JP2007057289A - Microsensor for analysis - Google Patents

Microsensor for analysis Download PDF

Info

Publication number
JP2007057289A
JP2007057289A JP2005240726A JP2005240726A JP2007057289A JP 2007057289 A JP2007057289 A JP 2007057289A JP 2005240726 A JP2005240726 A JP 2005240726A JP 2005240726 A JP2005240726 A JP 2005240726A JP 2007057289 A JP2007057289 A JP 2007057289A
Authority
JP
Japan
Prior art keywords
vibrator
detection
electrode
groove
microsensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005240726A
Other languages
Japanese (ja)
Other versions
JP4616123B2 (en
Inventor
Yoko Shinohara
陽子 篠原
Masataka Araogi
正隆 新荻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2005240726A priority Critical patent/JP4616123B2/en
Publication of JP2007057289A publication Critical patent/JP2007057289A/en
Application granted granted Critical
Publication of JP4616123B2 publication Critical patent/JP4616123B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microsensor for analysis which forms a capturing means on only either of two electrodes only by allowing medical fluid to flow in a structure formed by bonding a piezoelectric vibrator onto a fluid, and performing highly accurate measurement even when a reference vibrator and a detection vibrator are arranged close to each other. <P>SOLUTION: A groove is provided on the piezoelectric substrate surface constituting one side face of the passage, and a counter electrode is provided on the counter surface. A detection electrode is provided on the upper surface of the groove, and a reference electrode is provided on the bottom surface, and the side wall surface of the groove is constituted so as to be hydrophobic. When water-soluble medical fluid is sent into the passage, bubbles remain in the groove, and only the detection electrode is dipped into the medical fluid. Hereby, an adsorption film for capturing a specific material onto the detection electrode surface can be formed only by a process for sending the medical fluid, and simultaneously a fluctuation caused by a temperature change is detected from a signal of the piezoelectric vibrator measured by switching between the reference electrode and the detection electrode, and thereby even if the ambient temperature is changed, the mass of the specific material adhering onto the detection electrode is measured highly accurately. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、QCM(Quartz Crystal Microbalance)を利用した分析用マイクロセンサに関し、詳しくは、同一流路内かつ近傍に設けられた2つの電極に対し、一方の電極のみに特定物質を捕獲する捕獲手段を形成することで周囲の温度変化による変動を補償でき、液体に含有する特定物質の質量を高精度に検出する分析用マイクロセンサに属する。   The present invention relates to a microsensor for analysis using QCM (Quartz Crystal Microbalance), and more specifically, capture means for capturing a specific substance only in one electrode with respect to two electrodes provided in the vicinity of the same channel. It is possible to compensate for fluctuations due to changes in ambient temperature, and to belong to an analytical microsensor that detects the mass of a specific substance contained in a liquid with high accuracy.

近年、Lab−on−a−Chipと呼ばれる小型分析システムの開発が盛んに行われている。これは、流路や反応漕、バルブ、センサ等の要素構造を小さな基板に集積した構成であり、この内部に流れる気体や液体に対して分析処理を行うものである。このような小型分析システムを用いると、少量の試料で高速に分析を行うことができ、試料を提供する側の負担を少なくすることができることから、特に生体への応用が注目を集めている。   In recent years, a small analysis system called Lab-on-a-Chip has been actively developed. This is a configuration in which element structures such as a flow path, a reaction vessel, a valve, and a sensor are integrated on a small substrate, and an analysis process is performed on a gas or a liquid flowing inside this. When such a small analysis system is used, analysis can be performed at a high speed with a small amount of sample, and the burden on the side of providing the sample can be reduced.

この小型分析システムの構成要素の一つであるセンサ部には、様々な原理を利用したセンサが提案されている。中でもシステムが搭載する基板と一体化かつ小型の構成が可能なQCM(Quartz Crystal Microbalance)の利用が期待されている。   Sensors using various principles have been proposed for the sensor unit which is one of the components of the small analysis system. In particular, the use of QCM (Quartz Crystal Microbalance), which can be integrated with a substrate mounted on the system and has a small configuration, is expected.

QCMは圧電振動子(特に水晶振動子)の共振現象を利用して、振動子に付着した微少な質量を測定する技術である。詳細に説明すると、圧電振動子の両面に形成した電極に交流電圧を印加すると、圧電振動子の材料特性および形状から決定される特定の周波数で共振する。そこで、圧電振動子の電極に物質が付着すると、付着した質量に応じて振動子全体の共振周波数が変化する。この共振周波数の変化を検出することで、電極に付着した物質の質量を測定するという技術である。   QCM is a technique for measuring a minute mass attached to a vibrator using a resonance phenomenon of a piezoelectric vibrator (particularly a quartz vibrator). More specifically, when an AC voltage is applied to the electrodes formed on both sides of the piezoelectric vibrator, resonance occurs at a specific frequency determined from the material characteristics and shape of the piezoelectric vibrator. Therefore, when a substance adheres to the electrode of the piezoelectric vibrator, the resonance frequency of the whole vibrator changes according to the attached mass. This is a technique for measuring the mass of a substance attached to an electrode by detecting a change in the resonance frequency.

しかし、このような質量計測手段では、特定の物質の検出はできないため、特定の物質のみを吸着もしくは捕獲する手段を電極上に固定し、特定の物質のみを検出する構成が用いられている。一例を挙げると、蛋白質の検出に抗原抗体反応を用いる技術が知られている(特許文献1参照)。このような構成のQCMを利用すると、ある特定の測定対象物質の微小な質量を測定することが可能となる。そのため、小型分析システムのセンサ部にQCMを利用すると、測定したい物質の質量を高精度に測定することが出来るとともに、前述したように、分析システムと一体化した構成が可能であり、しかも小型な構成を維持できる。   However, since such a mass measuring means cannot detect a specific substance, a configuration in which a means for adsorbing or capturing only a specific substance is fixed on an electrode and only the specific substance is detected is used. As an example, a technique using an antigen-antibody reaction for protein detection is known (see Patent Document 1). When the QCM having such a configuration is used, a minute mass of a specific measurement target substance can be measured. Therefore, if QCM is used for the sensor part of a small analysis system, the mass of the substance to be measured can be measured with high accuracy, and as described above, the structure can be integrated with the analysis system, and the small size can be obtained. The configuration can be maintained.

ところが、QCMは高感度の検出が可能である反面、圧電振動子と接している流体の温度等の変化によっても共振周波数が変動してしまうという問題があった。そこで、検出に用いる圧電振動子に隣接して、検出対象の物質を捕獲する手段を設けない圧電振動子を設置し、この付着手段のない圧電振動子の共振周波数を利用して、付着した質量による共振周波数の変化分のみを取り出すという補償方法が用いられてきた(非特許文献1参照。)。   However, while the QCM can detect with high sensitivity, there is a problem that the resonance frequency fluctuates due to changes in the temperature of the fluid in contact with the piezoelectric vibrator. Therefore, a piezoelectric vibrator not provided with a means for capturing the substance to be detected is installed adjacent to the piezoelectric vibrator used for detection, and the attached mass using the resonance frequency of the piezoelectric vibrator without the attachment means. A compensation method has been used in which only the change in resonance frequency due to the above is taken out (see Non-Patent Document 1).

しかし、Lab−on−a−Chipのような小型分析システムは、基板上に形成された微小流路内で極少量の試料を分析するため、分析に利用する化学反応(例えば電極に設けた吸着もしくは捕獲手段と測定対象物質との結合)が急速かつ局所的に発生する。そのため、局所的な測定とリアルタイムの補償が必要となる。これを上記のQCM補償方法で実現するには、基準振動子と検出用振動子を近接して配置し、かつ、基準振動子と検出用振動子を同時に振動させて測定と補償を同時にする必要があり、検出対象物質を捕獲する手段を有する電極(検出電極)と捕獲手段を設けない電極(参照電極)を共に設置した圧電振動子を流路に接続する方法(特許文献2参照。)も提案されている。
特開2000−338022号公報 特開2003−307481号公報 J.Auge et al., Sensors and Actuators B, 26−27(1995)181−186
However, since a small analysis system such as Lab-on-a-Chip analyzes a very small amount of sample in a microchannel formed on a substrate, a chemical reaction used for analysis (for example, adsorption provided on an electrode). Or the coupling between the capture means and the substance to be measured) occurs rapidly and locally. This requires local measurement and real-time compensation. In order to realize this by the above QCM compensation method, it is necessary to place the reference vibrator and the detection vibrator close to each other and simultaneously vibrate the reference vibrator and the detection vibrator to perform measurement and compensation simultaneously. There is also a method of connecting a piezoelectric vibrator having both an electrode (detection electrode) having means for capturing a detection target substance and an electrode (reference electrode) not having a capture means to the flow path (see Patent Document 2). Proposed.
JP 2000-338022 A Japanese Patent Laid-Open No. 2003-307481 J. et al. Aug et al. , Sensors and Actuators B, 26-27 (1995) 181-186.

しかしながら、このような方法を採用した場合、接合時の加熱や接着剤の使用等で、検出電極や参照電極が汚染して検出感度が低下するという問題があった。また、振動子と流路との接合後に、流路内に薬液を流す工程だけで、近接した2つの電極の片方のみに選択的に捕獲手段を設ける事は非常に難しい。さらに、2つの振動子を近接配置すると、基準振動子と検出用振動子間で電気―機械的な結合が起こり、意図しない振動によるノイズが発生し、測定精度低下を招くという問題があった。   However, when such a method is adopted, there has been a problem that the detection sensitivity is lowered due to contamination of the detection electrode and the reference electrode due to heating at the time of bonding or use of an adhesive. In addition, it is very difficult to selectively provide the capture means only on one of the two adjacent electrodes only by the step of flowing the chemical solution in the flow channel after joining the vibrator and the flow channel. Further, when the two vibrators are arranged close to each other, there is a problem that electro-mechanical coupling occurs between the reference vibrator and the detection vibrator, noise due to unintended vibration occurs, and measurement accuracy is lowered.

そこで、本発明は、流路に圧電振動子を接合した構造に薬液を流すだけで、一方の電極のみに捕獲手段を形成すると同時に、基準振動子と検出用振動子との近接配置をしても高精度の測定が可能な分析用マイクロセンサを提供することを目的とする。   In view of this, the present invention allows a chemical solution to flow through a structure in which a piezoelectric vibrator is joined to a flow path, and forms a capturing means only on one electrode, and at the same time, arranges a reference vibrator and a detection vibrator in close proximity. Another object of the present invention is to provide an analytical microsensor capable of measuring with high accuracy.

本発明は、流路内を流れる試料に含有する特定物質を捕獲する捕獲手段を検出用電極上に有し、該捕獲手段により捕獲した質量を測定する分析用マイクロセンサにおいて、前記流路内に設けられ、且つ側壁面が疎水性を有する溝形状の凸凹部が形成された第1の面を有するとともに前記第1の面とは反対の第2の面に対向電極を有する圧電基板と前記凸凹部の上部に設けられた前記検出用電極とにより検出用振動子を構成し、また前記圧電基板と前記凸凹部の底部に設けられた基準用電極とにより前記検出用振動子とは共振特性が異なる基準用振動子を構成する機能を有する圧電振動子と、前記検出用振動子と前記基準用振動子に接続を切り替える切り替え部と、前記切り替え部により切り替えて得られた前記検出用振動子の共振周波数と前記基準用振動子の共振周波数との差分値に基づいて前記捕獲手段により捕獲した前記質量を計測する計測手段と、からなることを特徴とする分析用マイクロセンサを提供することにより上記課題を解決したものである。   The present invention has a capture means for capturing a specific substance contained in a sample flowing in a flow channel on a detection electrode, and in an analysis microsensor for measuring a mass captured by the capture means, A piezoelectric substrate having a first surface provided with a groove-shaped convex / concave portion having a hydrophobic side wall surface and having a counter electrode on a second surface opposite to the first surface, and the concave / convex A detection vibrator is constituted by the detection electrode provided at the top of the part, and the detection vibrator has a resonance characteristic by the piezoelectric substrate and a reference electrode provided at the bottom of the convex recess. A piezoelectric vibrator having a function of constituting a different reference vibrator, a switching section for switching connection to the detection vibrator and the reference vibrator, and the detection vibrator obtained by switching by the switching section. Resonance frequency and previous The above-mentioned problem has been solved by providing an analysis microsensor characterized by comprising: a measuring means for measuring the mass captured by the capturing means based on a difference value from a resonance frequency of a reference vibrator Is.

本発明の分析用マイクロセンサによると、簡略な構成でありながら、流路内に薬液を流す工程のみで、一方の電極に捕獲手段を形成でき、周囲の温度変化を補償できるため、高精度の測定が可能になる。さらに、基準振動子と検出用振動子とを近接させて配置しても振動子間で電気−機械的な結合が発生せず、高精度測定が可能となる。   According to the microsensor for analysis of the present invention, the capture means can be formed on one of the electrodes only by the process of flowing the chemical solution in the flow path, and the surrounding temperature change can be compensated for, even though it is a simple configuration. Measurement becomes possible. Furthermore, even if the reference vibrator and the detection vibrator are arranged close to each other, electro-mechanical coupling does not occur between the vibrators, and high-precision measurement is possible.

以下、本発明について図面を参照しつつ詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the following embodiment.

図1は、本発明の分析用マイクロセンサ1000の構成を説明する図である。図2は分析用マイクロセンサ1000を構成する圧電基板100の構造を説明する図である。   FIG. 1 is a diagram illustrating the configuration of an analytical microsensor 1000 according to the present invention. FIG. 2 is a view for explaining the structure of the piezoelectric substrate 100 constituting the analysis microsensor 1000.

分析用マイクロセンサ1000は、圧電基板100と流路基板200を積層させ、一体に接合もしくは接着して構成されている。分析用マイクロセンサ1000の外寸は、長さが20〜100[mm]程度、幅が10〜20[mm]程度、厚さが数[mm]程度である。   The analysis microsensor 1000 is configured by laminating the piezoelectric substrate 100 and the flow path substrate 200 and integrally bonding or adhering them. The external dimensions of the analytical microsensor 1000 are about 20 to 100 [mm] in length, about 10 to 20 [mm] in width, and about several [mm] in thickness.

まず、圧電基板100について述べる。圧電基板100には、複数の溝が一端で接続された櫛歯形状の溝部101が設けられている。溝部101の底面には基準電極602が、溝部101の上面には検出電極601が設けられ、さらに、溝部101の側壁面は疎水面が形成されている。また、溝部101が設けられた面と対向する面には対向電極603が設けられている。さらに、検出電極601の表面には、特定物質のみを吸着する吸着膜609が設けられている。   First, the piezoelectric substrate 100 will be described. The piezoelectric substrate 100 is provided with a comb-shaped groove 101 having a plurality of grooves connected at one end. A reference electrode 602 is provided on the bottom surface of the groove portion 101, a detection electrode 601 is provided on the upper surface of the groove portion 101, and a hydrophobic surface is formed on the side wall surface of the groove portion 101. Further, a counter electrode 603 is provided on a surface facing the surface on which the groove portion 101 is provided. Further, an adsorption film 609 that adsorbs only a specific substance is provided on the surface of the detection electrode 601.

流路基板200には、溝、溝までの貫通穴である液導入口202と液排出口203が設けられている。また、溝の一部は幅を広げた構造となっている。   The channel substrate 200 is provided with a liquid inlet 202 and a liquid outlet 203 which are grooves and through holes extending to the grooves. In addition, a part of the groove has a wide structure.

これら圧電基板100と流路基板200とが一体化し、分析用マイクロセンサ1000となる。詳しくは、溝部101が設けられた圧電基板100表面と溝が設けられた流路基板200表面を接合もしくは接着して一体化する。溝と圧電基板100の表面との間に流路400が形成され、さらに、溝の幅を広げた領域が反応槽500となり、反応槽500内に検出電極601および基準電極602が設けられることになる。そのため、液導入口202から液体を流入すると、流路400、反応槽500を経て、液排出口203に至る流れが発生する。   The piezoelectric substrate 100 and the flow path substrate 200 are integrated to form an analysis microsensor 1000. Specifically, the surface of the piezoelectric substrate 100 provided with the groove 101 and the surface of the flow path substrate 200 provided with the groove are joined or bonded to be integrated. The flow path 400 is formed between the groove and the surface of the piezoelectric substrate 100, and the region where the width of the groove is further expanded becomes the reaction tank 500, and the detection electrode 601 and the reference electrode 602 are provided in the reaction tank 500. Become. Therefore, when a liquid flows in from the liquid introduction port 202, a flow that reaches the liquid discharge port 203 through the flow path 400 and the reaction tank 500 is generated.

流路400内の圧電基板100表面に着目すると、溝部101内の側壁面は疎水性であるため、特定物質を含有する水溶液(試料)を流すと、溝部101内には気泡が残留する(図3参照)。そのため、圧電基板100に設けられた3つの電極のうち、検出電極601のみが試料に浸されることになる。   When attention is paid to the surface of the piezoelectric substrate 100 in the channel 400, the side wall surface in the groove 101 is hydrophobic. Therefore, when an aqueous solution (sample) containing a specific substance is flowed, bubbles remain in the groove 101 (FIG. 3). Therefore, only the detection electrode 601 among the three electrodes provided on the piezoelectric substrate 100 is immersed in the sample.

ここで、圧電基板100に設けられた検出電極601、基準電極602および対向電極603に接続された電気構成について一例を示す。検出電極601と切替スイッチ704を接続し、切替スイッチ704と周波数可変の交流電源701との一方の電極を接続している。交流電源701の他方の電極には対向電極603が接続されている。また、切替スイッチ704の他方には基準電極602が接続されている。さらに、交流電極701と対向電極603の間に電流計702が直列で接続されている。交流電源701と電流計702各々に演算手段703が接続され、交流電源701および電流計702、演算手段703が計測手段710を構成している(図4(a)参照)。   Here, an example of an electrical configuration connected to the detection electrode 601, the reference electrode 602, and the counter electrode 603 provided on the piezoelectric substrate 100 is shown. The detection electrode 601 and the changeover switch 704 are connected, and one electrode of the changeover switch 704 and the variable frequency AC power supply 701 is connected. A counter electrode 603 is connected to the other electrode of the AC power source 701. A reference electrode 602 is connected to the other side of the changeover switch 704. Further, an ammeter 702 is connected in series between the AC electrode 701 and the counter electrode 603. Calculation means 703 is connected to each of AC power supply 701 and ammeter 702, and AC power supply 701, ammeter 702, and calculation means 703 constitute measurement means 710 (see FIG. 4A).

次に、これらの電気構成から検出電極601に付着する物質の質量の測定する手法について説明する。交流電源701から切替スイッチ704を経て、検出電極601と対向電極603に交流電圧を印加すると、検出電極601と対向電極603の間に検出用振動子が構成される。印加電圧の周波数に応じて、電流計702に流れる電流が変化する。交流電源701から印加電圧の電圧及び周波数の情報が、電流計702から流れる電流の情報が、演算手段703へ入力される。演算手段703は、入力された情報を記録し、さらに入力情報から振動子のインピーダンスや、電圧と電流の位相差などを演算・記録する。印加電圧の電圧及び周波数、電流の振幅値、電圧と電流の位相差、振動子のインピーダンス等を演算手段703が演算、記録を行う。印加電圧の周波数と電流の振幅の関係を図4(b)の実線で示す。電流に流れる電流は、図中の周波数f1で最大となり、これを共振周波数とする。共振周波数f1を求めた後、切替スイッチ704を切り替え、基準電極602と対向電極603に交流電圧を印加し、基準用振動子を構成し、同様の手順で電流が最大値となる共振周波数f2を求める(図4(b)破線参照)。   Next, a method for measuring the mass of a substance attached to the detection electrode 601 from these electrical configurations will be described. When an AC voltage is applied from the AC power source 701 to the detection electrode 601 and the counter electrode 603 via the changeover switch 704, a detection vibrator is formed between the detection electrode 601 and the counter electrode 603. The current flowing through the ammeter 702 changes according to the frequency of the applied voltage. Information on the voltage and frequency of the applied voltage from the AC power source 701 and information on the current flowing from the ammeter 702 are input to the computing means 703. The calculation means 703 records the input information, and further calculates and records the impedance of the vibrator, the phase difference between voltage and current, and the like from the input information. The calculation means 703 calculates and records the voltage and frequency of the applied voltage, the amplitude value of the current, the phase difference between the voltage and current, the impedance of the vibrator, and the like. The relationship between the frequency of the applied voltage and the amplitude of the current is shown by the solid line in FIG. The current flowing in the current becomes maximum at the frequency f1 in the figure, and this is the resonance frequency. After obtaining the resonance frequency f1, the changeover switch 704 is switched, an AC voltage is applied to the reference electrode 602 and the counter electrode 603, a reference vibrator is configured, and the resonance frequency f2 at which the current becomes the maximum value is obtained in the same procedure. Obtained (see broken line in FIG. 4B).

なお、ここでは一例として、圧電基板100にATカット水晶板を用いている。ATカット水晶板は、周期的に厚さ方面に電位差を設けると、厚みすべり振動が発生する性質を持っている。この時の共振周波数(fn)は、振動子の弾性定数と密度、電位差を設ける電極間の距離(t)によって定まり、ATカット水晶振動子の場合は、fn=1670/tで求められる。そのため、電極間の距離が小さい基準用振動子の共振周波数f2のほうが、検出用振動子の共振周波数f1より大きい。そのため、近接して配置しても、検出用振動子と基準用振動子とが電気−機械的に結合することはない。   Here, as an example, an AT-cut quartz plate is used for the piezoelectric substrate 100. The AT-cut quartz plate has a property that thickness-shear vibration is generated when a potential difference is periodically provided in the thickness direction. The resonance frequency (fn) at this time is determined by the elastic constant and density of the vibrator and the distance (t) between the electrodes providing the potential difference. In the case of an AT cut crystal vibrator, fn = 1670 / t. Therefore, the resonance frequency f2 of the reference vibrator having a small distance between the electrodes is larger than the resonance frequency f1 of the detection vibrator. Therefore, even if they are arranged close to each other, the detection vibrator and the reference vibrator are not electro-mechanically coupled.

この時、検出電極601に測定対象物質が付着すると、付着質量に応じて検出用振動子の共振周波数f1が変化する。しかし、振動子自体が温度変化した場合も、同様に共振周波数が変化する。そのため、共振周波数の変化が付着質量のみに起因するのか、温度変化に起因する変化が含まれているのか判断できない。そこで、基準用振動子の共振周波数f2の変動を利用する。基準電極には測定対象物質が付着しないため、f2の変動は温度変化のみに起因する。そこで、f2の変動から温度変化を求め、温度変化による共振周波数f1の変動分を差し引くと、付着質量によるf1の変動分が求められ、付着質量を正確に求めることが可能となる。   At this time, when the measurement target substance adheres to the detection electrode 601, the resonance frequency f1 of the detection vibrator changes according to the attached mass. However, the resonance frequency changes similarly when the temperature of the vibrator itself changes. Therefore, it cannot be determined whether the change in the resonance frequency is caused only by the attached mass or the change caused by the temperature change is included. Therefore, the fluctuation of the resonance frequency f2 of the reference vibrator is used. Since the measurement target substance does not adhere to the reference electrode, the fluctuation of f2 is caused only by the temperature change. Therefore, if the temperature change is obtained from the fluctuation of f2, and the fluctuation of the resonance frequency f1 due to the temperature change is subtracted, the fluctuation of f1 due to the adhesion mass can be obtained, and the adhesion mass can be obtained accurately.

以上により、検出用振動子と基準用振動子の2つの共振周波数の変動を測定することで、周囲の温度が変化しても、検出電極601に付着した物質の質量を高精度に測定することが可能となる。   As described above, by measuring fluctuations in the two resonance frequencies of the detection vibrator and the reference vibrator, the mass of the substance attached to the detection electrode 601 can be measured with high accuracy even when the ambient temperature changes. Is possible.

次に、本発明の分析用マイクロセンサ1000の製造方法について述べる。まず、ATカット水晶ウェハをフッ化水素でエッチングし、溝部101を形成する。ウェハをHMDS(ヘキサメチルジシラザン)雰囲気中に浸漬後、加熱処理を行うことで、ウェハ表面が炭化水素基に置換され、疎水化する。その後、ウェハ両面にチタン、金の順に蒸着し、検出電極601、基準電極602、対向電極603および各電極への配線と、溝部101側壁に疎水面を形成する。なお、溝部101側壁が存在するため、検出電極601と基準電極602は短絡しない。次に、シリコンウェハの一方の面をエッチングし、溝を形成した後、他方面からエッチングして、溝まで貫通した穴を形成する。その後、圧電基板にUV硬化接着剤を塗布し、圧電基板とシリコンウェハを重ねあわせてから紫外線を照射し、接着し、ウェハをダイシングで切断する。   Next, a method for manufacturing the analytical microsensor 1000 of the present invention will be described. First, the AT cut crystal wafer is etched with hydrogen fluoride to form the groove 101. By immersing the wafer in an HMDS (hexamethyldisilazane) atmosphere and then performing a heat treatment, the wafer surface is replaced with a hydrocarbon group and becomes hydrophobic. Thereafter, titanium and gold are vapor-deposited in this order on both surfaces of the wafer, and a hydrophobic surface is formed on the detection electrode 601, the reference electrode 602, the counter electrode 603, wiring to each electrode, and the side wall of the groove 101. In addition, since the side wall of the groove 101 exists, the detection electrode 601 and the reference electrode 602 are not short-circuited. Next, after etching one surface of the silicon wafer to form a groove, etching is performed from the other surface to form a hole penetrating to the groove. Thereafter, a UV curing adhesive is applied to the piezoelectric substrate, the piezoelectric substrate and the silicon wafer are overlapped, irradiated with ultraviolet rays, bonded, and the wafer is cut by dicing.

なお、ここでは、製造過程の一例を挙げたが、流路基板材質はシリコンに、圧電基板100は水晶のみに限らない。流路基板200はガラス等の無機材質や、ポリイミドやポリジメチルシロキサン(PDMA)等の樹脂材料も利用可能である。また、圧電基板100は、タンタル酸リチウムやランガサイト等の単結晶圧電材料も利用可能である。さらに、水晶ウェハと溝を形成した基板とを一体化するのに、接合しても構成可能である。例えば、水晶ウェハの接合する部分にアルミ薄膜を形成し、溝を形成したガラス基板と陽極接合してもよい。   Although an example of the manufacturing process has been described here, the flow path substrate material is not limited to silicon, and the piezoelectric substrate 100 is not limited to quartz. The channel substrate 200 can be made of an inorganic material such as glass or a resin material such as polyimide or polydimethylsiloxane (PDMA). The piezoelectric substrate 100 can also use a single crystal piezoelectric material such as lithium tantalate or langasite. Furthermore, the quartz wafer and the substrate on which the groove is formed can be integrated to be integrated. For example, an aluminum thin film may be formed at a portion to be bonded to a crystal wafer, and anodic bonding may be performed with a glass substrate having grooves.

次に、検出電極601上に設置する吸着膜609の形成方法について述べる。ここでは、一例として、自己組織化膜(Self−assembled monolayer、以下SAMと記す。)に抗体を固定した吸着膜609の作成方法を示す。まず流路400内を洗浄するために純水を流した後、SAM試薬(カルボキシル基末端ジスルフィド型)を流し、検出電極601上のみにSAMを形成する。リン酸バッファで洗浄後、ヒドロキシこはく酸イミドを流し、SAMを活性化する。再びリン酸バッファで洗浄後、リン酸バッファに固定化する抗体を混合して流し、SAMに抗体を固定化する。いずれの試薬を流しても、圧電基板の溝部101には気泡が残るため、吸着膜609は基準電極602上に形成されず、検出電極601上のみに形成される。   Next, a method for forming the adsorption film 609 installed on the detection electrode 601 will be described. Here, as an example, a method for producing an adsorption film 609 in which an antibody is immobilized on a self-assembled film (hereinafter referred to as SAM) is shown. First, pure water is flowed to clean the inside of the flow path 400, and then a SAM reagent (carboxyl terminal disulfide type) is flowed to form SAM only on the detection electrode 601. After washing with a phosphate buffer, hydroxysuccinimide is run to activate SAM. After washing with a phosphate buffer again, the antibody to be immobilized on the phosphate buffer is mixed and flowed to immobilize the antibody on the SAM. Even if any reagent is allowed to flow, bubbles remain in the groove portion 101 of the piezoelectric substrate, so that the adsorption film 609 is not formed on the reference electrode 602 but only on the detection electrode 601.

分析用マイクロセンサ1000内を流れる試料に対して、特定の物質のみを検出する過程について述べる。ここでは、一例として生体高分子、特に蛋白質の検出について述べる。   A process of detecting only a specific substance from a sample flowing in the analysis microsensor 1000 will be described. Here, detection of biopolymers, particularly proteins, will be described as an example.

分析用マイクロセンサ1000の液導入口202に試料を流入する。試料は液導入口202から流路400を経て、反応槽500に到達する。反応槽500が試料で満たされると、溝部101内には気泡が残り、検出電極601表面に設けられた吸着膜609が試料で浸される。このとき、吸着膜609の抗体が、試料に含有する特定の抗原を捕獲固定し、検出電極601に付着する質量が増加するため、検出用振動子の共振周波数f1が変化する。この時、計測手段710が共振周波数f1の変動を測定した後、基準用振動子の共振周波数f2の変動から温度変化を測定し、付着質量の変動のみを演算、記憶する。この測定、演算処理を、計測手段710が高速に繰り返し、記憶する。   A sample flows into the liquid inlet 202 of the analysis microsensor 1000. The sample reaches the reaction tank 500 from the liquid inlet 202 through the flow path 400. When the reaction tank 500 is filled with the sample, bubbles remain in the groove 101, and the adsorption film 609 provided on the surface of the detection electrode 601 is immersed in the sample. At this time, the antibody of the adsorption film 609 captures and fixes a specific antigen contained in the sample, and the mass attached to the detection electrode 601 increases, so that the resonance frequency f1 of the detection vibrator changes. At this time, after the measuring unit 710 measures the fluctuation of the resonance frequency f1, the temperature change is measured from the fluctuation of the resonance frequency f2 of the reference vibrator, and only the fluctuation of the attached mass is calculated and stored. The measurement unit 710 repeatedly stores the measurement and calculation processing at high speed.

以上により、簡略な構成でありながら、流路内に薬液を流す工程のみで、一方の電極に捕獲手段を形成でき、周囲の温度変化を補償できるため、高精度の測定が可能になる。さらに、基準振動子と検出用振動子とを近接させて配置しても振動子間で電気−機械的な結合が発生せず、高精度測定が可能となる。   As described above, although it is a simple configuration, the capturing means can be formed on one of the electrodes and the surrounding temperature change can be compensated only by the step of flowing the chemical solution in the flow path, so that highly accurate measurement is possible. Furthermore, even if the reference vibrator and the detection vibrator are arranged close to each other, electro-mechanical coupling does not occur between the vibrators, and high-precision measurement is possible.

本発明の分析用マイクロセンサの構造を模式的に示す構造図である。1 is a structural diagram schematically showing the structure of an analytical microsensor of the present invention. 本発明の分析用マイクロセンサの構造を説明するための部分拡大図である。It is the elements on larger scale for demonstrating the structure of the microsensor for analysis of this invention. 圧電基板に接する試料の流れを説明するための説明図である。It is explanatory drawing for demonstrating the flow of the sample which touches a piezoelectric substrate. 本発明の分析用マイクロセンサの電気構成について説明するための構成図である。It is a block diagram for demonstrating the electrical structure of the micro sensor for analysis of this invention.

符号の説明Explanation of symbols

100 圧電基板
101 溝部
200 流路基板
202 液導入口
203 液排出口
400 流路
500 反応槽
601 検出電極
602 基準電極
603 対向電極
609 吸着膜
701 交流電源
702 電流計
703 演算手段
704 切替スイッチ
710 計測手段
1000 分析用マイクロセンサ
DESCRIPTION OF SYMBOLS 100 Piezoelectric substrate 101 Groove part 200 Flow path board 202 Liquid introduction port 203 Liquid discharge port 400 Flow path 500 Reaction tank 601 Detection electrode 602 Reference electrode 603 Counter electrode 609 Adsorption film 701 AC power supply 702 Ammeter 703 Calculation means 704 Changeover switch 710 Measurement means 1000 Microsensor for analysis

Claims (6)

流路内を流れる試料に含有する特定物質を捕獲する捕獲手段を検出用電極上に有し、該捕獲手段により捕獲した質量を測定する分析用マイクロセンサにおいて、
前記流路内に設けられ、且つ側壁面が疎水性を有する溝形状の凸凹部が形成された第1の面を有するとともに前記第1の面とは反対の第2の面に対向電極を有する圧電基板と前記凸凹部の上部に設けられた前記検出用電極とにより検出用振動子を構成し、また前記圧電基板と前記凸凹部の底部に設けられた基準用電極とにより前記検出用振動子とは共振特性が異なる基準用振動子を構成する機能を有する圧電振動子と、
前記検出用振動子と前記基準用振動子に接続を切り替える切り替え部と、
前記切り替え部により切り替えて得られた前記検出用振動子の共振周波数と前記基準用振動子の共振周波数との差分値に基づいて前記捕獲手段により捕獲した前記質量を計測する計測手段と、
からなることを特徴とする分析用マイクロセンサ。
In the analysis microsensor for measuring the mass captured by the capture means having a capture means for capturing the specific substance contained in the sample flowing in the flow channel on the detection electrode,
The first surface is provided in the flow path, and the side wall surface is formed with a groove-shaped convex / concave portion having hydrophobicity, and has a counter electrode on a second surface opposite to the first surface. A detection vibrator is constituted by the piezoelectric substrate and the detection electrode provided on the top of the convex recess, and the detection vibrator is constituted by the piezoelectric substrate and a reference electrode provided on the bottom of the convex recess. A piezoelectric vibrator having a function of constituting a reference vibrator having different resonance characteristics;
A switching unit that switches connection between the detection vibrator and the reference vibrator;
A measuring unit that measures the mass captured by the capturing unit based on a difference value between a resonance frequency of the detection vibrator and a resonance frequency of the reference vibrator obtained by switching by the switching unit;
An analytical microsensor characterized by comprising:
前記第1の面に、平行して設けた複数の溝形状の前記凸凹部を有することを特徴とする請求項1に記載の分析用マイクロセンサ。   The analysis microsensor according to claim 1, wherein the first surface has the plurality of groove-shaped convex concave portions provided in parallel. 前記検出電極が金であることを特徴とする請求項1もしくは2に記載の分析用マイクロセンサ。   The analysis microsensor according to claim 1, wherein the detection electrode is gold. 前記凸凹部を形成する前記溝形状の凹部長手方向が、前記試料の流れる方向と垂直に配置されていることを特徴とする請求項1から3いずれかに記載の分析用マイクロセンサ。   The analysis microsensor according to any one of claims 1 to 3, wherein a longitudinal direction of the groove-shaped concave portion forming the convex concave portion is arranged perpendicular to a direction in which the sample flows. 前記捕獲手段が自己組織化膜および前記自己組織化膜に固定された抗体であることを特徴とする請求項1から4のいずれかに記載の分析用マイクロセンサ。   5. The analytical microsensor according to claim 1, wherein the capturing means is a self-assembled film and an antibody fixed to the self-assembled film. 前記圧電基板が水晶、タンタル酸リチウムもしくはライガサイトのいずれかの単結晶からなることを特徴とする請求項1から5のいずれかに記載の分析用マイクロセンサ。   6. The analytical microsensor according to claim 1, wherein the piezoelectric substrate is made of a single crystal of quartz, lithium tantalate, or ligasite.
JP2005240726A 2005-08-23 2005-08-23 Microsensor for analysis Expired - Fee Related JP4616123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005240726A JP4616123B2 (en) 2005-08-23 2005-08-23 Microsensor for analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005240726A JP4616123B2 (en) 2005-08-23 2005-08-23 Microsensor for analysis

Publications (2)

Publication Number Publication Date
JP2007057289A true JP2007057289A (en) 2007-03-08
JP4616123B2 JP4616123B2 (en) 2011-01-19

Family

ID=37920922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005240726A Expired - Fee Related JP4616123B2 (en) 2005-08-23 2005-08-23 Microsensor for analysis

Country Status (1)

Country Link
JP (1) JP4616123B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216895A (en) * 2009-03-13 2010-09-30 Mitsubishi Materials Corp Micro mass sensor
JP2013072876A (en) * 2011-09-28 2013-04-22 Commissariat A L'energie Atomique & Aux Energies Alternatives Device and method for mass detection of particles in fluid medium
EP2278298A4 (en) * 2008-05-14 2017-08-30 Ulvac, Inc. Quartz oscillator and measurement method using same
KR20210154824A (en) * 2019-04-23 2021-12-21 누보 피그노네 테크놀로지 에스알엘 Sensor arrangements and methods for measuring fouling and/or erosion, and machines for monitoring fouling and/or erosion
DE112020003288T5 (en) 2019-07-10 2022-05-25 Murata Manufacturing Co., Ltd. ANALYSIS DEVICE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206743A (en) * 1989-02-06 1990-08-16 Seiko Instr Inc Instrument for simultaneously measuring physical property and electrochemical property of fluid
JP2000180250A (en) * 1998-10-09 2000-06-30 Ngk Insulators Ltd Mass sensor and mass detection method
JP2000338022A (en) * 1999-05-25 2000-12-08 Hokuto Denko Kk Multi-channel qcm sensor device and multi-channel qcm measuring system
JP2003222580A (en) * 2002-01-31 2003-08-08 Canon Inc Micro mass measuring device
JP2003307481A (en) * 2002-04-17 2003-10-31 Canon Inc Multichannel biosensor
JP2005214989A (en) * 2005-04-04 2005-08-11 Hokuto Denko Kk Qcm sensor device
JP2007533953A (en) * 2003-11-13 2007-11-22 テクニシェ・ユニバーシテート・クラウシュタール Sensor, sensor mechanism, and measuring method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206743A (en) * 1989-02-06 1990-08-16 Seiko Instr Inc Instrument for simultaneously measuring physical property and electrochemical property of fluid
JP2000180250A (en) * 1998-10-09 2000-06-30 Ngk Insulators Ltd Mass sensor and mass detection method
JP2000338022A (en) * 1999-05-25 2000-12-08 Hokuto Denko Kk Multi-channel qcm sensor device and multi-channel qcm measuring system
JP2003222580A (en) * 2002-01-31 2003-08-08 Canon Inc Micro mass measuring device
JP2003307481A (en) * 2002-04-17 2003-10-31 Canon Inc Multichannel biosensor
JP2007533953A (en) * 2003-11-13 2007-11-22 テクニシェ・ユニバーシテート・クラウシュタール Sensor, sensor mechanism, and measuring method
JP2005214989A (en) * 2005-04-04 2005-08-11 Hokuto Denko Kk Qcm sensor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2278298A4 (en) * 2008-05-14 2017-08-30 Ulvac, Inc. Quartz oscillator and measurement method using same
JP2010216895A (en) * 2009-03-13 2010-09-30 Mitsubishi Materials Corp Micro mass sensor
JP2013072876A (en) * 2011-09-28 2013-04-22 Commissariat A L'energie Atomique & Aux Energies Alternatives Device and method for mass detection of particles in fluid medium
KR20210154824A (en) * 2019-04-23 2021-12-21 누보 피그노네 테크놀로지 에스알엘 Sensor arrangements and methods for measuring fouling and/or erosion, and machines for monitoring fouling and/or erosion
JP2022530326A (en) * 2019-04-23 2022-06-29 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータ Sensor arrangements and methods for measuring contamination and / or erosion, as well as machines for monitoring contamination and / or erosion.
JP7278412B2 (en) 2019-04-23 2023-05-19 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータ Sensor arrangements and methods for measuring contamination and/or erosion and machines for monitoring contamination and/or erosion
KR102546456B1 (en) 2019-04-23 2023-06-22 누보 피그노네 테크놀로지 에스알엘 Sensor arrangement and method for measuring fouling and/or erosion, and machine for monitoring fouling and/or erosion
DE112020003288T5 (en) 2019-07-10 2022-05-25 Murata Manufacturing Co., Ltd. ANALYSIS DEVICE

Also Published As

Publication number Publication date
JP4616123B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
US8828321B2 (en) Reactor, micro-reactor chip, micro-reactor system, and method for manufacturing the reactor
US8349611B2 (en) Resonant sensors and methods of use thereof for the determination of analytes
JP4602162B2 (en) Microchip system
Burg et al. Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection
Länge et al. Integration of a surface acoustic wave biosensor in a microfluidic polymer chip
US10267770B2 (en) Acoustic resonator devices and methods with noble metal layer for functionalization
US7148611B1 (en) Multiple function bulk acoustic wave liquid property sensor
US10393704B2 (en) Multi-frequency BAW mixing and sensing system and method
US20170168026A1 (en) Temperature compensation and operational configuration for bulk acoustic wave resonator devices
Michalzik et al. Miniaturized QCM-based flow system for immunosensor application in liquid
JP4616123B2 (en) Microsensor for analysis
US10466194B2 (en) Piezoelectric biochips having fluidic channels
Lin et al. Electrically addressed dual resonator sensing platform for biochemical detection
US11262225B2 (en) Flow sensor, method and flowmeter for determining speeds of phases of a multi-phase medium
JP2003307481A (en) Multichannel biosensor
US7936106B2 (en) Surface acoustic wave sensor device
JP4223997B2 (en) Microsensor for analysis
JP4412546B2 (en) Trace mass sensor chip, trace mass analysis system, and trace mass sensor chip analysis method
JP4787695B2 (en) Microreactor system
JP4616124B2 (en) Microreactor, microreactor system, and analysis method using the microreactor system
JP4880944B2 (en) Liquid transfer device, microreactor, and microreactor system
Agrawal et al. A microfluidic platform for glucose sensing using broadband ultrasound spectroscopy
JP4530361B2 (en) Manufacturing method of substance detection element
Walk et al. A piezoelectric flexural plate wave (FPW) bio-MEMS sensor with improved molecular mass detection for point-of-care diagnostics
JP4717738B2 (en) Microreactor and microreactor system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101021

R150 Certificate of patent or registration of utility model

Ref document number: 4616123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees