (dotted line in FIG. 13), the singular value Sji decreases as the number of principal components increases, and the singular value Sji is substantially zero when the predetermined number of principal components is exceeded. Become. However, if a noise component is superimposed on the singular value Sji, the singular value Sji does not become 0 even when the predetermined number of principal components is reached, and the singular value Sji has a characteristic that a straight line is bent at the number of principal components. Become. In this case, if the value of the singular value Sji at the inflection point at which the straight line bends is defined as the threshold value, the singular value Sji is all a noise component in the main component below the threshold value.

従って、ノイズ除去部68では、図13のグラフに基づいて、特異値行列[S]を構成する各特異値Sjiと前記閾値とを比較し、該閾値よりも低い特異値Sjiがあれば、この特異値Sjiがノイズ成分からなるものと判定し、判定結果に基づいて、上記した特異値行列[S]における行と列との除去と、直交行列[U]及び直交行列[V]における列の除去とを行うことが可能である。   Therefore, the noise removing unit 68 compares each singular value Sji constituting the singular value matrix [S] with the threshold value based on the graph of FIG. 13, and if there is a singular value Sji lower than the threshold value, It is determined that the singular value Sji includes a noise component, and based on the determination result, the removal of the row and column in the singular value matrix [S] described above, and the column of the orthogonal matrix [U] and the orthogonal matrix [V] are determined. Removal.

しかしながら、ノイズ除去部68においては、実際には、図13のグラフを利用した下記の(18)式に示す寄与率(dist)qに基づいて、上記した特異値行列[S]における行と列との除去と、直交行列[U]及び直交行列[V]における列の除去とを行っている。   However, in the noise removing unit 68, the rows and columns in the singular value matrix [S] described above are actually based on the contribution rate (dist) q shown in the following equation (18) using the graph of FIG. And removal of columns in the orthogonal matrix [U] and the orthogonal matrix [V].

ここで、qは、任意の主成分数であり、Sqqは、第q主成分における特異値である。この場合、図13に示すように、主成分数iの増加に伴って特異値Siiが低下するので、主成分数qが増加すると寄与率(dist)qが小さくなる。この寄与率(dist)qが高いほど当該特異値Sqqは振動検出信号Ai(f)に関する情報を集約しているものと判定され、一方で、この数値が低いほど当該特異値Sqqにはノイズ成分を含まれているものと判定することが可能である。   Here, q is an arbitrary number of principal components, and Sqq is a singular value in the q-th principal component. In this case, as shown in FIG. 13, since the singular value Sii decreases as the number of principal components i increases, the contribution rate (dist) q decreases as the number of principal components q increases. The higher the contribution rate (dist) q is, the more the singular value Sqq is determined to be collected from the information related to the vibration detection signal Ai (f). Can be determined to be included.

そこで、ノイズ除去部68では、第q主成分における寄与率(dist)qが前記閾値に対応する寄与率よりも低い場合、該第q主成分の特異値Sqqがノイズ成分からなるものと判定して、特異値行列[S]における該特異値Sqqに係る行と列との除去と、直交行列[U]及び直交行列[V]における特異値Sqqに対応する列の除去とを行う。   Therefore, when the contribution rate (dist) q in the q-th principal component is lower than the contribution rate corresponding to the threshold, the noise removal unit 68 determines that the singular value Sqq of the q-th principal component is composed of a noise component. Thus, the removal of the row and the column relating to the singular value Sqq in the singular value matrix [S] and the removal of the column corresponding to the singular value Sqq in the orthogonal matrix [U] and the orthogonal matrix [V] are performed.

回帰分析部70では、ノイズ除去部68から入力された特異値行列[S]、直交行列[U]及び転置行列[V]Tと、FFT64から入力された振動・音圧検出信号行列[Pout(f)]とを用い、(13)式に基づく回帰分析を行って伝達関数行列[H(f)]を周波数f毎に算出し、算出した伝達関数行列[H(f)]を伝達関数分配手段60に出力する。 In the regression analysis unit 70, the singular value matrix [S], the orthogonal matrix [U] and the transposed matrix [V] T input from the noise removal unit 68, and the vibration / sound pressure detection signal matrix [Pout ( f)] and a regression analysis based on the equation (13) is performed to calculate a transfer function matrix [H (f)] for each frequency f, and the calculated transfer function matrix [H (f)] is transferred to the transfer function. Output to means 60.

この場合、回帰分析部70では、加振回数mに対応して計測点数n個の振動伝達関数Hj(f)(j=1〜n)を算出するので、伝達関数行列[H(f)]は、下記の(19)式で表わされる。   In this case, since the regression analysis unit 70 calculates vibration transfer functions Hj (f) (j = 1 to n) having n measurement points corresponding to the number of times of vibration m, the transfer function matrix [H (f)] Is represented by the following equation (19).

伝達関数分配手段60は、入力された周波数f毎の伝達関数行列[H(f)]を各振動源毎{加速度センサ52(i)毎}の振動伝達関数Hi(f)の行列[Hi(f)]に分配する。この場合、伝達関数行列[Hi(f)]は、下記の(20)式で表わされる。   The transfer function distribution unit 60 converts the input transfer function matrix [H (f)] for each frequency f into a matrix [Hi (f) of the vibration transfer function Hi (f) of each vibration source {for each acceleration sensor 52 (i)}. f)]. In this case, the transfer function matrix [Hi (f)] is expressed by the following equation (20).

[Hi(f)]=[Hi(1) Hi(2) … Hi(r)]
(20)
[Hi (f)] = [Hi (1) Hi (2)... Hi (r)]
(20)

ここで、Hi(g)(g=1〜r)は、第i番目の振動源あるいは加速度センサ52(i)に関し、第g番目の周波数fにおける振動伝達関数である。   Here, Hi (g) (g = 1 to r) is a vibration transfer function at the g-th frequency f with respect to the i-th vibration source or the acceleration sensor 52 (i).

図14Aは、左耳側のマイクロホン28(図3A及び図4A参照)で検出された音圧(実測音)と、(19)式に基づいて算出された振動伝達関数Hi(k)より算出された合成音圧Pout(合成音)とを比較した周波数特性であり、図14Bは、右耳側のマイクロホン26で検出された音圧(実測音)と合成音圧Pout(合成音)とを比較した周波数特性である。   14A is calculated from the sound pressure (measured sound) detected by the left-ear microphone 28 (see FIGS. 3A and 4A) and the vibration transfer function Hi (k) calculated based on the equation (19). FIG. 14B compares the sound pressure (measured sound) detected by the right ear microphone 26 and the synthesized sound pressure Pout (synthesized sound). Frequency characteristics.

この場合、0[Hz]〜2000[Hz]の周波数領域において、実測音と合成音とが略一致しており、該振動伝達関数Hi(k)からノイズ成分の影響が排除されていることが諒解される。   In this case, in the frequency range of 0 [Hz] to 2000 [Hz], the actually measured sound and the synthesized sound are substantially the same, and the influence of the noise component is excluded from the vibration transfer function Hi (k). It is understood.

このように、第2実施例に係る振動・音圧伝達特性解析装置50Aでは、主成分回帰分析手段58において、行列形成手段56より入力された振動検出信号行列[A]とFFT64より入力された振動・音圧検出信号行列[Pout(f)]とを用い、主成分回帰法に基づいた振動伝達関数行列[H(f)]の算出を行っているので、固体伝播音に係る伝達関数行列[H(f)]からノイズ成分の影響を排除することが可能となり、この結果、振動伝達関数Hiの算出精度を向上することができる。   Thus, in the vibration / sound pressure transfer characteristic analyzing apparatus 50A according to the second embodiment, the principal component regression analysis unit 58 receives the vibration detection signal matrix [A] input from the matrix forming unit 56 and the FFT 64. Since the vibration transfer function matrix [H (f)] is calculated based on the principal component regression method using the vibration / sound pressure detection signal matrix [Pout (f)], the transfer function matrix related to the solid propagation sound is calculated. It is possible to eliminate the influence of the noise component from [H (f)], and as a result, the calculation accuracy of the vibration transfer function Hi can be improved.

この場合、主成分回帰分析手段58の特異値分解部66では、振動検出信号行列[A]に対する特異値分解を行って互いに無相関な主成分(特異値Sji)を算出し、ノイズ除去部68においては、算出した各特異値Sjiの値が所定の閾値以下である場合、この特異値Sjiの主成分がノイズ成分からなると判定し、判定された特異値Sjiに係る特異値行列[S]の行及び列を削除し、且つ該特異値Smnに対応する直交行列[U]の列及び直交行列[V]の列を削除する。これにより、回帰分析部70における伝達関数行列[Ha]の算出時間を短縮することが可能となる。   In this case, the singular value decomposition unit 66 of the principal component regression analysis unit 58 performs singular value decomposition on the vibration detection signal matrix [A] to calculate uncorrelated principal components (singular values Sji), and a noise removal unit 68. When the calculated value of each singular value Sji is equal to or smaller than a predetermined threshold value, it is determined that the principal component of the singular value Sji is a noise component, and the singular value matrix [S] related to the determined singular value Sji The rows and columns are deleted, and the columns of the orthogonal matrix [U] and the columns of the orthogonal matrix [V] corresponding to the singular value Smn are deleted. Thereby, the calculation time of the transfer function matrix [Ha] in the regression analysis unit 70 can be shortened.

また、ノイズ除去部68では、前記閾値に対応する寄与率(dist)qを用いて上記した判定を行っているので、上記した特異値行列[S]における行及び列の削除や、これに対応する直交行列[U]の列及び直交行列[V]の列の削除を効率よく行うことができる。   Further, since the noise removal unit 68 performs the above-described determination using the contribution rate (dist) q corresponding to the threshold value, the row and column deletion in the above-described singular value matrix [S], and corresponding to this It is possible to efficiently delete the columns of the orthogonal matrix [U] and the columns of the orthogonal matrix [V].

なお、第2実施例に係る振動・音圧伝達特性解析装置50Aでは、前記応答点において、振動・音圧検出手段としてのマイクロホン26、28により音圧を検出して振動・音圧検出信号を出力しているが、この構成に代えて、図示しない振動センサを用いて前記応答点における振動を検出して振動・音圧検出信号を出力することも可能である。   In the vibration / sound pressure transfer characteristic analyzing apparatus 50A according to the second embodiment, the sound pressure is detected by the microphones 26 and 28 as vibration / sound pressure detection means at the response point, and the vibration / sound pressure detection signal is generated. However, instead of this configuration, it is possible to detect a vibration at the response point using a vibration sensor (not shown) and output a vibration / sound pressure detection signal.

(C)第3実施例:固体伝播音及び空気伝播音を同等に取り扱うことが可能な振動・音圧伝達特性解析装置50B及びその方法(図15〜図28)
次に、第3実施例に係る振動・音圧伝達特性解析装置50B及びその方法について、図15〜図28を参照しながら説明する。なお、第2実施例に係る振動・音圧伝達特性解析装置50A(図11及び図12参照)と同様の構成要素については、同一の参照符号で付記し以下同様とする。
(C) Third embodiment: Vibration / sound pressure transmission characteristic analyzer 50B and method (FIGS. 15 to 28) capable of handling solid propagation sound and air propagation sound equally.
Next, a vibration / sound pressure transmission characteristic analyzing apparatus 50B and method according to the third embodiment will be described with reference to FIGS. The same components as those of the vibration / sound pressure transmission characteristic analyzer 50A (see FIGS. 11 and 12) according to the second embodiment are denoted by the same reference numerals, and the same applies hereinafter.

振動・音圧伝達特性解析装置50B及びその方法の説明に先立ち、振動伝達関数及び空気伝播音に係る伝達関数(以下、音圧伝達関数ともいう。)の算出における問題点等について説明する。   Prior to the description of the vibration / sound pressure transfer characteristic analyzing apparatus 50B and its method, problems and the like in the calculation of the transfer function related to the vibration transfer function and the air-borne sound (hereinafter also referred to as sound pressure transfer function) will be described.

図1においても説明したように、車室10の車内音は、エンジン14や排気系統20の振動に起因する固体伝播音と、エンジン14や排気系統20から発生する音が空気中を伝播することに起因する空気伝播音とが車室10内で合成されることによる音である。   As described with reference to FIG. 1, the interior sound of the passenger compartment 10 is transmitted through the air by the solid propagation sound caused by the vibration of the engine 14 and the exhaust system 20 and the sound generated from the engine 14 and the exhaust system 20. This is a sound generated by synthesizing the air propagating sound caused by the vehicle interior 10 in the passenger compartment 10.

これらの伝播音や車内音との関係について、図15を参照しながら詳細に説明すると、固体伝播音の原因とされる振動は、例えば、エンジンマウント16(図1参照)のエンジン14側の振動や、車両の足回り系の振動や、排気系統20のボディ18側の振動であり、一方で、空気伝播音には、エンジン14の放射音及び吸気口の音や排気系統20の排気口における排気音がある。   The relationship between the propagation sound and the vehicle interior sound will be described in detail with reference to FIG. 15. The vibration caused by the solid propagation sound is, for example, the vibration on the engine 14 side of the engine mount 16 (see FIG. 1). The vibration of the undercarriage system of the vehicle and the vibration of the exhaust system 20 on the body 18 side, on the other hand, the air-propagating sound includes the radiated sound of the engine 14 and the sound of the intake port and the exhaust port of the exhaust system 20. There is an exhaust sound.

この場合、エンジンマウント16におけるエンジン14側の振動は、エンジンマウント16を介してボディ18側に伝達されるが、換言すれば、エンジン14側の振動と、該エンジン14とボディ18との間の伝達関数とを掛け合わせたものがボディ18側の振動となる。そして、ボディ18側の振動とエンジンマウント16の振動伝達関数とを掛け合わせたものがエンジンマウント16に係る固体伝播音となって車室10内に伝播される。   In this case, the vibration on the engine 14 side in the engine mount 16 is transmitted to the body 18 side through the engine mount 16. In other words, the vibration on the engine 14 side and the vibration between the engine 14 and the body 18 are transmitted. The product of the transfer function is the vibration on the body 18 side. Then, the product of the vibration on the body 18 side and the vibration transfer function of the engine mount 16 is propagated into the passenger compartment 10 as a solid propagation sound related to the engine mount 16.

同様にして、前記足回り系の振動と足回り系の振動伝達関数とを掛け合わせたものが足回り系の固体伝播音となって車室10内に伝播され、一方で、排気系統20のボディ18側の振動と該排気系統20の振動伝達関数とを掛け合わせたものが排気系統20の固体伝播音となって車室10内に伝播される。   Similarly, the product of the vibration of the undercarriage system and the vibration transfer function of the undercarriage system is propagated into the passenger compartment 10 as a solid propagation sound of the undercarriage system. A product obtained by multiplying the vibration on the body 18 side and the vibration transfer function of the exhaust system 20 is propagated into the passenger compartment 10 as a solid propagation sound of the exhaust system 20.

また、エンジン14の放射音と該エンジン14の放射音に係る音圧伝達関数とを掛け合わせたものがエンジンの透過音(空気伝播音)となって車室10内に伝播され、前記吸気口の音と該吸気口の音に係る音圧伝達関数とを掛け合わせたものが吸気系の透過音(空気伝播音)となって車室10内に伝播され、前記排気口の排気音と該排気口の排気音に係る音圧伝達関数とを掛け合わせたものが排気系統20の透過音(空気伝播音)となって車室10内に伝播される。   Further, a product obtained by multiplying the radiated sound of the engine 14 and the sound pressure transfer function related to the radiated sound of the engine 14 is transmitted into the passenger compartment 10 as an engine transmitted sound (air propagation sound), and the intake port Is multiplied by the sound pressure transfer function related to the sound at the intake port and is transmitted through the vehicle interior 10 as a transmitted sound (air propagation sound) of the intake system. A product obtained by multiplying the sound pressure transfer function related to the exhaust sound at the exhaust port is transmitted through the exhaust system 20 (air propagation sound) and propagated into the passenger compartment 10.

そして、車室10内では、上記した各固体伝播音と各空気伝播音とが合成され、この合成音が車内音として応答点で検出される。従って、車内音を検出する場合には、固体伝播音に係る振動伝達関数に加え、空気伝播音に係る音圧伝達関数についても精度良く算出する必要がある。   Then, in the passenger compartment 10, each of the above-mentioned solid propagation sounds and each of the air propagation sounds are synthesized, and this synthesized sound is detected as a vehicle interior sound at a response point. Therefore, when detecting the in-vehicle sound, it is necessary to accurately calculate the sound pressure transfer function related to the air propagation sound in addition to the vibration transfer function related to the solid propagation sound.

ここで、停止状態にある車両の所定箇所をハンマーで叩くことにより発生する振動に基づいて前記所定箇所と応答点との間の振動伝達関数を算出する場合、実際には、固体伝播音と空気伝播音との合成音が車室10内の車内音となるので、前記車内音に対する前記固体伝播音及び前記空気伝播音の寄与を解析するためには、前記固体伝播音と前記空気伝播音とを同時に計測し、計測結果に基づいて前記固体伝播音による振動伝達関数と前記空気伝播音による音圧伝達関数とを各々算出する必要がある。   Here, when the vibration transfer function between the predetermined location and the response point is calculated based on the vibration generated by hitting the predetermined location of the vehicle in a stopped state with a hammer, in actuality, solid propagation sound and air Since the synthesized sound with the propagation sound becomes the interior sound in the passenger compartment 10, in order to analyze the contribution of the solid propagation sound and the air propagation sound to the interior sound, the solid propagation sound, the air propagation sound, Are simultaneously measured, and a vibration transfer function based on the solid propagation sound and a sound pressure transfer function based on the air propagation sound need to be calculated based on the measurement result.

また、固体伝播音としての振動の単位は[m/s2]であり、一方で、空気伝播音としての音圧の単位は[N/m2]であるので、従来技術では、単位が異なる2つの伝播音を同時に計測して、これらの伝播音に対する伝達関数を各々算出することは困難とされている。 Further, the unit of vibration as the solid propagation sound is [m / s 2 ], while the unit of sound pressure as the air propagation sound is [N / m 2 ], and therefore the unit is different in the conventional technology. It is difficult to measure two propagation sounds at the same time and calculate the transfer functions for these propagation sounds.

さらに、前記振動伝達関数を算出する場合、前記振動伝達関数の精度を上げるために車両に対する加振実験を数多く行う必要があり、この結果、前記振動伝達関数の算出時間が増大する。また、前記車両の所定箇所に対するハンマーの加振力が不足していれば、SN比が低下して前記固体伝播音及び前記振動の伝達ロスが発生する。   Further, when the vibration transfer function is calculated, it is necessary to perform many vibration experiments on the vehicle in order to increase the accuracy of the vibration transfer function. As a result, the calculation time of the vibration transfer function increases. Moreover, if the hammer's excitation force with respect to the predetermined location of the vehicle is insufficient, the S / N ratio is lowered, and the transmission loss of the solid propagation sound and the vibration is generated.

以上の説明が、振動伝達関数及び音圧伝達関数の算出における問題点等である。   The above explanation is a problem in the calculation of the vibration transfer function and the sound pressure transfer function.

次に、前記音圧伝達関数を算出するために行った予備テストについて、図16A〜図23を参照しながら説明する。   Next, a preliminary test performed to calculate the sound pressure transfer function will be described with reference to FIGS.

図16A及び図16Bは、車室10(図1参照)を模擬した無響室80内にマイクロホン26、28を備えたダミーヘッド24を配置し、スピーカ84からの音をマイクロホン26、28、82(1)〜82(4)で検出する予備テストの概要を示す断面図である。   16A and 16B, the dummy head 24 having the microphones 26 and 28 is disposed in the anechoic chamber 80 simulating the passenger compartment 10 (see FIG. 1), and the sound from the speaker 84 is transmitted to the microphones 26, 28 and 82. It is sectional drawing which shows the outline | summary of the preliminary test detected by (1) -82 (4).

図16Aにおいて、スピーカ84の配置位置86は5箇所に設定され、マイクロホン82(1)〜82(4)は、これらの5箇所に対して並行して配置されている。この場合、予備テストでは、図示の位置でスピーカ84から所定時間だけ音を発生させてマイクロホン26、28、82(1)〜82(4)で検出し、次いで、スピーカ84を他の配置位置86に移動させて、上記した音の発生を繰り返し行う。マイクロホン26、28は、前記音を検出して振動・音圧検出信号を出力し、マイクロホン82(1)〜(4)では、前記音を検出して音圧検出信号を出力する。なお、図16Aは、固体伝播音の検出を模擬したものであり、各配置位置86におけるスピーカ84からの音は、図示しない振動源からの固体伝播音に対応している。   In FIG. 16A, the arrangement positions 86 of the speakers 84 are set at five places, and the microphones 82 (1) to 82 (4) are arranged in parallel with respect to these five places. In this case, in the preliminary test, sound is generated from the speaker 84 at a position shown in the figure for a predetermined time and detected by the microphones 26, 28, 82 (1) to 82 (4), and then the speaker 84 is moved to another arrangement position 86. To repeat the above-mentioned sound generation. The microphones 26 and 28 detect the sound and output a vibration / sound pressure detection signal, and the microphones 82 (1) to (4) detect the sound and output a sound pressure detection signal. Note that FIG. 16A simulates detection of a solid propagation sound, and the sound from the speaker 84 at each arrangement position 86 corresponds to the solid propagation sound from a vibration source (not shown).

図16Bでは、スピーカ84は1箇所に固定され、マイクロホン82(1)〜82(4)は、スピーカ84から発生された音を検出して振動・音圧検出信号あるいは音圧検出信号を出力する。なお、図16Bにおいて、スピーカ84から発生された音は、空気伝播音に対応している。   In FIG. 16B, the speaker 84 is fixed at one place, and the microphones 82 (1) to 82 (4) detect the sound generated from the speaker 84 and output a vibration / sound pressure detection signal or a sound pressure detection signal. . In FIG. 16B, the sound generated from the speaker 84 corresponds to the air propagation sound.

図17は、前記各予備テストから得られた前記音圧検出信号及び前記振動・音圧検出信号を用いて算出された音圧伝達関数に基づく合成音と、図16Bでマイクロホン26、28が検出した実測音との比較を行うためのフローチャートであり、基本的には、第2実施例に係る振動・音圧伝達特性解析装置50A(図11及び図12参照)の作用を音圧伝達関数の算出に置換したものとなっている。   FIG. 17 shows the synthesized sound based on the sound pressure transfer function calculated using the sound pressure detection signal and the vibration / sound pressure detection signal obtained from the preliminary tests, and the microphones 26 and 28 detected in FIG. 16B. FIG. 11 is a flowchart for comparing with the actually measured sound. Basically, the action of the vibration / sound pressure transfer characteristic analyzing apparatus 50A (see FIGS. 11 and 12) according to the second embodiment is expressed by the sound pressure transfer function. It is replaced with calculation.

先ず、図16Aにおいて、振動源に対応するスピーカ84から音(固体伝播音)を所定回数発生させ、マイクロホン26、28は、前記各音を検出する毎に振動・音圧検出信号を出力し、マイクロホン82(1)〜(4)は、前記各音を検出する毎に音圧検出信号を出力する(図17のステップS1)。この場合、スピーカ84は、配置位置86を変えながら上記した音の発生を繰り返し行う。   First, in FIG. 16A, a sound (solid propagation sound) is generated a predetermined number of times from the speaker 84 corresponding to the vibration source, and the microphones 26 and 28 output vibration / sound pressure detection signals each time the sounds are detected, The microphones 82 (1) to (4) output a sound pressure detection signal every time the sounds are detected (step S1 in FIG. 17). In this case, the speaker 84 repeatedly generates the above sound while changing the arrangement position 86.

次いで、図16Bにおいて、マイクロホン26、28は、音源からの空気伝播音に対応するスピーカ84からの音を検出して振動・音圧検出信号を出力し、マイクロホン82(1)〜(4)は、前記音を検出して音圧検出信号を出力する(図17のステップS2)。   Next, in FIG. 16B, the microphones 26 and 28 detect the sound from the speaker 84 corresponding to the air propagation sound from the sound source and output the vibration / sound pressure detection signal, and the microphones 82 (1) to (4) The sound is detected and a sound pressure detection signal is output (step S2 in FIG. 17).

次いで、ステップS1において得られた各音圧検出信号を周波数分析し、周波数分析された前記各音圧検出信号について、音の発生回数を行とし、且つマイクロホン82(1)〜82(4)の個数を列とする音圧検出信号行列を構築する(ステップS3)。   Next, each sound pressure detection signal obtained in step S1 is subjected to frequency analysis, and for each sound pressure detection signal subjected to frequency analysis, the number of times of sound generation is set as a row, and microphones 82 (1) to 82 (4) are used. A sound pressure detection signal matrix having the number as a column is constructed (step S3).

次いで、前記音圧検出信号行列について特異値分解を行って特異値行列と該特異値行列に係る直交行列及び転置行列を算出し、得られた前記特異値行列を構成する各特異値が所定の閾値以下であるか否かについて判定する。前記閾値以下の特異値がある場合、当該特異値はノイズ成分からなるものと判定し、前記特異値行列における前記特異値に係る行及び列を削除し、前記直交行列及び前記転置行列において前記特異値に係る列を削除する(ステップS4)。   Next, singular value decomposition is performed on the sound pressure detection signal matrix to calculate a singular value matrix, an orthogonal matrix and a transpose matrix, and each singular value constituting the obtained singular value matrix is a predetermined value. It is determined whether or not it is equal to or less than a threshold value. If there is a singular value less than or equal to the threshold value, it is determined that the singular value is made up of a noise component, the row and column relating to the singular value in the singular value matrix are deleted, and the singular value and the transposed matrix are in the singular value matrix. The column related to the value is deleted (step S4).

