JP2007055931A - Crystallizing method for protein using zeolite - Google Patents

Crystallizing method for protein using zeolite Download PDF

Info

Publication number
JP2007055931A
JP2007055931A JP2005242688A JP2005242688A JP2007055931A JP 2007055931 A JP2007055931 A JP 2007055931A JP 2005242688 A JP2005242688 A JP 2005242688A JP 2005242688 A JP2005242688 A JP 2005242688A JP 2007055931 A JP2007055931 A JP 2007055931A
Authority
JP
Japan
Prior art keywords
protein
crystallization
zeolite
molecular sieve
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005242688A
Other languages
Japanese (ja)
Other versions
JP4744979B2 (en
Inventor
Michiyasu Sugawara
道泰 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2005242688A priority Critical patent/JP4744979B2/en
Publication of JP2007055931A publication Critical patent/JP2007055931A/en
Application granted granted Critical
Publication of JP4744979B2 publication Critical patent/JP4744979B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crystallizing method for protein without necessitating crystallization in various crystallizing condition, easily causing change of crystal shape and space group. <P>SOLUTION: The invention relates to the method for crystallizing protein in the presence of a zeolite. The invention also relates to a kit for crystallization of protein comprising zeolite as a constituting component. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、タンパク質結晶化のための新規な方法に関する。詳細には、ゼオライトの存在下においてタンパク質結晶化を行うことにより、容易にタンパク質結晶の形状および空間群を変えることができるタンパク質結晶化方法に関するものである。   The present invention relates to a novel method for protein crystallization. Specifically, the present invention relates to a protein crystallization method that can easily change the shape and space group of protein crystals by performing protein crystallization in the presence of zeolite.

タンパク質のX線構造解析は現在最も有効なタンパク質構造決定の手法の一つである。そのタンパク質構造を決定するためには位相を決定する過程が必要不可欠である。その位相決定の手法として、分子置換法や重原子置換法などがあるが、しばしばその位相を決定できない場合がある。その様な場合、異なる空間群の結晶を用いて位相決定を試みることが多い。また、タンパク質結晶のX線回折における分解能を上げたい場合、その結晶の空間群を変えることでその分解能が大幅に向上することもある。しかしながら、一般に、結晶の空間群を変えたい場合、異なる組成(結晶化剤、および添加剤の種類、その濃度、pH等が異なる)の結晶化溶液を数多く用いて結晶化を試みて異なる空間群の結晶を析出させるので(非特許文献1等参照)、所望の結晶を析出させるのは容易なことではない。したがって、必要となる多くの異なる結晶化試薬の調製やその結晶化に費やす時間と費用はタンパク質サンプルが多いほど莫大になる。
N. Kunishima, Yukuhiko Asada, Mayumi Sugahara, Jun Ishijima, Yuichi Nodake, Mitsuaki Sugahara, Masashi Miyano, Seiki Kuramitsu, Shigeyuki Yokoyama and Michihiro Sugahara, 'A Novel Induced-fit Reaction Mechanism of Asymmetric Hot Dog Thioesterase PaaI' Journal of Molecular Biology (2005年7月からオンラインにて利用可能)(印刷中)
Protein X-ray structural analysis is one of the most effective methods for determining protein structure at present. In order to determine the protein structure, the process of determining the phase is indispensable. As a method for determining the phase, there are a molecular substitution method, a heavy atom substitution method, and the like, but sometimes the phase cannot be determined. In such cases, phase determination is often attempted using crystals of different space groups. In addition, when it is desired to increase the resolution in X-ray diffraction of a protein crystal, the resolution may be greatly improved by changing the space group of the crystal. However, in general, if you want to change the space group of crystals, try to crystallize using many crystallization solutions of different compositions (different types of crystallization agents and additives, their concentrations, pH, etc.) (See Non-Patent Document 1 etc.), it is not easy to precipitate a desired crystal. Therefore, the time and expense spent preparing and crystallizing many different crystallization reagents required becomes enormous as the protein sample increases.
N. Kunishima, Yukuhiko Asada, Mayumi Sugahara, Jun Ishijima, Yuichi Nodake, Mitsuaki Sugahara, Masashi Miyano, Seiki Kuramitsu, Shigeyuki Yokoyama and Michihiro Sugahara, 'A Novel Induced-fit Reaction Mechanism of Asymmetric Hot Dog Thioesterase PaaI' Journal of Molecular Biology (Available online from July 2005) (Printing)

本発明の解決課題は、多くの結晶化条件で結晶化を試みる必要なく、結晶の形状および空間群を変えることのできるタンパク質結晶化方法を開発することである。   The solution of the present invention is to develop a protein crystallization method that can change the shape and space group of crystals without having to attempt crystallization under many crystallization conditions.

本発明者らは、上記事情に鑑みて鋭意研究を行い、ゼオライトの存在下においてタンパク質を結晶化させた場合に、容易にタンパク質結晶の形状を変化させることができ、異なる空間群の結晶が得られることを見出し、本発明を完成するに至った。   The present inventors have conducted intensive research in view of the above circumstances, and when protein is crystallized in the presence of zeolite, the shape of the protein crystal can be easily changed, and crystals of different space groups can be obtained. As a result, the present invention has been completed.

すなわち、本発明は、
(1)ゼオライトの存在下においてタンパク質を結晶化させることを特徴とする、タンパク質結晶化方法;
(2)ゼオライトがモレキュラーシーブである、(1)記載の方法;
(3)ゼオライトを構成成分として含むタンパク質結晶化用キット;
(4)ゼオライトがモレキュラーシーブである、(3)記載のキット
を提供するものである。
That is, the present invention
(1) A protein crystallization method characterized by crystallizing a protein in the presence of zeolite;
(2) The method according to (1), wherein the zeolite is a molecular sieve;
(3) a protein crystallization kit containing zeolite as a constituent;
(4) The kit according to (3), wherein the zeolite is a molecular sieve.

本発明によれば、簡単な操作により、タンパク質結晶の形状および空間群を変化させることができるので、結晶の空間群を変えたい場合、多くの結晶化条件で結晶化を試みる必要はなくなる。   According to the present invention, the shape and space group of a protein crystal can be changed by a simple operation. Therefore, when it is desired to change the space group of the crystal, it is not necessary to attempt crystallization under many crystallization conditions.

本発明は、ゼオライトの存在下においてタンパク質を結晶化させることを特徴とする、タンパク質結晶化方法に関するものである。本発明を用いれば、タンパク質結晶の形状や空間群を容易に変化させることができる。ゼオライトはアルミニウムおよびケイ素を主成分とする多孔性結晶であり、天然ゼオライトと人工ゼオライトがある。本発明には天然ゼオライトと人工ゼオライトのいずれも使用できるが、品種の豊富さ、組成・形状が一定していること、結果の再現が良い等の点から、人工ゼオライトが好ましい。   The present invention relates to a protein crystallization method characterized by crystallizing a protein in the presence of zeolite. If this invention is used, the shape and space group of a protein crystal can be changed easily. Zeolite is a porous crystal mainly composed of aluminum and silicon, and includes natural zeolite and artificial zeolite. In the present invention, both natural zeolite and artificial zeolite can be used, but artificial zeolite is preferable from the viewpoints of abundant variety, constant composition and shape, and good reproducibility of results.

本発明に用いられるゼオライトの種類、特性、形状等は特に限定されず、タンパク質の種類、所望の結晶の形状、空間群等の因子により、様々なものを使用することができる。人工ゼオライトの典型例はモレキュラーシーブである。モレキュラーシーブは天然ゼオライトと同様の吸着特性を有する材料であり、種々の分子の吸着に使用されている。また、モレキュラーシーブは合成により得られるので、その性質や形状も種々のものが製造されている。例えば、モレキュラーシーブには3A、4A、5A、13X(吸着口径はこの順に大きくなる)等のタイプがあり、市販されている。しかしながら、分子の吸着剤ではなく、タンパク質結晶化のための添加剤としてモレキュラーシーブを用いる例は本発明以外にない。本発明にはいずれのタイプのモレキュラーシーブであっても使用できる。   The type, characteristics, shape, and the like of the zeolite used in the present invention are not particularly limited, and various types can be used depending on factors such as the type of protein, the desired crystal shape, and the space group. A typical example of an artificial zeolite is a molecular sieve. Molecular sieve is a material having adsorption characteristics similar to those of natural zeolite and is used for adsorption of various molecules. In addition, since molecular sieves are obtained by synthesis, various types and shapes are manufactured. For example, there are types of molecular sieves such as 3A, 4A, 5A, and 13X (adsorption diameters increase in this order) and are commercially available. However, there is no other example of using a molecular sieve as an additive for protein crystallization rather than a molecular adsorbent. Any type of molecular sieve can be used in the present invention.

上述のごとく、本発明において、ゼオライトの存在下においてタンパク質を結晶化させる。すなわち、ゼオライトをタンパク質結晶化添加剤として使用する。ゼオライトの「存在下」とは、タンパク質結晶化工程の全体において、あるいは一部においてゼオライトが添加されることを意味する。したがって、例えば、先ずゼオライトを容器に入れ、次いで、結晶化試薬(多くの場合、溶液である)およびタンパク質を容器に添加してタンパク質を結晶化させてもよく、結晶化試薬にタンパク質を溶解した後、その溶液にゼオライトを添加してタンパク質を結晶化させてもよい。本発明によれば、結晶化タンパク質はゼオライト表面上から析出するので、その取得が容易である。   As described above, in the present invention, protein is crystallized in the presence of zeolite. That is, zeolite is used as a protein crystallization additive. “In the presence” of zeolite means that the zeolite is added throughout or in part of the protein crystallization process. Thus, for example, the zeolite may first be placed in a container, then the crystallization reagent (often in solution) and protein may be added to the container to crystallize the protein, and the protein is dissolved in the crystallization reagent. Then, the protein may be crystallized by adding zeolite to the solution. According to the present invention, since the crystallized protein is precipitated from the zeolite surface, it can be easily obtained.

タンパク質結晶化の際に添加するゼオライトの量は、タンパク質の量や結晶化試薬の体積等の因子に応じて適宜選択することができる。使用するゼオライトの大きさは、結晶化に用いる装置や器具の大きさに応じて選択することができる。後で説明するように、ゼオライトを乳鉢等で適当な大きさに潰して用いてもかまわない。使用するゼオライトの種類については数種類のものを用いて結晶化を試みることが好ましい。結晶の析出は、ゼオライトの空孔の大きさに依存すると考えられるからである。例えば、ゼオライトとしてモレキュラーシーブを用いる場合には、3A、4A、5A、13X等について結晶化を試みることが好ましい。   The amount of zeolite added during protein crystallization can be appropriately selected according to factors such as the amount of protein and the volume of the crystallization reagent. The size of the zeolite to be used can be selected according to the size of the apparatus or instrument used for crystallization. As will be described later, the zeolite may be crushed to an appropriate size in a mortar or the like. Regarding the type of zeolite used, it is preferable to try crystallization using several types. This is because crystal precipitation is considered to depend on the size of the pores of the zeolite. For example, when molecular sieve is used as zeolite, it is preferable to attempt crystallization for 3A, 4A, 5A, 13X and the like.

本発明に用いる結晶化試薬(本明細書において「結晶化剤」ともいう)は、その中でタンパク質の結晶が得られることが確認されている試薬であり、タンパク質の種類により成分が異なるのが普通である。一般的には、結晶化試薬はポリエチレングリコール(PEG)、グリセロール、適切なバッファー(例えば、pH5〜6のクエン酸バッファー)等を含む溶液である。   The crystallization reagent (also referred to as “crystallization agent” in the present specification) used in the present invention is a reagent in which protein crystals are confirmed to be obtained, and the components differ depending on the type of protein. It is normal. Generally, the crystallization reagent is a solution containing polyethylene glycol (PEG), glycerol, a suitable buffer (for example, a citrate buffer having a pH of 5 to 6) and the like.

本発明の結晶化法に用いるタンパク質の種類はいずれのものであってもよい。   Any kind of protein may be used for the crystallization method of the present invention.

本発明におけるタンパク質結晶化条件、例えば、結晶化時間、温度、pH等は、結晶化させるべきタンパク質、結晶化試薬、ゼオライトの種類や性質、所望のタンパク質結晶の形態や空間群に応じて、適宜選択することができる。   The protein crystallization conditions in the present invention, for example, the crystallization time, temperature, pH, etc. are appropriately determined according to the protein to be crystallized, the crystallization reagent, the type and properties of the zeolite, the desired protein crystal morphology and space group. You can choose.

以下に、本発明のタンパク質結晶化法の典型的な手順を示す。これはあくまでも典型例であり、限定的なものではない。結晶化方法は特に限定するものではなく、モレキュラーシーブが添加できるものであればどの方法でも良い。例えば、マイクロバッチ法、ハンギングドロップ法、シッティングドロップ法を用いてもよい。以下の手順はマイクロバッチ法の場合である。モレキュラーシーブは市販品でよい。
1.結晶が得られた試薬(結晶化試薬)を用意する。
2.モレキュラーシーブを適当な大きさに(容器に入るように)潰す。例えば、乳鉢上で潰し0.1mmから0.8mm程度の結晶化プレートのウェルに入る大きさに加工する。
3.結晶化プレートのウェルにモレキュラーシーブを1、2個入れる。
4.そこに結晶化溶液、タンパク質溶液を加え、必要ならば最後にパラフィンオイル等で覆う。
5.以上の作業を各モレキュラーシーブ(例えば、3A、4A、5A、13X)で行う。
The following is a typical procedure for the protein crystallization method of the present invention. This is merely a typical example and is not limited. The crystallization method is not particularly limited, and any method can be used as long as molecular sieve can be added. For example, a microbatch method, a hanging drop method, or a sitting drop method may be used. The following procedure is for the microbatch method. The molecular sieve may be a commercially available product.
1. A reagent (crystallization reagent) from which crystals are obtained is prepared.
2. Crush the molecular sieve to an appropriate size (so that it can enter the container). For example, it is crushed in a mortar and processed into a size that fits into a well of a crystallization plate of about 0.1 mm to 0.8 mm.
3. Place one or two molecular sieves in the well of the crystallization plate.
4). A crystallization solution and a protein solution are added thereto, and finally covered with paraffin oil if necessary.
5. The above operation is performed with each molecular sieve (for example, 3A, 4A, 5A, 13X).

さらにもう1つの態様において、本発明は、ゼオライトを構成成分として含むタンパク質結晶化用キットに関するものである。該キットは、例えば、数種のタンパク質結晶化用試薬、ならびに数種のモレキュラーシーブを別個の容器に入れたものを含んでいてもよい。また、例えば、モレキュラーシーブと結晶化剤を混合したものを複数種類用意してもよい。該キットはさらにタンパク質結晶化用の装置、器具類を含んでいてもよい。一般的には、取扱説明書をキットに添付する。   In yet another aspect, the present invention relates to a protein crystallization kit comprising zeolite as a constituent component. The kit may include, for example, several protein crystallization reagents, as well as several molecular sieves in separate containers. Further, for example, a plurality of types obtained by mixing a molecular sieve and a crystallization agent may be prepared. The kit may further include an apparatus and instruments for protein crystallization. In general, an instruction manual is attached to the kit.

以下に実施例を示して本発明をさらに具体的かつ詳細に説明するが、実施例は本発明を限定するものと解してはならない。   EXAMPLES The present invention will be described more specifically and in detail below with reference to examples, but the examples should not be construed as limiting the present invention.

Pyrococcus horikoshii OT3由来のタンパク質サンプルを用いて本結晶化方法の有用性を確かめた。このタンパク質サンプルは以下の組成の結晶化剤により結晶が得られることが確認されている:
22.5%(w/w)PEG4000,0.1Mクエン酸バッファー,pH5.7。
The usefulness of this crystallization method was confirmed using a protein sample derived from Pyrococcus horikoshii OT3. This protein sample has been confirmed to be crystallized by a crystallization agent of the following composition:
22.5% (w / w) PEG 4000, 0.1 M citrate buffer, pH 5.7.

本実験では上記結晶化試薬にモレキュラーシーブ3A、4A、5A、13Xをそれぞれ加えた4種の結晶化条件および参照用としてモレキュラーシーブを加えない条件でマイクロバッチ法を用いて結晶化を行った。それらモレキュラーシーブは乳鉢上で0.1mmから0.8mm程度の大きさに潰して結晶化プレートのウェルに入る大きさに加工した。モレキュラーシーブを加えない条件の場合、1〜2日で柱状のタンパク質結晶が析出した(図1a)。一方で、モレキュラーシーブを添加した4種の結晶化条件のうち、モレキュラーシーブ5Aを添加した条件のみ結晶化から6日後にモレキュラーシーブ5Aの表面上から板状結晶が析出した(図1b)。結晶の析出はモレキュラーシーブの空孔の大きさに依存すると考えられる。次に、それら析出した結晶を用いて回折実験を行った(表1)。その回折実験結果を表1に示す。モレキュラーシーブがない場合はその空間群がP321であるのに対し、モレキュラーシーブ5Aを添加した場合、P321に変わった。その分解能はモレキュラーシーブがない場合2.2オングストロームであるのに対し、モレキュラーシーブ5Aを添加した場合、その分解能が1.60オングストロームになった。これはモレキュラーシーブ5Aによる効果と考えられる。 In this experiment, crystallization was performed using the microbatch method under the crystallization conditions in which the molecular sieves 3A, 4A, 5A, and 13X were added to the crystallization reagent, and the molecular sieve was not added as a reference. These molecular sieves were crushed to a size of about 0.1 mm to 0.8 mm on a mortar and processed to fit into the well of the crystallization plate. In the case where the molecular sieve was not added, columnar protein crystals were precipitated in 1 to 2 days (FIG. 1a). On the other hand, among the four types of crystallization conditions to which the molecular sieve was added, plate-like crystals were precipitated from the surface of the molecular sieve 5A only 6 days after the crystallization only in the condition where the molecular sieve 5A was added (FIG. 1b). Crystal precipitation is thought to depend on the pore size of the molecular sieve. Next, a diffraction experiment was performed using the precipitated crystals (Table 1). The results of the diffraction experiment are shown in Table 1. When there was no molecular sieve, the space group was P3 1 21, whereas when molecular sieve 5A was added, it changed to P3 2 21. The resolution was 2.2 angstroms in the absence of molecular sieve, whereas the addition of molecular sieve 5A resulted in a resolution of 1.60 angstroms. This is considered to be an effect of the molecular sieve 5A.

ここで、回折データの良し悪しはクライオプロテクタントによる影響が大きい。そこで、上記結晶化溶液に30%(w/w)グリセロールを加えた以下の組成の結晶化剤を用いて実験1同様の結晶化および回折実験を試みた:
22.5%(w/w)PEG4000,30%(w/w)グリセロール,0.1Mクエン酸バッファー,pH5.7。
Here, the quality of the diffraction data is greatly influenced by the cryoprotectant. Thus, crystallization and diffraction experiments similar to those in Experiment 1 were attempted using a crystallization agent having the following composition obtained by adding 30% (w / w) glycerol to the crystallization solution:
22.5% (w / w) PEG 4000, 30% (w / w) glycerol, 0.1 M citrate buffer, pH 5.7.

この結晶化条件で結晶が得られれば、回折実験の際、クライオプロテクタントを必要としない。結果として、モレキュラーシーブを加えない条件の場合、1〜2週間後にブロック状のタンパク質結晶が析出した(図1c)。モレキュラーシーブを添加した結晶化条件のうち、モレキュラーシーブ5Aを添加した条件のみ結晶化から3〜4週間後にモレキュラーシーブ5Aの表面上からブロック状結晶が析出した(図1d)。また、それら析出した結晶の形は異なっていた。次に、それら結晶を用いて回折実験を行った(表1)。結果として、モレキュラーシーブがない場合、その空間群がP321であるのに対し、モレキュラーシーブ5Aがある場合、その空間群はP321になった。その分解能は、モレキュラーシーブがない場合、2.3オングストロームであるのに対し、モレキュラーシーブ5Aがある場合、その分解能が1.35オングストロームになった。30%グリセロールを添加しない結晶化条件から得られた結晶と比べて、実験2で得られた結晶は分解能の差はあるが、それら空間群、セル長は同じであり、共にモレキュラーシーブによる効果が得られた。以上、これらの実験結果から、ゼオライトであるモレキュラーシーブはタンパク質結晶化溶液に加えるだけで容易に空間群を変えることができ、場合によってはその空間群が変わることでその分解能は大幅に良くなると考えられる。 If a crystal is obtained under these crystallization conditions, a cryoprotectant is not required for the diffraction experiment. As a result, in the case where the molecular sieve was not added, block-like protein crystals were precipitated after 1 to 2 weeks (FIG. 1c). Of the crystallization conditions to which the molecular sieve was added, only under the conditions where the molecular sieve 5A was added, block crystals were precipitated from the surface of the molecular sieve 5A 3 to 4 weeks after crystallization (FIG. 1d). Moreover, the shape of the precipitated crystals was different. Next, a diffraction experiment was performed using these crystals (Table 1). As a result, when there was no molecular sieve, the space group was P3 1 21, whereas when there was molecular sieve 5A, the space group was P3 2 21. The resolution was 2.3 angstroms in the absence of molecular sieve, whereas the resolution was 1.35 angstroms in the presence of molecular sieve 5A. Compared with crystals obtained from crystallization conditions without addition of 30% glycerol, the crystals obtained in Experiment 2 have a difference in resolution, but their space group and cell length are the same. Obtained. From these experimental results, it is considered that the molecular sieve, which is a zeolite, can easily change the space group just by adding it to the protein crystallization solution, and in some cases, the resolution can be greatly improved by changing the space group. It is done.


本発明によれば、簡単な操作により、タンパク質結晶の形および空間群を変化させることができるので、本発明は、タンパク質を取り扱う種々の分野において、例えば、タンパク質の構造解析において利用することができる。   According to the present invention, the shape and space group of a protein crystal can be changed by a simple operation. Therefore, the present invention can be used in various fields dealing with proteins, for example, in structural analysis of proteins. .

タンパク質結晶化に及ぼすモレキュラーシーブの影響を示す図である。(a)は実施例1記載の条件下でモレキュラーシーブなし、(b)は実施例1記載の条件下でモレキュラーシーブ5A添加、(c)は実施例2記載の条件下でモレキュラーシーブなし、(d)は実施例2記載の条件下でモレキュラーシーブ5A添加。It is a figure which shows the influence of the molecular sieve which acts on protein crystallization. (A) No molecular sieve under the conditions described in Example 1, (b) Molecular sieve 5A added under the conditions described in Example 1, (c) No molecular sieve under the conditions described in Example 2, ( d) Addition of molecular sieve 5A under the conditions described in Example 2.

Claims (4)

ゼオライトの存在下においてタンパク質を結晶化させることを特徴とする、タンパク質結晶化方法。   A protein crystallization method comprising crystallizing a protein in the presence of zeolite. ゼオライトがモレキュラーシーブである、請求項1記載の方法。   The process according to claim 1, wherein the zeolite is a molecular sieve. ゼオライトを構成成分として含むタンパク質結晶化用キット。   A protein crystallization kit containing zeolite as a constituent component. ゼオライトがモレキュラーシーブである、請求項3記載のキット。

The kit according to claim 3, wherein the zeolite is a molecular sieve.

JP2005242688A 2005-08-24 2005-08-24 Protein crystallization method using zeolite Expired - Fee Related JP4744979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005242688A JP4744979B2 (en) 2005-08-24 2005-08-24 Protein crystallization method using zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005242688A JP4744979B2 (en) 2005-08-24 2005-08-24 Protein crystallization method using zeolite

Publications (2)

Publication Number Publication Date
JP2007055931A true JP2007055931A (en) 2007-03-08
JP4744979B2 JP4744979B2 (en) 2011-08-10

Family

ID=37919716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005242688A Expired - Fee Related JP4744979B2 (en) 2005-08-24 2005-08-24 Protein crystallization method using zeolite

Country Status (1)

Country Link
JP (1) JP4744979B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234963A (en) * 2008-03-26 2009-10-15 Institute Of Physical & Chemical Research Base for promoting immobilization of biopolymer, method of immobilizing biopolymer and method of crystallizing biopolymer
WO2012133695A1 (en) 2011-03-31 2012-10-04 クニミネ工業株式会社 Agent for searching for protein crystallization conditions, and method for searching for protein crystallization conditions
JP2013514279A (en) * 2009-12-18 2013-04-25 四川▲輝▼▲陽▼生命工程股▲分▼有限公司 Crystalline recombinant interferon with altered spatial composition, its three-dimensional structure, and use thereof
US9708364B2 (en) 2011-05-18 2017-07-18 Riken Method for forming protein crystal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09301938A (en) * 1996-05-10 1997-11-25 Kanegafuchi Chem Ind Co Ltd Production of 1-alkoxycarbonyl-3-phenylpropyl derivative

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09301938A (en) * 1996-05-10 1997-11-25 Kanegafuchi Chem Ind Co Ltd Production of 1-alkoxycarbonyl-3-phenylpropyl derivative

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234963A (en) * 2008-03-26 2009-10-15 Institute Of Physical & Chemical Research Base for promoting immobilization of biopolymer, method of immobilizing biopolymer and method of crystallizing biopolymer
JP2013514279A (en) * 2009-12-18 2013-04-25 四川▲輝▼▲陽▼生命工程股▲分▼有限公司 Crystalline recombinant interferon with altered spatial composition, its three-dimensional structure, and use thereof
WO2012133695A1 (en) 2011-03-31 2012-10-04 クニミネ工業株式会社 Agent for searching for protein crystallization conditions, and method for searching for protein crystallization conditions
US9708364B2 (en) 2011-05-18 2017-07-18 Riken Method for forming protein crystal

Also Published As

Publication number Publication date
JP4744979B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
Meldrum et al. Crystallization in confinement
US11465102B2 (en) Method of preparing heterogeneous zeolite membranes
Li et al. Selective in vitro effect of peptides on calcium carbonate crystallization
Krauss et al. An overview of biological macromolecule crystallization
Nabavi et al. Hydrothermal synthesis of hydroxy sodalite zeolite membrane: Separation of H2/CH4
JP4744979B2 (en) Protein crystallization method using zeolite
Jang et al. Organic template-free synthesis of high-quality CHA type zeolite membranes for carbon dioxide separation
Chayen Crystallization with oils: a new dimension in macromolecular crystal growth
DE102018200027A1 (en) Process for the preparation of zeolite membranes of the type Decadodecasil 3R and membranes produced thereby
Yang et al. Revision of Charnell’s procedure towards the synthesis of large and uniform crystals of zeolites A and X
Arifuzzaman et al. Swelling-induced long-range ordered structure formation in polyelectrolyte hydrogel
Duschl et al. Two-dimensional crystals of j-band-forming cyanine dyes
JP2014530820A (en) Metal-assisted microwave accelerated evaporation crystallization
Liu et al. Highly oriented thin membrane fabrication with hierarchically porous zeolite seed
Wantha et al. Influence of Solvents on Solution‐Mediated Polymorphic Transformation of the Polymorphs of L‐Histidine
Yang et al. Morphological control of DDR zeolite crystals in Sigma-1 assisted hydrothermal synthesis using reduced organic agents
JP2020527526A (en) Morphorinium-based quaternary ammonium cations and AEI zeolites made with them
Ahmed et al. Investigation of crucial synthesis parameters of rich Al-MTT framework zeolite: Toward more determination for synthesis zone of SSZ-32
Basaldella et al. Effect of aluminum concentration on crystal size and morphology in the synthesis of a NaAl zeolite
Axnanda et al. Cationic microemulsion-mediated synthesis of silicalite-1
US8545802B2 (en) Process for production of DDR-type zeolite
Lee et al. High temperature synthesis of silicalite-1 in cationic microemulsions
JP4496338B2 (en) Protein crystallization screening chip
Andersson et al. Effects of exposure to water and ethanol on silicalite-1 membranes
Weissbuch et al. Achiral organic, inorganic, and metal crystals as auxiliaries for asymmetric transformations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4744979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees