JP2007055973A - Methanol-producing device and methanol-producing method - Google Patents

Methanol-producing device and methanol-producing method Download PDF

Info

Publication number
JP2007055973A
JP2007055973A JP2005245939A JP2005245939A JP2007055973A JP 2007055973 A JP2007055973 A JP 2007055973A JP 2005245939 A JP2005245939 A JP 2005245939A JP 2005245939 A JP2005245939 A JP 2005245939A JP 2007055973 A JP2007055973 A JP 2007055973A
Authority
JP
Japan
Prior art keywords
methanol
reactor
reaction
water
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005245939A
Other languages
Japanese (ja)
Inventor
Hisashi Nobunaga
尚志 延永
Yoichi Takahashi
洋一 高橋
Tatsuo Nakatani
龍男 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005245939A priority Critical patent/JP2007055973A/en
Publication of JP2007055973A publication Critical patent/JP2007055973A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a methanol-producing device which is used for producing methanol from a gas containing carbon dioxide and hydrogen as a raw material gas, can sufficiently enhance a methanol conversion rate over an equilibrium conversion rate at the prescribed temperature and pressure, does not need a methanol distillation process for the separation of the methanol and the water which are reaction products, and can lower production cost. <P>SOLUTION: This methanol-producing device for reacting a raw material gas containing hydrogen and carbon dioxide in a reactor 1 in the presence of a catalyst and an organic solvent to produce the methanol is characterized in that the reactor 1 is formed to react the raw material gas in such reaction conditions that the methanol as one of the reaction products becomes a gas and by-produced water as the other becomes a liquid, and has a membrane separator 11 for extracting a part of the liquid phase containing the by-produced water from the reactor to selectively separate off the water from the liquid phase, so that a phase rich in the organic solvent is returned and circulated to the reactor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水素と二酸化炭素を含む原料ガスを触媒の存在下で反応させてメタノールを製造するメタノール製造装置及びメタノール製造方法に関するものである。   The present invention relates to a methanol production apparatus and a methanol production method for producing methanol by reacting a raw material gas containing hydrogen and carbon dioxide in the presence of a catalyst.

メタノールの合成方法として、一般に水素と一酸化炭素および/または二酸化炭素から成る原料ガスを、所定の反応条件下で触媒反応させる接触水素化法が知られている。これらの合成法には気相合成法と液相合成法がある。これらの反応式は以下の通りである。

CO +2H=CHOH (1)
CO+3H=CHOH
+ HO (2)

水素と二酸化炭素を含む原料ガスを用いる場合、上記(2)式に示したように、メタノールと等モルの水が生成する。この水は触媒を劣化させる問題がある。
As a method for synthesizing methanol, a catalytic hydrogenation method is generally known in which a raw material gas composed of hydrogen and carbon monoxide and / or carbon dioxide is subjected to a catalytic reaction under predetermined reaction conditions. These synthesis methods include a gas phase synthesis method and a liquid phase synthesis method. These reaction formulas are as follows.

CO + 2H 2 = CH 3 OH (1)
CO 2 + 3H 2 = CH 3 OH
+ H 2 O (2)

When a raw material gas containing hydrogen and carbon dioxide is used, methanol and equimolar water are produced as shown in the above equation (2). This water has a problem of deteriorating the catalyst.

また、上記(2)式は発熱反応で、モル数減少型平衡反応である。したがって、化学平衡上、低温高圧条件ほどメタノール合成に有利な反応である。   Further, the above formula (2) is an exothermic reaction and is an equilibrium reaction with a reduced number of moles. Therefore, in terms of chemical equilibrium, the reaction is more advantageous for methanol synthesis at lower temperature and higher pressure conditions.

メタノールの平衡転化率は上記(2)式の熱力学的平衡定数によって決定され、例えば250℃、5MPaの条件下で21%と低い値である。反応圧力を例えば15MPaに高めると平衡転化率は40%まで改善されるが、原料ガスの圧縮動力が大きくなってしまう。したがって、水素と二酸化炭素を含む原料ガスを用いたメタノール合成反応において、化学平衡の制約から解放されない限り、高いワンパス転化率を得ることはできない。化学平衡の制約から解放するには、化学平衡を生成側にシフトさせる必要があり、これまで、以下のような方法が検討されている。   The equilibrium conversion rate of methanol is determined by the thermodynamic equilibrium constant of the above equation (2), and is as low as 21% under the condition of 250 ° C. and 5 MPa, for example. Increasing the reaction pressure to 15 MPa, for example, improves the equilibrium conversion rate to 40%, but increases the compression power of the raw material gas. Therefore, in a methanol synthesis reaction using a raw material gas containing hydrogen and carbon dioxide, a high one-pass conversion rate cannot be obtained unless it is freed from restrictions on chemical equilibrium. In order to release from the constraint of chemical equilibrium, it is necessary to shift the chemical equilibrium to the production side, and the following methods have been studied so far.

(A)メタノール水溶液をほとんど溶解しないドデカン等を反応溶媒とし、反応容器から反応溶媒とメタノール水溶液を連続的に系外に排出する液相合成法が、特公平7−47554号公報(特許文献1)又は特開平9−227423号公報(特許文献2)に記載されている。
前者の公報には、原料ガスからメタノールを製造する際に、反応器内におけるメタノール及び水の少なくとも一部が液体として存在するのに十分な高圧力下で反応させ、反応生成物であるメタノールと水をメタノール水溶液として分離除去して反応器外に排出すると記載されている。
(A) A liquid phase synthesis method in which dodecane or the like that hardly dissolves an aqueous methanol solution is used as a reaction solvent, and the reaction solvent and the aqueous methanol solution are continuously discharged out of the reaction vessel from the reaction vessel is disclosed in Japanese Patent Publication No. 7-47554 (Patent Document 1). ) Or JP-A-9-227423 (Patent Document 2).
In the former publication, when methanol is produced from a raw material gas, the reaction is carried out under a high enough pressure so that at least a part of methanol and water in the reactor exist as a liquid, and methanol as a reaction product and It is described that water is separated and removed as an aqueous methanol solution and discharged out of the reactor.

(B)原料ガスと反応生成物(メタノールと水)を高分子膜で合成しながら分離するメタノール製造方法が、特表平9−511509号公報(特許文献3)に記載されている。
ここで、高分子膜は反応生成物であるメタノール及び/又は水を分離する旨が記載されている。しかし、具体的に開示されている高分子膜は過フッ化陽イオン交換膜等の過フッ化イオノマーからなる膜だけであり、該膜はメタノールと水を一緒に未反応ガスから分離するものである。同公報の明細書には水だけを分離除去する高分子膜については具体的には全く記載されていない。
更に、合成反応を行う前に、塩化リチウム溶液を高分子膜に接触させることによって、リチウムイオンを該膜にドープして一方の面は化学物質に対して安定性を備え、他方の面は約250℃までの良好な温度安定性を有すると記載されている。すなわち、ここで開示されている高分子膜は、合成反応に用いる前に、リチウムイオンをドープさせる前処理が必要なものである。
(B) A method for producing methanol in which a raw material gas and a reaction product (methanol and water) are separated while being synthesized with a polymer membrane is described in JP-A-9-511509 (Patent Document 3).
Here, it is described that the polymer membrane separates methanol and / or water as reaction products. However, the specifically disclosed polymer membrane is only a membrane made of a perfluorinated ionomer such as a perfluorinated cation exchange membrane, which separates methanol and water together from unreacted gas. is there. The specification of this publication does not specifically describe a polymer membrane that separates and removes only water.
Furthermore, before conducting the synthesis reaction, the lithium chloride solution is brought into contact with the polymer membrane to dope lithium ions into the membrane so that one side is stable against chemicals and the other side is about It is described as having good temperature stability up to 250 ° C. That is, the polymer film disclosed here requires a pretreatment of doping lithium ions before being used for the synthesis reaction.

特公平7−47554号公報Japanese Patent Publication No. 7-47554 特開平9−227423号公報JP-A-9-227423 特表平9−511509号公報JP 9-511509 A

上記(A)の特公平7−47554号公報等に記載されたメタノール合成法では、反応器から取り出した液相を有機溶媒とアルコール水溶液に分離するために温度を下げて行っており、そのため分離した有機溶媒を再循環して反応器に戻す前に再加熱して反応温度まで高める必要がある。更に、反応生成物がメタノール水溶液として分離されるので、メタノールと水を分離するためにメタノールの蒸留工程が更に必要となる。このため前記再加熱や蒸留のためのエネルギーがかかりコストダウンの妨げとなっていた。   In the methanol synthesis method described in the above Japanese Patent Publication No. 7-47554 of (A), the temperature is lowered in order to separate the liquid phase taken out from the reactor into an organic solvent and an aqueous alcohol solution. The recycled organic solvent must be reheated to the reaction temperature before being recycled and returned to the reactor. Furthermore, since the reaction product is separated as an aqueous methanol solution, a methanol distillation step is further required to separate methanol and water. For this reason, the energy for the said reheating and distillation was added and became the hindrance of the cost reduction.

上記(B)の特表平9−511509号公報に記載されたメタノール合成法は、原料ガスからメタノールを合成しながら高分子膜によって反応生成物を反応系外に分離除去するので、平衡反応はメタノール生成側にシフトし、前記メタノール転化率を高めることができる。しかし、具体的な開示内容によれば、反応生成物のメタノールと水を一緒に未反応ガスから分離する方法である。従って、メタノールと水を分離するためにメタノールの蒸留工程が更に必要となり、蒸留のためのエネルギーがかかりコストダウンの妨げとなる問題がある。   In the methanol synthesis method described in JP-A-9-511509 of (B) above, the reaction product is separated and removed from the reaction system by the polymer membrane while synthesizing methanol from the raw material gas. Shifting to the methanol production side can increase the methanol conversion rate. However, according to the specific disclosure, the reaction product methanol and water are separated from unreacted gas together. Therefore, a methanol distillation step is further required to separate methanol and water, and there is a problem that energy is required for distillation and hinders cost reduction.

また、ここに記載されている高分子膜は、上記の如く合成反応に用いる前にリチウムイオンをドープさせる前処理が必要なものであるので、前処理工程に伴うコストアップと共に、このような前処理を施しても高分子膜自体の耐熱性及び耐久性は不十分なものであった。   In addition, since the polymer film described here requires a pretreatment to be doped with lithium ions before being used in the synthesis reaction as described above, such a pretreatment process is accompanied by an increase in costs associated with the pretreatment process. Even when the treatment was performed, the heat resistance and durability of the polymer film itself were insufficient.

本発明の目的は、二酸化炭素と水素を含むガスを原料ガスとするメタノール合成であって、ある温度及び圧力下における平衡転化率を超えてメタノール転化率を十分に高めることができ、反応生成物であるメタノールと水を分離するためのメタノール蒸留工程が要らず、以てコストダウンを図ることができるメタノール製造装置及びメタノール製造方法を提供することにある。   An object of the present invention is methanol synthesis using a gas containing carbon dioxide and hydrogen as a raw material gas, which can sufficiently increase the methanol conversion rate exceeding the equilibrium conversion rate under a certain temperature and pressure, It is an object of the present invention to provide a methanol production apparatus and a methanol production method that do not require a methanol distillation step for separating methanol and water, and that can reduce costs.

上記目的を達成するために、本発明の第1の態様に係るメタノール製造装置は、水素と二酸化炭素を含む原料ガスを反応器内で触媒及び有機溶媒の存在下で反応させてメタノールを製造するメタノール製造装置であって、前記反応器は、反応生成物の一方のメタノールは気体となり、副生する他方の水は液体となる反応条件で反応させるように構成され、該反応器内から前記副生した水を含む液相を一部抜き出して、該液相を、水と、有機溶媒に富む相に分離する分離器を備え、前記有機溶媒に富む相を前記反応器に戻して循環するように構成されていることを特徴とするものである。
ここで、有機溶媒に富む相とは、メタノール合成反応で副生した水が混ざっている水・有機溶媒混合状態の液相が分離器による分離処理が行われて、該分離処理前よりも水の割合が減少して有機溶媒の割合が増えた状態の液相を言う。すなわち、反応器内の液相より有機溶媒の割合が多く、水の割合が少ない状態に分離器で分離処理された液相を意味する。
To achieve the above object, the methanol production apparatus according to the first aspect of the present invention produces methanol by reacting a raw material gas containing hydrogen and carbon dioxide in the reactor in the presence of a catalyst and an organic solvent. In the methanol production apparatus, the reactor is configured to react under a reaction condition in which one methanol of the reaction product becomes a gas and the other water produced as a by-product becomes a liquid. A part of the liquid phase containing raw water is extracted, and a separator for separating the liquid phase into water and a phase rich in an organic solvent is provided, and the phase rich in the organic solvent is returned to the reactor and circulated. It is comprised by these.
Here, the phase rich in organic solvent means that the water / organic solvent mixed liquid phase in which water produced as a by-product in the methanol synthesis reaction is mixed is subjected to a separation process by a separator, and the water phase is higher than that before the separation process. The liquid phase in a state where the proportion of the organic solvent is decreased and the proportion of the organic solvent is increased. That is, it means a liquid phase that is separated by a separator in a state in which the proportion of the organic solvent is larger than that of the liquid phase in the reactor and the proportion of water is small.

本発明によれば、反応生成物であるメタノールは生成と同時に気体となって反応液相から分離し、副生する水は液体となって反応液相中に留まる。そして、分離器によって水と分離された有機溶媒に富む相が連続的に反応器に戻されるので、平衡反応はメタノール生成側にシフトし、メタノール転化率を高めることができる。   According to the present invention, methanol, which is a reaction product, becomes a gas at the same time as generation and is separated from the reaction liquid phase, and by-product water becomes liquid and remains in the reaction liquid phase. Then, since the organic solvent-rich phase separated from water by the separator is continuously returned to the reactor, the equilibrium reaction is shifted to the methanol production side, and the methanol conversion can be increased.

また、合成反応と同時にメタノールと水を分離することができるので、メタノール蒸留工程が不要となり、その蒸留に必要なエネルギーを大幅に削減できることに加えて、共沸蒸留に必要な第3成分も不要となり、以て大幅なコストダウンを図ることができる。   In addition, methanol and water can be separated simultaneously with the synthesis reaction, eliminating the need for a methanol distillation step. In addition to greatly reducing the energy required for the distillation, the third component required for azeotropic distillation is also unnecessary. Therefore, a significant cost reduction can be achieved.

また、本発明の第2の態様に係るメタノール製造装置は、第1の態様において、前記分離器は前記反応器に設定される反応温度と反応圧力の少なくとも一方をほぼ同じ条件にして分離を実行するように構成されていることを特徴とするものである。   The methanol production apparatus according to the second aspect of the present invention is the methanol production apparatus according to the first aspect, wherein the separator performs separation under substantially the same conditions of at least one of a reaction temperature and a reaction pressure set in the reactor. It is comprised so that it may carry out.

本発明によれば、当該分離器において、反応器に設定されている反応温度や反応圧力と同じ温度、圧力で分離が行われるので、分離後の有機溶媒に富んだ相を前記反応器に戻して再循環させるに際し、再加熱したりする必要がなく、ほとんどそのまま戻すことができる。したがって、溶媒再循環のための補助加熱手段等が不要となり、装置全体としてのコストダウンを図ることができる。   According to the present invention, in the separator, since the separation is performed at the same temperature and pressure as the reaction temperature and reaction pressure set in the reactor, the phase rich in organic solvent after separation is returned to the reactor. When recirculating, there is no need to reheat and it can be returned almost as it is. Therefore, auxiliary heating means for solvent recirculation and the like are not necessary, and the cost of the entire apparatus can be reduced.

本発明の第3の態様に係るメタノール製造方法は、水素と二酸化炭素を含む原料ガスを反応器内で触媒及び有機溶媒の存在下で反応させてメタノールを製造する方法であって、前記反応器にて反応生成物の一方のメタノールは気体となり、副生する他方の水は液体となる反応条件で反応させ、該反応器内から前記副生した水を含む液相を一部抜き出して、分離器により、該液相を、水と、有機溶媒に富む相に分離し、該有機溶媒に富む相を前記反応器に戻して循環させることを特徴とするものである。本発明によれば、第1の態様と同様の作用効果が得られる。   The methanol production method according to the third aspect of the present invention is a method for producing methanol by reacting a raw material gas containing hydrogen and carbon dioxide in a reactor in the presence of a catalyst and an organic solvent, the reactor comprising the reactor In the reaction product, one methanol of the reaction product becomes gas and the other by-product water reacts under the reaction condition of liquid, and a part of the liquid phase containing the by-produced water is extracted from the reactor and separated. The liquid phase is separated into water and a phase rich in an organic solvent by a vessel, and the phase rich in the organic solvent is returned to the reactor and circulated. According to the present invention, the same effect as the first aspect can be obtained.

本発明によれば、二酸化炭素と水素を含むガスを原料ガスとするメタノール合成であって、ある温度及び圧力下における平衡転化率を超えてメタノール転化率を十分に高めることができ、反応生成物であるメタノールと水を分離するためのメタノール蒸留工程が要らず、以てコストダウンを図ることができる。   According to the present invention, methanol synthesis using a gas containing carbon dioxide and hydrogen as a raw material gas, the methanol conversion rate can be sufficiently increased beyond the equilibrium conversion rate under a certain temperature and pressure, and the reaction product This eliminates the need for a methanol distillation step for separating methanol and water, thereby reducing the cost.

以下、図面に基づいて本発明に係るメタノール製造装置の一実施の形態について詳細に説明する。図1は本実施の形態に係るメタノール製造装置を示す概略構成図である。   Hereinafter, an embodiment of a methanol production apparatus according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a methanol production apparatus according to the present embodiment.

図1に示したように、本実施の形態に係るメタノール製造装置の反応器1は、水素と二酸化炭素を含む原料ガス15を反応器1内で触媒及び有機溶媒を含んだ反応液相2の中で反応させてメタノールを製造するものである。反応器1は、反応生成物の一方のメタノールは気体となり、副生する他方の水は液体となる反応条件で反応させるように構成されている。
この反応条件は、反応温度を100℃〜220℃、反応圧力を2MPa〜7MPaとすることで実現され、図示しない温度調整手段および圧力可変手段によって維持される。尚、望ましい反応条件は反応温度が150℃〜170℃、反応圧力が3MPa〜5MPaである。
As shown in FIG. 1, the reactor 1 of the methanol production apparatus according to the present embodiment uses a raw material gas 15 containing hydrogen and carbon dioxide in a reaction liquid phase 2 containing a catalyst and an organic solvent in the reactor 1. It is made to react in to produce methanol. The reactor 1 is configured to react under reaction conditions in which one methanol of the reaction product becomes a gas and the other by-product water becomes a liquid.
This reaction condition is realized by setting the reaction temperature to 100 ° C. to 220 ° C. and the reaction pressure to 2 MPa to 7 MPa, and is maintained by temperature adjusting means and pressure variable means (not shown). Desirable reaction conditions are a reaction temperature of 150 ° C. to 170 ° C. and a reaction pressure of 3 MPa to 5 MPa.

そして、分離器11により反応器1内から前記副生した水を含む液相2を一部抜き出して、該液相2を、水と、有機溶媒に富む相に分離すると共に、該有機溶媒に富む相を循環ライン13を通って前記反応器1に連続的に戻すように構成されている。   Then, a part of the liquid phase 2 containing the by-produced water is extracted from the reactor 1 by the separator 11, and the liquid phase 2 is separated into water and a phase rich in an organic solvent. The rich phase is continuously returned to the reactor 1 through the circulation line 13.

反応器1内の液相2は、触媒として公知のCu/ZnOを含有する化合物が用いられ、その大きさや形状は反応器1の構成や方式により適宜設定される。また有機溶媒としては、反応条件下で液相を示し、反応温度と同じ温度で水と液液分離できるものが選択でき、デカン、ドデカン等の飽和炭化水素類、1−ヘプタノール、1−オクタノール等のアルコール類等が挙げられる。また複数の種類の有機溶媒を合わせて使用することもできる。   For the liquid phase 2 in the reactor 1, a known compound containing Cu / ZnO is used as a catalyst, and the size and shape thereof are appropriately set depending on the configuration and method of the reactor 1. The organic solvent can be selected from those which exhibit a liquid phase under the reaction conditions and can be separated from water at the same temperature as the reaction temperature, saturated hydrocarbons such as decane and dodecane, 1-heptanol, 1-octanol and the like. Alcohols and the like. A plurality of types of organic solvents can also be used in combination.

このような構成における本実施の形態に係る装置の更に具体的な構造と動作原理および作用について以下に説明する。原料ガス15はコンプレッサー3、予備加熱器4を介して反応器1の下方から供給される。原料ガス15は反応液相2中で触媒と接触し、通過しながら反応し、メタノールと水が生成される。ここで、メタノールは気体状態で生成され、一方水は液体状態で副生される。ここで、水は水蒸気も含む意味で用いられている。尚、図示しない攪拌機で反応液相2を撹拌しても良い。   A more specific structure, operating principle, and operation of the apparatus according to the present embodiment having such a configuration will be described below. The raw material gas 15 is supplied from below the reactor 1 through the compressor 3 and the preheater 4. The raw material gas 15 comes into contact with the catalyst in the reaction liquid phase 2 and reacts while passing through to generate methanol and water. Here, methanol is produced in a gaseous state, while water is by-produced in a liquid state. Here, water is used in the meaning including water vapor. In addition, you may stir the reaction liquid phase 2 with a stirrer which is not illustrated.

生成したメタノールと未反応ガスは、反応器1のトップ位置に設けられた気相排出ライン5から排出される。気相排出ライン5には、有機溶媒と水がメタノール及び未反応ガスと一緒に排出されないように冷却器6が設けられ、冷却器6で冷却され、凝縮された有機溶媒と水は反応器1内に戻りライン16を通って戻されるようになっている。その後メタノールと未反応ガスは、コンデンサー7を介して気液分離器8に送られ、メタノールと未反応ガスに分離される。未反応ガスは必要に応じてその一部がパージガスとして除かれ、コンプレッサー9を介して原料ガス15の供給流路に戻される。   The generated methanol and unreacted gas are discharged from the gas phase discharge line 5 provided at the top position of the reactor 1. The gas phase discharge line 5 is provided with a cooler 6 so that the organic solvent and water are not discharged together with methanol and unreacted gas, and the organic solvent and water condensed by cooling with the cooler 6 are reacted with the reactor 1. Returned through the return line 16. Thereafter, the methanol and unreacted gas are sent to the gas-liquid separator 8 via the condenser 7 and separated into methanol and unreacted gas. A part of the unreacted gas is removed as a purge gas if necessary, and is returned to the supply flow path of the raw material gas 15 via the compressor 9.

一方、副生した水を含んだ反応液相2は反応器1から一部を液相取り出しライン10を通って連続的に取り出される。反応器1より取り出された液相2は、反応器1の反応温度と同じ温度と圧力で液液分離器11に供給され、そこで水と、有機溶媒に富む相に分離され、水は水ライン12から系外に排出され、有機溶媒に富む溶媒相は循環ライン13から循環ポンプ14を介して、反応器1内へ再循環される。尚、このように反応器1から反応液相2の一部を取り出すことにより、反応液相2が吸収した反応熱も一部外部に取り出したことになり、反応熱を反応系から減少させることも同時にできる効果がある。   On the other hand, a part of the reaction liquid phase 2 containing by-produced water is continuously extracted from the reactor 1 through the liquid phase extraction line 10. The liquid phase 2 taken out from the reactor 1 is supplied to the liquid-liquid separator 11 at the same temperature and pressure as the reaction temperature of the reactor 1, where it is separated into water and a phase rich in organic solvent, The solvent phase that is discharged from the system 12 and rich in organic solvent is recirculated from the circulation line 13 into the reactor 1 via the circulation pump 14. In addition, by removing a part of the reaction liquid phase 2 from the reactor 1 in this way, a part of the reaction heat absorbed by the reaction liquid phase 2 is also extracted outside, and the reaction heat is reduced from the reaction system. Has the same effect.

反応器1には、その周囲を囲う冷却室17が設けられ、該冷却室17は冷却熱媒体供給口18と冷却熱媒体排出口19を有する。本発明は液相反応であるのでメタノール合成反応における反応熱を効率よく反応液相2で除くことができる。この反応熱を当該冷却室17を設けたことで反応液相2から除くことができる。冷却室17で回収した熱はたとえば熱交換器などで利用することができる。   The reactor 1 is provided with a cooling chamber 17 surrounding the periphery thereof, and the cooling chamber 17 has a cooling heat medium supply port 18 and a cooling heat medium discharge port 19. Since the present invention is a liquid phase reaction, the reaction heat in the methanol synthesis reaction can be efficiently removed in the reaction liquid phase 2. This reaction heat can be removed from the reaction liquid phase 2 by providing the cooling chamber 17. The heat recovered in the cooling chamber 17 can be used, for example, in a heat exchanger.

以上説明したように、反応生成物であるメタノールは気体として生成させてそのまま系外に除き、一方、副生する水は液体として反応液相中に留め、後段の分離器に一部を取り出して水と、有機溶媒に富む相に分離し、該有機溶媒に富む相を再び反応器内に戻すので、化学平衡を生成側にシフトさせながらメタノール合成反応を継続させることができる。その結果、メタノール合成反応が促進され、化学平衡に制約されない高い反応転化率を得ることが可能となる。そして、平衡転化率を上回るワンパス転化率を得ることができるので、未反応ガス量を低減でき、ガス循環動力を小容量のものにすることができる。   As described above, methanol as a reaction product is generated as a gas and removed from the system as it is, while water produced as a by-product remains in the reaction liquid phase as a liquid, and a part of it is taken out to a separator in the subsequent stage. Separation into a phase rich in water and an organic solvent, and the phase rich in the organic solvent is returned to the reactor again, so that the methanol synthesis reaction can be continued while shifting the chemical equilibrium to the production side. As a result, the methanol synthesis reaction is promoted, and a high reaction conversion rate that is not restricted by chemical equilibrium can be obtained. And since the one-pass conversion rate exceeding an equilibrium conversion rate can be obtained, the amount of unreacted gas can be reduced and the gas circulation power can be reduced.

さらに後段の液液分離器による分離を、反応器の反応条件と同じ温度と圧力で行うことにより、分離された有機溶媒に富む相の再循環のための補助熱量を削減できる効果が得られる。さらに、メタノール、有機溶媒、水に関連した従来の複雑な分離、蒸留工程を省略できるので、必要なエネルギーを大幅に削減することができる。さらに、メタノール合成の反応熱は反応液相を一部取り出しての前記分離処理により反応系外(反応器外)へ効率的に除去することができる。   Further, the separation by the latter liquid-liquid separator is carried out at the same temperature and pressure as the reaction conditions of the reactor, so that an effect of reducing the auxiliary heat amount for recirculation of the separated organic solvent-rich phase can be obtained. Furthermore, since the conventional complicated separation and distillation steps related to methanol, organic solvent, and water can be omitted, the required energy can be greatly reduced. Furthermore, the reaction heat of methanol synthesis can be efficiently removed out of the reaction system (outside the reactor) by the separation process in which a part of the reaction liquid phase is taken out.

以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は下記の実施例によりその技術的範囲が限定されるものではない。以下の実施例は図1に示したメタノール製造装置のベンチテスト級実験装置を用いた結果を示す。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, the technical scope of this invention is not limited by the following Example. The following examples show results using the bench test class experimental apparatus of the methanol production apparatus shown in FIG.

コンプレッサー3へ原料ガス15(組成 CO:25体積%、H:75体積%)を流量168NL/hで供給した。この原料ガスはコンプレッサー9から送られる未反応ガス(流量89.2NL/h)と合流し、反応器1へ供給される。反応器1には有機溶媒として1−オクタノール1.6L、触媒Cu/ZnO/Alを320g入れ、温度170℃、圧力3MPaの反応条件で反応させた。 A raw material gas 15 (composition CO 2 : 25% by volume, H 2 : 75% by volume) was supplied to the compressor 3 at a flow rate of 168 NL / h. This raw material gas is combined with unreacted gas (flow rate: 89.2 NL / h) sent from the compressor 9 and supplied to the reactor 1. Reactor 1 was charged with 1.6 L of 1-octanol as an organic solvent and 320 g of catalyst Cu / ZnO / Al 2 O 3 and reacted under reaction conditions of a temperature of 170 ° C. and a pressure of 3 MPa.

液相取り出しライン10から水9.3重量%を含む1−オクタノール溶液が1.6L/hで液液分離器11へ供給される。この条件において水ライン12からは46.1g/hの水が回収された。   A 1-octanol solution containing 9.3% by weight of water is supplied from the liquid phase take-out line 10 to the liquid-liquid separator 11 at 1.6 L / h. Under this condition, 46.1 g / h of water was recovered from the water line 12.

反応器1からは気相側にメタノールなどが蒸発する。そのガスは冷却器6、コンデンサー7で一部が凝縮され、反応器1に戻りライン16を通って戻される。冷却器6の温度を110℃に保つことによって、気液器分離器8からメタノール86.0重量%、水14.0重量%の液が132g/hで回収された。気液分離器8で分離された未反応ガスは、コンプレッサー9を通して原料ガス15と合流する。このときのワンパスのメタノール転化率は61.9%となった。従来の気相反応の反応装置では170℃、3MPaの反応条件におけるメタノールの平衡反応率33.1%を越えることはないが、この図1の構成の装置によってその平衡転化率を超える61.9%のメタノール転化率を達成できた。   Methanol etc. evaporate from the reactor 1 to the gas phase side. The gas is partially condensed by the cooler 6 and the condenser 7 and returned to the reactor 1 through the line 16. By maintaining the temperature of the cooler 6 at 110 ° C., a liquid of 86.0 wt% methanol and 14.0 wt% water was recovered from the gas-liquid separator 8 at 132 g / h. The unreacted gas separated by the gas-liquid separator 8 merges with the raw material gas 15 through the compressor 9. At this time, the one-pass methanol conversion was 61.9%. In the conventional reactor for gas phase reaction, the equilibrium reaction rate of methanol under the reaction conditions of 170 ° C. and 3 MPa does not exceed 33.1%, but the equilibrium conversion rate is exceeded by the device of the configuration of FIG. % Methanol conversion could be achieved.

本発明は、水素と二酸化炭素を含む原料ガスを触媒の存在下で反応させてメタノールを製造するメタノール製造装置及びメタノール製造方法に利用可能である。   INDUSTRIAL APPLICABILITY The present invention is applicable to a methanol production apparatus and a methanol production method for producing methanol by reacting a raw material gas containing hydrogen and carbon dioxide in the presence of a catalyst.

実施の形態に係るメタノール製造装置を示す概略構成図である。It is a schematic block diagram which shows the methanol manufacturing apparatus which concerns on embodiment.

符号の説明Explanation of symbols

1:反応器 2:反応液相 3:コンプレッサー
4:予備加熱器 5:気相排出ライン 6:冷却器 7:コンデンサー
8:気液分離器 9:コンプレッサー 10:液相取り出しライン
11:液液分離器 12:水ライン 13:循環ライン 14:循環ポンプ
15:原料ガス 16:戻りライン 17:冷却室
1: Reactor 2: Reaction liquid phase 3: Compressor 4: Preheater 5: Gas phase discharge line 6: Cooler 7: Condenser 8: Gas-liquid separator 9: Compressor 10: Liquid phase take-out line 11: Liquid-liquid separation 12: Water line 13: Circulation line 14: Circulation pump 15: Raw material gas 16: Return line 17: Cooling chamber

Claims (3)

水素と二酸化炭素を含む原料ガスを反応器内で触媒及び有機溶媒の存在下で反応させてメタノールを製造するメタノール製造装置であって、
前記反応器は、反応生成物の一方のメタノールは気体となり、副生する他方の水は液体となる反応条件で反応させるように構成され、
該反応器内から前記副生した水を含む液相を一部抜き出して、該液相を、水と、有機溶媒に富む相に分離する分離器を備え、
前記有機溶媒に富む相を前記反応器に戻して循環するように構成されていることを特徴とするメタノール製造装置。
A methanol production apparatus for producing methanol by reacting a raw material gas containing hydrogen and carbon dioxide in a reactor in the presence of a catalyst and an organic solvent,
The reactor is configured to react under reaction conditions in which one methanol of the reaction product becomes a gas and the other by-product water becomes a liquid,
A separator for separating a part of the liquid phase containing the by-produced water from the reactor and separating the liquid phase into water and a phase rich in an organic solvent;
An apparatus for producing methanol, wherein the phase rich in organic solvent is circulated back to the reactor.
請求項1において、前記分離器は前記反応器に設定される反応温度と反応圧力の少なくとも一方をほぼ同じ条件にして分離を実行するように構成されていることを特徴とするメタノール製造装置。   2. The methanol production apparatus according to claim 1, wherein the separator is configured to perform separation under substantially the same conditions of at least one of a reaction temperature and a reaction pressure set in the reactor. 水素と二酸化炭素を含む原料ガスを反応器内で触媒及び有機溶媒の存在下で反応させてメタノールを製造する方法であって、
前記反応器にて反応生成物の一方のメタノールは気体となり、副生する他方の水は液体となる反応条件で反応させ、
該反応器内から前記副生した水を含む液相を一部抜き出して、分離器により、該液相を、水と、有機溶媒に富む相に分離し、該有機溶媒に富む相を前記反応器に戻して循環させることを特徴とするメタノール製造方法。
A method for producing methanol by reacting a raw material gas containing hydrogen and carbon dioxide in a reactor in the presence of a catalyst and an organic solvent,
In the reactor, one methanol of the reaction product becomes a gas, and the other by-product water reacts under reaction conditions that become a liquid,
A part of the liquid phase containing the by-produced water is extracted from the reactor, and the separator separates the liquid phase into water and a phase rich in an organic solvent, and the phase rich in the organic solvent is reacted in the reaction. A method for producing methanol, which is returned to the vessel and circulated.
JP2005245939A 2005-08-26 2005-08-26 Methanol-producing device and methanol-producing method Pending JP2007055973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005245939A JP2007055973A (en) 2005-08-26 2005-08-26 Methanol-producing device and methanol-producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005245939A JP2007055973A (en) 2005-08-26 2005-08-26 Methanol-producing device and methanol-producing method

Publications (1)

Publication Number Publication Date
JP2007055973A true JP2007055973A (en) 2007-03-08

Family

ID=37919758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005245939A Pending JP2007055973A (en) 2005-08-26 2005-08-26 Methanol-producing device and methanol-producing method

Country Status (1)

Country Link
JP (1) JP2007055973A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113546583A (en) * 2021-07-16 2021-10-26 南京延长反应技术研究院有限公司 Micro-interface preparation system and preparation method of DMC

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263666A (en) * 1993-03-12 1994-09-20 Agency Of Ind Science & Technol Production of methanol
JPH0753421A (en) * 1993-08-19 1995-02-28 Agency Of Ind Science & Technol Production of methanol
JPH09227423A (en) * 1996-02-19 1997-09-02 Agency Of Ind Science & Technol Production of methanol
JP2000176287A (en) * 1998-12-17 2000-06-27 Agency Of Ind Science & Technol Catalyst for methanol synthesis and synthetic method of methanol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263666A (en) * 1993-03-12 1994-09-20 Agency Of Ind Science & Technol Production of methanol
JPH0753421A (en) * 1993-08-19 1995-02-28 Agency Of Ind Science & Technol Production of methanol
JPH09227423A (en) * 1996-02-19 1997-09-02 Agency Of Ind Science & Technol Production of methanol
JP2000176287A (en) * 1998-12-17 2000-06-27 Agency Of Ind Science & Technol Catalyst for methanol synthesis and synthetic method of methanol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113546583A (en) * 2021-07-16 2021-10-26 南京延长反应技术研究院有限公司 Micro-interface preparation system and preparation method of DMC

Similar Documents

Publication Publication Date Title
US20210388511A1 (en) Process for electrochemical preparation of ammonia
JP6368118B2 (en) Method for producing ethylene oxide
EP1149801B1 (en) Recovery method of ammonia from gaseous mixture
JP3811523B2 (en) Integrated ammonia / urea method
JP6653388B2 (en) Method of synthesizing urea by supplying carbon dioxide
KR102533952B1 (en) Apparatus and method of preparing propylene glycol methyl ether acetate
RU2592794C2 (en) Method and system for production of high-purity hydrogen chloride
CN112105596B (en) Method for synthesizing methanol
US8629191B2 (en) Process and plant for producing methanol
JP6174352B2 (en) Method for producing ethylene oxide
JP5828793B2 (en) Method for recovering carbon dioxide in ethylene oxide production process
EP2980082B1 (en) Ethylene oxide production process
JP2007055973A (en) Methanol-producing device and methanol-producing method
JP5865107B2 (en) Cyclic carbonate synthesis catalyst and cyclic carbonate synthesis method
JP4134777B2 (en) Nitrite ester production method
CN112673124A (en) Process for the preparation of methanol
JP2007055974A (en) Methanol-producing device and methanol-producing method
JP4706812B2 (en) Method for producing dimethyl ether
US11332431B2 (en) Device and method for manufacturing dimethyl carbonate
JP2007055975A (en) Methanol-producing device and methanol-producing method
EA025632B1 (en) Process for the production of a mixture comprising cyclohexanol and cyclohexanone
CN105008327B (en) Urea equipment remodeling method
JP2007055971A (en) Methanol-producing device and methanol-producing method
JPH11292501A (en) Production of hydrogen from methanol and equipment for its production
JP2007055972A (en) Methanol-producing device and methanol-producing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110810