次いで、前記ノイズ成分からなる特異値が除去された前記特異値行列、前記直交行列及び前記転置行列を用いて回帰分析を行い(ステップS5)、各マイクロホン82(1)〜82(4)とマイクロホン26、28との間の各音圧伝達関数を算出する(ステップS6)。   Next, regression analysis is performed using the singular value matrix, the orthogonal matrix, and the transpose matrix from which the singular values composed of the noise components have been removed (step S5), and the microphones 82 (1) to 82 (4) and the microphones are analyzed. Each sound pressure transfer function between 26 and 28 is calculated (step S6).

次いで、ステップS2においてマイクロホン82(1)〜82(4)から出力された各音圧検出信号と前記各音圧伝達関数とを掛け合わせて合成音圧を算出し(ステップS7)、ステップS2においてマイクロホン26、28から出力された振動・音圧検出信号の音圧を実測音の音圧とする(ステップS8)。   Subsequently, in step S2, the sound pressure detection signals output from the microphones 82 (1) to 82 (4) are multiplied by the sound pressure transfer functions to calculate a synthesized sound pressure (step S7). The sound pressure of the vibration / sound pressure detection signal output from the microphones 26 and 28 is set as the sound pressure of the actually measured sound (step S8).

最後に、ステップS7において算出された前記合成音圧と、ステップS8における実測音の音圧とを比較して、前記各音圧伝達関数が精度良く算出されたか否かを評価する(ステップS9)。   Finally, the synthesized sound pressure calculated in step S7 is compared with the sound pressure of the actually measured sound in step S8 to evaluate whether or not each sound pressure transfer function has been calculated with high precision (step S9). .

図18は、左耳側のマイクロホン28で検出された音圧(実測音)と合成音圧Pout(合成音)とを比較した周波数特性である。   FIG. 18 shows frequency characteristics comparing the sound pressure (measured sound) detected by the left-ear microphone 28 and the synthesized sound pressure Pout (synthesized sound).

この場合、予備テストの対象とされた周波数帯域(0[Hz]〜2000[Hz])において、実測音と合成音とが全く一致しておらず、ステップS1〜S9に基づいて前記合成音を算出しても音の再現性が全く得られていない。   In this case, in the frequency band (0 [Hz] to 2000 [Hz]) targeted for the preliminary test, the actually measured sound and the synthesized sound do not match at all, and the synthesized sound is determined based on steps S1 to S9. Sound reproducibility is not obtained at all even if calculated.

これは、図19Aに示すように、固体伝播音の場合には、固体物88をハンマー38で叩いて該固体物88内の振動を加速度センサ34、36で検出する場合、前記振動は前記固体物88の内部を伝播する。換言すれば、固体物88のどの箇所をハンマー38で叩いても、前記振動、すなわち、固体伝播音は所定の経路を伝播する。   As shown in FIG. 19A, in the case of a solid propagation sound, when the solid object 88 is hit with the hammer 38 and the vibration in the solid object 88 is detected by the acceleration sensors 34 and 36, the vibration is the solid sound. Propagates inside the object 88. In other words, no matter which part of the solid object 88 is hit with the hammer 38, the vibration, that is, the solid propagation sound propagates through a predetermined path.

これに対して、図19Bに示すように、スピーカ84からの音(空気伝播音)は、音源であるスピーカ84から放射状に伝播しており、スピーカ84の配置位置を変えるとマイクロホン26、28、82(1)〜82(4)に対する前記空気伝播音の伝達経路が変化する。従って、音源の位置が変化すると、伝達経路が一様ではなくなる。従って、音源であるスピーカ84の位置を固定しなければ、音圧伝達関数を算出することができない。換言すれば、音源の位置と、該音源から発生する音圧を検出する音圧検出手段の位置と、応答点において前記音圧を検出する振動・音圧検出手段の位置とを各々固定することにより、音圧伝達関数を算出することが可能であるということになる。   On the other hand, as shown in FIG. 19B, the sound (air propagation sound) from the speaker 84 propagates radially from the speaker 84 as a sound source, and the microphones 26, 28, The transmission path of the air propagation sound with respect to 82 (1) to 82 (4) changes. Therefore, when the position of the sound source changes, the transmission path is not uniform. Therefore, the sound pressure transfer function cannot be calculated unless the position of the speaker 84 as a sound source is fixed. In other words, the position of the sound source, the position of the sound pressure detecting means for detecting the sound pressure generated from the sound source, and the position of the vibration / sound pressure detecting means for detecting the sound pressure at the response point are fixed. Thus, it is possible to calculate the sound pressure transfer function.

図20は、上記した結論に基づいて、音源、音圧検出手段及び振動・音圧検出手段の配置位置を固定した場合に、予備テストから得られた音圧検出信号及び振動・音圧検出信号を用いて算出された音圧伝達関数に基づく合成音と、実測音との比較を行うためのフローチャートである。   FIG. 20 shows the sound pressure detection signal and the vibration / sound pressure detection signal obtained from the preliminary test when the arrangement positions of the sound source, sound pressure detection unit and vibration / sound pressure detection unit are fixed based on the above conclusion. 5 is a flowchart for comparing the synthesized sound based on the sound pressure transfer function calculated using the sound and the actually measured sound.

この場合、図16Bに示すように、音源としてのスピーカ84、音圧検出手段としてのマイクロホン82(1)〜82(4)及び振動・音圧検出手段としてのマイクロホン26、28の配置位置を固定した状態で、マイクロホン82(1)〜82(4)は、スピーカ84からの空気伝播音を検出して音圧検出信号を出力し、マイクロホン26、28は、前記空気伝播音を検出して振動・音圧検出信号を出力する(ステップS10)。   In this case, as shown in FIG. 16B, the arrangement positions of the speaker 84 as a sound source, the microphones 82 (1) to 82 (4) as sound pressure detection means, and the microphones 26 and 28 as vibration / sound pressure detection means are fixed. In this state, the microphones 82 (1) to 82 (4) detect the air propagation sound from the speaker 84 and output a sound pressure detection signal, and the microphones 26 and 28 detect the air propagation sound and vibrate. A sound pressure detection signal is output (step S10).

次いで、ステップS3〜S6の処理と同様に、前記音圧検出信号より音圧検出信号行列を構築し(ステップS11)、前記音圧検出信号行列に対して特異値分解とノイズ成分の除去とを行い(ステップS12)、特異値分解とノイズ除去とが行われた前記音圧検出信号行列と前記振動・音圧検出信号とを用いて回帰分析を行い(ステップS13)、音圧伝達関数を算出する(ステップS14)。   Next, similarly to the processing in steps S3 to S6, a sound pressure detection signal matrix is constructed from the sound pressure detection signal (step S11), and singular value decomposition and noise component removal are performed on the sound pressure detection signal matrix. (Step S12), a regression analysis is performed using the sound pressure detection signal matrix subjected to singular value decomposition and noise removal and the vibration / sound pressure detection signal (step S13), and a sound pressure transfer function is calculated. (Step S14).

次いで、ステップS7の処理と同様に、前記音圧検出信号と前記音圧伝達関数とを掛け合わせて応答点における合成音圧を算出し(ステップS15)、前記振動・音圧検出信号の音圧を前記応答点における実測音圧として(ステップS16)、前記合成音圧と前記実測音圧とを比較することにより、前記音圧伝達関数が精度良く算出されているか否かを評価する(ステップS17)。   Next, similarly to the processing in step S7, the sound pressure detection signal and the sound pressure transfer function are multiplied to calculate a synthesized sound pressure at the response point (step S15), and the sound pressure of the vibration / sound pressure detection signal is calculated. Is measured sound pressure at the response point (step S16), and the synthetic sound pressure is compared with the actually measured sound pressure to evaluate whether or not the sound pressure transfer function is accurately calculated (step S17). ).

図21は、左耳側のマイクロホン28で検出された音圧(実測音)と合成音圧Pout(合成音)とを比較した周波数特性である。   FIG. 21 shows frequency characteristics comparing the sound pressure (measured sound) detected by the left-ear microphone 28 and the synthesized sound pressure Pout (synthesized sound).

この場合、予備テストの対象とされた周波数帯域(0[Hz]〜2000[Hz])において、実測音と合成音とが略一致し、ステップS10〜S17に基づいて前記合成音を算出すれば、応答点における空気伝播音を精度良く再現することが可能であることを示している。   In this case, in the frequency band (0 [Hz] to 2000 [Hz]) targeted for the preliminary test, the actually measured sound and the synthesized sound substantially coincide with each other, and the synthesized sound is calculated based on steps S10 to S17. This shows that the air-borne sound at the response point can be accurately reproduced.

ところで、図1及び図16に示すように、車室10における車内音は、固体伝播音と空気伝播音とから構成される。従って、車室10内の応答点における車内音を精度良く再現するためには、固体伝播音に係る振動伝達関数と空気伝播音に係る音圧伝達関数とを用いて前記車内音を再現する必要がある。しかしながら、前述したように、固体伝播音としての振動の単位は[m/s2]であり、一方で、空気伝播音の音圧の単位は[N/m2]であり、単位の異なる2つの伝播音を同一に取り扱うことは困難である。 By the way, as shown in FIG.1 and FIG.16, the vehicle interior sound in the compartment 10 is comprised from a solid propagation sound and an air propagation sound. Therefore, in order to accurately reproduce the vehicle interior sound at the response point in the passenger compartment 10, it is necessary to reproduce the vehicle interior sound using the vibration transfer function related to the solid propagation sound and the sound pressure transfer function related to the air propagation sound. There is. However, as described above, the unit of the vibration as the solid propagation sound is [m / s 2 ], while the unit of the sound pressure of the air propagation sound is [N / m 2 ], which is a different unit. It is difficult to handle two propagation sounds in the same way.

そこで、図22に示すように、各加速度センサ(振動検出手段)で検出された振動検出信号A1、A2と、各音圧検出手段で検出された音圧検出信号Pin1、Pin2とを各々正規化し、正規化された振動検出信号NA1、NA2及び音圧検出信号NPin1、NPin2に関し、主成分回帰法に基づいて主成分T1〜T3を算出し、算出した各主成分T1〜T3に基づいて合成音圧Poutを算出することにより、振動検出信号A1、A2と音圧検出信号Pin1、Pin2とを同一に取り扱って振動伝達関数Hiや音圧伝達関数Hpを算出することが可能となる。   Therefore, as shown in FIG. 22, the vibration detection signals A1 and A2 detected by the respective acceleration sensors (vibration detection means) and the sound pressure detection signals Pin1 and Pin2 detected by the respective sound pressure detection means are respectively normalized. With respect to the normalized vibration detection signals NA1 and NA2 and the sound pressure detection signals NPin1 and NPin2, principal components T1 to T3 are calculated based on the principal component regression method, and the synthesized sound is calculated based on the calculated principal components T1 to T3. By calculating the pressure Pout, it is possible to handle the vibration detection signals A1 and A2 and the sound pressure detection signals Pin1 and Pin2 in the same manner to calculate the vibration transfer function Hi and the sound pressure transfer function Hp.

すなわち、音源の個数及び該音源に対応する音圧検出手段の個数をk、複数の音圧検出信号Pinを成分とする音圧検出信号行列を[Pin]、前記各音圧検出手段と応答点との間の音圧伝達関数Hpを成分とする伝達関数行列を[Hp]、振動伝達関数Haの行列を[Ha]とすれば、合成音圧(車内音圧)Poutの行列[Pout]は、下記の(21)式で表わされる。   That is, the number of sound sources and the number of sound pressure detection means corresponding to the sound sources are k, the sound pressure detection signal matrix having a plurality of sound pressure detection signals Pin as components, [Pin], the sound pressure detection means and the response points. If the transfer function matrix having the sound pressure transfer function Hp between and Hp as a component is [Hp] and the matrix of the vibration transfer function Ha is [Ha], the matrix [Pout] of the synthesized sound pressure (in-vehicle sound pressure) Pout is Is expressed by the following equation (21).

[Pout]=[A][Ha]+[Pin][Hp] (21)       [Pout] = [A] [Ha] + [Pin] [Hp] (21)

ここで、伝達関数行列[Ha]、音圧検出信号行列[Pin]及び伝達関数行列[Hp]は下記の(22)式〜(24)式で表わされる。   Here, the transfer function matrix [Ha], the sound pressure detection signal matrix [Pin], and the transfer function matrix [Hp] are expressed by the following equations (22) to (24).

そして、正規化された振動検出信号行列を[NA]、振動検出信号行列[A]を[NA]に正規化するための対角行列(正規化行列)を[Nσa]、正規化された音圧検出信号行列を[NPin]、音圧検出信号行列[Pin]を[NPin]に正規化するための対角行列(正規化行列)を[Nσp]とすれば、振動検出信号行列[A]及び音圧検出信号行列[Pin]は、下記の(25)式及び(26)式で表わされる。   Then, the normalized vibration detection signal matrix [NA], the diagonal matrix (normalization matrix) for normalizing the vibration detection signal matrix [A] to [NA] [Nσa], and the normalized sound If the pressure detection signal matrix is [NPin] and the diagonal matrix (normalization matrix) for normalizing the sound pressure detection signal matrix [Pin] to [NPin] is [Nσp], the vibration detection signal matrix [A] The sound pressure detection signal matrix [Pin] is expressed by the following equations (25) and (26).

[A]=[NA][Nσa] (25)       [A] = [NA] [Nσa] (25)

[Pin]=[NPin][Nσp] (26)       [Pin] = [NPin] [Nσp] (26)

そして、(25)式及び(26)式を(21)式に代入すると、音圧行列[Pout]は、下記の(27)式で表わされる。   When the expressions (25) and (26) are substituted into the expression (21), the sound pressure matrix [Pout] is expressed by the following expression (27).

[Pout]=[NA][Nσa][Ha]
+[NPin][Nσp][Hp]
=[NA、NPin][Nσa、Nσp][Ha、Hp]
(27)
[Pout] = [NA] [Nσa] [Ha]
+ [NPin] [Nσp] [Hp]
= [NA, NPin] [Nσa, Nσp] [Ha, Hp]
(27)

ここで、[NA、NPin]は、正規化された振動検出信号行列[NA]と正規化された音圧検出信号行列[NPin]との合成行列であり、[Nσa、Nσp]は、正規化行列[Nσa]と正規化行列[Nσp]との合成行列であり、[Ha、Hp]は、伝達関数行列[Ha]と伝達関数行列[Hp]との合成行列(振動・音圧伝達関数行列)である。そして、振動・音圧伝達関数行列[Ha、Hp]に対して主成分分析を行うと、[Ha、Hp]は、下記の(28)式で表わされる。   Here, [NA, NPin] is a composite matrix of the normalized vibration detection signal matrix [NA] and the normalized sound pressure detection signal matrix [NPin], and [Nσa, Nσp] is normalized The matrix [Nσa] and the normalization matrix [Nσp] are combined, and [Ha, Hp] is the combined matrix (vibration / sound pressure transfer function matrix) of the transfer function matrix [Ha] and the transfer function matrix [Hp]. ). When principal component analysis is performed on the vibration / sound pressure transfer function matrix [Ha, Hp], [Ha, Hp] is expressed by the following equation (28).

[Ha、Hp]=[Nσa、Nσp]-1[V][S]-1[U]T
×[Pout] (28)
[Ha, Hp] = [Nσa, Nσp] −1 [V] [S] −1 [U] T
× [Pout] (28)

従って、(28)式に基づいて振動・音圧伝達関数行列[Ha、Hp]を算出することにより、この行列を構成する振動伝達関数行列Haや音圧伝達関数行列Hpを算出することが可能となる。   Therefore, by calculating the vibration / sound pressure transfer function matrix [Ha, Hp] based on the equation (28), it is possible to calculate the vibration transfer function matrix Ha and the sound pressure transfer function matrix Hp constituting this matrix. It becomes.

なお、振動検出信号行列[NA]及び正規化行列[Nσa]は、下記の(29)式及び(30)式で表わされる。   The vibration detection signal matrix [NA] and the normalization matrix [Nσa] are expressed by the following equations (29) and (30).

ここで、nΣaは、振動検出信号行列[NA]の第i列を構成する全ての成分、NA1i〜NAmiの標準偏差σaiの総和であり、下記の(31)式で表わされる。   Here, nΣa is the total sum of the standard deviations σai of all components constituting the i-th column of the vibration detection signal matrix [NA], NA1i to NAmi, and is expressed by the following equation (31).

一方、音圧検出信号行列[NPin]及び正規化行列[Nσp]は、下記の(32)式及び(33)式で表わされる。   On the other hand, the sound pressure detection signal matrix [NPin] and the normalization matrix [Nσp] are expressed by the following equations (32) and (33).

ここで、kΣpは、音圧検出信号行列[NPin]の第i列を構成する全ての成分NPin1i〜NPinmiの標準偏差σpiの総和であり、下記の(34)式で表わされる。   Here, kΣp is the total sum of standard deviations σpi of all components NPin1i to NPinmi constituting the i-th column of the sound pressure detection signal matrix [NPin], and is expressed by the following equation (34).

なお、振動検出信号行列[A]の各成分は、振動検出信号Aijの振幅を示し、一方で、音圧検出信号行列[Pin]の各成分は、音圧検出信号Pinの振幅を示しており、上記した正規化は、振動検出信号Aij及び音圧検出信号Pinの振幅の正規化である。   Each component of the vibration detection signal matrix [A] indicates the amplitude of the vibration detection signal Aij, while each component of the sound pressure detection signal matrix [Pin] indicates the amplitude of the sound pressure detection signal Pin. The above normalization is normalization of the amplitudes of the vibration detection signal Aij and the sound pressure detection signal Pin.

さらに、正規化された振動・音圧検出信号行列[NA、NPin]は、(29)式及び(32)式より下記の(35)式で表わされる。   Further, the normalized vibration / sound pressure detection signal matrix [NA, NPin] is expressed by the following equation (35) from the equations (29) and (32).

さらにまた、(28)式において、特異値行列[S]と、転置行列[V]Tとは、下記の(36)式及び(37)式で表わされる。 Furthermore, in the equation (28), the singular value matrix [S] and the transposed matrix [V] T are expressed by the following equations (36) and (37).

図23は、図22における正規化方法を車両の車内音の再現に適用して、該車両の走行時又は動作時における合成音圧Poutを算出するためのフローチャートを示している。   FIG. 23 shows a flowchart for calculating the synthesized sound pressure Pout when the vehicle is running or operating by applying the normalization method shown in FIG. 22 to the reproduction of the vehicle interior sound.

この場合、前記車両の振動源(図1に示すエンジン14や排気系統20)の近傍には各加速度センサ52(i)が配置され、音源(図1に示すエンジン14の吸気口や排気系統20の排気口)の近傍には図示しない音圧検出手段が配置され、車室10内の応答点には振動・音圧検出手段62が配置されている。   In this case, each acceleration sensor 52 (i) is arranged in the vicinity of the vibration source of the vehicle (the engine 14 and the exhaust system 20 shown in FIG. 1), and the sound source (the intake port and the exhaust system 20 of the engine 14 shown in FIG. 1). The sound pressure detecting means (not shown) is disposed in the vicinity of the exhaust port), and the vibration / sound pressure detecting means 62 is disposed at the response point in the passenger compartment 10.

ここで、前記各音圧検出手段は、前記音源からの空気伝播音を検出して音圧検出信号Pinを出力し、各加速度センサ52(i)は、振動源からの振動を検出して振動検出信号Aiを出力し、振動・音圧検出手段62は、前記応答点における車内音を検出して振動・音圧検出信号Poutを出力する(ステップS18)。   Here, each sound pressure detection means detects air propagation sound from the sound source and outputs a sound pressure detection signal Pin, and each acceleration sensor 52 (i) detects vibration from a vibration source and vibrates. The detection signal Ai is output, and the vibration / sound pressure detection means 62 detects the vehicle interior sound at the response point and outputs the vibration / sound pressure detection signal Pout (step S18).

次いで、ステップS3、S11の処理と同様に、振動検出信号Aiより(4)式に基づく振動検出信号行列[Ai]を構築し、一方で、音圧検出信号Pinより(22)式に基づく音圧検出信号行列[Pin]を構築する(ステップS19)。   Next, similarly to the processing of steps S3 and S11, the vibration detection signal matrix [Ai] based on the equation (4) is constructed from the vibration detection signal Ai, while the sound based on the equation (22) is constructed from the sound pressure detection signal Pin. A pressure detection signal matrix [Pin] is constructed (step S19).

次いで、振動検出信号行列[Ai]及び音圧検出信号行列[Pin]を(25)式及び(26)式に基づいて正規化し(ステップS20)、ステップS4、S12と同様に、正規化された振動検出信号行列[NA]及び音圧検出信号行列[NPin]に対して特異値分解とノイズ成分の除去とを行う(ステップS21)。   Next, the vibration detection signal matrix [Ai] and the sound pressure detection signal matrix [Pin] are normalized based on the equations (25) and (26) (step S20), and normalized as in steps S4 and S12. Singular value decomposition and noise component removal are performed on the vibration detection signal matrix [NA] and the sound pressure detection signal matrix [NPin] (step S21).

次いで、ステップS5、S13と同様に、特異値分解とノイズ除去とが行われた振動検出信号行列[NA]及び音圧検出信号行列[NPin]に対して振動・音圧検出信号Poutとの間で回帰分析を行い(ステップS22)、(28)式に基づいて振動伝達関数Ha及び音圧伝達関数Hpを各々算出する(ステップS23)。   Next, as in steps S5 and S13, the vibration detection signal matrix [NA] and the sound pressure detection signal matrix [NPin] that have undergone singular value decomposition and noise removal are between the vibration / sound pressure detection signal Pout. The regression analysis is performed (step S22), and the vibration transfer function Ha and the sound pressure transfer function Hp are calculated based on the equation (28) (step S23).

次いで、ステップS7、S15の処理と同様に、(21)式に基づいて音圧検出信号Pinと音圧伝達関数Hpとを掛け合わせて音圧を算出し、一方で、振動検出信号Aiと振動伝達関数Haとを掛け合わせて音圧を算出し、これらの音圧を合成して合成音圧Poutを算出する(ステップS24)。   Next, similarly to the processing of steps S7 and S15, the sound pressure is calculated by multiplying the sound pressure detection signal Pin and the sound pressure transfer function Hp based on the equation (21), while the vibration detection signal Ai and the vibration are calculated. The sound pressure is calculated by multiplying the transfer function Ha, and the synthesized sound pressure Pout is calculated by synthesizing these sound pressures (step S24).

図24は、上記した正規化方法を利用して振動伝達関数Haと音圧伝達関数Hpとを算出するための第3実施例に係る振動・音圧伝達特性解析装置50Bの構成を示すブロック図であり、図25は、該振動・音圧伝達特性解析装置50Bにおけるデータの流れを示すブロック図である。   FIG. 24 is a block diagram showing the configuration of a vibration / sound pressure transfer characteristic analyzer 50B according to the third embodiment for calculating the vibration transfer function Ha and the sound pressure transfer function Hp using the normalization method described above. FIG. 25 is a block diagram showing a data flow in the vibration / sound pressure transfer characteristic analyzing apparatus 50B.

この振動・音圧伝達特性解析装置50Bは、第2実施例に係る振動・音圧伝達特性解析装置50A(図11及び図12参照)と比較して、図示しない音源からの空気伝播音を検出する手段を備え、主成分回帰分析手段58が振動検出信号及び音圧検出信号を正規化し、一方で、正規化された振動検出信号及び音圧検出信号に基づいて算出した伝達関数を復元する点で異なる。   This vibration / sound pressure transfer characteristic analysis device 50B detects air propagation sound from a sound source (not shown) as compared with the vibration / sound pressure transfer characteristic analysis device 50A (see FIGS. 11 and 12) according to the second embodiment. And the principal component regression analysis means 58 normalizes the vibration detection signal and the sound pressure detection signal, while restoring the transfer function calculated based on the normalized vibration detection signal and the sound pressure detection signal. It is different.

すなわち、振動・音圧伝達特性解析装置50Bは、図示しない車両に搭載され、図示しない音源から発生する空気伝播音を検出して音圧検出信号Pk(t)(k=1〜d)を出力する複数の音圧検出手段90(k)と、音圧検出信号Pk(t)を周波数分析して音圧検出信号Pk(f)を出力する周波数分析手段(FFT)92(k)と、各音圧検出信号Pk(f)に基づいて周波数毎の音圧検出信号行列[P]を構築する行列形成手段94と、主成分回帰分析手段58から出力された伝達関数行列[Ha]を伝達経路毎に振動伝達関数Haiを分配する伝達関数分配手段60bと、主成分回帰分析手段58から出力された伝達関数行列[Hp]を伝達経路毎に音圧伝達関数Hpiに分配する伝達関数分配手段60cとをさらに有する。   That is, the vibration / sound pressure transfer characteristic analysis device 50B is mounted on a vehicle (not shown), detects air propagation sound generated from a sound source (not shown), and outputs a sound pressure detection signal Pk (t) (k = 1 to d). A plurality of sound pressure detection means 90 (k), a frequency analysis means (FFT) 92 (k) for frequency-analyzing the sound pressure detection signal Pk (t) and outputting a sound pressure detection signal Pk (f), A matrix forming means 94 for constructing a sound pressure detection signal matrix [P] for each frequency based on the sound pressure detection signal Pk (f), and a transfer function matrix [Ha] output from the principal component regression analysis means 58 are transferred. Transfer function distribution means 60b for distributing the vibration transfer function Hai for each transfer function, and transfer function distribution means 60c for distributing the transfer function matrix [Hp] output from the principal component regression analysis means 58 to the sound pressure transfer function Hpi for each transfer path. And further.

