JP2007057234A - Internal resistance estimator for secondary battery - Google Patents

Internal resistance estimator for secondary battery Download PDF

Info

Publication number
JP2007057234A
JP2007057234A JP2005239419A JP2005239419A JP2007057234A JP 2007057234 A JP2007057234 A JP 2007057234A JP 2005239419 A JP2005239419 A JP 2005239419A JP 2005239419 A JP2005239419 A JP 2005239419A JP 2007057234 A JP2007057234 A JP 2007057234A
Authority
JP
Japan
Prior art keywords
internal resistance
value
current
estimated value
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005239419A
Other languages
Japanese (ja)
Other versions
JP4720364B2 (en
Inventor
Hisaaki Asai
央章 浅井
Hiroyuki Ashizawa
裕之 芦沢
Hideo Nakamura
英夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005239419A priority Critical patent/JP4720364B2/en
Publication of JP2007057234A publication Critical patent/JP2007057234A/en
Application granted granted Critical
Publication of JP4720364B2 publication Critical patent/JP4720364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal resistance estimator for a secondary battery to accurately estimate an internal resistance value even in a state where it is difficult to perform estimating calculation by means of an adaptive digital filter as in constant current discharge or large current discharge. <P>SOLUTION: This internal resistance estimator is structured so as to choose between a first internal resistance value estimated by means of the adaptive digital filter and a second internal resistance value found from a second charging rate estimation value based on current integration, etc. in accordance with the state of current. In a state where charging rate estimation by means of the adaptive digital filter is difficult, the second charging rate estimation value based on current integration, etc. is chosen. In the other cases, a first charging rate estimation value (and the first internal resistance value) by means of the adaptive digital filter are chosen. In cases where the second internal resistance value is estimated from the second charging rate estimation value, stored values T<SB>1</SB>_<SB>ADF</SB>(k) and T<SB>2</SB>_<SB>ADF</SB>(k) of battery parameter estimation values by means of the digital filter just before choosing a second charging rate are held, and these are used for operating the second internal resistance value K_<SB>ITG</SB>(k). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、二次電池の内部抵抗値を推定する装置に関する。   The present invention relates to an apparatus for estimating an internal resistance value of a secondary battery.

特許文献1(特開2004−178848号公報)に記載された二次電池(単に「電池」ともいう)の充電率推定装置は、二次電池の充放電電流I(単に「電流」ともいう)と端子電圧V(単に[電圧」ともいう)から適応デジタルフィルタを用いて電池の内部パラメータ(時定数や内部抵抗値)を推定し、これを用いて開路電圧Vを推定し、予め測定した当該電池の開路電圧−充電率特性データに基づいて充電率SOCを推定するように構成されている。その際、一括推定したパラメータベクトルの成分として内部抵抗値Kを推定することができる。
また、特許文献2(特開2000−323183号公報)では、検出した電流Iと電圧VをI−V直線(V=K・I+V)で近似し、その傾きを内部抵抗値K、切片を開路電圧Vとして内部抵抗値を推定している。
さらに、特許文献3(特開2003−054035号公報)においては、推定した内部抵抗値K、開路電圧Vおよび電池の最大許容端子電圧VMAX、最小許容端子電圧VMINから入力可能パワーPinおよび出力可能パワーPoutを推定している。
特開2004−178848号公報 特開2000−323183号公報 特開2003−054035号公報
The charging rate estimation device for a secondary battery (also simply referred to as “battery”) described in Patent Document 1 (Japanese Patent Laid-Open No. 2004-178848) is a charge / discharge current I (also simply referred to as “current”) of the secondary battery. And internal voltage (time constant and internal resistance) of the battery using an adaptive digital filter from the terminal voltage V (also simply referred to as “voltage”), and using this, the open circuit voltage V 0 is estimated and measured in advance. The charging rate SOC is estimated based on the open circuit voltage-charging rate characteristic data of the battery. At this time, the internal resistance value K can be estimated as a component of the parameter vector that is collectively estimated.
In Patent Document 2 (Japanese Patent Laid-Open No. 2000-323183), the detected current I and voltage V are approximated by an IV straight line (V = K · I + V 0 ), the slope is the internal resistance value K, and the intercept is It estimates the internal resistance as the open circuit voltage V 0.
Further, in Patent Document 3 (Japanese Patent Application Laid-Open No. 2003-054035), power P in that can be input from the estimated internal resistance value K, open circuit voltage V 0 , maximum allowable terminal voltage V MAX , and minimum allowable terminal voltage V MIN of the battery. And the output power P out is estimated.
JP 2004-178848 A JP 2000-323183 A JP 2003-054035 A

特許文献1に記載の方法では電池を線形モデルとして定式化しているため、充電率の変化や電池温度の変化あるいは電池の劣化のようなゆっくりした電池のパラメータ変化に対しては、適応デジタルフィルタにより精度良くパラメータ変化を逐次追従(推定)できるため、充電率や入出力可能パワーを精度良く推定することができる。しかし、電池が強い非線形性を示すような使用領域においては、適応デジタルフィルタでは電池パラメータや充電率を精度良く推定することができない。また、入力電流が一定値となる条件においては、適応デジタルフィルタでは理論的にパラメータ推定値が更新されず、パラメータが逐次推定できないという問題がある。
なお、電池が強い非線形性を示すのは、例えばリチウムイオン電池において大出力でエネルギーを取り出した(電流Iをかなり大きく流した)場合に内部抵抗値が急増する現象(図5参照)に相当し、入力電流が一定値となる条件としては一定電流での充放電が継続(数秒以上)する場合に相当する。
また、特許文献2に記載の方法では、実際の電池は過渡応答を示す動特性を持っているにもかかわらず、その電池の過渡特性を表すパラメータ(T、T)を無視した式で内部抵抗値を推定するため、電流変化が生じている過渡状態では内部抵抗値の推定結果に誤差が生じてしまうという問題がある。
そのため、特許文献3に記載のように、推定した内部抵抗値を用いて充電率や入力可能パワーPin、出力可能パワーPoutを推定するものにおいては、上記のように内部抵抗の推定値に誤差が生じると、それを用いて推定した充電率や入力可能パワーPin、出力可能パワーPoutにも誤差が発生していまう、という問題がある。
本発明は上記のごとき問題を解決するためになされたものであり、一定電流放電時、大電流放電時のように適応デジタルフィルタによる推定演算が困難な状態でも内部抵抗値を精度良く推定できる二次電池の内部抵抗推定装置を提供することを目的とする。
Since the battery is formulated as a linear model in the method described in Patent Document 1, an adaptive digital filter is used for slow battery parameter changes such as changes in charging rate, battery temperature, or battery deterioration. Since parameter changes can be tracked (estimated) successively with high accuracy, the charging rate and input / output power can be accurately estimated. However, in use areas where the battery exhibits strong nonlinearity, the adaptive digital filter cannot accurately estimate the battery parameters and the charging rate. Further, under the condition that the input current becomes a constant value, there is a problem that the adaptive digital filter theoretically does not update the parameter estimation value and the parameter cannot be estimated sequentially.
Note that the battery exhibits strong non-linearity, for example, corresponding to a phenomenon (see FIG. 5) in which the internal resistance value rapidly increases when energy is taken out with a large output in a lithium ion battery (current I is made to flow considerably large). The condition that the input current becomes a constant value corresponds to the case where charging / discharging at a constant current continues (several seconds or more).
Further, in the method described in Patent Document 2, although the actual battery has a dynamic characteristic indicating a transient response, the equation (T 1 , T 2 ) representing the transient characteristic of the battery is ignored. Since the internal resistance value is estimated, there is a problem that an error occurs in the estimation result of the internal resistance value in a transient state in which a current change occurs.
Therefore, as described in Patent Document 3, when the estimated internal resistance value is used to estimate the charging rate, the input possible power P in , and the output possible power P out , the internal resistance is estimated as described above. When an error occurs, there is a problem that an error also occurs in the charge rate, the input power P in , and the output power P out estimated using the error.
The present invention has been made to solve the above-described problems, and can accurately estimate the internal resistance value even in a state where estimation calculation by an adaptive digital filter is difficult, such as during constant current discharge or large current discharge. An object of the present invention is to provide an internal resistance estimation device for a secondary battery.

上記の目的を達成するため、本発明においては、適応デジタルフィルタによって推定した第一内部抵抗値と、電流積算等の他の方法による第二充電率推定値から求めた第二内部抵抗値とを電流の状態に応じて選択するように構成し、適応デジタルフィルタによる充電率推定が困難な状態では、電流積算等の他の方法による第二充電率推定値を選択し、それ以外の場合には、適応デジタルフィルタによる第一充電率推定値(および第一内部抵抗値)を選択し、かつ、第二充電率推定値から第二内部抵抗値を推定する場合に、第二充電率が選択される直前の適応デジタルフィルタによる電池パラメータ推定値の記憶値T_ADF(k)、T_ADF(k)をホールドし、それを用いて第二内部抵抗値K_ITG(k)を演算するように構成している。 In order to achieve the above object, in the present invention, the first internal resistance value estimated by the adaptive digital filter and the second internal resistance value obtained from the second charging rate estimated value by another method such as current integration are obtained. It is configured to be selected according to the current state, and when the charge rate estimation by the adaptive digital filter is difficult, the second charge rate estimate value by other methods such as current integration is selected. When the first charging rate estimated value (and the first internal resistance value) by the adaptive digital filter is selected and the second internal resistance value is estimated from the second charging rate estimated value, the second charging rate is selected. The stored values T 1 _ADF (k) and T 2 _ADF (k) of the battery parameter estimated values by the adaptive digital filter immediately before the hold are held, and the second internal resistance value K_ITG (k) is calculated using them. Configured as Yes.

本発明においては、一定電流放電や大電流放電の場合、つまり適応デジタルフィルタによる充電率推定が困難な状態では、電流積算等の方法による第二充電率推定値を選択し、それ以外の場合には、適応デジタルフィルタによる第一充電率推定値(および第一内部抵抗値)を選択するので、常に誤差の少ない充電率推定および内部抵抗推定を行うことが出来る。さらに、第二充電率推定値から第二内部抵抗値を推定する場合に、第二充電率が選択される直前の適応デジタルフィルタによる電池パラメータ推定値の記憶値T_ADF(k)、T_ADF(k)をホールドし、それを用いて第二内部抵抗値K_ITG(k)を演算するように構成しており、電池の動特性を表す時定数(TおよびT)までを考慮して内部抵抗値を推定するため、電流が変化する過渡状態においても内部抵抗値を精度良く推定することができる、という効果がある。 In the present invention, in the case of constant current discharge or large current discharge, that is, in the state where it is difficult to estimate the charging rate by the adaptive digital filter, the second charging rate estimated value by a method such as current integration is selected. Selects the first charging rate estimated value (and the first internal resistance value) by the adaptive digital filter, so that it is possible to always perform the charging rate estimation and the internal resistance estimation with little error. Further, when the second internal resistance value is estimated from the second charging rate estimated value, the stored value T 1 _ADF (k), T of the battery parameter estimated value by the adaptive digital filter immediately before the second charging rate is selected. 2 _ADF (k) is held and the second internal resistance value K_ITG (k) is calculated using the hold, up to a time constant (T 1 and T 2 ) representing the dynamic characteristics of the battery Therefore, the internal resistance value can be estimated with high accuracy even in a transient state where the current changes.

図1は、本発明の内部抵抗推定演算の一実施例を示す機能ブロック図である。なお、図1においては、電池の内部抵抗値と開路電圧を推定し、さらにそれらの推定値を用いて入出力可能パワーを推定演算する装置に本発明を適用した場合を例示する。
図1に示すブロック図は下記の各要素から構成されている。すなわち、二次電池に充放電される電流と電池の端子電圧を定期的に検出する電流検出手段100および電圧検出手段101と、計測した電流I(k)と電圧V(k)からそれらのローパスフィルタ値I(k)、V(k)、近似1階微分値I(k)、V(k)および近似2階微分値I(k)、V(k)を演算する前処理フィルタ演算手段102と、前記前処理フィルタ102の出力から適応デジタルフィルタにより、電池の内部状態を表すパラメータ(K,T,T)を一括推定する適応デジタルフィルタ演算手段103と、前記前処理フィルタ演算手段102の出力と前記適応デジタルフィルタ演算手段103により推定された電池パラメータから第一開路電圧V0_ADF(k)を推定する第一開路電圧演算手段104と、予め取得した当該電池の開路電圧−充電率特性(後記図4参照)に基づいて前記第一開路電圧推定値V0_ADF(k)から第一充電率SOCADF(k)を推定する第一充電率推定手段105と、前記電流検出手段100で検出された電流から電流積算により第二充電率を推定する第二充電率推定手段106と、予め計測した開路電圧−充電率特性(図4)に基づいて前記第二充電率から第二開路電圧を推定する第二開路電圧演算手段107と、前記第一充電率と第二充電率の何れか一方を電流の状態に応じて選択する最終充電率推定値選択手段108と、前記最終充電率推定値選択手段108の情報(最終充電率推定値選択フラグ)に基づいて前記適応デジタルフィルタ演算手段103で演算した電池の内部パラメータ推定値を記憶する電池パラメータ推定値記憶手段109と、前記電池パラメータ推定値の記憶値と前記第二開路電圧推定値および前記前処理フィルタ演算手段102の出力から第二内部抵抗値を演算する第二内部抵抗推定手段110と、前記第一開路電圧推定値と第二開路電圧推定値を前記最終充電率推定値選択手段108の情報(最終充電率推定値選択フラグ)に応じて切り替えて出力する最終開路電圧推定値選択手段111と、前記適応デジタルフィルタで推定した第一内部抵抗値(前記パラメータKに相当)と前記第二内部抵抗推定手段110で演算した第二内部抵抗値とを前記最終充電率推定値選択手段108の情報(最終充電率推定値選択フラグ)に応じて切り替えて出力する最終内部抵抗推定値選択手段112と、前記最終内部抵抗推定値選択手段112において選択した最終内部抵抗値と前記最終開路電圧推定値とから入出力可能パワーを演算する入出力可能パワー演算手段113から構成されている。ただし、(k)は時点kにおける値(今回の演算における演算値)を示す。
FIG. 1 is a functional block diagram showing an embodiment of the internal resistance estimation calculation of the present invention. FIG. 1 exemplifies a case where the present invention is applied to a device that estimates the internal resistance value and open circuit voltage of a battery, and further estimates and calculates input / output possible power using those estimated values.
The block diagram shown in FIG. 1 includes the following elements. That is, the current detection means 100 and the voltage detection means 101 for periodically detecting the current charged / discharged in the secondary battery and the terminal voltage of the battery, and the low-pass current from the measured current I (k) and voltage V (k). The filter values I 1 (k), V 1 (k), approximate first-order differential values I 2 (k), V 2 (k), and approximate second-order differential values I 3 (k), V 3 (k) are calculated. Pre-processing filter calculation means 102, adaptive digital filter calculation means 103 for collectively estimating parameters (K, T 1 , T 2 ) representing the internal state of the battery by an adaptive digital filter from the output of the pre-processing filter 102; A first open circuit voltage calculation means 104 for estimating a first open circuit voltage V 0_ADF (k) from the output of the preprocessing filter calculation means 102 and the battery parameter estimated by the adaptive digital filter calculation means 103; The first charging rate for estimating the first charging rate SOC ADF (k) from the first opening voltage estimated value V 0_ADF (k) based on the open circuit voltage-charging rate characteristic (see FIG. 4 described later) of the battery acquired in advance. Based on the estimation means 105, the second charge rate estimation means 106 for estimating the second charge rate from the current detected by the current detection means 100 by current integration, and the pre-measured open circuit voltage-charge rate characteristic (FIG. 4). A second open-circuit voltage calculating means 107 for estimating a second open-circuit voltage from the second charge rate, and a final charge-rate estimation for selecting either the first charge rate or the second charge rate according to the current state The battery internal parameter estimated value calculated by the adaptive digital filter calculating means 103 is stored based on the value selecting means 108 and the information (final charging rate estimated value selection flag) of the final charging rate estimated value selecting means 108. Pond parameter estimated value storage means 109, second internal resistance estimation means for calculating a second internal resistance value from the stored value of the battery parameter estimated value, the second open circuit voltage estimated value, and the output of the preprocessing filter calculating means 102 110, and the final open circuit voltage estimated value that is output by switching the first open circuit voltage estimated value and the second open circuit voltage estimated value according to the information (final charge rate estimated value selection flag) of the final charge rate estimated value selection means 108 The selection unit 111, the first internal resistance value estimated by the adaptive digital filter (corresponding to the parameter K) and the second internal resistance value calculated by the second internal resistance estimation unit 110 are used to select the final charge rate estimation value. Final internal resistance estimated value selection means 112 that switches and outputs it according to information (final charge rate estimated value selection flag) of means 108, and the final internal resistance estimated value selection means And an output enable power calculating means 113 for calculating the available input and output power from the selected final internal resistance value and the final estimate open circuit voltage value at 112. However, (k) indicates a value at time point k (calculated value in the current calculation).

なお、この実施例においては、第二充電率推定手段106として電流積算により第二充電率を推定する構成を例示したが、この第二充電率推定手段106は適応デジタルフィルタを用いない推定方法、つまり一定電流放電時、大電流放電時のように適応デジタルフィルタによる推定演算が困難な状態でも充電率推定が可能な方法であればよい。このような推定方法としては、上記の電流積算による方法の外に、カルマンフィルタを用いた充電率推定方法や開路電圧を用いた方法(前記特許文献2に記載)などがある。   In this embodiment, the second charging rate estimation unit 106 is exemplified by a configuration for estimating the second charging rate by current integration. However, the second charging rate estimation unit 106 does not use an adaptive digital filter. In other words, any method can be used as long as the charging rate can be estimated even when the estimation calculation by the adaptive digital filter is difficult, such as during constant current discharge or large current discharge. As such an estimation method, there are a charging rate estimation method using a Kalman filter, a method using an open circuit voltage (described in Patent Document 2), and the like in addition to the above-described method based on current integration.

図2は、本発明の一実施例の具体的な構成図である。この実施例は、二次電池でモータ等の負荷を駆動したり、モータの回生で二次電池を充電したりするシステムにおいて、二次電池の内部抵抗値や充電率等を推定演算する機能を設けた例を示す。
図2において、10は二次電池、20はモータ等の負荷、30は二次電池の充電率や満充電容量等を推定する電子制御ユニット(バッテリコントローラ)で、ブログラムを演算するCPUやプログラムや演算結果を記憶するROMやRAMから成るマイクロコンピュータと電子回路等で構成されている。40は電池から充放電される電流を検出する電流センサ、50は電池の端子電圧(単に電圧ともいう)を検出する電圧センサであり、それぞれ電子制御ユニット30に接続されている。上記の電子制御ユニット30は前記図1の前処理フィルタ演算手段102、適応デジタルフィルタ演算手段103、第一開路電圧演算手段104、第一充電率推定手段105、第二充電率推定手段106、第二開路電圧演算手段107、最終充電率推定値選択手段108、電池パラメータ推定値記憶手段109、第二内部抵抗推定手段110、最終開路電圧推定値選択手段111、最終内部抵抗推定値選択手段112および入出力可能パワー演算手段113の部分に相当する。また、電流センサ40は電流検出手段100に、電圧センサ50は電圧検出手段101に、それぞれ相当する。
FIG. 2 is a specific configuration diagram of an embodiment of the present invention. This embodiment has a function of estimating and calculating the internal resistance value, the charging rate, etc. of the secondary battery in a system in which a load such as a motor is driven by the secondary battery or the secondary battery is charged by regeneration of the motor. An example is shown.
In FIG. 2, 10 is a secondary battery, 20 is a load of a motor, etc., 30 is an electronic control unit (battery controller) that estimates the charging rate, full charge capacity, etc. of the secondary battery. And a microcomputer composed of a ROM and a RAM for storing calculation results and an electronic circuit. Reference numeral 40 denotes a current sensor that detects current charged / discharged from the battery, and reference numeral 50 denotes a voltage sensor that detects terminal voltage (also simply referred to as voltage) of the battery, and each is connected to the electronic control unit 30. The electronic control unit 30 includes the preprocessing filter calculation means 102, adaptive digital filter calculation means 103, first open circuit voltage calculation means 104, first charging rate estimation means 105, second charging rate estimation means 106, Two open circuit voltage calculation means 107, final charging rate estimated value selection means 108, battery parameter estimated value storage means 109, second internal resistance estimation means 110, final open circuit voltage estimated value selection means 111, final internal resistance estimated value selection means 112 and This corresponds to the input / output capable power calculation means 113. The current sensor 40 corresponds to the current detection means 100, and the voltage sensor 50 corresponds to the voltage detection means 101, respectively.

最初に、図1中の適応デジタルフィルタ演算手段103において行われる適応デジタルフィルタを用いた電池パラメータ(K,T,T)の推定方法に関して説明する。
図3は、上記の推定に用いる電池モデルを示す回路図である。図3において、モデルヘの入力は電流I(t)[A](正値:充電、負値:放電)、出力は端子電圧V(t)[V]、開路電圧V(t)[V]であり、Rは電荷移動抵抗、Rは純抵抗、Cは電気二重層容量である。本モデルは正極、負極を特に分離していないリダクションモデル(一次)であるが、実際の電池の充放電特性を比較的正確に示すことが可能である。
この電池モデルは、sを微分オペレータとして(数4)式で表現できる。
First, a battery parameter (K, T 1 , T 2 ) estimation method using an adaptive digital filter performed by the adaptive digital filter calculation means 103 in FIG. 1 will be described.
FIG. 3 is a circuit diagram showing a battery model used for the above estimation. In FIG. 3, the input to the model is current I (t) [A] (positive value: charge, negative value: discharge), and the output is terminal voltage V (t) [V], open circuit voltage V 0 (t) [V]. R 1 is a charge transfer resistance, R 2 is a pure resistance, and C 1 is an electric double layer capacitance. Although this model is a reduction model (primary) in which the positive electrode and the negative electrode are not particularly separated, it is possible to show the actual charge / discharge characteristics of the battery relatively accurately.
This battery model can be expressed by Equation (4) with s as a differential operator.

Figure 2007057234
上記(数4)式を変形すると下記(数5)式になる。
Figure 2007057234
When the above equation (4) is modified, the following equation (5) is obtained.

Figure 2007057234
開路電圧V(t)は、電流I(t)に可変な効率hを乗じたものを、ある初期状態から積分したものと考えれば、下記(数6)式で示すことが出来る。
Figure 2007057234
The open circuit voltage V 0 (t) can be expressed by the following equation (6), assuming that the current I (t) multiplied by the variable efficiency h is integrated from a certain initial state.

Figure 2007057234
(数6)式を(数5)式に代入すれば(数7)式になり、整理すれば(数8)式になる。
Figure 2007057234
Substituting equation (6) into equation (5) yields equation (7), and rearranging results in equation (8).

Figure 2007057234
Figure 2007057234

Figure 2007057234
安定なローパスフィルタGLPF(s)を(数8)式の両辺に乗じ、整理すれば(数9)式になる。なお、ローパスフィルタGLPF(s)の詳細については後述する。
Figure 2007057234
When a stable low-pass filter G LPF (s) is multiplied by both sides of the equation (8) and rearranged, the equation (9) is obtained. Details of the low-pass filter G LPF (s) will be described later.

Figure 2007057234
ここで、実際に計測可能な電流I(t)や端子電圧V(t)を、ローパスフィルタやバンドパスフィルタ(図1の前処理フィルタ演算手段103で処理した値を下記(数10)式のように定義し、これを前処理フィルタ演算手段において演算する。なお、(t)は時間の関数であることを示している。
Figure 2007057234
Here, the values obtained by processing the current I (t) and the terminal voltage V (t) that can be actually measured by the low-pass filter or the band-pass filter (preprocessing filter calculation means 103 in FIG. This is calculated by the preprocessing filter calculation means, where (t) indicates a function of time.

Figure 2007057234
なお、本実施例においては、安定なローパスフィルタとして(数11)式で示される特性を用いたが、その選び方はこれに限定されない。
Figure 2007057234
In the present embodiment, the characteristic represented by the equation (11) is used as a stable low-pass filter, but the selection method is not limited to this.

Figure 2007057234
ただし、pはフィルタの時定数である。
上記(数10)式で示す変数を用いて(数9)式を書き直し、V(t)について整理すれば、(数12)式になる。
Figure 2007057234
Here, p is a time constant of the filter.
Rewriting (Equation 9) using the variables shown in the above (Equation 10) and rearranging V 2 (t) yields (Equation 12).

Figure 2007057234
(数12)式は、計測可能な値と未知パラメータの積和式になっているので、一般的な適応デジタルフィルタの標準形(数13)式と一致する。
Figure 2007057234
Since the equation (12) is a product-sum equation of a measurable value and an unknown parameter, it agrees with a standard form (equation 13) of a general adaptive digital filter.

Figure 2007057234
ただし、
y=V(t)、 ω=[V(t),I(t),I(t),I(t)]、
θ=[−T,K・T,K,h]
である。
従って、電流Iと端子電圧Vにフィルタ処理を施した信号を、適応デジタルフィルタ演算に用いることで、未知パラメータベクトルθを推定することが出来る。
Figure 2007057234
However,
y = V 2 (t), ω T = [V 3 (t), I 3 (t), I 2 (t), I 1 (t)],
θ T = [− T 1 , K · T 2 , K, h]
It is.
Therefore, the unknown parameter vector θ can be estimated by using a signal obtained by filtering the current I and the terminal voltage V in the adaptive digital filter calculation.

本実施例では、単純な「最小二乗法による適応デジタルフィルタ」の論理的な欠点、すなわち、一度推定値が収束すると、その後パラメータが変化しても再度正確な推定ができない点を改善した「両限トレースゲイン方式」を用いる。
上記(数13)式を前提に未知パラメータベクトルθを推定するための逐次推定アルゴリズムは(数14)式に示すようになる。ただし、k時点のパラメータ推定値をθ^(k)とする。なお、θの右肩に付した^は推定値を示すが、数式中ではθの真上に付している(以下、同じ)。
The present embodiment has improved the logical disadvantage of a simple “adaptive digital filter based on the least squares method”, that is, once the estimated value has converged, accurate estimation cannot be performed again even if the parameter changes thereafter. "Limit trace gain method" is used.
A sequential estimation algorithm for estimating the unknown parameter vector θ based on the above equation (13) is as shown in equation (14). However, the parameter estimation value at the time point k is θ ^ (k). In addition, although ^ attached to the right shoulder of θ represents an estimated value, it is attached immediately above θ in the mathematical formula (hereinafter the same).

Figure 2007057234
ここで、trace{Q(k)}は行列Q(k)のトレースを意味する。また、λ、λ、γ、γは設計パラメータ(初期設定値)で、0<λ<1、0<λ<∞とする。λは適応デジタルフィルタの推定演算の応答速度を設定する定数(調整ゲイン)であり、値を大きくすることにより応答速度は速くなるが、その反面ノイズの影響を受けやすくなる。γおよびγはそれぞれ行列Q(k)のトレースの上下限を規定するパラメータであり、0<γ<γとなるように設定する。また、P(0)は十分大きな値、θ(0)は非ゼロで十分小さな値を初期値とする。
以上が適応デジタルフィルタ演算部において行われる適応デジタルフィルタを用いた電池パラメータ推定方法である。
Figure 2007057234
Here, trace {Q (k)} means tracing of the matrix Q (k). Also, λ 1 , λ 3 , γ U , and γ L are design parameters (initial setting values), and 0 <λ 1 <1, 0 <λ 3 <∞. lambda 3 is a constant (adjustment gain) to set the response speed of the estimation calculation of the adaptive digital filter, the response speed is faster by increasing the value becomes susceptible to the contrary noise. γ U and γ L are parameters that define the upper and lower limits of the trace of the matrix Q (k), and are set such that 0 <γ LU. Further, P (0) is a sufficiently large value, and θ (0) is a non-zero and sufficiently small value as an initial value.
The above is the battery parameter estimation method using the adaptive digital filter performed in the adaptive digital filter calculation unit.

次に図1中の第一開路電圧演算手段104での処理に関して説明する。
まず、前記(数5)式を開路電圧Vに関して整理すると(数15)式になる。
Next, processing in the first open circuit voltage calculation means 104 in FIG. 1 will be described.
First, when formula (5) is rearranged with respect to the open circuit voltage V 0 , formula (15) is obtained.

Figure 2007057234
開路電圧Vの変化は穏やかであると考え、この両辺に安定なローパスフィルタGLPF(s)を乗じた値を開路電圧推定値として(数16)式で推定する。
Figure 2007057234
The change in the open circuit voltage V 0 is considered to be gentle, and a value obtained by multiplying both sides by a stable low-pass filter G LPF (s) is estimated by the equation (16) as an open circuit voltage estimated value.

Figure 2007057234
(数16)式に(数10)式を代入すると、(数17)式となる。
Figure 2007057234
Substituting (Equation 10) into (Equation 16) yields (Equation 17).

Figure 2007057234
従って、(数17)式に前記適応デジタルフィルタを用いて推定した電池パラメータ推定値(T^,T^,K^)と前処理フィルタの出力(I(k)、I(k)、V(k)、V(k))を代入することで第一開路電圧推定値V_ADFが算出できる。
さらに図1中の第一充電率推定手段105において、予め取得した当該電池の開路電匠−充電率特性(図4参照)に基づいて、前記第一開路電圧推定値から第一充電率を算出することができる。
Figure 2007057234
Therefore, (Equation 17) the adaptive digital filter a battery parameter value estimated by using the formula (T ^ 1, T ^ 2 , K ^) and the output of the preprocessing filter (I 1 (k), I 2 (k ), V 1 (k), V 2 (k)) can be substituted to calculate the first open circuit voltage estimated value V 0 _ADF .
Further, in the first charging rate estimation means 105 in FIG. 1, the first charging rate is calculated from the first open circuit voltage estimated value based on the previously obtained open circuit design-charging rate characteristic of the battery (see FIG. 4). can do.

次に、図2の電子制御ユニット30で行う処理を図6に示すフローチャートを用いて説明する。なお、図6の処理は一定周期T毎(本実施例ではT=50msec)に実施される。以下の説明においては、I(k)は今回の実行周期の電流値(今回の計測値)、I(k−1)は1回前の実行周期での電流値(前回の計測値)とし、電流以外の値に関しても同様に表記する。 Next, processing performed by the electronic control unit 30 in FIG. 2 will be described with reference to the flowchart shown in FIG. Note that the processing of FIG. 6 is performed at regular intervals T 0 (T 0 = 50 msec in this embodiment). In the following description, I (k) is a current value (current measurement value) of the current execution cycle, I (k−1) is a current value (previous measurement value) of the previous execution cycle, The same applies to values other than current.

まず、step1では、電流センサ40からの信号に基づいて充放電電流I(k)を、電圧センサ50からの信号に基づいて二次電池の端子電圧V(k)を、それぞれ検出する。
step2では、電流値I(k)および電流変化率△I(k)から、後述する二つの手法で推定した充電率のいずれかを最終推定値として選択するための選択フラグf_SOCSWを以下の条件で生成する。
なお、電流変化率△I(k)は、例えば(数18)式で示すように、前回値と今回値との差分の絶対値や(数19)式に示すように、所定時間内における変化幅(最大値と最小値の差)とすることができる。
First, in step 1, the charge / discharge current I (k) is detected based on the signal from the current sensor 40, and the terminal voltage V (k) of the secondary battery is detected based on the signal from the voltage sensor 50.
In step 2, a selection flag f_SOCSW for selecting one of the charging rates estimated by the two methods described later as the final estimated value from the current value I (k) and the current change rate ΔI (k) is as follows. Generate.
The current change rate ΔI (k) is, for example, the absolute value of the difference between the previous value and the current value, as shown by the equation (18), or the change within a predetermined time as shown in the equation (19). It can be the width (difference between the maximum and minimum values).

Figure 2007057234
Figure 2007057234

Figure 2007057234
ただし、(数19)式においてMAXおよびMINはそれぞれ、最大値および最小値を示す関数であり、nは設定する所定時間を表す。
Figure 2007057234
In Equation (19), MAX and MIN are functions indicating the maximum value and the minimum value, respectively, and n represents a predetermined time to be set.

(選択フラグf_SOCSWの条件)
(1)電流変化率△I(k)が所定時間ts連続して所定値β以下となる一定電流放電の場合は、最終充電率推定値の選択フラグf_SOCSWをセットする。この場合は第二充電率推定値(電流積算SOC推定値)を選択する。
(2)電流が所定値γを超えた大電流となった場合は、選択フラグf_SOCSWをセットする。この場合も第二充電率推定値(電流積算SOC推定値)を選択する。
なお、図5はリチウムイオン電池における放電電流と内部抵抗値との関係を示す特性図である。図5に示すように、リチウムイオン電池において大出力でエネルギーを取り出した(電流Iをかなり大きく流した)場合には内部抵抗値が急増する現象が生じ、このような場合には適応デジタルフィルタ(ADF)によるSOC推定は困難になる。
(3)上記以外の場合は、選択フラグf_SOCSWをクリアする。この場合は第一充電率推定値(適応デジタルフィルタADFによるSOC推定値)を選択する。
step3では、step1で検出した電流I(k)と電圧V(k)に下記(数20)式に示すローパスフィルタ処理、近似微分フィルタ処理を施し、I(k)、I(k)、I(k)およびV(k)、V(k)、V(k)算出する。
(Conditions for selection flag f_SOCSW)
(1) In the case of constant current discharge where the current change rate ΔI (k) is equal to or less than the predetermined value β continuously for the predetermined time ts, the final charge rate estimated value selection flag f_SOCSW is set. In this case, the second charging rate estimated value (current integrated SOC estimated value) is selected.
(2) When the current becomes a large current exceeding the predetermined value γ, the selection flag f_SOCSW is set. Also in this case, the second charging rate estimated value (current integrated SOC estimated value) is selected.
FIG. 5 is a characteristic diagram showing the relationship between the discharge current and the internal resistance value in the lithium ion battery. As shown in FIG. 5, when energy is extracted at a high output in a lithium ion battery (current I is made to flow considerably large), a phenomenon occurs in which the internal resistance value increases rapidly. In such a case, an adaptive digital filter ( SOC estimation by ADF) becomes difficult.
(3) In cases other than the above, the selection flag f_SOCSW is cleared. In this case, the first charging rate estimated value (SOC estimated value by adaptive digital filter ADF) is selected.
In step 3, the current I (k) and voltage V (k) detected in step 1 are subjected to low-pass filter processing and approximate differential filter processing shown in the following equation (20), and I 1 (k), I 2 (k), I 3 (k), V 1 (k), V 2 (k), and V 3 (k) are calculated.

Figure 2007057234
これらは、実際には(数20)式をタスティン近似などで離散化して得られた漸化式を用いて演算する。
step4では、電流積算によるSOC推定を行うか否かを選択する。選択フラグf_SOCSWがクリアされている場合には、step5に進み、電流積算によるSOC(第二充電率)推定の初期化処理のみを行い、セットされている場合にはstep6に進み、電流積算によるSOC(第二充電率)推定を行う。
step5では、(数21)式に基づき前回のADFによる第一充電率推定値SOCADF(k−1)を用いて電流積算による第二充電率推定値SOCITG’(k)を初期化することで、電流積算用積分器の初期値とする。
Figure 2007057234
These are actually calculated using a recurrence formula obtained by discretizing Formula (20) by Tustin approximation or the like.
In step 4, it is selected whether or not to perform SOC estimation by current integration. If the selection flag f_SOCSW is cleared, the process proceeds to step 5, and only the initialization process of SOC (second charge rate) estimation by current integration is performed. If it is set, the process proceeds to step 6, and SOC by current integration is performed. (Second charging rate) is estimated.
In step 5, the second charge rate estimated value SOC ITG '(k) by current integration is initialized using the first charge rate estimated value SOC ADF (k-1) by the previous ADF based on the equation (21). Thus, the initial value of the integrator for current integration is used.

Figure 2007057234
step6では、後述する総容量推定値QMAXを用いて、(数22)式に基づき電流を積算(積分)することにより、電流積算による第二充電率推定値SOCITG'(k)を演算する。
Figure 2007057234
In step 6, the second charge rate estimated value SOC ITG ′ (k) based on the current integration is calculated by integrating (integrating) the current based on the equation (22) using a total capacity estimation value Q MAX described later. .

Figure 2007057234
step7では、step6で算出した第二充電率推定値SOCITG'(k)に対して、(数23)式に示すstep3で述べた前処理フィルタを用いて、それと同等の遅れGLPF(s)を持つローパスフィルタ処理を施し、(数24)式に示すようにフィルタ処理後の第二充電率推定値SOCITG(k)を算出する。
Figure 2007057234
In step 7, the second charging rate estimated value SOC ITG ′ (k) calculated in step 6 is used for the delay G LPF (s) equivalent to that by using the preprocessing filter described in step 3 shown in equation (23). Is applied to calculate the second charge rate estimated value SOC ITG (k) after the filter process as shown in the equation (24).

Figure 2007057234
Figure 2007057234

Figure 2007057234
ただし、pはフィルタの時定数である。
実際には(数24)式をタスティン近似などで離散化して得られた漸化式を用いて演算する。
step8では、予め計測した開路電圧−充電率特性(図4)に基づいて、step7で電流積算によって求めた第二充電率推定値SOCITG(k)から第二開路電圧推定値V_ITG(k)を求める。
Figure 2007057234
Here, p is a time constant of the filter.
Actually, the calculation is performed using a recurrence formula obtained by discretizing Formula (24) by Tustin approximation or the like.
In step8, previously the measured open circuit voltage - based on the charging rate characteristic (FIG. 4), the second charging rate estimate SOC ITG (k) determined by the current integration in step7 second open-circuit voltage estimated value V 0 _ ITG ( k).

step9では、step8で算出した第二開路電圧推定値V_ITG(k)と、ADFで推定したパラメータから、電池の第二内部抵抗値を推定する。その詳細な方法に関しては後述する。
step10では、step3で演算したI(k)、I(k)、I(k)およびV(k)、V(k)を用いて、前記(数14)式で示した適応デジタルフィルタによる電池パラメータ推定値θ^(k)を算出する。ただし、(数14)式において、
y(k)=V(k)
ω(k)=[V(k) I(k) I(k) I(k)]
θ(k)=[−T(k) K(k)・T(k) K(k) h(k)]
である。
そして推定された電池パラメータ推定値θ^(k)の成分である内部抵抗値K(k)を第一内部抵抗推定値とする。
In step 9, the second internal resistance value of the battery is estimated from the second open circuit voltage estimated value V 0 —ITG (k) calculated in step 8 and the parameter estimated by ADF. The detailed method will be described later.
In step 10, using I 1 (k), I 2 (k), I 3 (k), V 2 (k), and V 3 (k) calculated in step 3 , the adaptation shown in the equation (14) is used. The battery parameter estimated value θ ^ (k) by the digital filter is calculated. However, in Equation (14),
y (k) = V 2 (k)
ω T (k) = [V 3 (k) I 3 (k) I 2 (k) I 1 (k)]
θ T (k) = [− T 1 (k) K (k) · T 2 (k) K (k) h (k)]
It is.
Then, the internal resistance value K (k) that is a component of the estimated battery parameter estimated value θ ^ (k) is set as the first internal resistance estimated value.

step11では、step10で演算した電池パラメータ推定値θ^(k)のうち、T(k)、K(k)・T(k)、K(k)と、step9で算出したI(k)、I(k)およびV(k)、V(k)を(数17)式に代入し、適応デジタルフィルタに基づく第一開路電圧推定値V_ADFを演算する。
(数17)式は電池モデル(数15)式を変形し、両辺にローパスフィルタを乗じた式であるから、実際には開路電圧に対しローパスフィルタを施した値として推定される。しかし、開路電圧は変化が穏やかであるので、V_ADF(k)をGLPF(s)・V_ADF(k)で代用することができる。
In step 11, T 1 (k), K (k) · T 2 (k), K (k), and I 1 (k) calculated in step 9 among the battery parameter estimated values θ ^ (k) calculated in step 10 are used. ), I 2 (k) and V 1 (k), by substituting V 2 a (k) (the number 17), calculates a first open-circuit voltage estimated value V 0 _ ADF based on the adaptive digital filter.
Equation (17) is an equation obtained by modifying the battery model (Equation 15) and multiplying both sides by a low-pass filter, and is actually estimated as a value obtained by applying a low-pass filter to the open circuit voltage. However, since the open circuit voltage changes moderately, V 0 — ADF (k) can be substituted with G LPF (s) · V 0 — ADF (k).

step12では、予め計測した図4に示す開路電圧と充電率の相関特性を用いて、step11で算出した第一開路電圧推定値V_ADF(k)からADFによる第一充電率推定値SOCADF(k)を演算する。図4のVはSOC=0%に、VはSOC=100%に相当する開路電圧である。 In step 12, the first charge rate estimated value SOC ADF by ADF is calculated from the first open circuit voltage estimated value V 0 _ADF (k) calculated in step 11 using the correlation characteristic of the open circuit voltage and the charge rate shown in FIG. 4 measured in advance. (k) is calculated. In FIG. 4, V L is an open circuit voltage corresponding to SOC = 0%, and V H is an open circuit voltage corresponding to SOC = 100%.

step13では、電流I(k)とstep2で算出した最終充電率推定値選択フラグと、step6で算出した第二充電率推定値SOC_ITG(k)と、step12で算出した第一充電率推定値SOCADF(k)からstep2で算出した選択フラグf_SOCSWに基づき、最終充電率推定値SOCest(k)を決定する。
つまり、前記の(選択フラグf_SOCSWの条件)に記載したように、選択フラグf_SOCSWがセットされている場合は、第二充電率推定値(電流積算SOC推定値)を選択し、選択フラグf_SOCSWがクリアされている場合は、第一充電率推定値(適応デジタルフィルタ(ADF)によるSOC推定値)を選択する。
In step 13, the final charging rate estimated value selection flag calculated by the current I and (k) step2, and a second charging rate estimated value SOC_ ITG (k) calculated in step6, first charging rate estimated value SOC calculated in step12 Based on the selection flag f_SOCSW calculated at step 2 from ADF (k), the final charge rate estimated value SOC est (k) is determined.
In other words, as described in the above (selection flag f_SOCSW condition), when the selection flag f_SOCSW is set, the second charging rate estimated value (current integrated SOC estimated value) is selected, and the selection flag f_SOCSW is cleared. If so, the first charging rate estimated value (SOC estimated value by adaptive digital filter (ADF)) is selected.

step14では、step13で選択した最終充電率推定値SOCest(k)から図4に基づいて最終開路電圧推定値V_est(k)を演算する。なお、前記選択フラグf_SOCSWに応じて、step7で演算した第二開路電圧推定値SOC_ITG(k)とstep11で演算した第一開路電圧推定値V_ADF(k)との何れか一方を選択し、それを最終開路電圧推定値V_est(k)とするように構成してもよい。
つまり、選択フラグf_SOCSWがセットされている場合は、第二開路電圧推定値SOC_ITG(k)を選択し、選択フラグf_SOCSWがクリアされている場合は、第一開路電圧推定値V_ADF(k)を選択する。図1ではこの方法を示している。
In step 14, the final open circuit voltage estimated value V 0 _est (k) is calculated from the final charging rate estimated value SOC est (k) selected in step 13 based on FIG. Incidentally, in response to said selection flag F_SOCSW, select either the computed second open-circuit voltage estimated value SOC_ ITG (k) and the first open-circuit voltage estimated value V 0 _ ADF calculated in step 11 (k) at step7 Then, it may be configured to be the final open circuit voltage estimated value V 0 — est (k).
That is, when the selection flag f_SOCSW is set, select the second open-circuit voltage estimated value SOC_ ITG (k), when the selection flag f_SOCSW is cleared, the first open-circuit voltage estimated value V 0 _ ADF ( k) is selected. FIG. 1 shows this method.

step15では、step16で後述する入出力可能パワー演算用の内部抵抗推定値として、step13と同様の方法で、step9で演算した第二内部抵抗推定値K_ITG(k)とstep10で演算した第一内部抵抗推定値KADF(k)との何れか一方を選択し、それを最終内部抵抗推定値K_est(k)として決定する。
つまり、選択フラグf_SOCSWがセットされている場合は、第二内部抵抗推定値K_ITG(k)を選択し、選択フラグf_SOCSWがクリアされている場合は、第一内部抵抗推定値KADF(k)を選択する。
In step 15, as the internal resistance estimated value for input and output can power operation later in step16, in the same manner as in step 13, a first inner calculated by the second internal resistance estimated value K_ ITG and (k) step 10 calculated in step9 Either one of the estimated resistance value K ADF (k) is selected and determined as the final estimated internal resistance value K_ est (k).
That is, when the selection flag f_SOCSW has been set, the second internal resistance estimated value K_ ITG (k) of selecting, when the selection flag f_SOCSW is cleared, the first internal resistance estimated value K ADF (k) Select.

step16では、step14で演算した最終開路電圧推定値V_est(k)とstep15で演算した最終内部抵抗推定値K_est(k)を用いて、例えば(数25)式で定義される入力可能パワーPin(k)と出力可能パワーPout(k)を演算する。 In step 16, using the final open-circuit voltage estimated value V 0 — est (k) calculated in step 14 and the final internal resistance estimated value K_ est (k) calculated in step 15, for example, input that is defined by equation (25) is possible. The power P in (k) and the output power P out (k) are calculated.

Figure 2007057234
ただし、VMAXおよびVMINは、それぞれ電池の最大許容端子電圧および最小許容端子電圧であり、電池に応じて設定された値である。
step17では、step13で算出した最終充電率推定値SOCest(k)と電流I(k)から総容量推定値QMAX(k)(満充電容量ともいう)を演算する。この値は、例えば(数26)式に示すように、電流I(k)を充電率推定値の微分値で除算して求める。
Figure 2007057234
However, V MAX and V MIN are the maximum allowable terminal voltage and the minimum allowable terminal voltage of the battery, respectively, and are values set according to the battery.
In step 17, a total capacity estimated value Q MAX (k) (also referred to as a full charge capacity) is calculated from the final charging rate estimated value SOC est (k) calculated in step 13 and the current I (k). This value is obtained, for example, by dividing the current I (k) by the differential value of the estimated charge rate as shown in the equation (26).

Figure 2007057234
step18ではstep2で求めた選択フラグf_SOCSWに基づいて、次回の演算に必要な数値を保存して、今回の演算を終了する。
Figure 2007057234
In step 18, based on the selection flag f_SOCSW obtained in step 2, a numerical value necessary for the next calculation is stored, and the current calculation is terminated.

次に、step8における、第二充電率推定値(電流積算SOC推定値)から第二内部抵抗推定値K_ITG(k)を演算する方法に関して詳細に説明する。
この方法にはいくつか考えられるが、ここでは三つの実施例を説明する。なお、いずれの実施例においても、前記(数12)式を内部抵抗値Kに関して整理すると(数27)式になることを利用し、(数27)式における開路電圧推定値V(k)には、step14で演算した最終開路電圧推定値V_est(k)を用いる。また、I(k)、I(k)、V(k)、V(k)にはstep3で演算した前処理フィルタの出力を用いる。
Next, a method for calculating the second internal resistance estimated value K_ITG (k) from the second charging rate estimated value (current integrated SOC estimated value) in step 8 will be described in detail.
There are several possible methods, but three examples will be described here. In any of the embodiments, the above formula (12) is rearranged with respect to the internal resistance value K to use the formula (27), and the open circuit voltage estimated value V 0 (k) in the formula (27) is used. Is used as the final open circuit voltage estimated value V 0 — est (k) calculated in step 14. The output of the preprocessing filter calculated in step 3 is used for I 1 (k), I 2 (k), V 1 (k), and V 2 (k).

Figure 2007057234
まず、電流積算SOCから第二内部抵抗値を推定する第一の方法としては、前記電流積算が選択される直前の適応デジタルフィルタADFによる電池パラメータ推定値の記憶値T_ADF(k)、T_ADF(k)を第二充電率(電流積算SOC)演算中ホールドし、(数27)式の右辺に代入することで得られる(数28)式で第二内部抵抗値K_ITG(k)を演算する。
Figure 2007057234
First, as a first method for estimating the second internal resistance value from the current integration SOC, a storage value T 1 _ADF (k) of a battery parameter estimation value by the adaptive digital filter ADF immediately before the current integration is selected, T 2 _ADF (k) is held during the calculation of the second charging rate (current integrated SOC), and is substituted into the right side of Equation (27), and the second internal resistance value K_ITG ( k) is calculated.

Figure 2007057234
電流積算SOCから第二内部抵抗値を推定する第二の方法としては、1回前の演算実行時に推定された第二内部抵抗推定値K_ITG(k−1)と適応デジタルフィルタADFで推定し記憶・ホールドした第一内部抵抗推定値K_ADF(k)との比に基づいて、電池パラメータ推定値の記憶値の時定数T_ADF、T_ADFを(数29)式と(数30)式により補正する。
Figure 2007057234
As a second method for estimating the second internal resistance value from the current integration SOC, the second internal resistance estimated value K_ITG (k-1) estimated at the time of the previous calculation and the adaptive digital filter ADF is used. on the basis of the ratio of the storage hold the first internal resistance estimated value K_ ADF (k), a constant T 1 _ ADF when stored value of the battery parameter estimates, the T 2 _ ADF (number 29) and (expression 30) Correct according to the equation.

Figure 2007057234
Figure 2007057234

Figure 2007057234
そして、この補正された時定数T_ADF’、T_ADF’を前記(数27)式の右辺に代入することで得られる(数31)式を用いて第二内部抵抗値K_ITG(k)を演算する。
Figure 2007057234
Then, the corrected constant T 1 _ ADF when said a ', T 2 _ ADF' (number 27) the second internal resistance value by using the equation obtained by substituting the right-hand side (number 31) below K_ ITG (k) is calculated.

Figure 2007057234
電流積算SOCから第二内部抵抗値を推定する第三の方法としては、電流と電圧の変化率に応じて前記第一の方法と第二の方法とを切り替えて用いる方法である。つまり、電流と電圧の変化率が共に所定値以下の場合には、前記第二の方法により第二内部抵抗値を演算するが、それ以外の場合には前記第一の方法により第二内部抵抗値を演算する。ここで、電流の変化率は、step2において電流の変化率を求めたときと同じ方法により求める。電圧に関しても電流と同様に変化率を求めることができる。
Figure 2007057234
A third method of estimating the second internal resistance value from the current integration SOC is a method of switching between the first method and the second method according to the rate of change of current and voltage. That is, when both the current and voltage change rates are less than or equal to a predetermined value, the second internal resistance value is calculated by the second method. In other cases, the second internal resistance value is calculated by the first method. Calculate the value. Here, the rate of change of current is obtained by the same method as that for obtaining the rate of change of current in step 2. Regarding the voltage, the rate of change can be obtained in the same manner as the current.

図7〜図10に本発明の効果を電池モデルを用いたシミュレーションにより検証した結果を示す。各図においては、上段から入力電流I、電圧V、時定数Tの真値と推定値、時定数Tの真値と推定値、内部抵抗値Kの真値と推定値、充電率SOCの真値と推定値、入力可能パワーPinの真値と推定値、および出力可能パワーPoutの真値と推定値を示している。なお、電流と電圧の波形を除いて、真値を破線で、推定値を実線で示した。また、電池モデルにおけるパラメータは実電池の特性に合わせて、放電電流が−100[A]を越えてから5秒の遅れを持って急変するように設定した。 7 to 10 show the results of verifying the effect of the present invention by simulation using a battery model. In each figure, the input current I from the top, the voltage V, when the true value and the estimated value of the constant T 1, when the true value and the estimated value of the constant T 2, the true value and the estimated value of the internal resistance value K, the charging rate SOC , True value and estimated value of input power P in , and true value and estimated value of output power P out are shown. The true value is indicated by a broken line and the estimated value is indicated by a solid line, except for current and voltage waveforms. The parameters in the battery model were set so as to change suddenly with a delay of 5 seconds after the discharge current exceeded −100 [A] in accordance with the characteristics of the actual battery.

図7は従来技術におけるシミュレーション結果であり、電池の過渡特性を無視して、内部抵抗値を(V=K・I+V)におけるKとして演算した場合の結果である。電流が変化するタイミング(100秒および120秒付近)において内部抵抗値に大きな推定誤差を生じており、これが入出力可能パワーの推定誤差となって現れている。 FIG. 7 is a simulation result in the prior art, and is a result when the internal resistance value is calculated as K in (V = K · I + V 0 ) ignoring the transient characteristics of the battery. A large estimation error occurs in the internal resistance value at the timing when the current changes (near 100 seconds and 120 seconds), and this appears as an estimation error of input / output power.

図8は、電流積算SOCから第二内部抵抗値を推定する第一の方法により、内部抵抗値を演算した場合の結果である。図7と比較して、電流が変化するタイミング(100秒および120秒付近)での内部抵抗値の推定精度が向上していることが明らかである。   FIG. 8 shows a result when the internal resistance value is calculated by the first method of estimating the second internal resistance value from the current integration SOC. As compared with FIG. 7, it is clear that the estimation accuracy of the internal resistance value is improved at the timing when the current changes (around 100 seconds and 120 seconds).

図9は、電流積算SOCから第二内部抵抗値を推定する第一の方法において、内部抵抗値に応じて時定数も変化する場合における内部抵抗値を演算した場合の結果である。実際には105秒付近から内部抵抗値と合わせて時定数も増加しているが、直前に適応デジタルフィルタADFで推定した値を記憶し続けて内部抵抗値を推定するため、125秒付近で大きな誤差を生じる。これが入出力可能パワーの推定誤差となって現れている。   FIG. 9 shows the result of calculating the internal resistance value when the time constant also changes according to the internal resistance value in the first method of estimating the second internal resistance value from the current integration SOC. Actually, the time constant increases with the internal resistance value from around 105 seconds, but since the internal resistance value is estimated by continuously storing the value estimated by the adaptive digital filter ADF immediately before, it is large at around 125 seconds. An error is generated. This appears as an estimation error of power that can be input and output.

図10は、図9と同条件において、電流積算SOCから第二内部抵抗値を推定する第二の方法により内部抵抗値を演算した場合の結果である。図9で見られた125秒付近における大きな内部抵抗値の推定誤差を抑えることができ、変化する内部抵抗値を精度良く推定することができる。その結果入出力可能パワーも精度良く推定できることが判る。   FIG. 10 shows a result when the internal resistance value is calculated by the second method of estimating the second internal resistance value from the current integration SOC under the same conditions as in FIG. The estimation error of the large internal resistance value near 125 seconds seen in FIG. 9 can be suppressed, and the changing internal resistance value can be estimated with high accuracy. As a result, it can be seen that the input / output power can be estimated with high accuracy.

以上説明したように、本発明においては、適応デジタルフィルタによって推定した第一内部抵抗値と、電流積算等による第二充電率推定値から求めた第二内部抵抗値とを電流の状態に応じて選択するように構成し、電流変化率△I(k)が所定時間ts以上連続して所定値β以下となる一定電流放電の場合、および電流が所定値γを超えた大電流となった場合、つまり適応デジタルフィルタ(ADF)によるSOC推定が困難な状態では、電流積算等の他の方法によるSOC推定値(第二充電率推定値)選択し、それ以外の場合には、適応デジタルフィルタによる第一充電率推定値(および第一内部抵抗値)を選択するので、常に誤差の少ないSOC推定および内部抵抗値推定を行うことが出来る。そして、第二充電率推定値から第二内部抵抗値を推定する場合に、第二充電率が選択される直前の適応デジタルフィルタADFによる電池パラメータ推定値の記憶値T_ADF(k)、T_ADF(k)をホールドし、それを用いて第二内部抵抗値K_ITG(k)を演算するように構成した場合には、電池の動特性を表す時定数(TおよびT)までを考慮して内部抵抗値を推定するため、電流が変化する過渡状態においても内部抵抗値を精度良く推定することができる。従って、例えば内部抵抗推定値を用いて演算する入出力可能パワー推定値の推定精度が向上する。 As described above, in the present invention, the first internal resistance value estimated by the adaptive digital filter and the second internal resistance value obtained from the second charging rate estimated value by current integration or the like are determined according to the current state. When the current change rate ΔI (k) is constant current discharge in which the current change rate ΔI (k) is continuously equal to or less than the predetermined value β for a predetermined time ts or when the current becomes a large current exceeding the predetermined value γ In other words, when the SOC estimation by the adaptive digital filter (ADF) is difficult, the SOC estimation value (second charge rate estimation value) by another method such as current integration is selected. Otherwise, by the adaptive digital filter Since the first charging rate estimated value (and the first internal resistance value) is selected, it is possible to always perform the SOC estimation and the internal resistance value estimation with little error. Then, when estimating the second internal resistance value from the second charging rate estimated value, the stored value T 1 — ADF (k) of the battery parameter estimated value by the adaptive digital filter ADF immediately before the second charging rate is selected, When T 2 _ADF (k) is held and the second internal resistance value K_ITG (k) is calculated using the T 2 _ADF (k), time constants (T 1 and T 2) representing the dynamic characteristics of the battery are used. Therefore, the internal resistance value can be estimated with high accuracy even in a transient state where the current changes. Therefore, for example, the estimation accuracy of the input / output possible power estimation value calculated using the internal resistance estimation value is improved.

また、第二充電率推定値(電流積算によるSOC推定値)から第二内部抵抗値を推定する場合に、1回前の実行時に推定された第二内部抵抗推定値K_ITG(k−1)と適応デジタルフィルタADFで推定し記憶・ホールドした第一内部抵抗推定値K_ADF(k)との比に基づいて、電池パラメータ推定値の記憶値の時定数T_ADF、T_ADFを(数29)式と(数30)式により補正するように構成した場合には、電池の内部抵抗値が変動したことによって時定数変化が生じた場合でも、時定数が変化した分を補正していくため、時定数の推定精度が向上する。従って、より真値に近い時定数を用いて内部抵抗値を演算するため、内部抵抗値の推定精度がさらに向上する。なお、電池パラメータの関係式はK=R+R、T=C・R、T=C・R・R/(R+R)である。したがって電気二重層容量Cが一定で、かつ内部抵抗値Kの要素RとRの比率が全体の内部抵抗値Kの変動によらず一定であるとすると、時定数T、Tは内部抵抗値Kの変化に比例して変化することになる。 Further, when the second internal resistance value is estimated from the second charging rate estimated value (SOC estimated value by current integration), the second internal resistance estimated value K_ITG (k−1) estimated at the previous execution. based on the ratio between the estimated and stored and hold the first internal resistance estimated value K_ ADF (k) by the adaptive digital filter ADF and the constant T 1 _ ADF when stored value of the battery parameter estimates, the T 2 _ ADF When the correction is made by the equations (29) and (30), even if the time constant changes due to the change in the internal resistance value of the battery, the amount of change of the time constant is corrected. Therefore, the time constant estimation accuracy is improved. Therefore, since the internal resistance value is calculated using a time constant closer to the true value, the estimation accuracy of the internal resistance value is further improved. The relational expressions of the battery parameters are K = R 1 + R 2 , T 1 = C 1 · R 1 , T 2 = C 1 · R 1 · R 2 / (R 1 + R 2 ). Therefore, assuming that the electric double layer capacitance C 1 is constant and the ratio of the elements R 1 and R 2 of the internal resistance value K is constant regardless of the fluctuation of the overall internal resistance value K, the time constants T 1 , T 2 Changes in proportion to the change in the internal resistance value K.

また、電流および電圧の変化率が所定値以下の場合に、上記の時定数T_ADF、T_ADFの補正を行うように構成した場合には時定数の推定値が向上するという効果がある。つまり、前記(数28)式から判るように、電流および電圧の変化率が小さい場合(微分値:I≒0、V≒0)には、内部抵抗推定値は電流(I)と電圧(V、V_ITG)のみで決まるため、仮に該電池パラメータ記憶値の時定数(T_ADF、T_ADF)に若干誤差を生じていても内部抵抗推定値に与える影響は小さく、内部抵抗値は精度良く推定できる。したがって、このような電流および電圧の変化率が小さい条件下で推定された内部抵抗推定値を用いて該電池パラメータ記憶値の時定数を補正することにより、時定数の推定値が向上する。その結果、その後に電流および電圧の変化率が大きくなった場合でも、内部抵抗値の推定精度が向上する。そのため、例えば内部抵抗推定値を用いて演算する入出力可能パワー推定値の推定精度が向上する。 Further, when the current and voltage change rates are equal to or lower than predetermined values, the time constant T 1 _ADF and T 2 _ADF are corrected, and the estimated value of the time constant is improved. There is. That is, as can be seen from the equation (28), when the rate of change of current and voltage is small (differential values: I 2 ≈0, V 2 ≈0), the internal resistance estimation value is the current (I 1 ) Since it is determined only by the voltages (V 1 , V 0 _ITG ), even if a slight error occurs in the time constants (T 1 _ADF , T 2 _ADF ) of the battery parameter stored values, the influence on the internal resistance estimation value The internal resistance value can be estimated with high accuracy. Therefore, the estimated value of the time constant is improved by correcting the time constant of the battery parameter stored value using the estimated internal resistance value estimated under such a condition that the rate of change of current and voltage is small. As a result, the estimation accuracy of the internal resistance value is improved even when the rate of change in current and voltage subsequently increases. Therefore, for example, the estimation accuracy of the input / output possible power estimation value calculated using the internal resistance estimation value is improved.

本発明の内部抵抗推定演算の一実施例を示す機能ブロック図。The functional block diagram which shows one Example of the internal resistance estimation calculation of this invention. 本発明の一実施例の具体的な構成図。The specific block diagram of one Example of this invention. 適応デジタルフィルタの演算に用いる電池モデルを示す回路図。The circuit diagram which shows the battery model used for the calculation of an adaptive digital filter. リチウムイオン電池における充電率と開路電圧の特性を示す図。The figure which shows the characteristic of the charging rate and open circuit voltage in a lithium ion battery. リチウムイオン電池における電流と内部抵抗の特性を示す図。The figure which shows the characteristic of the electric current in a lithium ion battery, and internal resistance. 電子制御ユニットで行う演算処理を示すフローチャート。The flowchart which shows the arithmetic processing performed with an electronic control unit. シミュレーションにより従来技術における電池パラメータ、充電率、および入出力可能パワー推定結果を示す図。The figure which shows the battery parameter in a prior art, a charging rate, and the input / output possible power estimation result by simulation. シミュレーションにより電流積算SOCから第二内部抵抗値を推定する第一の方法によって内部抵抗値を演算した場合の結果を示す図。The figure which shows the result at the time of calculating an internal resistance value with the 1st method of estimating a 2nd internal resistance value from electric current integration SOC by simulation. 電流積算SOCから第二内部抵抗値を推定する第一の方法において、内部抵抗値に応じて時定数も変化する場合における内部抵抗値を演算した場合の結果を示す図。The figure which shows the result at the time of calculating an internal resistance value in case the time constant also changes according to an internal resistance value in the 1st method of estimating a 2nd internal resistance value from electric current integration SOC. 図9と同条件において、電流積算SOCから第二内部抵抗値を推定する第二の方法により内部抵抗値を演算した場合の結果を示す図。The figure which shows the result at the time of calculating an internal resistance value by the 2nd method of estimating 2nd internal resistance value from electric current integration SOC on the same conditions as FIG.

符号の説明Explanation of symbols

100…電流検出手段 101…電圧検出手段
102…前処理フィルタ演算手段 103…適応デジタルフィルタ演算手段
104…第一開路電圧演算手段 105…第一充電率推定手段
106…第二充電率推定手段 107…第二開路電圧演算手段
108…最終充電率推定値選択手段 109…電池パラメータ推定値記憶手段
110…第二内部抵抗推定手段 111…最終開路電圧推定値選択手段
112…最終内部抵抗推定値選択手段 113…入出力可能パワー演算手段
10…二次電池 20…負荷
30…電子制御ユニット 40…電流センサ
50…電圧センサ
DESCRIPTION OF SYMBOLS 100 ... Current detection means 101 ... Voltage detection means 102 ... Pre-processing filter calculation means 103 ... Adaptive digital filter calculation means 104 ... First open circuit voltage calculation means 105 ... First charge rate estimation means 106 ... Second charge rate estimation means 107 ... Second open circuit voltage calculation means 108 ... final charge rate estimated value selection means 109 ... battery parameter estimated value storage means 110 ... second internal resistance estimation means 111 ... final open circuit voltage estimated value selection means 112 ... final internal resistance estimated value selection means 113 ... Input / output possible power calculation means 10 ... secondary battery 20 ... load 30 ... electronic control unit 40 ... current sensor 50 ... voltage sensor

Claims (4)

二次電池の充放電中の電流を検出する電流検出手段と、
二次電池の端子電圧を検出する電圧検出手段と、
前記電流と電圧のローパスフィルタ値と微分値を演算する前処理フィルタ手段と、
二次電池の電池モデルを定義し、その電池モデルを用いて、前記電流および電圧のローパスフィルタ値と微分値を入力として電池モデルの第一内部抵抗値を含むパラメータを一括推定演算する適応デジタルフィルタ演算手段と、
前記電池パラメータと前記前処理フィルタ処理した電流と電圧を入力として第一開路電圧を推定演算する第一開路電圧演算手段と、
第一開路電圧から第一充電率を推定演算する第一充電率推定手段と、
前記適応デジタルフィルタによる充電率推定が困難な電流状態においても充電率推定が可能な方法により第二充電率を推定演算する第二充電率推定手段と、
前記第二充電率推定値から第二開路電圧推定値を演算する第二開路電圧演算手段と、
前記第一充電率と前記第二充電率の何れか一方を選択して最終充電率推定値とする最終充電率推定値選択手段と、
前記第二充電率が選択される直前の前記適応デジタルフィルタ演算手段による電池パラメータ推定値を記憶する電池パラメータ推定値記憶手段と、
電流の状態によって定まる最終充電率推定値の選択フラグの情報に基づいて前記第一開路電圧と第二開路電圧の何れか一方を選択して最終開路電圧とする最終開路電圧推定値選択手段と、
前記第二充電率推定値から第二内部抵抗値を推定演算する第二内部抵抗推定手段と、
電流の状態によって定まる最終充電率推定値の選択フラグの情報に基づいて、前記適応デジタルフィルタ演算手段で推定した第一内部抵抗値と前記第二内部抵抗推定手段で推定した第二内部抵抗値の何れか一方を選択して最終内部抵抗推定値とする最終内部抵抗推定値選択手段と、を有し、
前記第二内部抵抗推定手段は、
第二充電率推定値が選択されている場合における第二内部抵抗推定値K_ITGを、前記電池パラメータ推定値記憶手段における電池パラメータ記憶値の時定数(T_ADF、T_ADF)と、第二開路電圧推定値V_ITGと、前処理フィルタの出力である電流および電圧のローパスフィルタ値(I、V)および微分値(I、V)と、によって表される(数1)式を用いて推定演算することを特徴とする二次電池の内部抵抗推定装置。
Figure 2007057234
Current detecting means for detecting current during charging and discharging of the secondary battery;
Voltage detection means for detecting the terminal voltage of the secondary battery;
Preprocessing filter means for calculating a low-pass filter value and a differential value of the current and voltage;
An adaptive digital filter that defines a battery model of a secondary battery, and uses the battery model to input a low-pass filter value and a differential value of the current and voltage, and collectively estimate and calculate parameters including the first internal resistance value of the battery model Computing means;
A first open-circuit voltage calculating means for estimating and calculating a first open-circuit voltage with the battery parameter and the pre-processed filter current and voltage as inputs;
First charge rate estimating means for estimating and calculating the first charge rate from the first open circuit voltage;
A second charging rate estimating means for estimating and calculating a second charging rate by a method capable of estimating the charging rate even in a current state where it is difficult to estimate the charging rate by the adaptive digital filter;
Second open circuit voltage calculation means for calculating a second open circuit voltage estimated value from the second charging rate estimated value;
A final charge rate estimated value selection means for selecting one of the first charge rate and the second charge rate as a final charge rate estimated value;
Battery parameter estimated value storage means for storing a battery parameter estimated value by the adaptive digital filter calculation means immediately before the second charging rate is selected;
Final open circuit voltage estimated value selection means for selecting either the first open circuit voltage or the second open circuit voltage based on the information of the selection flag of the final charge rate estimated value determined by the state of the current, and setting it as the final open circuit voltage;
Second internal resistance estimating means for estimating and calculating a second internal resistance value from the second charging rate estimated value;
Based on the information of the selection flag of the final charge rate estimated value determined by the current state, the first internal resistance value estimated by the adaptive digital filter calculation means and the second internal resistance value estimated by the second internal resistance estimation means A final internal resistance estimated value selection means that selects any one of them and sets it as a final internal resistance estimated value;
The second internal resistance estimation means includes
When the second charge rate estimated value is selected, the second internal resistance estimated value K_ITG is used as the time constant (T 1 _ADF , T 2 _ADF ) of the battery parameter stored value in the battery parameter estimated value storage means. , The second open circuit voltage estimated value V 0 _ITG , and the low-pass filter values (I 1 , V 1 ) and the differential values (I 2 , V 2 ) of the current and voltage that are the outputs of the preprocessing filter An internal resistance estimation device for a secondary battery, wherein an estimation calculation is performed using the equation (1).
Figure 2007057234
請求項1に記載の二次電池の内部抵抗推定装置において、
前記第二充電率推定手段は、前記電流検出手段で検出した電流を積算することにより第二充電率を推定することを特徴とする二次電池の内部抵抗推定装置。
In the internal resistance estimation apparatus of the secondary battery according to claim 1,
The second charging rate estimation means estimates the second charging rate by integrating the current detected by the current detection means, and the internal resistance estimation device for a secondary battery.
請求項1に記載の二次電池の内部抵抗推定装置において、
前記電池パラメータ推定値記憶手段における電池パラメータ記憶値である第一内部抵抗値K_ADFと、前回の演算における第二内部抵抗推定値K_ITG(k−1)から、(数2)式および(数3)式に基づいて電池パラメータ記憶値の時定数(T_ADF、T_ADF)を補正することを特徴とする二次電池の内部抵抗推定装置。
Figure 2007057234
Figure 2007057234
ただし、T_ADF'、T_ADF'は補正後の時定数
In the internal resistance estimation apparatus of the secondary battery according to claim 1,
A first internal resistance value K_ ADF is a battery parameter stored value in said battery parameter estimation value storage means, the second internal resistance estimated value K_ ITG in the previous operation (k-1), (Formula 2) and (number 3) An internal resistance estimation device for a secondary battery, wherein the time constants (T 1 —ADF , T 2 —ADF ) of the battery parameter stored value are corrected based on the equation.
Figure 2007057234
Figure 2007057234
However, T 1 _ ADF ', T 2 _ ADF' when after the correction constant
請求項3に記載の二次電池の内部抵抗推定装置において、
電流および電圧の変化率が所定値以下の場合に、前記時定数(T_ADF、T_ADF)の補正を行うことを特徴とする二次電池の内部抵抗推定装置。
In the internal resistance estimation apparatus of the secondary battery according to claim 3,
An internal resistance estimation device for a secondary battery, wherein the time constants (T 1 _ADF , T 2 _ADF ) are corrected when the rate of change in current and voltage is equal to or less than a predetermined value.
JP2005239419A 2005-08-22 2005-08-22 Secondary battery internal resistance estimation device Active JP4720364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239419A JP4720364B2 (en) 2005-08-22 2005-08-22 Secondary battery internal resistance estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239419A JP4720364B2 (en) 2005-08-22 2005-08-22 Secondary battery internal resistance estimation device

Publications (2)

Publication Number Publication Date
JP2007057234A true JP2007057234A (en) 2007-03-08
JP4720364B2 JP4720364B2 (en) 2011-07-13

Family

ID=37920871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239419A Active JP4720364B2 (en) 2005-08-22 2005-08-22 Secondary battery internal resistance estimation device

Country Status (1)

Country Link
JP (1) JP4720364B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160035698A (en) * 2014-09-23 2016-04-01 주식회사 실리콘마이터스 Apparatus and method for measuring battery residual quantity
KR20230100379A (en) * 2021-12-28 2023-07-05 경북대학교 산학협력단 Device and method for determining battery failure based on battery parameter
WO2023189179A1 (en) * 2022-03-30 2023-10-05 株式会社デンソー Impedance measurement device for secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091604A (en) * 1999-09-24 2001-04-06 Honda Motor Co Ltd Residual capacity detecting device for battery device
JP2004093551A (en) * 2002-07-12 2004-03-25 Toyota Motor Corp Battery charged condition presuming device
JP2004178848A (en) * 2002-11-25 2004-06-24 Nissan Motor Co Ltd Apparatus for estimating charge rate of secondary cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091604A (en) * 1999-09-24 2001-04-06 Honda Motor Co Ltd Residual capacity detecting device for battery device
JP2004093551A (en) * 2002-07-12 2004-03-25 Toyota Motor Corp Battery charged condition presuming device
JP2004178848A (en) * 2002-11-25 2004-06-24 Nissan Motor Co Ltd Apparatus for estimating charge rate of secondary cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160035698A (en) * 2014-09-23 2016-04-01 주식회사 실리콘마이터스 Apparatus and method for measuring battery residual quantity
KR101653967B1 (en) 2014-09-23 2016-09-07 주식회사 실리콘마이터스 Apparatus and method for measuring battery residual quantity
KR20230100379A (en) * 2021-12-28 2023-07-05 경북대학교 산학협력단 Device and method for determining battery failure based on battery parameter
KR102648555B1 (en) * 2021-12-28 2024-03-19 경북대학교 산학협력단 Device and method for determining battery failure based on battery parameter
WO2023189179A1 (en) * 2022-03-30 2023-10-05 株式会社デンソー Impedance measurement device for secondary battery

Also Published As

Publication number Publication date
JP4720364B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4692246B2 (en) Secondary battery input / output possible power estimation device
JP4830382B2 (en) Secondary battery charge rate estimation device
JP5842421B2 (en) Battery state estimation device
CN107690585B (en) Method and apparatus for determining the state of health and state of charge of a lithium sulfur battery
JP3714321B2 (en) Secondary battery charge rate estimation device
JP3714333B2 (en) Secondary battery input / output possible power estimation device
EP3207388B1 (en) Battery condition monitoring
JP4547908B2 (en) Secondary battery input / output possible power estimation device
JP4788307B2 (en) Secondary battery input / output possible power estimation device
JP2006284431A (en) System for estimation of charging rate of secondary cell
JP2012057998A (en) Charge rate calculation apparatus for secondary battery and charge rate calculation method
JP5163542B2 (en) Secondary battery input / output possible power estimation device
JP2011191291A (en) Device for estimation of battery state
JP2006292492A (en) Full charge capacity estimation system for secondary battery
JP2008164417A (en) Apparatus for estimating internal resistance of secondary cell
JP4923462B2 (en) Secondary battery charge rate estimation device
JP2010203935A (en) Device of estimating inputtable/outputtable power of secondary battery
JP4720364B2 (en) Secondary battery internal resistance estimation device
JP3852372B2 (en) Secondary battery charge rate estimation device
JP5412891B2 (en) Secondary battery control device
JP4103569B2 (en) Secondary battery charge rate estimation device
JP4666149B2 (en) Secondary battery input / output possible power estimation device
JP3852371B2 (en) Secondary battery charge rate estimation device
JP4582583B2 (en) Secondary battery remaining capacity calculation method
JP2007024740A (en) Device for estimating charging rate of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4720364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150