JP2007057268A - Surface fractal dimension measuring method of carbon material - Google Patents

Surface fractal dimension measuring method of carbon material Download PDF

Info

Publication number
JP2007057268A
JP2007057268A JP2005240275A JP2005240275A JP2007057268A JP 2007057268 A JP2007057268 A JP 2007057268A JP 2005240275 A JP2005240275 A JP 2005240275A JP 2005240275 A JP2005240275 A JP 2005240275A JP 2007057268 A JP2007057268 A JP 2007057268A
Authority
JP
Japan
Prior art keywords
carbon material
atoms
fractal dimension
gold
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005240275A
Other languages
Japanese (ja)
Inventor
Shoji Imai
昭二 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokushima NUC
Original Assignee
University of Tokushima NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokushima NUC filed Critical University of Tokushima NUC
Priority to JP2005240275A priority Critical patent/JP2007057268A/en
Publication of JP2007057268A publication Critical patent/JP2007057268A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring easily a surface fractal dimension showing the abundance of pores, especially submicron pores, on the surface of a carbon material, especially activated carbon. <P>SOLUTION: Metal atoms are adsorbed onto the carbon material, and activation energy for atomization is determined through temperature change measurement of a graphite furnace atomic absorption signal of the atoms. Then, the fractal dimension is determined from a saturated adsorption amount of the atoms. It can be determined from the values whether the atoms are adsorbed into submicron pores or not, namely, how many submicron pores exist in the carbon material. Serviceability is shown by using gold atoms as an example. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炭素材料の表面フラクタル次元を簡単に測定する方法に関する。   The present invention relates to a method for easily measuring the surface fractal dimension of a carbon material.

脱臭剤などに用いられる活性炭の表面には、多数の細孔が存在するが、これらの細孔はフラクタル構造に類似する階層構造を成している(図1(a))。このうち比較的大きなマクロ孔にはタンパク質などの超大型分子が吸着し、中間的なサイズのメソ孔には色素などの大型分子が吸着し、それより小さいミクロ孔には一般の分子が吸着し、さらに小さいサブミクロ孔には原子や気体分子、低分子量分子が吸着することが知られている(図1(b))。   A large number of pores exist on the surface of the activated carbon used as a deodorizer and the like, and these pores have a hierarchical structure similar to a fractal structure (FIG. 1 (a)). Among these, relatively large macropores adsorb very large molecules such as proteins, intermediate size mesopores adsorb large molecules such as dyes, and smaller micropores adsorb general molecules. Furthermore, it is known that atoms, gas molecules, and low molecular weight molecules are adsorbed in even smaller sub-micropores (FIG. 1 (b)).

したがって、活性炭をガス吸着材として用いる場合、とりわけガス分子サイズの小さいメタン、エタンその他の低級炭化水素ガスや水素を吸着するための材料として用いる場合には、比表面積が大きく、ミクロ孔の容積が大きいものが有利とされ、これらの要件を指針として、吸着活性を向上させた多種の活性炭が研究され、開発されている(特許文献1)。しかし、これまで活性炭のサブミクロ孔の有無の判断は、容易ではなかった。   Therefore, when using activated carbon as a gas adsorbent, especially when using it as a material for adsorbing methane, ethane or other lower hydrocarbon gas or hydrogen with a small gas molecule size, the specific surface area is large and the micropore volume is large. A large one is advantageous, and various activated carbons with improved adsorption activity have been studied and developed with these requirements as a guide (Patent Document 1). However, it has not been easy to determine the presence or absence of sub-micropores in activated carbon.

特開2001-122608号公報([0002])JP 2001-122608 A ([0002])

前述のとおり、活性炭等の炭素材料の細孔構造はフラクタル構造に類似するため、そのフラクタル構造の特性値であるフラクタル次元により、その炭素材料の表面のサブミクロ孔の割合を表すことができる。このフラクタル次元は一般にD値と呼ばれ、表面に細孔が生じその構造が複雑になると共にDの値は大きくなる。単分子相の飽和吸着量VmはこのD値と次のような関係があることが知られている。
Vm = k・r-D
ここで、kは比例定数、rは吸着分子の有効半径である。
As described above, since the pore structure of the carbon material such as activated carbon is similar to the fractal structure, the ratio of sub-micropores on the surface of the carbon material can be expressed by the fractal dimension which is a characteristic value of the fractal structure. This fractal dimension is generally called the D value, and pores are generated on the surface, the structure becomes complicated, and the value of D increases. It is known that the saturated adsorption amount Vm of the monomolecular phase has the following relationship with this D value.
Vm = k ・ rD
Here, k is a proportional constant, and r is an effective radius of the adsorbed molecule.

活性炭表面の表面フラクタル次元Dの値は、一般に、1000K程度の熱処理ではD=3に近いが、1700KになるとD=2程度となり、サブミクロ細孔が消失して表面がより平面化することが知られている。   The surface fractal dimension D on the surface of activated carbon is generally close to D = 3 for heat treatment of about 1000K, but becomes about D = 2 at 1700K, and it is known that sub-micropores disappear and the surface becomes more planar. It has been.

従来、炭素材料のフラクタル次元を測定するための簡易な方法は存在せず、サイズの異なる分子や原子を順に吸着及び脱着させ、それぞれの吸着量を測定することにより決定するという面倒な方法しかなかった。   Conventionally, there is no simple method for measuring the fractal dimension of a carbon material, and there is only a troublesome method of determining by adsorbing and desorbing molecules and atoms of different sizes in order and measuring the amount of each adsorption. It was.

本発明が解決しようとする課題は、炭素材料の表面のサブミクロ孔の存在量を表す指標であるフラクタル次元を簡単に測定する方法を提供することである。   The problem to be solved by the present invention is to provide a method for easily measuring a fractal dimension, which is an index indicating the abundance of sub-micropores on the surface of a carbon material.

上記課題を解決するために成された本発明に係る炭素材料の表面フラクタル次元測定方法は、
測定目的の炭素材料に貴金属原子を吸着させ、その黒鉛炉原子吸光信号の温度変化測定より該貴金属原子の活性化エネルギーを求め、その活性化エネルギーより表面フラクタル次元を求めることを特徴とする。
The method for measuring the surface fractal dimension of the carbon material according to the present invention, which has been made to solve the above problems,
It is characterized in that a noble metal atom is adsorbed on a carbon material to be measured, the activation energy of the noble metal atom is obtained by measuring the temperature change of the graphite furnace atomic absorption signal, and the surface fractal dimension is obtained from the activation energy.

本発明に係る方法により、活性炭等の炭素材料の表面フラクタル次元を簡単に測定することができ、炭素材料表面のサブミクロ孔の存在割合を決定することができる。サブミクロ孔の存在割合は吸着作用や触媒作用の理解に必須の情報であり、本方法により炭素材料の評価を容易に行うことができ、その製造方法の改良に資することができる。   By the method according to the present invention, the surface fractal dimension of a carbon material such as activated carbon can be easily measured, and the existence ratio of sub-micropores on the surface of the carbon material can be determined. The existence ratio of sub-micropores is indispensable information for understanding the adsorption action and the catalytic action, and the carbon material can be easily evaluated by this method, which can contribute to the improvement of the production method.

本発明による測定の原理を以下に示す。
時刻tまでに黒鉛炉内で原子状態となる原子数をn1、黒鉛炉から出ていった原子数をn2としたとき、時間tにおける黒鉛炉内の原子数Nは次のように表される。

Figure 2007057268
目的とする原子の黒鉛炉内当初存在量N0は、黒鉛炉内で完全に原子化する時間τより次式で表される。
Figure 2007057268
最終的には、吸光度信号の最大値Amaxは原子総数N0に比例し、吸光度信号の出現から消失までの吸光度の積分値Asはτに無関係で、原子総数N0に比例する。
原子吸光度信号の変化(吸光度プロファイル)の模式図を図2に示す。 The principle of measurement according to the present invention is shown below.
Time t number of atoms the atomic state in a graphite furnace to n1, when the number of atoms went out of graphite furnace was n 2, the number of atoms N in a graphite furnace at time t is expressed as follows The
Figure 2007057268
The initial abundance N 0 of the target atom in the graphite furnace is expressed by the following equation from the time τ for complete atomization in the graphite furnace.
Figure 2007057268
Finally, the maximum value A max of the absorption signal is proportional to the atomic total N 0, the integral value A s absorbance from the appearance to the disappearance of the absorbance signal is independent of tau, proportional to the atomic total number N 0.
A schematic diagram of the change in the atomic absorbance signal (absorbance profile) is shown in FIG.

金属原子を炭素材料に吸着させた後、黒鉛炉の温度を急速に昇温し、該金属原子の吸光度信号の時間変化を測定するならば、金属原子の脱離速度とその活性化エネルギーを求めることができる。金属原子が単原子的にバラバラに脱離しランダムに原子化するときは、脱離反応は一次反応である。   If the temperature of the graphite furnace is rapidly raised after the metal atoms are adsorbed on the carbon material and the time change of the absorbance signal of the metal atoms is measured, the desorption rate and activation energy of the metal atoms are obtained. be able to. When metal atoms are detached monoatically and atomized randomly, the elimination reaction is a primary reaction.

この単原子金属の脱離の活性化エネルギーと表面フラクタル次元の間には、後述するように、図11に示すような直線関係が見出された。   As will be described later, a linear relationship as shown in FIG. 11 was found between the activation energy of the desorption of the monoatomic metal and the surface fractal dimension.

このように、炭素材料への吸着種として、サブミクロ孔に単原子吸着しうる金属原子を選べば、サブミクロ孔についての知見が得られる。このような金属材料としては、金、白金等の貴金属材料を用いることができるが、特に金はその原子半径が0.14nmであるのでサブミクロ孔に吸着でき、また、入手も比較的容易であることから、本発明に係る方法に使用するに適している。   Thus, if a metal atom capable of adsorbing a single atom in a sub-micropore is selected as an adsorbing species to the carbon material, knowledge about the sub-micropore can be obtained. As such a metal material, a noble metal material such as gold or platinum can be used. In particular, since gold has an atomic radius of 0.14 nm, it can be adsorbed to sub-micropores and is relatively easy to obtain. Therefore, it is suitable for use in the method according to the present invention.

測定装置の一例の概略構成を図3に示す。原子吸光装置は、日立製作所製Z−8000型Zeeman原子吸光分光光度計を用いた。金溶液の注入は同社製オートサンプラーを用い、有機物水溶液試料はGilson社製P-200を用いて注入した。黒鉛炉は日立製作所製PG炉を用いた。光源は日立製作所製Au元素の中空陰極ランプを用いた。   A schematic configuration of an example of the measuring apparatus is shown in FIG. As the atomic absorption device, a Z-8000 type Zeeman atomic absorption spectrophotometer manufactured by Hitachi, Ltd. was used. The gold solution was injected using an auto sampler manufactured by the same company, and the organic aqueous solution sample was injected using P-200 manufactured by Gilson. A PG furnace manufactured by Hitachi, Ltd. was used as the graphite furnace. The light source was a hollow cathode lamp made of Hitachi, Ltd. Au element.

データプロセッサにより得られた吸光度はRS−232Cを介して外付パソコンに記録し、黒鉛炉の温度データは、原子吸光分光光度計に付属の光温度制御装置の出力をA/D変換後、同パソコンに記録した。温度校正はChino社製放射温度計IR‐AHISとPt‐Rh電熱対を用いた。バックグラウンド補正は、ゼーマンバックグラウンド補正法で行った。測定は、吸光度カーブのピーク高さ及び面積の両方で行った。
水は、日本ミリポア株式会社製のMILLIPORE Elixで脱イオン化された逆浸透水をMilli-Q academicにより純度を高めた超純水を用いた。
金溶液には、関東化学株式会社製原子吸光分析用標準溶液Au=1000ppm(1 mol/HCl)を用いた。塩酸は、関東化学製の特級塩酸を1.0Nに希釈し、褐色ビンに保存したものを用いた。
The absorbance obtained by the data processor is recorded on an external personal computer via RS-232C, and the temperature data of the graphite furnace is the same after the output of the optical temperature controller attached to the atomic absorption spectrophotometer is A / D converted. Recorded on a PC. The temperature calibration was performed using Chino's radiation thermometer IR-AHIS and Pt-Rh thermocouple. Background correction was performed by the Zeeman background correction method. Measurements were taken at both the peak height and area of the absorbance curve.
The water used was ultra-pure water whose purity was increased by Milli-Q academic from reverse osmosis water deionized by Millipore Elix manufactured by Millipore Japan.
As the gold solution, a standard solution for atomic absorption analysis Au = 1000 ppm (1 mol / HCl) manufactured by Kanto Chemical Co., Ltd. was used. The hydrochloric acid used was a special grade hydrochloric acid manufactured by Kanto Chemical Co., diluted to 1.0 N and stored in a brown bottle.

測定対象とした炭素材料は、次の3種である。
・粒状活性炭
武田薬品工業製のモルシーボンX2M4/6をダイヤモンドやすりにて削った後、メノウ乳鉢で粉砕したもの
・活性炭素繊維A
東邦化工建設製ACF FE-200Aを水中で分散させたもの
・活性炭素繊維B
東洋紡績製BW5506を3mmの長さに切断し、水中で分散させたもの
これらのうち、粒状活性炭は、サブミクロ孔からマクロ孔までを含む細孔径分布の幅広い分布を有している。他方、活性炭素繊維は細孔径10nmを中心としたミクロ孔のみを有している特異的な炭素材料である。
The following three types of carbon materials were measured.
・ Particulate activated carbon Takeda Yakuhin Kogyo Morshibon X2M4 / 6 was shaved with a diamond file and then ground in an agate mortar. ・ Activated carbon fiber A
ACF FE-200A made by Toho Kako Construction, dispersed in water, activated carbon fiber B
Toyobo BW5506 cut to 3 mm length and dispersed in water Among these, granular activated carbon has a wide distribution of pore diameter distributions including sub-micropores to macropores. On the other hand, activated carbon fiber is a specific carbon material having only micropores centered on a pore diameter of 10 nm.

これらの炭素材料について、次のような測定を行った。黒鉛炉の中に測定対象である炭素材料を置き、その炭素材料に前記金溶液を滴下する。黒鉛炉の温度を120℃まで上昇させて試料の脱溶媒及び灰化を行い、その後、2500℃程度まで急速昇温する(例えば2000℃/sec程度)。この間の吸光カーブの位置と強度を黒鉛炉温度に対して測定する(図2)。   The following measurements were performed on these carbon materials. A carbon material to be measured is placed in a graphite furnace, and the gold solution is dropped onto the carbon material. The temperature of the graphite furnace is increased to 120 ° C., the sample is desolvated and incinerated, and then rapidly heated to about 2500 ° C. (for example, about 2000 ° C./sec). During this time, the position and intensity of the absorption curve are measured with respect to the graphite furnace temperature (FIG. 2).

粒状活性炭試料に金溶液を滴下したときの原子吸光プロファイルを図4に線4で示す。黒鉛炉に炭素材料を置かないで標準溶液のみで測定した原子吸光プロファイル(線1)と比較すると、金の原子吸光のピークは高温側へシフトした。ここで、予め粒状活性炭試料を金溶液に常圧において浸漬させ金を吸着させたときの原子吸光プロファイル(線2)も高温側へシフトした。
また、図5(a)、(b)に示すとおり、活性炭素繊維A、Bに金溶液を滴下したときの原子吸光プロファイルは図4とは異なって、標準溶液のみのプロファイルと比較するとピークが高温側へシフトしなかった。活性炭素繊維A、Bを金溶液に予め常圧において浸漬させたものを測定したときの原子吸光プロファイル(線2)は、標準溶液のみのプロファイル(線1)と比較するとピークが高温へシフトした。図5(a)、(b)には、減圧することにより活性炭に吸着しているガスを除去した後、金溶液を浸漬させたときの測定結果も線3として示した。
The atomic absorption profile when the gold solution is dropped onto the granular activated carbon sample is shown by the line 4 in FIG. Compared with the atomic absorption profile (line 1) measured only with the standard solution without placing the carbon material in the graphite furnace, the peak of gold atomic absorption shifted to the high temperature side. Here, the atomic absorption profile (line 2) when the granular activated carbon sample was previously immersed in a gold solution at normal pressure to adsorb gold was also shifted to the high temperature side.
Also, as shown in FIGS. 5 (a) and 5 (b), the atomic absorption profile when the gold solution is dropped onto the activated carbon fibers A and B is different from that in FIG. It did not shift to the high temperature side. The atomic absorption profile (line 2) when activated carbon fibers A and B were pre-immersed in a gold solution at normal pressure was measured, and the peak shifted to a higher temperature than the profile of only the standard solution (line 1). . In FIGS. 5A and 5B, the measurement result when the gold solution is immersed after removing the gas adsorbed on the activated carbon by reducing the pressure is also shown as line 3.

このように、粒状活性炭及び活性炭素繊維のいずれにおいても、それらに吸着した金原子の吸光プロファイルのピークは、熱分解黒鉛表面に吸着した金標準溶液プロファイルと比較すると高温にシフトしている。これは、これらの炭素材料からの脱着にエネルギーを要することを表しており、金原子がこれら粒状活性炭、活性炭素繊維のミクロ細孔に吸着していることを示している。   Thus, in both granular activated carbon and activated carbon fiber, the peak of the absorption profile of gold atoms adsorbed on them shifts to a higher temperature than the gold standard solution profile adsorbed on the surface of pyrolytic graphite. This indicates that energy is required for desorption from these carbon materials, and that gold atoms are adsorbed on the micropores of these granular activated carbons and activated carbon fibers.

解析は、以下に示す固相反応速度論に基づいて行った。このアレニウスの式によるアレニウスプロットから、反応機構および活性化パラメーターを求めることができる。

Figure 2007057268
ここで、αは変化率であり、α=Nt/N0=At/Amaxで表される。また、X=RT/Eaとするとき、P=1-2X+6X2-24X3+120X4+・・・ で表され、またAは頻度因子である。
アレニウスプロットにおいて良好な直線性を示す反応機構関数g(α)が最適な反応機構であると判断することができ、その傾きから金の活性化エネルギーを決定することができる。 The analysis was performed based on the solid phase reaction kinetics shown below. From the Arrhenius plot according to this Arrhenius equation, the reaction mechanism and activation parameters can be determined.
Figure 2007057268
Here, α is the rate of change, and is expressed as α = N t / N 0 = A t / A max . When X = RT / Ea, it is expressed by P = 1−2X + 6X 2 -24X 3 + 120X 4 +... And A is a frequency factor.
It can be determined that the reaction mechanism function g (α) showing good linearity in the Arrhenius plot is the optimum reaction mechanism, and the activation energy of gold can be determined from the inclination.

いろいろな反応モデルを仮定した場合のg(a)関数を図6(表1)に示した。この表において、F1は、金属原子が単原子状態で分散しており反応次数n=1である場合を示す。金属原子が島やクラスターなどの会合体を形成し、それが拡散律速となる場合がD1〜D3であり、界面律速となる場合がR1〜R3である。また、A3/2、A2〜A4は核形成と反応成長過程を示す。   The g (a) function assuming various reaction models is shown in FIG. 6 (Table 1). In this table, F1 represents a case where metal atoms are dispersed in a monoatomic state and the reaction order is n = 1. The case where metal atoms form aggregates such as islands and clusters and become diffusion-limited is D1 to D3, and the case where they are interface-limited is R1 to R3. A3 / 2 and A2 to A4 indicate nucleation and reaction growth processes.

前述のとおり、粒状活性炭は、サブミクロ孔からマクロ孔までを含む細孔径分布の幅広い分布を有しているが、活性炭素繊維は細孔径10nmを中心としたミクロ孔のみを有している。一方、金原子は、メソ孔以上の孔径において単原子分散を起こさないことは既に報告されている。   As described above, granular activated carbon has a wide distribution of pore diameter distribution including sub-micropores to macropores, but activated carbon fiber has only micropores centered on a pore diameter of 10 nm. On the other hand, it has already been reported that gold atoms do not cause monoatomic dispersion at pore sizes larger than mesopores.

温度−吸光度プロファイルの速度論的解析により、金原子をミクロ孔のみ選択的に持つ活性炭素繊維に吸着させたとき単原子分散が確認されなかったこと、及びサブミクロ孔に吸着した場合のみ単原子分散することが認められたことから、活性炭材料に金を吸着させた際、金原子はサブミクロ孔にのみ単分子的に吸着されると結論できる。   From the kinetic analysis of the temperature-absorbance profile, monoatomic dispersion was not confirmed when gold atoms were adsorbed on activated carbon fibers having only micropores, and only when adsorbed on sub-micropores. From this, it can be concluded that when gold is adsorbed on the activated carbon material, the gold atoms are adsorbed monomolecularly only in the sub-micropores.

黒鉛炉内で有機物水溶液の加熱分解により活性炭を生成し、同様の測定を行った。有機物としてはサッカロース及びアスコルビン酸を用いた。
活性炭を生成した後放冷し、金50ppbを含む標準溶液20μlを加え、活性炭を用いない場合を標準として、乾燥・灰化及び原子化の過程を温度−吸光度プロファイルを測定して解析した。5%サッカロース水溶液を用いた場合の測定結果の一例を図7に示す。
Activated carbon was generated by thermal decomposition of an organic aqueous solution in a graphite furnace, and the same measurement was performed. Saccharose and ascorbic acid were used as organic substances.
Activated charcoal was allowed to cool and then allowed to cool, 20 μl of a standard solution containing 50 ppb of gold was added, and the process of drying, ashing and atomization was analyzed by measuring the temperature-absorbance profile with the case where no activated charcoal was used as a standard. An example of the measurement results when using a 5% aqueous saccharose solution is shown in FIG.

活性炭上に吸着させた場合は、標準溶液のみの場合に比較し、吸光度ピークの高温側シフトが見られる。金原子の第2ピークに注目して速度論的解析を行い、金原子は単原子分散して吸着しているものと結論した。金の原子化の活性化エネルギーを求め、活性炭生成温度との関係を、サッカロース水溶液の場合を図8(表2)に、アスコルビン酸溶液の場合を図9(表3)に示す。表面フラクタル次元を求め、その値と活性化エネルギーの関係を、カーボンブラックや熱分解黒鉛での値と共に、図10(表3)に示す。また、両者の関係を図11に示す。   When adsorbed on activated carbon, a shift of the absorbance peak on the high temperature side is observed as compared with the case of only the standard solution. Focusing on the second peak of gold atoms, kinetic analysis was performed, and it was concluded that gold atoms were adsorbed by monoatomic dispersion. The activation energy of gold atomization was determined, and the relationship with the activated carbon generation temperature is shown in FIG. 8 (Table 2) for an aqueous saccharose solution and in FIG. 9 (Table 3) for an ascorbic acid solution. The surface fractal dimension is determined, and the relationship between the value and the activation energy is shown in FIG. 10 (Table 3) together with the values for carbon black and pyrolytic graphite. The relationship between the two is shown in FIG.

金原子は、炭素原子と特異的な相互作用することなく、単純なファンデルワールス力によって吸着している。ここで、計測される活性化エネルギーはこのファンデルワールス力に相当する。ファンデルワールス力が、金原子と相互作用できる位置にある炭素面の有効面積に依存することから、サブミクロ孔の凹凸が活性化エネルギーに影響を与えることとなる。従って、活性化エネルギーと表面フラクタル次元のプロットに基づいて、未知炭素材料上での金原子の原子化の活性化エネルギーから、そのサブミクロ孔の表面フラクタル次元が求められることとなる。   Gold atoms are adsorbed by simple van der Waals forces without specific interaction with carbon atoms. Here, the measured activation energy corresponds to this van der Waals force. Since the van der Waals force depends on the effective area of the carbon surface at a position where it can interact with gold atoms, the unevenness of the sub-micropores affects the activation energy. Therefore, based on the activation energy and surface fractal dimension plot, the surface fractal dimension of the sub-micropore is determined from the activation energy of atomization of gold atoms on the unknown carbon material.

表面プローブとして、原子半径0.14nmの金原子を用いていることから、本実施例により評価される炭素材料表面のサブミクロ孔は0.14nmレベルの凹凸と考えられる。
金以外の単原子吸着する金属原子を選択すれば、サイズの異なるサブミクロ孔についての知見が得られると考えられる。
Since gold atoms having an atomic radius of 0.14 nm are used as the surface probe, the sub-micropores on the surface of the carbon material evaluated by this example are considered to be unevenness of the 0.14 nm level.
It is considered that knowledge about sub-micropores having different sizes can be obtained by selecting metal atoms that adsorb single atoms other than gold.

なお、上記実施例においては、金原子の分析にゼーマン原子吸光分光光度法を用いたが、金原子等の貴金属原子の吸着量とその温度変化を高感度に測定できる方法であれば、吸光分光測定装置はこれに限定されない。   In the above examples, the Zeeman atomic absorption spectrophotometry was used for the analysis of gold atoms. However, if the method can measure the adsorption amount of noble metal atoms such as gold atoms and the temperature change thereof with high sensitivity, absorption spectroscopy is used. The measuring device is not limited to this.

本方法によれば、従来計測できなかったサブミクロ孔の存在について知ることができる。より高品位な活性炭の生産において、サブミクロ孔の存在量を計測しつつ製造工程の評価を行えば、高付加価値を有する活性炭の製造が容易となる。これにより有用な炭素系吸着剤が開発され、シックハウス対策、排ガス対策、悪臭対策に有用な成果が得られることが期待される。また、有毒ガスを吸着する能力を測定するという点で、防毒マスクの検査等にも応用することができる。   According to this method, it is possible to know the presence of sub-micropores that could not be measured conventionally. In the production of higher-grade activated carbon, if the production process is evaluated while measuring the abundance of sub-micropores, the production of activated carbon having high added value becomes easy. As a result, a useful carbon-based adsorbent is developed, and it is expected that useful results will be obtained for sick house countermeasures, exhaust gas countermeasures, and malodor countermeasures. In addition, it can be applied to inspection of gas masks in that it measures the ability to adsorb toxic gases.

炭素材料表面の各種細孔を示す模式図(a)、及び異なるサイズの分子が細孔に吸着する様子を示す模式図(b)Schematic diagram showing various pores on the surface of the carbon material (a), and schematic diagram showing how molecules of different sizes adsorb to the pores (b) 原子吸光分光光度計における黒鉛炉の温度と原子吸光プロファイルの関係を示す模式図Schematic diagram showing the relationship between graphite furnace temperature and atomic absorption profile in an atomic absorption spectrophotometer 測定に用いた黒鉛炉原子吸光分光光度計システムの構成図Configuration diagram of graphite furnace atomic absorption spectrophotometer system used for measurement 粒状活性炭に吸着した金原子の原子吸光プロファイルAtomic absorption profile of gold atoms adsorbed on granular activated carbon 活性炭素繊維Aに吸着した金原子の原子吸光プロファイル(a)、及び活性炭素繊維Bに吸着した金原子の原子吸光プロファイル(b)Atomic absorption profile of gold atoms adsorbed on activated carbon fiber A (a) and Atomic absorption profile of gold atoms adsorbed on activated carbon fiber B (b) (表1)速度論的解析方法におけるg(α)関数の各種態様を示す表(Table 1) Table showing various aspects of g (α) function in kinetic analysis method サッカロース水溶液の加熱分解により生成された活性炭に吸着した金原子の原子吸光プロファイルAtomic absorption profile of gold atoms adsorbed on activated carbon produced by thermal decomposition of aqueous saccharose solution (表2)金の活性化エネルギーにおける5%サッカロース焼き付け温度の影響を示す表(Table 2) Table showing the effect of 5% sucrose baking temperature on the activation energy of gold (表3)金の活性化エネルギーにおける5%アスコルビン酸焼き付け温度の影響を示す表(Table 3) Table showing the effect of 5% ascorbic acid baking temperature on gold activation energy (表4)種々のフラクタル表面に単原子分散した金の活性化エネルギーの表(Table 4) Table of activation energy of gold monoatomic dispersed on various fractal surfaces 金の活性化エネルギーと表面フラクタル次元D値の関係を示すグラフGraph showing the relationship between gold activation energy and surface fractal dimension D value

Claims (4)

測定目的の炭素材料に貴金属原子を吸着させ、その黒鉛炉原子吸光信号の温度変化測定より該貴金属原子の活性化エネルギーを求め、その活性化エネルギーより表面フラクタル次元を求める炭素材料の表面フラクタル次元測定方法。   Measurement of surface fractal dimension of carbon material by adsorbing noble metal atoms on the carbon material to be measured, obtaining the activation energy of the noble metal atom by measuring the temperature change of the graphite furnace atomic absorption signal, and obtaining the surface fractal dimension from the activation energy Method. 該貴金属原子が金原子である請求項1に記載の炭素材料の表面フラクタル次元測定方法。   The method for measuring a surface fractal dimension of a carbon material according to claim 1, wherein the noble metal atom is a gold atom. 測定目的の炭素材料に貴金属原子を吸着させ、その黒鉛炉原子吸光信号の温度変化測定より該貴金属原子の活性化エネルギーを求め、その活性化エネルギーより求まる表面フラクタル次元の値に基づき炭素材料の表面サブミクロ孔の存在割合を決定する炭素材料の表面サブミクロ孔測定方法。   The precious metal atoms are adsorbed on the carbon material to be measured, the activation energy of the precious metal atoms is obtained by measuring the temperature change of the graphite furnace atomic absorption signal, and the surface of the carbon material is determined based on the surface fractal dimension value obtained from the activation energy. A method for measuring the surface sub-micropores of a carbon material that determines the existence ratio of sub-micropores. 該貴金属原子が金原子である請求項3に記載の炭素材料の表面サブミクロ孔測定方法。

The method for measuring a surface submicropore of a carbon material according to claim 3, wherein the noble metal atom is a gold atom.

JP2005240275A 2005-08-22 2005-08-22 Surface fractal dimension measuring method of carbon material Pending JP2007057268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005240275A JP2007057268A (en) 2005-08-22 2005-08-22 Surface fractal dimension measuring method of carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005240275A JP2007057268A (en) 2005-08-22 2005-08-22 Surface fractal dimension measuring method of carbon material

Publications (1)

Publication Number Publication Date
JP2007057268A true JP2007057268A (en) 2007-03-08

Family

ID=37920902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005240275A Pending JP2007057268A (en) 2005-08-22 2005-08-22 Surface fractal dimension measuring method of carbon material

Country Status (1)

Country Link
JP (1) JP2007057268A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052995A (en) * 2007-08-27 2009-03-12 Univ Of Tokushima Specific surface area measuring method and device
WO2010116720A1 (en) * 2009-04-07 2010-10-14 シャープ株式会社 Vacuum insulation material and device provided with same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6010055412, S. Imai, 他, ""Controlling atomizer surfaces by varying ascorbic acid pyrolysis conditions to modify activation e", Journal of Analytical Atomic Spectrometry, 2001, Vol.16, Issue 4, pp.398−403 *
JPN6010055413, J.−L. Faulon, 他, ""Correlation between Microporosity and Fractal Dimension of Bituminous Coal Based on Computer−Gener", Energy and Fuels, 199403, Vol.8, No.2, pp.408−414 *
JPN6010055414, 伊藤龍弥 他, ""黒鉛炉原子吸光法におけるアスコルビン酸灰化生成物上に分散した銀の原子化機構"", 分析化学, 20050705, Vol.54, No.7, pp.621−626 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052995A (en) * 2007-08-27 2009-03-12 Univ Of Tokushima Specific surface area measuring method and device
WO2010116720A1 (en) * 2009-04-07 2010-10-14 シャープ株式会社 Vacuum insulation material and device provided with same

Similar Documents

Publication Publication Date Title
Lettieri et al. The gas‐detection properties of light‐emitting diatoms
Sarafraz-Yazdi et al. Determination of non-steroidal anti-inflammatory drugs in water samples by solid-phase microextraction based sol–gel technique using poly (ethylene glycol) grafted multi-walled carbon nanotubes coated fiber
US20110259080A1 (en) Gas sensor
Mastral et al. Removal of naphthalene, phenanthrene, and pyrene by sorbents from hot gas
US10295517B2 (en) Heated graphite scrubber to reduce interferences in ozone monitors
Glenn et al. Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion™ membrane
JP6774127B2 (en) Formaldehyde detection sensor and system using it
Zhang et al. Zeolite thin film-coated long period fiber grating sensor for measuring trace organic vapors
Tao et al. Optical fiber sensing element based on luminescence quenching of silica nanowires modified with cryptophane-A for the detection of methane
Wang et al. Preparation of mesoporous silica/carbon quantum dots composite and its application in selective and sensitive Hg2+ detection
WO2003010511A2 (en) Low resolution surface enhanced raman spectroscopy on sol-gel substrates
US20060263257A1 (en) Optical gas sensor based on dyed high surface area substrates
Descalzo et al. Mesoporous silica materials with covalently anchored phenoxazinone dyes as fluorescent hybrid materials for vapour sensing
Monkawa et al. With high sensitivity and with wide-dynamic-range localized surface-plasmon resonance sensor for volatile organic compounds
Takimoto et al. Detection of SO2 at the ppm level with localized surface plasmon resonance (LSPR) sensing
JP2007057268A (en) Surface fractal dimension measuring method of carbon material
Chu et al. A cataluminescence sensor for propionaldehyde based on the use of nanosized zirconium dioxide
ES2359204B1 (en) DEVICE FOR THE SELECTIVE DETECTION OF GAS BENZENE, PROCEDURE FOR OBTAINING AND DETECTION OF GAS WITH THE SAME.
US9116141B2 (en) Microtrap assembly for greenhouse gas and air pollution monitoring
JP5881205B2 (en) Gas sensor
Wei et al. Cataluminescence system coupled with vacuum desorption–sampling methodology for real-time ozone sensing during the self-decomposition process on functional boron nitride
US20220236222A1 (en) Detector for detecting analytes in gas phase comprising porous dielectric or semiconducting sorbent and corresponding detection method
JP6124327B2 (en) Metal detection sensor and metal detection method and apparatus
Davidson et al. Measurement of parts per million level gaseous concentration of hydrogen sulfide by ultraviolet spectroscopy using 1, 1, 1, 5, 5, 5-Hexafluoropentan-2, 4-dione as a derivative by reaction of Cu (hfac)(1, 5-Cyclooctadiene)
Han et al. Phosphorescence quenching of dyes adsorbed to silica thin-layer chromatography plates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110222