また、主成分回帰分析手段58は、振動検出信号行列[A]を正規化する振動正規化部96aと、音圧検出信号行列[P]を正規化する音圧正規化部96bと、正規化された振動検出信号行列[NA]及び音圧検出信号行列[NP]を1つの行列[NA、NP]に合成して特異値分解部66に出力する行列形成部(振動・音圧合成部)57と、回帰分析部70より出力された正規化された振動・音圧伝達関数[NHa、NHp]を正規化された振動伝達関数[NHa]と正規化された音圧伝達関数[NHp]に分配する伝達関数分配部60aと、正規化された振動伝達関数[NHa]を本来の振動伝達関数[Ha]に復元する振動復元部98aと、正規化された音圧伝達関数[NHp]を本来の音圧伝達関数[Hp]に復元する音圧復元部98bとをさらに有する。   The principal component regression analysis means 58 includes a vibration normalization unit 96a that normalizes the vibration detection signal matrix [A], a sound pressure normalization unit 96b that normalizes the sound pressure detection signal matrix [P], and normalization. Matrix formation unit (vibration / sound pressure synthesis unit) that synthesizes the detected vibration detection signal matrix [NA] and the sound pressure detection signal matrix [NP] into one matrix [NA, NP] and outputs it to the singular value decomposition unit 66 57 and the normalized vibration / sound pressure transfer function [NHa, NHp] output from the regression analysis unit 70 into a normalized vibration transfer function [NHa] and a normalized sound pressure transfer function [NHp]. The transfer function distributing unit 60a for distributing, the vibration restoring unit 98a for restoring the normalized vibration transfer function [NHa] to the original vibration transfer function [Ha], and the normalized sound pressure transfer function [NHp] Sound pressure restoration unit 9 for restoring the sound pressure transfer function [Hp] of Further comprising a and b.

図24及び図25において、車両の走行時あるいは動作時に振動源としてのエンジン14あるいは排気系統20が所定時間振動し、且つその解析回数がm回である場合、各加速度センサ52(i)は、振動検出信号Ai(t)より振動検出信号行列[Ai(t)]を構築して、構築した振動検出信号行列[Ai(t)]をFFT54(i)に出力し、FFT54(i)は、振動検出信号行列[Ai(t)]を周波数分析して振動検出信号行列[Ai(f)]を行列形成手段56に出力し、行列形成手段56は、振動検出信号行列[Ai(f)]より周波数f毎の振動検出信号行列[A]を構築して振動正規化部96aに出力する。   24 and 25, when the engine 14 or the exhaust system 20 as a vibration source vibrates for a predetermined time during running or operation of the vehicle and the number of times of analysis is m, each acceleration sensor 52 (i) A vibration detection signal matrix [Ai (t)] is constructed from the vibration detection signal Ai (t), and the constructed vibration detection signal matrix [Ai (t)] is output to the FFT 54 (i). The FFT 54 (i) The vibration detection signal matrix [Ai (t)] is frequency-analyzed and the vibration detection signal matrix [Ai (f)] is output to the matrix forming unit 56. The matrix forming unit 56 receives the vibration detection signal matrix [Ai (f)]. Thus, a vibration detection signal matrix [A] for each frequency f is constructed and output to the vibration normalization unit 96a.

一方、音圧検出手段90(k)は、上記したエンジン14や排気系統20が振動する毎に音源から発生する空気伝播音を検出して、所定時間の解析回数m、換言すれば、前記所定時間における空気伝播音の発生回数mを行とし、音圧検出信号Pin(t)の時系列データの個数lを列とする音圧検出信号行列[Pin(t)]を構築し、構築した音圧検出信号行列[Pin(t)]をFFT92(k)に出力する。FFT92(k)は、入力された音圧検出信号行列[Pin(t)]を周波数分析して音圧検出信号Pin(f)の行列[Pin(f)]を行列形成手段94に出力し、行列形成手段94は、各FFT92(k)より入力された音圧検出信号行列[Pin(f)]より周波数f毎の音圧検出信号行列[Pin]を構築し、構築した各音圧検出信号行列[Pin]を音圧正規化部96bに出力する。   On the other hand, the sound pressure detection means 90 (k) detects the air propagation sound generated from the sound source every time the engine 14 or the exhaust system 20 vibrates, and in other words, the predetermined number of analysis times m, in other words, the predetermined A sound pressure detection signal matrix [Pin (t)] having the number m of air propagation sound occurrences in time as a row and the number l of time-series data of the sound pressure detection signal Pin (t) as a column is constructed. The pressure detection signal matrix [Pin (t)] is output to the FFT 92 (k). The FFT 92 (k) performs frequency analysis on the input sound pressure detection signal matrix [Pin (t)] and outputs the matrix [Pin (f)] of the sound pressure detection signal Pin (f) to the matrix forming means 94. The matrix forming means 94 constructs a sound pressure detection signal matrix [Pin] for each frequency f from the sound pressure detection signal matrix [Pin (f)] input from each FFT 92 (k), and constructs each sound pressure detection signal thus constructed. The matrix [Pin] is output to the sound pressure normalization unit 96b.

また、振動・音圧検出手段62は、車室10内の応答点における車内音を検出して振動・音圧検出信号行列[Pout(t)]をFFT64に出力し、FFT64は、入力された振動・音圧検出信号行列[Pout(t)]を周波数分析して振動・音圧検出信号行列[Pout(f)]を回帰分析部70に出力する。   Further, the vibration / sound pressure detecting means 62 detects the vehicle interior sound at the response point in the passenger compartment 10 and outputs the vibration / sound pressure detection signal matrix [Pout (t)] to the FFT 64. The FFT 64 is inputted. The frequency analysis of the vibration / sound pressure detection signal matrix [Pout (t)] is performed, and the vibration / sound pressure detection signal matrix [Pout (f)] is output to the regression analysis unit 70.

振動正規化部96aは、入力された振動検出信号行列[A]より、標準偏差σaiの総和nΣaを(31)式に基づいて周波数f毎に算出し、算出した総和nΣaより正規化行列[Nσa]を構築し、この正規化行列[Nσa]及び(25)式に基づいて振動検出信号行列[A]を[NA]に正規化する。次いで、振動正規化部96aは、正規化した振動検出信号行列[NA]を行列形成部57に出力すると共に、正規化行列[Nσa]を振動復元部98aに出力する。   Based on the input vibration detection signal matrix [A], the vibration normalization unit 96a calculates the sum nΣa of the standard deviations σai for each frequency f based on the equation (31), and the normalized matrix [Nσa ], And the vibration detection signal matrix [A] is normalized to [NA] based on the normalization matrix [Nσa] and the equation (25). Next, the vibration normalizing unit 96a outputs the normalized vibration detection signal matrix [NA] to the matrix forming unit 57 and outputs the normalized matrix [Nσa] to the vibration restoring unit 98a.

一方、音圧正規化部96bは、入力された音圧検出信号行列[Pin]より、標準偏差σpiの総和kΣpを(34)式に基づいて周波数f毎に算出し、算出した総和総和kΣpより正規化行列[Nσp]を構築し、この正規化行列[Nσp]及び(26)式に基づいて音圧検出信号行列[Pin]を[NPin]に正規化する。次いで、音圧正規化部96bは、正規化した音圧検出信号行列[NPin]を行列形成部57に出力すると共に、正規化行列[Nσp]を音圧復元部98bに出力する。   On the other hand, the sound pressure normalization unit 96b calculates the sum kΣp of the standard deviation σpi for each frequency f based on the equation (34) from the input sound pressure detection signal matrix [Pin], and from the calculated sum total kΣp. A normalization matrix [Nσp] is constructed, and the sound pressure detection signal matrix [Pin] is normalized to [NPin] based on the normalization matrix [Nσp] and the equation (26). Next, the sound pressure normalizing unit 96b outputs the normalized sound pressure detection signal matrix [NPin] to the matrix forming unit 57 and outputs the normalized matrix [Nσp] to the sound pressure restoring unit 98b.

行列形成部57は、振動正規化部96aより入力された振動検出信号行列[NA]と音圧正規化部96bより入力された音圧検出信号行列[NPin]とを合成して、周波数f毎の振動・音圧信号行列[NA、NPin]を(35)式に基づいて構築し、構築した振動・音圧信号行列[NA、NPin]を特異値分解部66に出力する。なお、振動・音圧信号行列[NA、NPin]は、(35)式で示されるように、m行(n+k)列の行列となる。   The matrix formation unit 57 synthesizes the vibration detection signal matrix [NA] input from the vibration normalization unit 96a and the sound pressure detection signal matrix [NPin] input from the sound pressure normalization unit 96b for each frequency f. The vibration / sound pressure signal matrix [NA, NPin] is constructed based on the equation (35), and the constructed vibration / sound pressure signal matrix [NA, NPin] is output to the singular value decomposition unit 66. It should be noted that the vibration / sound pressure signal matrix [NA, NPin] is a matrix of m rows (n + k) columns as shown by the equation (35).

特異値分解部66は、入力された振動・音圧信号行列[NA、NPin]に対する特異値分解を行い、特異値分解された振動・音圧信号行列[NA、NPin]、すなわち、該振動・音圧信号行列[NA、NPin]を特異値分解することにより算出された(36)式に示す特異値行列[S]、直交行列[U]及び(37)式に示す転置行列[V]Tをノイズ除去部68に各々出力する。 The singular value decomposition unit 66 performs singular value decomposition on the input vibration / sound pressure signal matrix [NA, NPin], and the singular value decomposed vibration / sound pressure signal matrix [NA, NPin], that is, the vibration / sound Singular value matrix [S] shown in equation (36), orthogonal matrix [U] and transposed matrix [V] T shown in equation (37) calculated by singular value decomposition of the sound pressure signal matrix [NA, NPin]. Are output to the noise removing unit 68.

この場合、ノイズ除去部68は、特異値行列[S]を構成する各特異値See(e=1〜c、c=n+k)のうちノイズ成分と判定した特異値に係る行と列とを除去すると共に、直交行列[U]及び直交行列[V]における該特異値Seeに係る列を除去し、除去作業が完了した特異値行列[S]、直交行列[U]及び転置行列[V]Tを回帰分析部70に出力する。 In this case, the noise removing unit 68 removes rows and columns related to singular values determined as noise components from the singular values See (e = 1 to c, c = n + k) constituting the singular value matrix [S]. In addition, the column related to the singular value See in the orthogonal matrix [U] and the orthogonal matrix [V] is removed, and the singular value matrix [S], the orthogonal matrix [U], and the transposed matrix [V] T for which the removal operation is completed. Is output to the regression analysis unit 70.

この場合、ノイズ除去部68では、(18)式で表わされる寄与率(dist)qの代わりに、累積寄与率に基づいて上記した行列の除去作業を行う。ここで、特異値がSqqである第q主成分での累積寄与率は、(累積寄与率)=(第1主成分から第q主成分までの特異値Seeの総和)/(全ての特異値の総和)×100[%]である。   In this case, the noise removing unit 68 performs the matrix removal operation based on the cumulative contribution rate instead of the contribution rate (dist) q expressed by the equation (18). Here, the cumulative contribution rate in the q-th principal component whose singular value is Sqq is (cumulative contribution rate) = (sum of singular values See from the first principal component to the q-th principal component) / (all singular values). Sum)) × 100 [%].

図27は、所定周波数(f=50[Hz]、100[Hz]、200[Hz]、500[Hz]、1000[Hz])における主成分数と累積寄与率との関係を示す。この場合、いずれの周波数においても、主成分数が小さな領域(例えば、主成分数:1〜10)において累積寄与率は急激に上昇するが、主成分数が大きな領域(主成分数:11以上)では、主成分数の増加に対して累積寄与率は僅かに増加する。これは、図13でも説明したように、主成分数qが小さく且つ特異値Sqqが大きい領域では、振動検出信号Ai(f)や音圧検出信号Pin(f)に関する情報を集約しており、一方で、主成分数qが大きく且つ特異値Sqqが低い領域では、ノイズ成分が支配的であると考えられるためである。   FIG. 27 shows the relationship between the number of principal components and the cumulative contribution rate at a predetermined frequency (f = 50 [Hz], 100 [Hz], 200 [Hz], 500 [Hz], 1000 [Hz]). In this case, at any frequency, the cumulative contribution rate increases rapidly in a region where the number of principal components is small (for example, the number of principal components: 1 to 10), but a region where the number of principal components is large (the number of principal components: 11 or more). ), The cumulative contribution rate slightly increases with an increase in the number of principal components. As described with reference to FIG. 13, in the region where the number of principal components q is small and the singular value Sqq is large, information on the vibration detection signal Ai (f) and the sound pressure detection signal Pin (f) is collected. On the other hand, the noise component is considered to be dominant in the region where the number of principal components q is large and the singular value Sqq is low.

また、図27における直線は、理論上、振動検出信号Ai(f)及び音圧検出信号Pin(f)の全てのデータが互いに無相関で且つ振幅が略同一であるときの主成分数と累積寄与率との関係を示している。   In addition, the straight line in FIG. 27 theoretically indicates the number of principal components and the accumulation when all data of the vibration detection signal Ai (f) and the sound pressure detection signal Pin (f) are uncorrelated with each other and have substantially the same amplitude. The relationship with the contribution rate is shown.

図28は、前記直線における累積寄与率と前記所定周波数における累積寄与率との差(差分累積寄与率)をプロットしたグラフであり、前記差分累積寄与率は、主成分数の増加に伴って急激に増加するが、所定の主成分数を越えると直線的に減少する。この場合、前記差分累積寄与率が直線的に減少する領域がノイズ成分が支配的な領域であり、前記所定の主成分数のときの差分累積寄与率が前記閾値に対応する。   FIG. 28 is a graph in which the difference between the cumulative contribution rate in the straight line and the cumulative contribution rate at the predetermined frequency (difference cumulative contribution rate) is plotted, and the differential cumulative contribution rate increases sharply as the number of principal components increases. However, when it exceeds a predetermined number of main components, it decreases linearly. In this case, a region where the difference cumulative contribution rate decreases linearly is a region where the noise component is dominant, and the difference cumulative contribution rate corresponding to the predetermined number of principal components corresponds to the threshold value.

従って、ノイズ除去部68では、前記閾値の代わりに差分累積寄与率の最大値に基づいて上記した行列の除去作業を行う。すなわち、ノイズ除去部68は、特異値行列[S]における各特異値Seeより各主成分eにおける差分累積寄与率を各々算出し、これらの差分累積寄与率において最大値となる主成分数を選択する。次いで、ノイズ除去部68は、選択した前記主成分数を越える主成分の特異値についてはノイズ成分からなる特異値であると判定し、特異値行列[S]において前記ノイズ成分であると判定された特異値に係る行及び列を削除すると共に、直交行列[U]及び直交行列[V]における前記特異値に係る列を削除する。   Therefore, the noise removal unit 68 performs the matrix removal operation based on the maximum value of the cumulative difference contribution ratio instead of the threshold value. That is, the noise removing unit 68 calculates the difference cumulative contribution rate in each principal component e from each singular value Seee in the singular value matrix [S], and selects the number of principal components that becomes the maximum value in these difference cumulative contribution rates. To do. Next, the noise removing unit 68 determines that the singular values of the principal components exceeding the selected number of the principal components are singular values composed of noise components, and is determined to be the noise components in the singular value matrix [S]. The rows and columns related to the singular values are deleted, and the columns related to the singular values in the orthogonal matrix [U] and the orthogonal matrix [V] are deleted.

回帰分析部70では、ノイズ除去部68から入力された特異値行列[S]、直交行列[U]及び転置行列[V]Tと、FFT64から入力された振動・音圧検出信号行列[Pout(f)]とを用い、(28)式に基づく回帰分析を行って振動・音圧伝達関数行列[NHa、NHp]を周波数f毎に算出し、算出した振動・音圧伝達関数行列[NHa、NHp]を伝達関数分配部60aに出力する。なお、正規化された振動・音圧伝達関数行列[NHa、NHp]は、(27)式及び(28)式に示される振動・音圧伝達関数行列[Ha、Hp]を正規化した行列である。 In the regression analysis unit 70, the singular value matrix [S], the orthogonal matrix [U] and the transposed matrix [V] T input from the noise removal unit 68, and the vibration / sound pressure detection signal matrix [Pout ( f)] and performing a regression analysis based on the equation (28) to calculate the vibration / sound pressure transfer function matrix [NHa, NHp] for each frequency f, and the calculated vibration / sound pressure transfer function matrix [NHa, NHp] is output to the transfer function distributor 60a. The normalized vibration / sound pressure transfer function matrix [NHa, NHp] is a matrix obtained by normalizing the vibration / sound pressure transfer function matrix [Ha, Hp] shown in the equations (27) and (28). is there.

伝達関数分配部60aは、入力された振動・音圧伝達関数行列[NHa、NHp]を正規化された伝達関数行列[NHa]、[NHp]に分配し、分配した伝達関数行列[NHa]を振動復元部98aに出力する一方で、分配した伝達関数行列[NHp]を音圧復元部98pに出力する。   The transfer function distribution unit 60a distributes the input vibration / sound pressure transfer function matrix [NHa, NHp] to the normalized transfer function matrices [NHa], [NHp], and the distributed transfer function matrix [NHa]. While outputting to the vibration restoration unit 98a, the distributed transfer function matrix [NHp] is outputted to the sound pressure restoration unit 98p.

振動復元部98aでは、伝達関数分配部60aより入力された伝達関数行列[NHa]と、振動正規化部96aより入力された正規化行列[Nσa]の逆行列[Nσa]-1とに基づいて正規化された伝達関数行列[NHa]を本来の伝達関数行列[Ha]に復元し、復元した伝達関数行列[Ha]を伝達関数分配手段60bに出力する。伝達関数分配手段60bは、入力された伝達関数行列[Ha]を伝達経路毎に振動伝達関数Haiに分配する。 In the vibration restoration unit 98a, based on the transfer function matrix [NHa] input from the transfer function distribution unit 60a and the inverse matrix [Nσa] −1 of the normalization matrix [Nσa] input from the vibration normalization unit 96a. The normalized transfer function matrix [NHa] is restored to the original transfer function matrix [Ha], and the restored transfer function matrix [Ha] is output to the transfer function distribution means 60b. The transfer function distribution unit 60b distributes the input transfer function matrix [Ha] to the vibration transfer function Hai for each transfer path.

一方、音圧復元部98bでは、伝達関数分配部60aより入力された伝達関数行列[NHp]と、音圧正規化部96bより入力された正規化行列[Nσp]の逆行列[Nσp]-1とに基づいて正規化された伝達関数行列[NHp]を本来の伝達関数行列[Hp]に復元し、復元した伝達関数行列[Hp]を伝達関数分配手段60cに出力する。伝達関数分配手段60cは、入力された伝達関数行列[Hp]を伝達経路毎に振動伝達関数Hpkに分配する。 On the other hand, in the sound pressure restoration unit 98b, the transfer function matrix [NHp] input from the transfer function distribution unit 60a and the inverse matrix [Nσp] −1 of the normalization matrix [Nσp] input from the sound pressure normalization unit 96b. The transfer function matrix [NHp] normalized based on the above is restored to the original transfer function matrix [Hp], and the restored transfer function matrix [Hp] is output to the transfer function distribution means 60c. The transfer function distribution unit 60c distributes the input transfer function matrix [Hp] to the vibration transfer function Hpk for each transfer path.

このように、第3実施例に係る振動・音圧伝達特性解析装置50B及びその方法では、周波数分析された振動検出信号A(f){振動検出信号行列[A(f)]}を振動正規化部96aにおいて正規化し、周波数分析された音圧検出信号Pin(f){音圧検出信号行列[Pin(f)]}を音圧正規化部96bにおいて正規化することにより、単位の異なる振動検出信号A(f)と音圧検出信号Pin(f)とを同一に取り扱うことが可能となる。この結果、振動源からの振動と、音源からの音圧とを同時に計測し、且つ主成分回帰分析手段58において振動検出信号A(f)及び音圧検出信号Pin(f)に対する主成分分析を同時に行うことが可能となる。   As described above, in the vibration / sound pressure transfer characteristic analyzing apparatus 50B and the method according to the third embodiment, the vibration detection signal A (f) {vibration detection signal matrix [A (f)]} subjected to frequency analysis is converted into a vibration normal signal. The sound pressure detection signal Pin (f) {sound pressure detection signal matrix [Pin (f)]} normalized and frequency-analyzed by the normalizing unit 96a is normalized by the sound pressure normalizing unit 96b, so that vibrations having different units are obtained. The detection signal A (f) and the sound pressure detection signal Pin (f) can be handled in the same way. As a result, the vibration from the vibration source and the sound pressure from the sound source are simultaneously measured, and the principal component analysis is performed on the vibration detection signal A (f) and the sound pressure detection signal Pin (f) in the principal component regression analysis means 58. It can be performed simultaneously.

また、正規化された振動検出信号NA(f){振動検出信号行列[NA(f)]}及び音圧検出信号NPin(f){音圧検出信号行列[NPin(f)]}を特異値分解部66において特異値分解し、特異値分解された振動・音圧信号行列[NA、NPin]と周波数分析された振動・音圧検出信号Pout(f)とを用いて回帰分析部70で回帰分析を行うことにより振動・音圧伝達関数行列[NHa、NHp]が算出され、算出された振動・音圧伝達関数行列[NHa、NHp]が伝達関数分配部60aにおいて正規化された伝達関数行列[NHa]、[NHp]に分配されるので、前記振動による固体伝播音と前記音圧による空気伝播音とを同一に取り扱うことが可能となり、加振実験を行うことなく振動伝達関数Haと音圧伝達関数Hpとを各々算出することができる。さらに、応答点における合成音圧Poutに対する固体伝播音と空気伝播音との寄与の大きさを明確に把握することが可能となる。   Further, the normalized vibration detection signal NA (f) {vibration detection signal matrix [NA (f)]} and the sound pressure detection signal NPin (f) {sound pressure detection signal matrix [NPin (f)]} are singular values. Singular value decomposition is performed in the decomposition unit 66, and the regression analysis unit 70 performs regression using the vibration / sound pressure signal matrix [NA, NPin] subjected to singular value decomposition and the vibration / sound pressure detection signal Pout (f) subjected to frequency analysis. The vibration / sound pressure transfer function matrix [NHa, NHp] is calculated by performing the analysis, and the calculated vibration / sound pressure transfer function matrix [NHa, NHp] is normalized in the transfer function distribution unit 60a. Since it is distributed to [NHa] and [NHp], it is possible to handle the solid propagation sound due to the vibration and the air propagation sound due to the sound pressure in the same way, and the vibration transfer function Ha and the sound can be handled without performing an excitation experiment. Pressure transfer function May each calculate the hp. Furthermore, it is possible to clearly grasp the magnitude of the contribution of the solid propagation sound and the air propagation sound to the synthesized sound pressure Pout at the response point.

従って、振動・音圧伝達特性解析装置50Bでは、従来技術と比較して、車両に搭載して実走行、あるいは、該実走行の模擬ライン上における走行で振動伝達関数Ha及び音圧伝達関数Hpを算出することが可能となるので、振動及び音圧を計測してから振動伝達関数Ha及び音圧伝達関数Hpを算出するまでの時間を大幅に削減することができると共に、振動伝達関数Haと音圧伝達関数Hpの算出精度が大幅に向上して、前記振動源における振動特性や前記音源における音圧特性を精度よく把握することが可能となる。   Therefore, in the vibration / sound pressure transfer characteristic analyzing apparatus 50B, compared to the conventional technique, the vibration transfer function Ha and the sound pressure transfer function Hp are installed in the vehicle and are actually run or run on the simulation line of the actual run. Therefore, the time from the measurement of vibration and sound pressure to the calculation of the vibration transfer function Ha and the sound pressure transfer function Hp can be greatly reduced, and the vibration transfer function Ha and The calculation accuracy of the sound pressure transfer function Hp is greatly improved, and the vibration characteristics of the vibration source and the sound pressure characteristics of the sound source can be accurately grasped.

また、標準偏差σai、σpi及びその総和nΣa、kΣpを用いて振動検出信号行列[A(f)]の各成分(振幅)や音圧検出信号行列[Pin(f)]の各成分(振幅)を正規化することにより、前記振動や前記音圧の量を同等に取り扱うことが可能となり、主成分回帰分析手段58における主成分分析を容易に行うことが可能となる。   Also, each component (amplitude) of the vibration detection signal matrix [A (f)] and each component (amplitude) of the sound pressure detection signal matrix [Pin (f)] using the standard deviations σai, σpi and their sums nΣa, kΣp. By normalizing, it is possible to handle the vibration and sound pressure amounts equally, and the principal component analysis in the principal component regression analysis means 58 can be easily performed.

さらに、行列形成部57は、正規化された振動検出信号行列[NA(f)]及び音圧検出信号行列[NPin(f)]を合成して振動・音圧信号行列[NA、NPin]を構築し、この振動・音圧信号行列[NA、NPin]を特異値分解部66に出力するので、該特異値分解部66において特異値分解を効率よく行うことが可能となる。   Further, the matrix forming unit 57 combines the normalized vibration detection signal matrix [NA (f)] and the sound pressure detection signal matrix [NPin (f)] to generate the vibration / sound pressure signal matrix [NA, NPin]. Since this is constructed and this vibration / sound pressure signal matrix [NA, NPin] is output to the singular value decomposition unit 66, the singular value decomposition unit 66 can efficiently perform the singular value decomposition.

さらにまた、主成分回帰分析手段58が振動復元部98aと音圧復元部98bとを有することにより、正規化された伝達関数行列[NHa]、[NHp]を本来の伝達関数行列[Ha]、[Hp]に復元することが可能となる。   Furthermore, since the principal component regression analysis means 58 includes the vibration restoration unit 98a and the sound pressure restoration unit 98b, the normalized transfer function matrices [NHa] and [NHp] are converted into the original transfer function matrix [Ha], It becomes possible to restore to [Hp].

この場合、振動復元部98aは、正規化行列[Nσa]を用い、正規化された伝達関数行列[NHa]を本来の伝達関数行列[Ha]に復元し、一方で、音圧復元部98bは、正規化行列[Nσp]を用い、正規化された伝達関数行列[NHp]を本来の伝達関数行列[Hp]に復元するので、精度良く各伝達関数行列[Ha]、[Hp]を復元して伝達関数分配手段60b、60cに出力することが可能となる。   In this case, the vibration restoration unit 98a uses the normalized matrix [Nσa] to restore the normalized transfer function matrix [NHa] to the original transfer function matrix [Ha], while the sound pressure restoration unit 98b Since the normalized transfer function matrix [NHp] is restored to the original transfer function matrix [Hp] using the normalized matrix [Nσp], each transfer function matrix [Ha], [Hp] is accurately restored. Thus, it is possible to output to the transfer function distribution means 60b and 60c.

なお、本発明に係る振動・音圧伝達特性解析装置及び方法は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることは勿論である。   Of course, the vibration / sound pressure transmission characteristic analyzing apparatus and method according to the present invention are not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention.

車両内の固体伝播音及び空気伝播音の伝達経路を示す断面図である。It is sectional drawing which shows the transmission path | route of the solid propagation sound and air propagation sound in a vehicle. 本実施形態での基本的な処理内容を示すブロック図である。It is a block diagram which shows the basic processing content in this embodiment. 図3Aは、トリムドボディの各フレームに対してハンマーで加振する加振テストの概要を示す断面図であり、図3Bは、図3Aの加振テストにより得られた伝達関数の周波数特性を示すグラフである。FIG. 3A is a cross-sectional view showing an outline of a vibration test in which each frame of the trimmed body is vibrated with a hammer, and FIG. 3B shows the frequency characteristic of the transfer function obtained by the vibration test in FIG. 3A. It is a graph to show. 図4Aは、トリムドボディの各フレームに対して加振器で連続して加振する加振テストの概要を示す断面図であり、図4Bは、図3A〜図4Aの加振テストの結果に基づいて実測音と合成音とを比較するための手順を説明するブロック図である。4A is a cross-sectional view showing an outline of a vibration test in which vibration is continuously applied to each frame of the trimmed body by a vibration exciter, and FIG. 4B is a result of the vibration test of FIGS. 3A to 4A. It is a block diagram explaining the procedure for comparing an actual measurement sound and a synthetic sound based on this. 図5Aは、左耳側のマイクロホンで検出された実測音と合成音とを比較した周波数特性のグラフであり、図5Bは、右耳側のマイクロホンで検出された実測音と合成音とを比較した周波数特性のグラフである。FIG. 5A is a graph of frequency characteristics comparing the measured sound detected by the left ear microphone and the synthesized sound, and FIG. 5B compares the measured sound detected by the right ear microphone and the synthesized sound. It is the graph of the frequency characteristic made. クロストークを説明するブロック図である。It is a block diagram explaining crosstalk. 図7Aは、周波数毎に音圧行列を構築することを示すブロック図であり、図7Bは、周波数毎に音圧行列及び伝達関数行列を構築することを示すブロック図である。FIG. 7A is a block diagram illustrating construction of a sound pressure matrix for each frequency, and FIG. 7B is a block diagram illustrating construction of a sound pressure matrix and a transfer function matrix for each frequency. 図8Aは、左耳側のマイクロホンで検出された実測音と合成音とを比較した周波数特性のグラフであり、図8Bは、右耳側のマイクロホンで検出された実測音と合成音とを比較した周波数特性のグラフである。FIG. 8A is a graph of frequency characteristics comparing the measured sound detected by the left ear microphone and the synthesized sound, and FIG. 8B compares the measured sound detected by the right ear microphone and the synthesized sound. It is the graph of the frequency characteristic made. 図9Aは、主成分回帰法を用いて振動検出信号に対する主成分分析を行うことを示すブロック図であり、図9Bは、主成分分析の意味を説明するためのグラフである。FIG. 9A is a block diagram showing that the principal component analysis is performed on the vibration detection signal using the principal component regression method, and FIG. 9B is a graph for explaining the meaning of the principal component analysis. 周波数毎に振動検出信号に対する特異値分解、ノイズ除去及び回帰分析を行うことを示すブロック図である。It is a block diagram which shows performing singular value decomposition | disassembly, noise removal, and regression analysis with respect to a vibration detection signal for every frequency. 第2実施例に係る振動・音圧伝達特性解析装置の構成を示すブロック図である。It is a block diagram which shows the structure of the vibration and sound pressure transmission characteristic analyzer based on 2nd Example. 図11の振動・音圧伝達特性解析装置におけるデータの流れを示すブロック図である。FIG. 12 is a block diagram showing a data flow in the vibration / sound pressure transmission characteristic analyzer of FIG. 11. 図11のノイズ除去部で利用される主成分数と特異値との関係を示すグラフである。12 is a graph showing the relationship between the number of principal components and singular values used in the noise removing unit in FIG. 11. 図14Aは、左耳側のマイクロホンで検出された実測音と合成音とを比較した周波数特性のグラフであり、図14Bは、右耳側のマイクロホンで検出された実測音と合成音とを比較した周波数特性のグラフである。FIG. 14A is a graph of frequency characteristics comparing the measured sound detected by the left ear microphone and the synthesized sound, and FIG. 14B compares the measured sound detected by the right ear microphone and the synthesized sound. It is the graph of the frequency characteristic made. 図1の固体伝播音及び空気伝播音と車内音との関係を示すブロック図である。It is a block diagram which shows the relationship between the solid propagation sound and air propagation sound of FIG. 1, and a vehicle interior sound. 図16Aは、無響室内に配置されたスピーカからの音をマイクロホンで検出する予備テストの概要を示す断面図であり、図16Bは、図16Aのスピーカの配置位置を固定して該スピーカからの音をマイクロホンで検出する予備テストの概要を示す断面図である。FIG. 16A is a cross-sectional view showing an outline of a preliminary test in which sound from a speaker arranged in an anechoic chamber is detected by a microphone, and FIG. 16B is a diagram illustrating a state in which the speaker arrangement position of FIG. It is sectional drawing which shows the outline | summary of the preliminary test which detects a sound with a microphone. 図17は、図16A及び図16Bの予備テストから得られた音圧検出信号及び振動・音圧検出信号に基づいて合成音を算出し、算出した合成音と実測音とを比較するためのフローチャートである。FIG. 17 is a flowchart for calculating a synthesized sound based on the sound pressure detection signal and the vibration / sound pressure detection signal obtained from the preliminary test of FIGS. 16A and 16B, and comparing the calculated synthesized sound with the actually measured sound. It is. 図18は、図17のフローチャートを実行することにより得られた左耳側のマイクロホンで検出された実測音と合成音とを比較した周波数特性のグラフである。FIG. 18 is a graph of frequency characteristics comparing the measured sound detected by the left ear microphone and the synthesized sound obtained by executing the flowchart of FIG. 図19Aは、固体物内での振動(固体伝播音)の伝達を示す斜視図であり、図19Bは、スピーカからの空気伝播音の伝達を示す斜視図である。FIG. 19A is a perspective view showing transmission of vibration (solid propagation sound) in a solid object, and FIG. 19B is a perspective view showing transmission of air propagation sound from a speaker. 図16Bの音源及び各マイクロホンの配置位置を固定して予備テストを行った場合における合成音と実測音とを比較するためのフローチャートである。FIG. 16B is a flowchart for comparing the synthesized sound and the actually measured sound when a preliminary test is performed with the arrangement positions of the sound source and each microphone in FIG. 16B fixed. 図20のフローチャートを実行することにより得られた左耳側のマイクロホンで検出された実測音と合成音とを比較した周波数特性のグラフである。It is a graph of the frequency characteristic which compared the measured sound and synthetic sound which were detected with the microphone of the left ear side obtained by performing the flowchart of FIG. 振動検出信号及び音圧検出信号を正規化して、正規化された振動検出信号及び音圧検出信号に対して主成分分析を行うことを示すブロック図である。It is a block diagram which shows performing a principal component analysis with respect to the normalized vibration detection signal and sound pressure detection signal by normalizing a vibration detection signal and a sound pressure detection signal. 図22の正規化方法及び主成分回帰法を実行するためのフローチャートである。It is a flowchart for performing the normalization method and principal component regression method of FIG. 第3実施例に係る振動・音圧伝達特性解析装置の構成を示すブロック図である。It is a block diagram which shows the structure of the vibration and sound pressure transmission characteristic analyzer based on 3rd Example. 図24の振動・音圧伝達特性解析装置におけるデータの流れを示すブロック図である。FIG. 25 is a block diagram showing a data flow in the vibration / sound pressure transmission characteristic analyzer of FIG. 24. 図24及び図25の主成分回帰分析手段内部におけるデータの流れを示すブロック図である。FIG. 26 is a block diagram showing the flow of data inside the principal component regression analysis means of FIGS. 24 and 25. 図24のノイズ除去部で利用される主成分数と累積寄与率との関係を示すグラフである。It is a graph which shows the relationship between the main component number utilized in the noise removal part of FIG. 24, and a cumulative contribution rate. 図27の累積寄与率と理論直線との差を差分累積寄与率としたときの主成分数との関係を示すグラフである。It is a graph which shows the relationship with the number of main components when the difference of the cumulative contribution rate of FIG. 27 and a theoretical line is made into a difference cumulative contribution rate.

符号の説明Explanation of symbols

50A、50B…振動・音圧伝達特性解析装置
52(i)…加速度センサ
54(i)、64、92(k)…周波数分析手段
56、94…行列形成手段 57…行列形成部
58…主成分回帰分析手段 60、60b、60c…伝達関数分配手段
60a…伝達関数分配部 62…振動・音圧検出手段
66…特異値分解部 68…ノイズ除去部
70…回帰分析部 90(k)…音圧検出手段
96a…振動正規化部 96b…音圧正規化部
98a…振動復元部 98b…音圧復元部
50A, 50B ... vibration / sound pressure transmission characteristic analyzer 52 (i) ... acceleration sensors 54 (i), 64, 92 (k) ... frequency analysis means 56, 94 ... matrix formation means 57 ... matrix formation part 58 ... main component Regression analysis means 60, 60b, 60c ... transfer function distribution means 60a ... transfer function distribution section 62 ... vibration / sound pressure detection means 66 ... singular value decomposition section 68 ... noise removal section 70 ... regression analysis section 90 (k) ... sound pressure Detection means 96a ... vibration normalization unit 96b ... sound pressure normalization unit 98a ... vibration restoration unit 98b ... sound pressure restoration unit

Claims (6)

振動源からの振動を検出して振動検出信号を出力する振動検出手段と、
音源からの音圧を検出して音圧検出信号を出力する音圧検出手段と、
前記振動源及び前記音源に対する所定の応答点における振動又は音圧を検出して振動・音圧検出信号を出力する振動・音圧検出手段と、
前記振動検出信号、前記音圧検出信号及び前記振動・音圧検出信号を周波数分析する周波数分析手段と、
周波数分析された前記振動検出信号、前記音圧検出信号及び前記振動・音圧検出信号に基づいて、前記振動源と前記応答点との間の振動伝達特性及び前記音源と前記応答点との間の音圧伝達特性を各々算出する主成分回帰分析手段と、
を有し、
前記主成分回帰分析手段は、周波数分析された前記振動検出信号を正規化する振動正規化部と、周波数分析された前記音圧検出信号を正規化する音圧正規化部と、正規化された前記振動検出信号及び前記音圧検出信号を特異値分解する特異値分解部と、特異値分解された前記振動検出信号及び前記音圧検出信号と周波数分析された前記振動・音圧検出信号との間で回帰分析を行うことにより前記振動源及び前記音源と前記応答点との間の振動・音圧伝達特性を算出する回帰分析部と、算出された前記振動・音圧伝達特性を、その振動成分である前記振動伝達特性と音圧成分である前記音圧伝達特性とに分配する伝達特性分配部と、分配された前記振動伝達特性を復元する振動伝達特性復元部と、分配された前記音圧伝達特性を復元する音圧伝達特性復元部とを有する
ことを特徴とする振動・音圧伝達特性解析装置。
Vibration detection means for detecting vibration from a vibration source and outputting a vibration detection signal;
Sound pressure detection means for detecting sound pressure from a sound source and outputting a sound pressure detection signal;
Vibration / sound pressure detecting means for detecting vibration or sound pressure at a predetermined response point with respect to the vibration source and the sound source and outputting a vibration / sound pressure detection signal;
Frequency analysis means for analyzing the frequency of the vibration detection signal, the sound pressure detection signal and the vibration / sound pressure detection signal;
Based on the vibration detection signal, the sound pressure detection signal, and the vibration / sound pressure detection signal subjected to frequency analysis, vibration transfer characteristics between the vibration source and the response point, and between the sound source and the response point. A principal component regression analysis means for calculating the sound pressure transmission characteristics of
Have
The principal component regression analysis means is normalized by a vibration normalization unit that normalizes the frequency-analyzed vibration detection signal, and a sound pressure normalization unit that normalizes the frequency-analyzed sound pressure detection signal. A singular value decomposition unit that singularly decomposes the vibration detection signal and the sound pressure detection signal, and the vibration detection signal and the sound pressure detection signal that have been subjected to singular value decomposition and the vibration / sound pressure detection signal that has been subjected to frequency analysis. A regression analysis unit that calculates vibration / sound pressure transfer characteristics between the vibration source and the sound source and the response point by performing a regression analysis between the vibration source and the calculated vibration / sound pressure transfer characteristic A transmission characteristic distributing unit that distributes the vibration transmission characteristic that is a component and the sound pressure transmission characteristic that is a sound pressure component; a vibration transmission characteristic restoring unit that restores the distributed vibration transmission characteristic; and the distributed sound Sound pressure transmission to restore pressure transmission characteristics Vibration and sound pressure transmission characteristic analyzing apparatus characterized by having a characteristic recovery unit.
請求項1記載の振動・音圧伝達特性解析装置において、
前記振動正規化部は、周波数分析された前記振動検出信号のうち所定周波数における標準偏差を算出し、算出した前記標準偏差を用いて前記所定周波数における前記振動検出信号を正規化し、
前記音圧正規化部は、周波数分析された前記音圧検出信号のうち所定周波数における標準偏差を算出し、算出した前記標準偏差を用いて前記所定周波数における前記音圧検出信号を正規化する
ことを特徴とする振動・音圧伝達特性解析装置。
In the vibration / sound pressure transmission characteristic analyzing apparatus according to claim 1,
The vibration normalization unit calculates a standard deviation at a predetermined frequency among the vibration detection signals subjected to frequency analysis, normalizes the vibration detection signal at the predetermined frequency using the calculated standard deviation,
The sound pressure normalization unit calculates a standard deviation at a predetermined frequency among the sound pressure detection signals subjected to frequency analysis, and normalizes the sound pressure detection signal at the predetermined frequency using the calculated standard deviation. Vibration / sound pressure transmission characteristic analysis device characterized by
請求項2記載の振動・音圧伝達特性解析装置において、
前記振動伝達特性復元部は、前記振動正規化部において算出された標準偏差を用いて前記振動伝達特性を復元し、
前記音圧伝達特性復元部は、前記音圧正規化部において算出された標準偏差を用いて前記音圧伝達特性を復元する
ことを特徴とする振動・音圧伝達特性解析装置。
In the vibration / sound pressure transmission characteristic analyzing apparatus according to claim 2,
The vibration transfer characteristic restoration unit restores the vibration transfer characteristic using the standard deviation calculated in the vibration normalization unit,
The sound pressure transfer characteristic restoring unit restores the sound pressure transfer characteristic by using the standard deviation calculated by the sound pressure normalizing unit.
請求項1〜3のいずれか1項に記載の振動・音圧伝達特性解析装置において、
前記主成分回帰分析手段は、正規化された前記振動検出信号及び前記音圧検出信号を合成し、合成された前記振動検出信号及び前記音圧検出信号を前記特異値分解部に出力する振動・音圧合成部をさらに有する
ことを特徴とする振動・音圧伝達特性解析装置。
In the vibration / sound pressure transmission characteristic analyzing apparatus according to any one of claims 1 to 3,
The principal component regression analysis unit synthesizes the normalized vibration detection signal and the sound pressure detection signal, and outputs the combined vibration detection signal and the sound pressure detection signal to the singular value decomposition unit. A vibration / sound pressure transmission characteristic analyzer further comprising a sound pressure synthesis unit.
請求項1〜4のいずれか1項に記載の振動・音圧伝達特性解析装置において、
前記主成分回帰分析手段は、特異値分解された前記振動検出信号及び前記音圧検出信号に含まれるノイズ成分を除去し、前記ノイズ成分が除去された前記振動検出信号及び前記音圧検出信号を前記回帰分析部に出力するノイズ除去部をさらに有する
ことを特徴とする振動・音圧伝達特性解析装置。
In the vibration / sound pressure transmission characteristic analyzing apparatus according to any one of claims 1 to 4,
The principal component regression analysis means removes a noise component included in the vibration detection signal and the sound pressure detection signal subjected to singular value decomposition, and outputs the vibration detection signal and the sound pressure detection signal from which the noise component has been removed. A vibration / sound pressure transfer characteristic analyzing apparatus further comprising a noise removing unit that outputs the regression analysis unit.
振動源からの振動を振動検出手段により検出して振動検出信号を出力するステップと、
音源からの音圧を音圧検出手段により検出して音圧検出信号を出力するステップと、
前記振動源及び前記音源に対する所定の応答点における振動又は音圧を振動・音圧検出手段により検出して振動・音圧検出信号を出力するステップと、
前記振動検出信号、前記音圧検出信号及び前記振動・音圧検出信号を周波数分析手段により周波数分析するステップと、
周波数分析した前記振動検出信号、前記音圧検出信号及び前記振動・音圧検出信号に基づいて、前記振動源と前記応答点との間の振動伝達特性及び前記音源と前記応答点との間の音圧伝達特性を主成分回帰分析手段により各々算出するステップと、
を有し、
前記主成分回帰分析手段は、周波数分析された前記振動検出信号及び前記音圧検出信号を正規化し、正規化された前記振動検出信号及び前記音圧検出信号を特異値分解し、特異値分解された前記振動検出信号及び前記音圧検出信号と周波数分析した前記振動・音圧検出信号との間で回帰分析を行うことにより前記振動源及び前記音源と前記応答点との間の振動・音圧伝達特性を算出し、算出された前記振動・音圧伝達特性を、その振動成分である前記振動伝達特性と音圧成分である前記音圧伝達特性とに分配し、分配された前記振動伝達特性と前記音圧伝達特性とを各々復元する
ことを特徴とする振動・音圧伝達特性解析方法。
Detecting vibration from a vibration source by means of vibration detection means and outputting a vibration detection signal;
Detecting the sound pressure from the sound source by the sound pressure detecting means and outputting a sound pressure detection signal;
Detecting vibration or sound pressure at a predetermined response point with respect to the vibration source and the sound source by a vibration / sound pressure detection means and outputting a vibration / sound pressure detection signal;
Analyzing the frequency of the vibration detection signal, the sound pressure detection signal and the vibration / sound pressure detection signal by frequency analysis means;
Based on the vibration detection signal, the sound pressure detection signal, and the vibration / sound pressure detection signal subjected to frequency analysis, vibration transfer characteristics between the vibration source and the response point and between the sound source and the response point. Calculating each of the sound pressure transfer characteristics by the principal component regression analysis means;
Have
The principal component regression analysis means normalizes the vibration detection signal and the sound pressure detection signal subjected to frequency analysis, performs singular value decomposition on the normalized vibration detection signal and sound pressure detection signal, and performs singular value decomposition. Vibration / sound pressure between the vibration source and the sound source and the response point by performing a regression analysis between the vibration detection signal and the sound pressure detection signal and the vibration / sound pressure detection signal subjected to frequency analysis. The transmission characteristic is calculated, the calculated vibration / sound pressure transmission characteristic is distributed to the vibration transmission characteristic that is the vibration component and the sound pressure transmission characteristic that is the sound pressure component, and the distributed vibration transmission characteristic And the sound pressure transfer characteristic are restored respectively.
JP2005245487A 2005-08-26 2005-08-26 Vibration / sound pressure transfer characteristic analysis apparatus and method Expired - Fee Related JP4028562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005245487A JP4028562B2 (en) 2005-08-26 2005-08-26 Vibration / sound pressure transfer characteristic analysis apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005245487A JP4028562B2 (en) 2005-08-26 2005-08-26 Vibration / sound pressure transfer characteristic analysis apparatus and method

Publications (2)

Publication Number Publication Date
JP2007057460A true JP2007057460A (en) 2007-03-08
JP4028562B2 JP4028562B2 (en) 2007-12-26

Family

ID=37921078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005245487A Expired - Fee Related JP4028562B2 (en) 2005-08-26 2005-08-26 Vibration / sound pressure transfer characteristic analysis apparatus and method

Country Status (1)

Country Link
JP (1) JP4028562B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186481A (en) * 2008-02-08 2009-08-20 Avl List Gmbh Method for determining contributions of individual transmission paths
JP2011527428A (en) * 2008-07-07 2011-10-27 エアバス オペラシオン ソシエテ パ アクシオンス シンプリフィエ Method and apparatus for frequency analysis of data
JP2015114294A (en) * 2013-12-16 2015-06-22 富士通株式会社 Inspection apparatus of acoustic device and inspection method of acoustic device and inspection program of acoustic device
JP2016017808A (en) * 2014-07-07 2016-02-01 株式会社豊田中央研究所 Oscillation analyzer and oscillation analysis method
JP2018013380A (en) * 2016-07-20 2018-01-25 株式会社エー・アンド・デイ Method and device for vibration analysis
WO2018163640A1 (en) * 2017-03-08 2018-09-13 株式会社日立製作所 System for estimating cause of vibration or noise problem
JP2019049426A (en) * 2017-09-08 2019-03-28 日本電信電話株式会社 Sensor signal processing method and sensor signal processing device and program
WO2019215930A1 (en) * 2018-05-11 2019-11-14 日本電気株式会社 Propagation path estimation device, propagation path estimation method and program
WO2020044599A1 (en) * 2018-08-29 2020-03-05 株式会社日立製作所 Vibration noise transmission route estimation system and transmission rate estimation method
JPWO2019240118A1 (en) * 2018-06-15 2021-07-26 パイオニア株式会社 Sound acquisition device
CN114047499A (en) * 2022-01-12 2022-02-15 宁波博海深衡科技有限公司武汉分公司 Signal normalization method and device for sensor array signal amplitude inconsistency

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186481A (en) * 2008-02-08 2009-08-20 Avl List Gmbh Method for determining contributions of individual transmission paths
JP2011527428A (en) * 2008-07-07 2011-10-27 エアバス オペラシオン ソシエテ パ アクシオンス シンプリフィエ Method and apparatus for frequency analysis of data
JP2015114294A (en) * 2013-12-16 2015-06-22 富士通株式会社 Inspection apparatus of acoustic device and inspection method of acoustic device and inspection program of acoustic device
JP2016017808A (en) * 2014-07-07 2016-02-01 株式会社豊田中央研究所 Oscillation analyzer and oscillation analysis method
JP2018013380A (en) * 2016-07-20 2018-01-25 株式会社エー・アンド・デイ Method and device for vibration analysis
WO2018163640A1 (en) * 2017-03-08 2018-09-13 株式会社日立製作所 System for estimating cause of vibration or noise problem
JP2019049426A (en) * 2017-09-08 2019-03-28 日本電信電話株式会社 Sensor signal processing method and sensor signal processing device and program
WO2019215930A1 (en) * 2018-05-11 2019-11-14 日本電気株式会社 Propagation path estimation device, propagation path estimation method and program
JPWO2019215930A1 (en) * 2018-05-11 2021-05-27 日本電気株式会社 Propagation path estimation device, propagation path estimation method and program
JPWO2019240118A1 (en) * 2018-06-15 2021-07-26 パイオニア株式会社 Sound acquisition device
JP7112489B2 (en) 2018-06-15 2022-08-03 エア・ウォーター・バイオデザイン株式会社 sound acquisition device
WO2020044599A1 (en) * 2018-08-29 2020-03-05 株式会社日立製作所 Vibration noise transmission route estimation system and transmission rate estimation method
CN114047499A (en) * 2022-01-12 2022-02-15 宁波博海深衡科技有限公司武汉分公司 Signal normalization method and device for sensor array signal amplitude inconsistency

Also Published As

Publication number Publication date
JP4028562B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
JP4028562B2 (en) Vibration / sound pressure transfer characteristic analysis apparatus and method
CN107393522B (en) Method and system for selecting sensor locations for active road noise control on a vehicle
JP7053705B2 (en) Abnormal noise determination device and abnormal noise determination method
JP5493373B2 (en) Method for calculating components for each transmission path
Stanef et al. Active control analysis of mining vehicle cabin noise using finite element modelling
JP6754738B2 (en) Spatial acoustic analysis method and its system
Dehandschutter et al. Active control of structure-borne road noise using vibration actuators
Fouladi et al. Spectral analysis methods for vehicle interior vibro-acoustics identification
Ström Operational transfer path analysis of components of a high-speed train bogie
JPWO2006132249A1 (en) Signal separation device
Siano et al. Sensitivity analysis and correlation Experimental/Numerical FEM-BEM for Noise Reduction assessment of an engine beauty cover
JP5282976B2 (en) Contribution analysis method and apparatus
Schuhmacher et al. Engine contribution analysis using a noise and vibration simulator
Adnadjevic et al. On the array configuration and accuracy of remote in-ear level sensing for in-vehicle noise control applications
Nejade A prediction method for separating and quantifying noise contributions from casings and other plate like components in complex machines
Riemann et al. Interactive auralization of powertrain sounds using measured and simulated excitation
CN105022024A (en) Method for identifying noise source of structure based on Helmholtz integral equation
Kompella Improved multiple-input/multiple-output modeling procedures with consideration of statistical information
Sottek et al. Binaural transfer path analysis and synthesis (BTPA/BTPS) using substructuring techniques based on finite element analysis (FEA) and measurements
Anisovich et al. Analysis of a vibrating structure as an airborne sound source by means of matrix inversion
Krause Active Noise Control Experiments using Sound Energy Flu
Fink et al. Prediction of Wheel Forces and Moments and Their Influence to the Interior Noise
Sorosiak et al. A fast numerical formulation for simulating vehicle compartment acoustics
Sottek et al. Virtual binaural auralisation of vehicle interior sounds
JP2007286595A (en) Active noise reduction device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees