JP2007055983A - Prophylactic/ameliorant for disease caused by pathogenic bacterium penetrated into cell - Google Patents

Prophylactic/ameliorant for disease caused by pathogenic bacterium penetrated into cell Download PDF

Info

Publication number
JP2007055983A
JP2007055983A JP2005246577A JP2005246577A JP2007055983A JP 2007055983 A JP2007055983 A JP 2007055983A JP 2005246577 A JP2005246577 A JP 2005246577A JP 2005246577 A JP2005246577 A JP 2005246577A JP 2007055983 A JP2007055983 A JP 2007055983A
Authority
JP
Japan
Prior art keywords
preventive
ameliorating agent
amino acid
agent according
peptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005246577A
Other languages
Japanese (ja)
Inventor
Fumio Fukai
文雄 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2005246577A priority Critical patent/JP2007055983A/en
Publication of JP2007055983A publication Critical patent/JP2007055983A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a new prophylactic/ameliorant for diseases caused by pathogenic bacteria. <P>SOLUTION: A substance such as a peptide composed of an amino acid sequence represented by sequence number 2, Z-VAD fmk (benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone) being a caspase inhibitor, PI3P(phosphatidylinositol-3-phosphate), U0126(1.4-diamino-2,3-dicyano-1,4-bis(2-amino-phenylthio)butadiene) being an MEK inhibitor, Ac-L-Ala-NH<SB>2</SB>(Acetyl-L-alanine amide)being an amino acid derivative, etc., has low toxicity to host cells and controls existence of bacterium penetrated to host cells. Consequently, a substance such as a peptide having an amino acid sequence represented by sequence number 1, a caspase inhibitor, PI3P, MEK inhibitor, an amino acid derivative, etc., or a composition obtained by combining two or more of theses substances is useful for preventing/ameliorating diseases caused by a pathogenic bacterium. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、細胞内に侵入した病原性細菌に起因する疾患の予防・改善剤に関する。   The present invention relates to a preventive / ameliorating agent for diseases caused by pathogenic bacteria that have entered cells.

真核細胞は、オートファジーによって細胞内に侵入した病原性細菌を分解・消化する機能を有する。細胞におけるオートファジーの誘導は、細胞内の病原性細菌の生存を抑制できるため(例えば、非特許文献1参照)、細胞内に侵入した病原性細菌に起因する疾患、特に、細胞内寄生性細菌に起因する疾患の予防・改善剤として有用であると考えられている。   Eukaryotic cells have a function of degrading and digesting pathogenic bacteria that have entered cells by autophagy. Induction of autophagy in cells can suppress the survival of pathogenic bacteria in cells (see, for example, Non-Patent Document 1). Therefore, diseases caused by pathogenic bacteria that have entered cells, particularly intracellular parasitic bacteria. It is thought to be useful as a preventive / ameliorating agent for diseases caused by.

しかしながら、オートファジーは細胞死にも関与している可能性があるため、オートファジー誘導剤を病原性細菌に起因する疾患に使用すると、宿主の細胞死を促進し、副作用を伴う恐れがある。
Cell 119,753-766, 2004
However, since autophagy may be involved in cell death, the use of an autophagy-inducing agent for diseases caused by pathogenic bacteria may promote host cell death and may have side effects.
Cell 119,753-766, 2004

そこで、本発明は、病原性細菌に起因する疾患に有用な新規予防・改善剤を提供することを目的とする。   Accordingly, an object of the present invention is to provide a novel preventive / ameliorating agent useful for diseases caused by pathogenic bacteria.

本発明者は上記課題を解決すべく鋭意努力した結果、オートファジー誘導剤として知られているラパマイシン(Cell 119,753-766, 2004)は、宿主細胞に侵入したBCG(Bacillus Calmette-Guerin)の生存を抑制するとともにほとんどの宿主細胞に対して細胞死を誘導するのに対して、配列番号1に示されるアミノ酸配列(RSTDLPGLKAATHYTITIRGV)を有するペプチド(RSTDLPGLKAATHYTITIRGVC(配列番号2);以下「TNIII」と称する。)、カスパーゼ阻害剤であるZ-VAD fmk(Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone)、PI3P(phosphatidylinositol-3-phosphate)、MEK(Mitogen-activated protein(MAP)kinases)阻害剤であるU0126(1.4-diamino-2,3-dicyano-1,4-bis(2-amino-phenylthio)butadiene)、アミノ酸誘導体であるAc-L-Ala-NH2(Acetyl-L-alanine amide)等の物質は、宿主細胞に感染したBCGの生存を抑制するが、宿主細胞に対して毒性が弱いことを見出し、本発明を完成するに至った。 As a result of diligent efforts to solve the above-mentioned problems, the present inventor has found that rapamycin (Cell 119, 753-766, 2004), which is known as an autophagy inducer, has survived BCG (Bacillus Calmette-Guerin) that has invaded host cells A peptide having the amino acid sequence shown in SEQ ID NO: 1 (RSTDLPGLKAATHYTITIRGV) (RSTDLPGLKAATHYTITIRGVC (SEQ ID NO: 2); hereinafter referred to as “TNIII”), while suppressing and inducing cell death against most host cells. , Caspase inhibitor Z-VAD fmk (Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone), PI3P (phosphatidylinositol-3-phosphate), MEK (Mitogen-activated protein (MAP) kinases) inhibitor U0126 ( Substances such as 1.4-diamino-2,3-dicyano-1,4-bis (2-amino-phenylthio) butadiene) and the amino acid derivative Ac-L-Ala-NH 2 (Acetyl-L-alanine amide) Suppresses the survival of BCG infected with host cells, but It found that weak toxicity against, and have completed the present invention.

すなわち、本発明に係る予防・改善剤は、細胞内に侵入した病原性細菌に起因する疾患に対するものであって、配列番号1に示されるアミノ酸配列を有するペプチド、そのペプチドにおいて、1若しくは数個のアミノ酸が置換、欠失若しくは付加されたアミノ酸配列からなるペプチド、カスパーゼ阻害剤、PI3P、MEK阻害剤、アミノ酸誘導体などの物質を1又は2以上、有効成分として含有する。前記カスパーゼ阻害剤は、例えば、Z-VAD fmkなどである。前記MEK阻害剤は、例えば、U0126などである。前記アミノ酸誘導体は、例えば、Ac-L-Ala-NH2などである。前記細胞内に侵入した病原性細菌に起因する疾患は、例えば、結核菌などである。 That is, the preventive / ameliorating agent according to the present invention is for a disease caused by a pathogenic bacterium that has entered a cell, and has 1 or several peptides in the peptide having the amino acid sequence shown in SEQ ID NO: 1, 1 or 2 or more substances such as peptides, caspase inhibitors, PI3P, MEK inhibitors, amino acid derivatives, etc., comprising an amino acid sequence substituted, deleted, or added as an active ingredient. Examples of the caspase inhibitor include Z-VAD fmk. The MEK inhibitor is, for example, U0126. Examples of the amino acid derivative include Ac-L-Ala-NH 2 . Examples of diseases caused by pathogenic bacteria that have entered the cells include Mycobacterium tuberculosis.

本発明によれば、病原性細菌に起因する疾患に有用な新規予防・改善剤を提供することができる。   According to the present invention, it is possible to provide a novel preventive / ameliorating agent useful for diseases caused by pathogenic bacteria.

以下、上記知見に基づき完成した本発明の実施の形態を、実施例を挙げながら詳細に説明する。実施の形態及び実施例に特に説明がない場合には、J. Sambrook, E. F. Fritsch & T. Maniatis (Ed.), Molecular cloning, a laboratory manual (3rd edition), Cold Spring Harbor Press, Cold Spring Harbor, New York (2001); F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J.G. Seidman, J. A. Smith, K. Struhl (Ed.), Current Protocols in Molecular Biology, John Wiley & Sons Ltd.などの標準的なプロトコール集に記載の方法、あるいはそれを修飾したり、改変した方法を用いる。また、市販の試薬キットや測定装置を用いている場合には、特に説明が無い場合、それらに添付のプロトコールを用いる。   Hereinafter, embodiments of the present invention completed based on the above knowledge will be described in detail with reference to examples. Unless otherwise stated in the embodiments and examples, J. Sambrook, EF Fritsch & T. Maniatis (Ed.), Molecular cloning, a laboratory manual (3rd edition), Cold Spring Harbor Press, Cold Spring Harbor, New York (2001); FM Ausubel, R. Brent, RE Kingston, DD Moore, JG Seidman, JA Smith, K. Struhl (Ed.), Standard Protocols in Molecular Biology, John Wiley & Sons Ltd. The method described in the protocol collection, or a modified or modified method thereof is used. In addition, when using commercially available reagent kits and measuring devices, unless otherwise explained, protocols attached to them are used.

なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。   The objects, features, advantages, and ideas of the present invention will be apparent to those skilled in the art from the description of the present specification, and those skilled in the art can easily reproduce the present invention from the description of the present specification. it can. The embodiments and specific examples of the invention described below show preferred embodiments of the present invention and are shown for illustration or explanation, and the present invention is not limited to them. It is not limited. It will be apparent to those skilled in the art that various modifications and variations can be made based on the description of the present specification within the spirit and scope of the present invention disclosed herein.

==本発明に係る予防・改善剤==
上述のように、TNIII、カスパーゼ阻害剤であるZ-VAD fmk、PI3P、MEK阻害剤であるU0126、アミノ酸誘導体であるAc-L-Ala-NH2等の物質は、細胞に侵入した細菌の生存を抑制することができ、特に、TNIII、MEK阻害剤であるU0126、アミノ酸誘導体であるAc-L-Ala-NH2等の物質に関しては細胞毒性が無いことが明らかになった。従って、配列番号1に示されるアミノ酸配列を有するペプチド、そのペプチドにおいて、1若しくは数個のアミノ酸が置換、欠失若しくは付加されたアミノ酸配列からなるペプチド、カスパーゼ阻害剤、PI3P、MEK阻害剤、アミノ酸誘導体等の物質、又は、それらの物質を2以上組み合わせた組成物は、病原性細菌に起因する疾患の予防・改善に有用であると考えられる。
== Preventive / improving agent according to the present invention ==
As mentioned above, substances such as TNIII, caspase inhibitor Z-VAD fmk, PI3P, MEK inhibitor U0126, and amino acid derivative Ac-L-Ala-NH 2 In particular, substances such as TNIII, ME0 inhibitor U0126, and amino acid derivative Ac-L-Ala-NH 2 were found to have no cytotoxicity. Therefore, a peptide having the amino acid sequence shown in SEQ ID NO: 1, a peptide consisting of an amino acid sequence in which one or several amino acids are substituted, deleted or added, caspase inhibitor, PI3P, MEK inhibitor, amino acid A substance such as a derivative or a composition in which two or more of these substances are combined is considered to be useful for the prevention / amelioration of diseases caused by pathogenic bacteria.

前記カスパーゼ阻害剤としては、例えば、Z-VAD fmk、Ac-WEHD-CHO(acetyl-Trp-Glu-His-Asp-aldehyde)、Ac-DEVD-CMK(acetyl-Asp-Glu-Val-Asp-chloromethylketone)、Boc-D-FMK(benzyloxycarbonyl-Asp(OMe)fluoromethylketone)、Z-YVAD-FMK (Z-Tyr-Val-Ala-Asp(OMe)-CH2F)、Z-WEHD-FMK (Z-Trp-Glu(OMe)-His-Asp(OMe)-CH2F)、Z-LEHD-FMK (Z-Leu-Glu(OMe)-His-Asp(OMe)-CH2F)、Z-IETD-FMK (Z-Ileu-Glu(OMe)-Thr-Asp(OMe)-CH2F)等の公知の物質を用いることができる。また、前記MEK阻害剤としては、例えば、U0125(1,4-Diamino-2,3-dicyano-1,4-bis(phenylthio)butadiene)、U0126、PD98059(2’-Amino-3’-methoxyflavone)等の公知の物質を用いることができる。 Examples of the caspase inhibitor include Z-VAD fmk, Ac-WEHD-CHO (acetyl-Trp-Glu-His-Asp-aldehyde), Ac-DEVD-CMK (acetyl-Asp-Glu-Val-Asp-chloromethylketone). ), Boc-D-FMK (benzyloxycarbonyl-Asp (OMe) fluoromethylketone), Z-YVAD-FMK (Z-Tyr-Val-Ala-Asp (OMe) -CH 2 F), Z-WEHD-FMK (Z-Trp -Glu (OMe) -His-Asp (OMe) -CH 2 F), Z-LEHD-FMK (Z-Leu-Glu (OMe) -His-Asp (OMe) -CH 2 F), Z-IETD-FMK A known substance such as (Z-Ileu-Glu (OMe) -Thr-Asp (OMe) -CH 2 F) can be used. Examples of the MEK inhibitor include U0125 (1,4-Diamino-2,3-dicyano-1,4-bis (phenylthio) butadiene), U0126, PD98059 (2′-Amino-3′-methoxyflavone). A known substance such as can be used.

前記アミノ酸誘導体としては、例えば、Ac-L-Ala-NH2、Ac-L-Met-NH2、Ac-L-Val-NH2、Ac-L-Leu-NH2、Ac-L-Gln-NH2等のアミノ酸(特にL-アミノ酸)誘導体(N末端がアセチル基等の公知の保護基により保護されており、C末端がアミド化されているもの)を用いることができる。 Examples of the amino acid derivatives include Ac-L-Ala-NH 2 , Ac-L-Met-NH 2 , Ac-L-Val-NH 2 , Ac-L-Leu-NH 2 , Ac-L-Gln- Amino acid (especially L-amino acid) derivatives such as NH 2 (where the N-terminus is protected by a known protecting group such as an acetyl group and the C-terminus is amidated) can be used.

本発明に係る予防・改善剤を適用する疾患としては、細胞内に侵入した病原性細菌(特に細胞内寄生細菌)、例えば、BCG(カルメット−ゲラン杆菌)、結核菌、A群レンサ球菌、黄色ブドウ球菌、病原性大腸菌、インフルエンザ菌、肺炎球菌、肺炎桿菌、ボツリヌス菌、病原性大腸菌、赤痢菌、レジオネラ菌、リステリア菌、ジンジバリス菌、ブドウ球菌など、に起因する疾患であれば特に制限されるものではないが、例えば、結核、咽頭炎、扁桃炎、肺炎、猩紅熱、劇症型溶血性レンサ球菌感染症、中毒症、細菌性赤痢、歯周病、ボツリヌス症、敗血症、髄膜炎、炎症性腸疾患、血管炎、IV型アレルギー性疾患、ブドウ球菌性熱傷様皮膚症候群、MRSA感染症、リッター病、新生児における水疱性インペチゴ、関節炎、化膿性疾患、腸炎、菌血症、眼感染などを挙げることができる。   Diseases to which the preventive / ameliorating agent according to the present invention is applied include pathogenic bacteria (particularly intracellular parasitic bacteria) that have invaded cells, for example, BCG (Bacille Calmette-Guerin), Mycobacterium tuberculosis, group A streptococci, yellow Diseases caused by staphylococci, pathogenic Escherichia coli, Haemophilus influenzae, pneumococci, pneumococci, Clostridium botulinum, pathogenic Escherichia coli, Shigella, Legionella, Listeria, gingivalis, staphylococci For example, tuberculosis, pharyngitis, tonsillitis, pneumonia, scarlet fever, fulminant hemolytic streptococcal infection, poisoning, bacterial dysentery, periodontal disease, botulism, sepsis, meningitis, inflammation Enteric disease, vasculitis, type IV allergic disease, staphylococcal burn-like skin syndrome, MRSA infection, Ritter disease, blistering impetigo in neonates, arthritis, purulent disease, enteritis, bacteremia And eye infections.

==本発明に用いられるペプチド==
上述の配列番号1に示されるアミノ酸配列を有するペプチド、又は、そのペプチドにおいて、1若しくは数個のアミノ酸が置換、欠失若しくは付加されたアミノ酸配列からなるペプチドとしては、細胞毒性がなく、細胞に侵入した細菌の生存を抑制することができるものであればどのようなものでもよく、例えば、配列番号1に示されるアミノ酸配列からなるペプチド、若しくは、そのペプチドの作用を増強させるため、2つのペプチドのC末端にCysを付加して作製したペプチドTNIII、又はそれらのペプチドにタグ(例えば、Hisタグ、GSTタグなど)が結合したペプチドなどを挙げることができる。
== Peptides used in the present invention ==
The peptide having the amino acid sequence shown in SEQ ID NO: 1 or the peptide consisting of the amino acid sequence in which one or several amino acids are substituted, deleted or added in the peptide is not cytotoxic and is not Any peptide that can suppress the survival of the invading bacteria may be used. For example, a peptide consisting of the amino acid sequence shown in SEQ ID NO: 1 or two peptides for enhancing the action of the peptide Peptide TNIII prepared by adding Cys to the C-terminus of the peptide or a peptide in which a tag (for example, His tag, GST tag, etc.) is bound to these peptides.

本発明に用いられるペプチドは、その配列情報に基づいて有機化学的に合成することができる。また、適切なエンハンサー/プロモーターをもつ発現ベクターに、本発明に用いられるペプチドをコードするポリヌクレオチドを挿入し、この組換えベクターを大腸菌、サルモネラ菌等の菌や、イースト、動物細胞などに導入し、発現させ、生成したペプチドを、常法を用いて精製してもよい。また、この組換えベクターをin vitroで転写させて得られたmRNAを、ウサギ網状赤血球抽出液、大腸菌S30抽出液、麦芽抽出液、小麦胚抽出液などを用いたインビトロ翻訳システムにより翻訳させて、合成されたペプチドを精製してもよい。   The peptide used in the present invention can be synthesized organically based on the sequence information. In addition, a polynucleotide encoding the peptide used in the present invention is inserted into an expression vector having an appropriate enhancer / promoter, the recombinant vector is introduced into bacteria such as Escherichia coli and Salmonella, yeast, animal cells, The peptide that is expressed and produced may be purified using conventional methods. In addition, mRNA obtained by in vitro transcription of this recombinant vector is translated by an in vitro translation system using rabbit reticulocyte extract, Escherichia coli S30 extract, malt extract, wheat germ extract, etc. The synthesized peptide may be purified.

ここで、発現ベクターを作製する際、Hisタグ、GSTタグなどのタグをコードするポリヌクレオチドと、本発明に用いられるペプチドをコードするポリヌクレオチドとを融合した融合ポリヌクレオチドをベクターに挿入し、融合タンパク質として発現させるのがより好ましい。タグを利用して、目的のペプチドを容易に精製することが可能になるからである。なお、タグは、最終段階で除去し、HPLC(high-performance(-speed) liquid chromatography)などで本発明に用いられるペプチドだけを精製することもできる。   Here, when preparing an expression vector, a fusion polynucleotide obtained by fusing a polynucleotide encoding a tag such as a His tag or a GST tag and a polynucleotide encoding a peptide used in the present invention is inserted into the vector and fused. More preferably, it is expressed as a protein. This is because the target peptide can be easily purified using the tag. The tag can be removed at the final stage, and only the peptide used in the present invention can be purified by HPLC (high-performance (-speed) liquid chromatography) or the like.

なお、本発明に用いられるペプチドを細胞外に分泌させるため、シグナルペプチドを付加してもよく、そのような融合ペプチドを発現することのできる組換えベクターは、上述のように、適切なエンハンサー/プロモーターをもつ発現ベクターに、融合ペプチドをコードするポリヌクレオチドを挿入することで作製することができる。   In addition, in order to secrete the peptide used in the present invention to the outside of the cell, a signal peptide may be added, and a recombinant vector capable of expressing such a fusion peptide is, as described above, an appropriate enhancer / It can be produced by inserting a polynucleotide encoding a fusion peptide into an expression vector having a promoter.

また、前記組換えベクターを含有する細胞(組換え細胞)は、例えば、動物細胞に、前記組換えベクターをエレクトロポレーション法、マイクロインジェクション法、リポフェクション法、アデノウイルス、レトロウイルス等のウイルスベクターなどを用いたウイルス感染法、又はカルシウムを用いたトランスフェクション法等によって導入することにより作製できる。   In addition, cells (recombinant cells) containing the recombinant vector include, for example, animal vectors, virus vectors such as electroporation method, microinjection method, lipofection method, adenovirus, retrovirus, etc. It can be prepared by introducing by a virus infection method using, or a transfection method using calcium.

==本発明に係る予防・改善剤の使用==
本発明に係る予防・改善剤を、細胞内に侵入した病原性細菌に起因する疾患の予防・改善のために、ヒト又はヒト以外の脊椎動物に対して投与する場合には、導入対象の患部の近傍に直接投与してもよいが、経口又は静脈内、腹腔内等の非経口に投与してもよい。なお、TNIII、カスパーゼ阻害剤、PI3P、MEK阻害剤、アミノ酸誘導体等の物質のうち2以上の物質を投与する場合には、同じ部位又は異なる部位に投与することとしてもよい。
== Use of the preventive / ameliorating agent according to the present invention ==
When the preventive / ameliorating agent according to the present invention is administered to a human or a non-human vertebrate for the prevention or amelioration of a disease caused by a pathogenic bacterium that has entered a cell, the affected area to be introduced However, it may be administered orally or parenterally such as intravenously or intraperitoneally. In addition, when two or more substances among substances such as TNIII, caspase inhibitor, PI3P, MEK inhibitor, and amino acid derivative are administered, they may be administered to the same site or different sites.

上述の予防・改善剤を経口投与する場合には、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤などの製剤にしてもよく、腹腔内又は静脈内に投与する場合には、注射剤、点滴剤などの製剤にしてもよい。なお、前記製剤は、従来使用されている製剤添加物(例えば、賦形剤、結合剤、滑沢剤、崩壊剤、矯味矯臭剤、溶剤、安定剤など)を用いて、常法により製造することができる。   When the above preventive / ameliorating agent is administered orally, it may be a tablet, capsule, granule, powder, syrup, etc. When it is administered intraperitoneally or intravenously, it is an injection or infusion. A preparation such as an agent may be used. In addition, the said formulation is manufactured by a conventional method using the conventionally used formulation additive (For example, an excipient | filler, binder, a lubricant, a disintegrating agent, a corrigent, a solvent, a stabilizer, etc.). be able to.

以下、実施例を用いてより詳細に説明する。   Hereinafter, it demonstrates in detail using an Example.

[実施例1]
貪食細胞であるマクロファージ由来Raw264.7細胞(6×106 cell)を、10% FBS(fetal bovine serum)を含むDMEM(ダルベッコ改変イーグル培地)の入った10cm dishで培養して接着させ、BCG(6×107個;日本ビーシージー製造株式会社製)を加えて37℃で1時間感染させた。その後、PBSで4回洗浄して細胞外のBCGを除去し、細胞をスクレーパーで回収した。これを2% FBSを含むDMEMに懸濁し、BCG感染細胞溶液(5〜10×105cell/mL)として以下の実験に用いた。また、Raw264.7細胞をBCGの添加なしで同様の処理を行い、対照用非感染細胞溶液(5〜10×105cell/mL)として以下の実験に用いた。
[Example 1]
Macrophage-derived Raw264.7 cells (6 × 10 6 cells), which are phagocytic cells, were cultured and adhered in a 10 cm dish containing DMEM (Dulbecco's Modified Eagle Medium) containing 10% FBS (fetal bovine serum), and BCG ( 6 × 10 7 pieces; manufactured by Nippon BCG Co., Ltd.) was added and the mixture was infected at 37 ° C. for 1 hour. Thereafter, the cells were washed 4 times with PBS to remove extracellular BCG, and the cells were collected with a scraper. This was suspended in DMEM containing 2% FBS and used as a BCG-infected cell solution (5 to 10 × 10 5 cells / mL) in the following experiment. Raw 264.7 cells were treated in the same manner without addition of BCG and used as a control non-infected cell solution (5 to 10 × 10 5 cells / mL) in the following experiments.

mTOR(mammalian target of Rapamycin)阻害剤であるラパマイシン(50μg/mL;和光純薬製)、MEK阻害剤であるU0126(2μM;Calbiochem社製)、若しくは、ラパマイシン(50μg/mL)及びU0126(2μM)を添加したBCG感染細胞溶液、何も添加していないBCG感染細胞溶液(コントロール)、あるいは非感染細胞溶液(未感染)を、10μg/mL ヒト由来血漿性フィブロネクチン(ヒト血漿から精製;Fukai et al. J Biol Chem 266: 8807-8813, 1991)溶液(FNのPBS溶液)で37℃,1時間インキュベートすることによりコートした6ウェルプレートの各ウェルに播種し、37℃で1日又は2日間インキュベートした。その後、細胞をスクレーパーで回収し、遠心分離した(2000rpm×5分間)。遠心分離後、上清を除去し、RIPA1/2溶液(0.05% SDS、0.5% TritonX-100、5mM Tris-HCl、75mM NaCl、2.5mM EDTA)を1 mL加えて室温で10分間放置し、細胞を溶解した。細胞溶解液を遠心分離した後(3000rpm×5分間)、上清を除去し、沈査のBCGをPBSで3回洗浄した。   Rapamycin (50 μg / mL; manufactured by Wako Pure Chemical Industries) which is an mTOR (mammalian target of Rapamycin) inhibitor, U0126 (2 μM; manufactured by Calbiochem) which is a MEK inhibitor, or rapamycin (50 μg / mL) and U0126 (2 μM) BCG-infected cell solution with or without BCG-infected cell solution (control) or non-infected cell solution (uninfected) at 10 μg / mL human plasma fibronectin (purified from human plasma; Fukai et al J Biol Chem 266: 8807-8813, 1991) inoculated into each well of a coated 6-well plate by incubating with a solution (FN in PBS) at 37 ° C for 1 hour and incubated at 37 ° C for 1 or 2 days did. Thereafter, the cells were collected with a scraper and centrifuged (2000 rpm × 5 minutes). After centrifugation, the supernatant is removed, and 1 mL of RIPA1 / 2 solution (0.05% SDS, 0.5% TritonX-100, 5 mM Tris-HCl, 75 mM NaCl, 2.5 mM EDTA) is added and allowed to stand at room temperature for 10 minutes. Was dissolved. After centrifuging the cell lysate (3000 rpm × 5 minutes), the supernatant was removed, and the precipitated BCG was washed 3 times with PBS.

洗浄後、沈査のBCGをPBSで1mLとなるように懸濁し、96ウェルプレートの各ウェルに200μLずつ注入した。その後、10% Alamar Blue(Biosouce社製)を各ウェルに20μLずつ加えて撹拌し、37℃で2時間インキュベートした。インキュベート後、蛍光プレートリーダー(Ex530nm,Em590nm;Perseptive Biosystems社製)を用いて蛍光強度を測定することにより細胞内で生存していたBCGの数を評価した。その結果を図1に示す。   After washing, the precipitated BCG was suspended in PBS to 1 mL, and 200 μL was injected into each well of a 96-well plate. Then, 20 μL of 10% Alamar Blue (manufactured by Biosouce) was added to each well, stirred, and incubated at 37 ° C. for 2 hours. After the incubation, the number of BCG that survived in the cells was evaluated by measuring the fluorescence intensity using a fluorescence plate reader (Ex530 nm, Em590 nm; manufactured by Perseptive Biosystems). The result is shown in FIG.

図1に示すように、mTOR阻害剤であるラパマイシン、MEK阻害剤であるU0126、ラパマイシン+U0126で処理した感染細胞は、コントロールと比べて顕著にBCGの数が減少していることが明らかになった。   As shown in FIG. 1, it was revealed that infected cells treated with mTOR inhibitor rapamycin, MEK inhibitor U0126, and rapamycin + U0126 had a significantly reduced number of BCG compared to the control. .

[実施例2]
次に、ラパマイシンやU0126などの代わりにTNIII(80μg/ml)、カスパーゼ阻害剤であるZ-VAD fmk(100μM;Sigma 社製)、又は、TNIII(80μg/ml)及びZ-VAD fmk(100μM)を用いて37℃で1日又は2日間インキュベートする他は実施例1に記載の方法と同様に、細胞内に生存するBCGの数を評価した。その結果を図2に示す。
[Example 2]
Next, instead of rapamycin or U0126, TNIII (80 μg / ml), caspase inhibitor Z-VAD fmk (100 μM; manufactured by Sigma), or TNIII (80 μg / ml) and Z-VAD fmk (100 μM) The number of BCG surviving in the cells was evaluated in the same manner as in the method described in Example 1 except that the cells were incubated at 37 ° C. for 1 day or 2 days. The result is shown in FIG.

図2に示すように、TNIII、及び、カスパーゼ阻害剤であるZ-VAD fmkも、コントロールに比べて顕著にBCGの数を減少することが明らかになった。   As shown in FIG. 2, it was revealed that TNIII and the caspase inhibitor Z-VAD fmk also significantly reduced the number of BCG compared to the control.

[実施例3]
次に、マクロファージに対する各物質(ラパマイシン、U0126、TNIII、Z-VADなど)の細胞障害作用の有無を調べるため、以下の実験を行った。
[Example 3]
Next, the following experiment was conducted in order to examine the presence or absence of the cytotoxic action of each substance (such as rapamycin, U0126, TNIII, and Z-VAD) on macrophages.

96-ウェルプレートに、実施例1で準備したBCG感染細胞溶液又は非感染細胞溶液を200μlずつ播種し、最終濃度で25又は50μg/mLとなるようにラパマイシンを添加し、37℃で1日間培養した。なお、コントロールとして、ラパマイシンを添加しないで培養したBCG感染細胞溶液及び非感染細胞溶液を用いて同様に実験を行った。   Inoculate 200 μl of the BCG-infected cell solution or non-infected cell solution prepared in Example 1 in a 96-well plate, add rapamycin to a final concentration of 25 or 50 μg / mL, and culture at 37 ° C. for 1 day did. As a control, the same experiment was performed using a BCG-infected cell solution and a non-infected cell solution cultured without adding rapamycin.

培養後、MTT(3-(4,5-dimethlthiazol-2-yl)-2,5-diphenyltetrazolium bromide)アッセイ法に準じてCell Counting Kit (同仁化学社製)を用いて生細胞数を評価した(マイクロプレートリーダー(BioRad社製)を用いて吸光度(測定波長450 nm,リファレンス側655 nm)を測定した)。その結果を図3に示す。   After culturing, the number of viable cells was evaluated using Cell Counting Kit (manufactured by Dojindo) according to the MTT (3- (4,5-dimethlthiazol-2-yl) -2,5-diphenyltetrazolium bromide) assay method ( Absorbance (measurement wavelength 450 nm, reference side 655 nm) was measured using a microplate reader (BioRad). The result is shown in FIG.

また、96-ウェルプレートに、Raw264.7細胞の懸濁液(2% FBSを含むDMEM)(1×104/200μl/well)を200μlずつ播種し、ラパマイシンの代わりにU0126(2μM)、TNIII(40又は80μg/mL)、又はZ-VAD(100μM)を添加し、37℃で1、2、又は3日間インキュベートし、Raw264.7細胞に対する細胞障害試験を行った。その結果を図4に示す。 Furthermore, in 96-well plates were seeded suspension of Raw264.7 cells (DMEM containing 2% FBS) and (1 × 10 4 / 200μl / well) by 200 [mu] l, U0126 in place of rapamycin (2μM), TNIII (40 or 80 μg / mL) or Z-VAD (100 μM) was added and incubated at 37 ° C. for 1, 2 or 3 days, and cytotoxicity test was performed on Raw264.7 cells. The result is shown in FIG.

図3に示すように、ラパマイシンで処理した宿主細胞はほとんどが細胞死を起こすのに対して、図4に示すように、U0126及びTNIIIはマクロファージに対して傷害作用を示さないことがわかった。また、図4に示すように、Z-VAD fmkはマクロファージに対する傷害作用を有するもののラパマイシンに比べてその作用が弱いことがわかった。これらのことから、MEK阻害剤、TNIII、カスパーゼ阻害剤などは、正常細胞には毒性を有さず、病原性細菌が侵入した細胞の生存や増殖を抑制することができるため、細胞に侵入した病原性細菌に起因する疾患の予防・改善に有用であると考えられる。   As shown in FIG. 3, most of the host cells treated with rapamycin caused cell death, whereas as shown in FIG. 4, it was found that U0126 and TNIII had no damaging effect on macrophages. Further, as shown in FIG. 4, it was found that Z-VAD fmk has a damaging action on macrophages but its action is weaker than rapamycin. Therefore, MEK inhibitors, TNIII, caspase inhibitors, etc. have no toxicity to normal cells and can suppress the survival and proliferation of cells invaded by pathogenic bacteria. It is thought to be useful for the prevention and improvement of diseases caused by pathogenic bacteria.

[実施例4]
次に、ラパマイシンやU0126などの代わりにアミノ酸誘導体であるAc-L-Ala-NH2(20mM;Bachem 社製)、又はPI3P(10μM;Sigma 社製)を用いて37℃で1日間インキュベートする他は実施例1に記載の方法と同様に、細胞内に生存するBCGの数を評価した。その結果を図5に示す。
[Example 4]
Next, instead of rapamycin, U0126, etc., the amino acid derivative Ac-L-Ala-NH 2 (20 mM; manufactured by Bachem) or PI3P (10 μM; manufactured by Sigma) is used for one day at 37 ° C. In the same manner as described in Example 1, the number of BCG surviving in the cells was evaluated. The result is shown in FIG.

図5に示すように、アミノ酸誘導体であるAc-L-Ala-NH2、及び、PI3Pも、コントロールに比べてBCGの数を減少することが明らかになった。 As shown in FIG. 5, it was revealed that the amino acid derivatives Ac-L-Ala-NH 2 and PI3P also decreased the number of BCG compared to the control.

また、ラパマイシンの代わりにAc-L-Ala-NH2を用いて37℃で1又は2日間インキュベートする他は実施例3に記載の方法と同様に、非感染細胞に対する細胞障害試験を行ったところ(図6)、Ac-L-Ala-NH2もマクロファージに対して傷害作用を示さないことがわかった。これらのことから、アミノ酸誘導体、PI3Pなどは、正常細胞には毒性を有さず、病原性細菌が侵入した細胞の生存や増殖を抑制することができるため、細胞に侵入した病原性細菌に起因する疾患の予防・改善に有用であると考えられる。 In addition, a cytotoxicity test was performed on uninfected cells in the same manner as in Example 3 except that Ac-L-Ala-NH 2 was used instead of rapamycin and the cells were incubated at 37 ° C. for 1 or 2 days. (FIG. 6) It was found that Ac-L-Ala-NH 2 also showed no damaging action on macrophages. As a result, amino acid derivatives, PI3P, etc. are not toxic to normal cells, and can suppress the survival and proliferation of cells invaded by pathogenic bacteria, resulting in pathogenic bacteria invading cells. It is thought that it is useful for prevention and improvement of diseases.

本発明の一実施例において、ラパマイシン、U0126、又は、ラパマイシン及びU0126が細胞に感染したBCGの生存に与える影響を調べた結果を示す図である。In one Example of this invention, it is a figure which shows the result of having investigated the influence which rapamycin, U0126, or rapamycin and U0126 has on the survival of BCG which infected the cell. 本発明の一実施例において、TNIII、Z-VAD fmk、又は、TNIII及びZ-VAD fmkが細胞に感染したBCGの生存に与える影響を調べた結果を示す図である。In one Example of this invention, it is a figure which shows the result of having investigated the influence which TNIII, Z-VAD fmk, or TNIII and Z-VAD fmk gives to the survival of BCG which infected the cell. 本発明の一実施例において、マクロファージに対するラパマイシンの細胞障害作用を調べた結果を示す図である。In one Example of this invention, it is a figure which shows the result of having investigated the cytotoxic effect of rapamycin with respect to a macrophage. 本発明の一実施例において、マクロファージに対する各物質(U0126、TNIII、Z-VADなど)の細胞障害作用を調べた結果を示す図である。In one Example of this invention, it is a figure which shows the result of having investigated the cytotoxic effect of each substance (U0126, TNIII, Z-VAD etc.) with respect to a macrophage. 本発明の一実施例において、Ac-L-Ala-NH2、又は、PI3Pが細胞に感染したBCGの生存に与える影響を調べた結果を示す図である。In one embodiment of the present invention, Ac-L-Ala-NH 2, or is a diagram showing the results of examining the effect on survival of BCG which PI3P infects a cell. 本発明の一実施例において、マクロファージに対するAc-L-Ala-NH2の細胞障害作用を調べた結果を示す図である。In one embodiment of the present invention, showing the results of examining the cytotoxic effects of Ac-L-Ala-NH 2 on macrophage.

Claims (16)

細胞内に侵入した病原性細菌に起因する疾患の予防・改善剤であって、
配列番号1に示されるアミノ酸配列を有するペプチドを有効成分として含有する予防・改善剤。
A preventive / ameliorating agent for diseases caused by pathogenic bacteria that have invaded cells,
A preventive / ameliorating agent comprising a peptide having the amino acid sequence shown in SEQ ID NO: 1 as an active ingredient.
前記ペプチドにおいて、1若しくは数個のアミノ酸が置換、欠失若しくは付加されたアミノ酸配列からなるペプチドであることを特徴とする請求項1に記載の予防・改善剤。   The preventive / ameliorating agent according to claim 1, wherein the peptide is a peptide having an amino acid sequence in which one or several amino acids are substituted, deleted, or added. さらに、カスパーゼ阻害剤を含有することを特徴とする請求項1又は2に記載の予防・改善剤。   The preventive / ameliorating agent according to claim 1 or 2, further comprising a caspase inhibitor. 前記カスパーゼ阻害剤がZ-VAD fmk(Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone)であることを特徴とする請求項3に記載の予防・改善剤。   The preventive / ameliorating agent according to claim 3, wherein the caspase inhibitor is Z-VAD fmk (Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone). 前記病原性細菌が結核菌であることを特徴とする請求項1〜4のいずれかに記載の予防・改善剤。   The preventive / ameliorating agent according to any one of claims 1 to 4, wherein the pathogenic bacterium is Mycobacterium tuberculosis. 細胞内に侵入した病原性細菌に起因する疾患の予防・改善剤であって、
カスパーゼ阻害剤を有効成分として含有する予防・改善剤。
A preventive / ameliorating agent for diseases caused by pathogenic bacteria that have invaded cells,
A preventive / improving agent comprising a caspase inhibitor as an active ingredient.
前記病原性細菌が結核菌であることを特徴とする請求項6に記載の予防・改善剤。   The preventive / ameliorating agent according to claim 6, wherein the pathogenic bacterium is Mycobacterium tuberculosis. 前記カスパーゼ阻害剤がZ-VAD fmk(Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone)であることを特徴とする請求項6又は7に記載の予防・改善剤。   The preventive / ameliorating agent according to claim 6 or 7, wherein the caspase inhibitor is Z-VAD fmk (Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone). 細胞内に侵入した病原性細菌に起因する疾患の予防・改善剤であって、
PI3P(phosphatidylinositol-3-phosphate)を有効成分として含有する改善剤。
A preventive / ameliorating agent for diseases caused by pathogenic bacteria that have invaded cells,
An improving agent containing PI3P (phosphatidylinositol-3-phosphate) as an active ingredient.
前記細菌が結核菌であることを特徴とする請求項9に記載の予防・改善剤。   The preventive / ameliorating agent according to claim 9, wherein the bacterium is Mycobacterium tuberculosis. 細胞内に侵入した病原性細菌に起因する疾患の予防・改善剤であって、
MEK(Mitogen-activated protein(MAP)kinases)阻害剤を有効成分として含有する予防・改善剤。
A preventive / ameliorating agent for diseases caused by pathogenic bacteria that have invaded cells,
A preventive / ameliorating agent containing a MEK (Mitogen-activated protein (MAP) kinases) inhibitor as an active ingredient.
前記細菌が結核菌であることを特徴とする請求項11に記載の予防・改善剤。   The preventive / ameliorating agent according to claim 11, wherein the bacterium is Mycobacterium tuberculosis. 前記MEK阻害剤がU0126(1.4-diamino-2,3-dicyano-1,4-bis(2-amino-phenylthio)butadiene)であることを特徴とする請求項11又は12に記載の予防・改善剤。   The preventive / ameliorating agent according to claim 11 or 12, wherein the MEK inhibitor is U0126 (1.4-diamino-2,3-dicyano-1,4-bis (2-amino-phenylthio) butadiene). . 細胞内に侵入した病原性細菌に起因する疾患の予防・改善剤であって、
アミノ酸誘導体を有効成分として含有する予防・改善剤。
A preventive / ameliorating agent for diseases caused by pathogenic bacteria that have invaded cells,
A preventive / improving agent containing an amino acid derivative as an active ingredient.
前記細菌が結核菌であることを特徴とする請求項14に記載の予防・改善剤。   The preventive / ameliorating agent according to claim 14, wherein the bacterium is Mycobacterium tuberculosis. 前記アミノ酸誘導体がAc-L-Ala-NH2(Acetyl-L-alanine amide)であることを特徴とする請求項14又は15に記載の予防・改善剤。

The preventive / ameliorating agent according to claim 14 or 15, wherein the amino acid derivative is Ac-L-Ala-NH 2 (Acetyl-L-alanine amide).

JP2005246577A 2005-08-26 2005-08-26 Prophylactic/ameliorant for disease caused by pathogenic bacterium penetrated into cell Pending JP2007055983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005246577A JP2007055983A (en) 2005-08-26 2005-08-26 Prophylactic/ameliorant for disease caused by pathogenic bacterium penetrated into cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005246577A JP2007055983A (en) 2005-08-26 2005-08-26 Prophylactic/ameliorant for disease caused by pathogenic bacterium penetrated into cell

Publications (1)

Publication Number Publication Date
JP2007055983A true JP2007055983A (en) 2007-03-08

Family

ID=37919768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246577A Pending JP2007055983A (en) 2005-08-26 2005-08-26 Prophylactic/ameliorant for disease caused by pathogenic bacterium penetrated into cell

Country Status (1)

Country Link
JP (1) JP2007055983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173788A1 (en) * 2014-05-16 2015-11-19 Westfaelische Wilhelms-Universitaet Muenster Novel anti-infective strategy against influenza virus and s. aureus coinfections
JP2020537659A (en) * 2017-10-17 2020-12-24 アトリバ セラピューティクス ゲーエムベーハー A novel MEK inhibitor for the treatment of viral and bacterial infections

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173788A1 (en) * 2014-05-16 2015-11-19 Westfaelische Wilhelms-Universitaet Muenster Novel anti-infective strategy against influenza virus and s. aureus coinfections
JP2017515910A (en) * 2014-05-16 2017-06-15 アトリバ セラピューティクス ゲーエムベーハー A novel anti-infection strategy against superinfection of influenza virus and Staphylococcus aureus
CN107073123A (en) * 2014-05-16 2017-08-18 归属疗法有限公司 The novel anti-infection strategy of resisiting influenza virus and staphylococcus aureus concurrent infection
US10456440B2 (en) 2014-05-16 2019-10-29 Atriva Therapeutics Gmbh Anti-infective strategy against influenza virus and S. aureus coinfections
EP3708156A1 (en) * 2014-05-16 2020-09-16 Atriva Therapeutics GmbH Novel anti-infective strategy against influenza virus and s. aureus coinfections
JP2021059592A (en) * 2014-05-16 2021-04-15 アトリバ セラピューティクス ゲーエムベーハー Novel-anti-infective strategy against influenza virus and s. aureus co-infections
US11135263B2 (en) 2014-05-16 2021-10-05 Atriva Therapeutics Gmbh Novel-anti-infective strategy against influenza virus and S. aureus coinfections
EA039897B1 (en) * 2014-05-16 2022-03-24 Атрива Терепьютикс Гмбх Use of mek inhibitor in the treatment of a co-infection comprising a bacterial infection and an influenza virus infection
AU2020256326B2 (en) * 2014-05-16 2022-12-08 Atriva Therapeutics Gmbh Novel Anti-Infective Strategy Against Influenza Virus And S.aureus Coinfections
JP2020537659A (en) * 2017-10-17 2020-12-24 アトリバ セラピューティクス ゲーエムベーハー A novel MEK inhibitor for the treatment of viral and bacterial infections
JP7227967B2 (en) 2017-10-17 2023-02-22 アトリバ セラピューティクス ゲーエムベーハー Novel MEK inhibitors for the treatment of viral and bacterial infections

Similar Documents

Publication Publication Date Title
JP7348255B2 (en) antibacterial therapy
Ripert et al. Secreted compounds of the probiotic Bacillus clausii strain O/C inhibit the cytotoxic effects induced by Clostridium difficile and Bacillus cereus toxins
Granato et al. Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins
Schneider et al. The lipopeptide antibiotic Friulimicin B inhibits cell wall biosynthesis through complex formation with bactoprenol phosphate
Sherlock et al. Glycosylation of the self-recognizing Escherichia coli Ag43 autotransporter protein
Reinscheid et al. Identification and molecular analysis of PcsB, a protein required for cell wall separation of group B streptococcus
Wang et al. Cerecidins, novel lantibiotics from Bacillus cereus with potent antimicrobial activity
Wang et al. S higella flexneri T 3 SS effector IpaH 4.5 modulates the host inflammatory response via interaction with NF‐κ B p65 protein
Fu et al. Biosynthetic studies of telomycin reveal new lipopeptides with enhanced activity
AU2019200192A1 (en) Clostridium histolyticum enzymes and methods for the use thereof
US9017692B2 (en) Antimicrobial agent, bacterial strain, biosynthesis, and methods of use
Kim et al. Characterization and structure identification of an antimicrobial peptide, hominicin, produced by Staphylococcus hominis MBBL 2–9
Romero-Saavedra et al. Identification of peptidoglycan-associated proteins as vaccine candidates for enterococcal infections
Hancz et al. Inhibition of inflammasome-dependent interleukin 1β production by streptococcal NAD+-glycohydrolase: evidence for extracellular activity
Calasso et al. Effects of the peptide pheromone plantaricin A and cocultivation with Lactobacillus sanfranciscensis DPPMA174 on the exoproteome and the adhesion capacity of Lactobacillus plantarum DC400
Velarde et al. Binding of NAD+-glycohydrolase to streptolysin O stabilizes both toxins and promotes virulence of group A Streptococcus
Guglielmetti et al. Murein lytic enzyme TgaA of Bifidobacterium bifidum MIMBb75 modulates dendritic cell maturation through its cysteine-and histidine-dependent amidohydrolase/peptidase (CHAP) amidase domain
Brouwer et al. Endopeptidase PepO regulates the SpeB cysteine protease and is essential for the virulence of invasive M1T1 Streptococcus pyogenes
Yang et al. ClyJ is a novel pneumococcal chimeric lysin with a cysteine-and histidine-dependent amidohydrolase/peptidase catalytic domain
Zhang et al. Two novel regulators of N‐acetyl‐galactosamine utilization pathway and distinct roles in bacterial infections
Carothers et al. The streptococcal protease SpeB antagonizes the biofilms of the human pathogen Staphylococcus aureus USA300 through cleavage of the staphylococcal SdrC protein
Phothichaisri et al. Potential role of the host-derived cell-wall binding domain of endolysin CD16/50L as a molecular anchor in preservation of uninfected Clostridioides difficile for new rounds of phage infection
Ma et al. Acetylation of lactate dehydrogenase negatively regulates the acidogenicity of Streptococcus mutans
Lavollay et al. The β‐lactam‐sensitive d, d‐carboxypeptidase activity of Pbp4 controls the l, d and d, d transpeptidation pathways in Corynebacterium jeikeium
Yarlagadda et al. Resistance-guided discovery of elfamycin antibiotic producers with antigonococcal activity