JP2007053300A - Silica-based film, method for manufacturing the same, and semiconductor device - Google Patents

Silica-based film, method for manufacturing the same, and semiconductor device Download PDF

Info

Publication number
JP2007053300A
JP2007053300A JP2005238623A JP2005238623A JP2007053300A JP 2007053300 A JP2007053300 A JP 2007053300A JP 2005238623 A JP2005238623 A JP 2005238623A JP 2005238623 A JP2005238623 A JP 2005238623A JP 2007053300 A JP2007053300 A JP 2007053300A
Authority
JP
Japan
Prior art keywords
silica
group
film
carbon atoms
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005238623A
Other languages
Japanese (ja)
Other versions
JP4563894B2 (en
Inventor
Tadahiro Imada
忠紘 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2005238623A priority Critical patent/JP4563894B2/en
Publication of JP2007053300A publication Critical patent/JP2007053300A/en
Application granted granted Critical
Publication of JP4563894B2 publication Critical patent/JP4563894B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silica-based film which is excellent in a dielectric constant and a Young's modulus representing a film strength, and in particular, a method for forming the silica-based film which has a relative dielectric constant having a small value of 2.7 or less, and also, a strength characteristic in which the Young's modulus representing the film strength can endure a production process of a semiconductor wiring layer. <P>SOLUTION: (i) A coating agent for forming the silica-based film is coated on a substrate, (ii) the substrate after coating is heated, and (iii) active energy lines are irradiated on the substrate after heating in the atmosphere containing a substance which can stabilize unpaired electrons of silicon to obtain the silica-based film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はシリカ系被膜に関するものである。さらに詳しくは、半導体装置の絶縁膜として使用できるシリカ系被膜に関するものである。   The present invention relates to a silica-based coating. More specifically, the present invention relates to a silica-based film that can be used as an insulating film of a semiconductor device.

従来から、絶縁膜の寄生容量による信号伝播速度の低下(すなわち配線遅延)が知られていたが、半導体デバイスの配線間隔が1μm以上の世代では配線遅延のデバイス全体への影響は少なかった。しかし、配線間隔が1μm以下ではデバイス速度への影響が大きくなってきており、特に今後100nm以下の配線間隔で回路を形成すると、配線間の寄生容量がデバイスの信号伝播速度に大きく影響を及ぼすようになってくる。   Conventionally, a decrease in signal propagation speed (that is, wiring delay) due to the parasitic capacitance of the insulating film has been known. However, in the generation in which the wiring interval of the semiconductor device is 1 μm or more, the influence of the wiring delay on the entire device is small. However, when the wiring interval is 1 μm or less, the influence on the device speed is increasing. Especially when a circuit is formed with a wiring interval of 100 nm or less in the future, the parasitic capacitance between the wirings greatly affects the signal propagation speed of the device. It becomes.

配線遅延(T)は、配線抵抗(R)と配線間の容量(C)により影響を受け、下記の式(1)で示される。   The wiring delay (T) is affected by the wiring resistance (R) and the capacitance (C) between the wirings, and is expressed by the following equation (1).

T∝CR・・・(1)
一方、ε(誘電率)とCの関係は式(2)で表される。
T∝CR (1)
On the other hand, the relationship between ε (dielectric constant) and C is expressed by equation (2).

C=ε0εrS/d・・・(2)
(Sは電極面積、ε0は真空の誘電率、εrは絶縁膜の誘電率、dは配線間隔)
したがって、配線遅延を小さくするためには、絶縁膜の低誘電率化が有効な手段となる。
特開平9−315812号公報(特許請求の範囲) 国際出願公開WO00/18847公報(特許請求の範囲) 国際出願公開WO00/12640公報(特許請求の範囲) 特開平14−30249号公報(特許請求の範囲)
C = ε 0 ε r S / d (2)
(S is the electrode area, ε 0 is the dielectric constant of the vacuum, ε r is the dielectric constant of the insulating film, and d is the wiring interval)
Therefore, reducing the dielectric constant of the insulating film is an effective means for reducing the wiring delay.
JP-A-9-315812 (Claims) International Application Publication WO 00/18847 (Claims) International Application Publication WO 00/12640 (Claims) Japanese Patent Laid-Open No. 14-30249 (Claims)

しかしながら、絶縁膜の低誘電率化には、絶縁膜中に空孔を取り入れたり、有機材料を用いたりするため、一般的に膜の強度が不足しがちになるという問題が生じてきている。たとえば、半導体装置形成プロセスには、銅配線形成の際のCMP(化学的機械研磨法)プロセスや、パッドから電極を取るワイヤボンディングプロセスといった、機械的ストレスのかかるプロセスがいくつか存在し、そのため、半導体デバイスの製造中に絶縁膜内部における破壊が起こりやすくなってきており、歩留まり・信頼性低下の大きな一因となっている。   However, in order to reduce the dielectric constant of an insulating film, since holes are incorporated in the insulating film or organic materials are used, there is a problem that the strength of the film generally tends to be insufficient. For example, in the semiconductor device formation process, there are several processes that are mechanically stressed, such as a CMP (Chemical Mechanical Polishing) process for forming a copper wiring and a wire bonding process for taking an electrode from a pad. The breakdown inside the insulating film is likely to occur during the manufacture of semiconductor devices, which is a major cause of yield and reliability degradation.

これらの問題を解決するため鋭意研究を行ったところ、
(a)アルコキシシランおよび/またはハロゲン化シランまたはこれらの加水分解物とシリカ微粒子との反応物であるポリシロキサンを含む低誘電率シリカ系被膜形成用塗布液(たとえば特許文献1参照。)、
(b)アルコキシシランおよび/またはハロゲン化シランまたはこれらの加水分解物と、500℃以下の温度で分解または揮散する易分解性樹脂とを含む低誘電率シリカ系被膜形成用塗布液(たとえば特許文献2参照。)、
(c)アルコキシシランおよび/またはハロゲン化シランまたはこれらの加水分解物とシリカ微粒子との反応物であるポリシロキサンと、500℃以下の温度で分解または揮散する易分解性樹脂とを含む低誘電率シリカ系被膜形成用塗布液(たとえば特許文献3参照。)、
(d)アルコキシシランおよび/またはハロゲン化シランまたはこれらの加水分解物と有機テンプレート剤を含む低誘電率シリカ系被膜形成用塗布液(たとえば特許文献4参照。)
などを用いれば、比誘電率が3以下と小さく、しかも被塗布面との密着性、被膜強度、耐塩基性などの耐薬品性や耐クラック性および被膜表面の平滑性に優れ、さらには耐酸素プラズマ性やエッチング加工性などのプロセス適合性にも優れた被膜を形成できることが見出された。
When we conducted intensive research to solve these problems,
(A) A coating liquid for forming a low dielectric constant silica-based film containing polysiloxane which is a reaction product of alkoxysilane and / or halogenated silane or a hydrolyzate thereof and silica fine particles (see, for example, Patent Document 1),
(B) A coating liquid for forming a low dielectric constant silica-based film comprising an alkoxysilane and / or a halogenated silane or a hydrolyzate thereof and a readily decomposable resin that decomposes or volatilizes at a temperature of 500 ° C. or less (for example, patent documents) 2).
(C) Low dielectric constant containing alkoxysilane and / or halogenated silane or polysiloxane which is a reaction product of these hydrolyzate and silica fine particles, and an easily decomposable resin which decomposes or volatilizes at a temperature of 500 ° C. or lower. A coating solution for forming a silica-based film (see, for example, Patent Document 3),
(D) A coating liquid for forming a low dielectric constant silica-based film containing an alkoxysilane and / or a halogenated silane or a hydrolyzate thereof and an organic template agent (see, for example, Patent Document 4).
Etc., the dielectric constant is as small as 3 or less, and it is excellent in chemical resistance such as adhesion to the coated surface, coating strength, base resistance, crack resistance, and smoothness of the coating surface. It was found that a film having excellent process compatibility such as oxygen plasma property and etching processability can be formed.

しかしながら、これらの塗布液について、従来公知の被膜形成法(スピンコート法やその他の塗布法)を用いて種々の半導体基板上に低誘電率シリカ系被膜を形成する試験を繰り返し行ったところ、前記の特性を有する被膜は得られるものの、2.7以下の比誘電率を有する被膜を形成しようとすると被膜強度が低下し、昨今の半導体製造業界から要望のある6.0GPa(ギガパスカル)以上のヤング率を有するものを安定的に得ることは難しいことが見出された。   However, when these coating solutions were repeatedly tested to form a low dielectric constant silica-based coating on various semiconductor substrates using a conventionally known coating formation method (spin coating method or other coating method), Although a film having the following characteristics can be obtained, if a film having a relative dielectric constant of 2.7 or less is formed, the film strength is lowered, and the value more than 6.0 GPa (gigapascal), which has been requested from the recent semiconductor manufacturing industry. It has been found that it is difficult to stably obtain a material having a Young's modulus.

本発明は、上記問題を解決し、誘電率と被膜強度を表わすヤング率とに優れたシリカ系被膜の新規な形成方法、および、比誘電率が2.7以下と小さく、さらに被膜強度を表わすヤング率が半導体配線層作製プロセスに耐えうるだけの強度特性を備えたシリカ系被膜の形成方法を提供することを目的としている。本発明のさらに他の目的および利点は、以下の説明から明らかになるであろう。   The present invention solves the above-described problems, and provides a novel method for forming a silica-based film excellent in dielectric constant and Young's modulus representing film strength, and a dielectric constant as small as 2.7 or less, and further represents film strength. It is an object of the present invention to provide a method for forming a silica-based coating film having a strength characteristic that allows Young's modulus to withstand a semiconductor wiring layer manufacturing process. Still other objects and advantages of the present invention will become apparent from the following description.

本発明の一態様によれば、
(i)シリカ系被膜形成用塗布液を基板上に塗布し、
(ii)塗布後の当該基板を加熱処理し、
(iii)加熱後の当該基板に、ケイ素の不対電子を安定化できる物質を含む雰囲気中で活性エネルギー線を照射する
ことを含む、シリカ系被膜の製造方法が提供される。本発明態様により、誘電率と被膜強度を表わすヤング率とに優れたシリカ系被膜の新規な形成方法が提供される。条件を選べば、比誘電率が2.7以下と小さく、さらに被膜強度を表わすヤング率が半導体配線層作製プロセスに耐えうるだけの強度特性を備えたシリカ系被膜の形成方法が得られる。
According to one aspect of the invention,
(I) Applying a silica-based film-forming coating solution on a substrate;
(Ii) heat-treating the substrate after application;
(Iii) There is provided a method for producing a silica-based coating, which comprises irradiating the substrate after heating with active energy rays in an atmosphere containing a substance capable of stabilizing unpaired electrons of silicon. According to the embodiment of the present invention, a novel method for forming a silica-based film excellent in dielectric constant and Young's modulus representing film strength is provided. If the conditions are selected, there can be obtained a method for forming a silica-based film having a relative dielectric constant as small as 2.7 or less and a Young's modulus representing the film strength with strength characteristics that can withstand the semiconductor wiring layer manufacturing process.

前記シリカ系被膜形成用塗布液が、アルコキシシランまたは、ケイ素に直接ハロゲン原子が結合しあるいはケイ素に直接結合する炭化水素基の水素がハロゲン原子で置換されていてもよい置換アルコキシシランの加水分解物を含むこと、前記シリカ系被膜形成用塗布液が、下記一般式(I)で示される化合物および(II)で示される化合物からなる群から選ばれたすくなくとも一つの化合物の加水分解物を含むこと、
XanSi(OR)4-n・・・(I)
Xb{Si(OR)32・・・(II)
(式(I),(II)中、Xaは、ヨウ素原子、臭素原子、炭素数3以上の炭化水素基、アリール基、ビニル基、または、一つ以上の水素原子を臭素原子もしくはヨウ素原子で置換した炭化水素基を表す。Xbは、炭素数3以上の炭化水素基、または、ひとつ以上の水素原子をヨウ素もしくは臭素で置換した炭化水素基を表す。Rは、各式毎におよび各式中で独立に、水素原子、炭素数1〜8の脂肪族基、炭素数1〜8の脂環族基、アリール基、またはビニル基を表す。nは、各式毎に独立に0〜3の整数である。)
前記シリカ系被膜形成用塗布液が、下記一般式(I)で示される化合物、下記一般式(II)で示される化合物および下記一般式(III)で示される化合物からなる群から選ばれたすくなくとも一つの化合物と、テトラアルキルオルソシリケート(TAOS)とを、テトラアルキルアンモニウムハイドロオキサイド(TAAOH)の存在下で加水分解して得られるケイ素化合物を含むこと、
XanSi(OR)4-n・・・(I)
Xb{Si(OR)32・・・(II)
XcnSi(OR)4-n・・・(III)
(式(I),(II),(III)中、Xaは、ヨウ素原子、臭素原子、炭素数3以上の炭化水素基、アリール基、ビニル基、または、一つ以上の水素原子を臭素原子もしくはヨウ素原子で置換した炭化水素基を表す。Xbは、炭素数3以上の炭化水素基、または、ひとつ以上の水素原子をヨウ素もしくは臭素で置換した炭化水素基を表す。Xcは、水素原子、フッ素原子、炭素数1〜8のアルキル基またはフッ素置換アルキル基を表す。Rは、各式毎におよび各式中で独立に、水素原子、炭素数1〜8の脂肪族基、炭素数1〜8の脂環族基、アリール基、またはビニル基を表す。nは、各式毎に独立に0〜3の整数である。)
とりわけ、前記一般式(I)のXaが、
(a) 4以上の炭素数を有すること
(b) 第3級または第4級炭素を含むこと
(c) ヨウ素原子と臭素原子との少なくともいずれか一方を一つ以上有すること
(d) 環状構造を有すること
のいずれかを満たす炭化水素基であること、特に、前記ケイ素の不対電子を安定化できる物質が炭素数1〜8の炭化水素であること、前記炭化水素の炭素数が1〜3であること、前記炭化水素が不飽和結合を持つこと、前記炭化水素がメタン、エタン、エチレンまたはこれらを含む混合物であること、が好ましい。また、前記活性エネルギー線照射に使用する活性エネルギー線の波長が150〜500nmの範囲にあること、特に、前記活性エネルギー線照射に使用する活性エネルギー線の波長が350〜500nmの範囲にあること、または、200〜300nmの範囲にあること、が好ましい。
The coating liquid for forming a silica-based film is an alkoxysilane or a hydrolyzate of a substituted alkoxysilane in which a halogen atom is bonded directly to silicon or a hydrogen atom of a hydrocarbon group bonded directly to silicon may be substituted with a halogen atom. The coating solution for forming a silica-based film contains a hydrolyzate of at least one compound selected from the group consisting of the compound represented by the following general formula (I) and the compound represented by (II): ,
Xa n Si (OR) 4- n ··· (I)
Xb {Si (OR) 3 } 2 (II)
(In the formulas (I) and (II), Xa represents an iodine atom, a bromine atom, a hydrocarbon group having 3 or more carbon atoms, an aryl group, a vinyl group, or one or more hydrogen atoms represented by a bromine atom or an iodine atom. Xb represents a hydrocarbon group having 3 or more carbon atoms, or a hydrocarbon group in which one or more hydrogen atoms have been substituted with iodine or bromine, and R represents each formula and each formula. Each independently represents a hydrogen atom, an aliphatic group having 1 to 8 carbon atoms, an alicyclic group having 1 to 8 carbon atoms, an aryl group, or a vinyl group, and n is independently 0 to 3 for each formula. Is an integer.)
The coating liquid for forming a silica-based film is at least selected from the group consisting of a compound represented by the following general formula (I), a compound represented by the following general formula (II), and a compound represented by the following general formula (III). Including a silicon compound obtained by hydrolyzing one compound and tetraalkylorthosilicate (TAOS) in the presence of tetraalkylammonium hydroxide (TAAOH);
Xa n Si (OR) 4- n ··· (I)
Xb {Si (OR) 3 } 2 (II)
Xc n Si (OR) 4-n (III)
(In the formulas (I), (II), and (III), Xa represents an iodine atom, a bromine atom, a hydrocarbon group having 3 or more carbon atoms, an aryl group, a vinyl group, or one or more hydrogen atoms as a bromine atom. Alternatively, a hydrocarbon group substituted with an iodine atom, Xb represents a hydrocarbon group having 3 or more carbon atoms, or a hydrocarbon group in which one or more hydrogen atoms are substituted with iodine or bromine, Xc represents a hydrogen atom, Represents a fluorine atom, an alkyl group having 1 to 8 carbon atoms or a fluorine-substituted alkyl group, wherein R represents a hydrogen atom, an aliphatic group having 1 to 8 carbon atoms, or 1 carbon atom independently for each formula or in each formula; Represents an alicyclic group, an aryl group, or a vinyl group of ˜8, and n is an integer of 0 to 3 independently for each formula.
In particular, Xa of the general formula (I) is
(A) having 4 or more carbon atoms (b) containing tertiary or quaternary carbon (c) having at least one of iodine and bromine atoms (d) cyclic structure A hydrocarbon group satisfying any of the above, in particular, the substance capable of stabilizing the unpaired electrons of silicon is a hydrocarbon having 1 to 8 carbon atoms, and the hydrocarbon has 1 to 3 carbon atoms. Preferably, the hydrocarbon has an unsaturated bond, and the hydrocarbon is methane, ethane, ethylene or a mixture containing these. Moreover, the wavelength of the active energy ray used for the active energy ray irradiation is in a range of 150 to 500 nm, in particular, the wavelength of the active energy ray used for the active energy ray irradiation is in a range of 350 to 500 nm, Or it is preferable that it exists in the range of 200-300 nm.

本発明の他の一態様によれば、上記のシリカ系被膜の製造方法を用いて製造されたシリカ系被膜が提供される。本発明態様により、誘電率とヤング率とに優れたシリカ系被膜を実現できる。このシリカ系被膜は、半導体装置の絶縁膜として使用できる。   According to the other one aspect | mode of this invention, the silica-type film manufactured using said manufacturing method of a silica-type film is provided. According to the embodiment of the present invention, a silica-based film having excellent dielectric constant and Young's modulus can be realized. This silica-based film can be used as an insulating film of a semiconductor device.

得られたシリカ系被膜中の空孔の平均直径が1nm以下で、しかも1nm以下空孔の容積が全空孔容積に占める割合が70%以上であること、および、得られたシリカ系被膜の比誘電率が2.7以下であること、が好ましい。   The average diameter of vacancies in the obtained silica-based coating is 1 nm or less, and the ratio of the volume of vacancies to 1 nm or less in the total pore volume is 70% or more. The relative dielectric constant is preferably 2.7 or less.

本発明のさらに他の一態様によれば、上記のシリカ系被膜を含んでなる半導体装置が提供される。本発明態様により、応答速度の高い半導体装置が得られる。   According to yet another aspect of the present invention, a semiconductor device comprising the above silica-based coating is provided. According to the aspect of the present invention, a semiconductor device having a high response speed can be obtained.

本発明により、誘電率と被膜強度を表わすヤング率とに優れたシリカ系被膜の新規な形成方法が提供される。このシリカ系被膜は、半導体装置の絶縁膜として使用できる。条件を選べば、比誘電率が2.7以下と小さく、さらに被膜強度を表わすヤング率が半導体配線層作製プロセスに耐えうるだけの強度特性を備えたシリカ系被膜の形成方法が得られる。これらの方法により、誘電率とヤング率とに優れたシリカ系被膜を実現でき、応答速度の高い半導体装置が得られる。   According to the present invention, a novel method for forming a silica-based film excellent in dielectric constant and Young's modulus representing film strength is provided. This silica-based film can be used as an insulating film of a semiconductor device. If the conditions are selected, there can be obtained a method for forming a silica-based film having a relative dielectric constant as small as 2.7 or less and a Young's modulus representing the film strength with strength characteristics that can withstand the semiconductor wiring layer manufacturing process. By these methods, a silica-based film excellent in dielectric constant and Young's modulus can be realized, and a semiconductor device having a high response speed can be obtained.

以下に、本発明の実施の形態を図、表、式、実施例等を使用して説明する。なお、これらの図、表、式、実施例等および説明は本発明を例示するものであり、本発明の範囲を制限するものではない。本発明の趣旨に合致する限り他の実施の形態も本発明の範疇に属し得ることは言うまでもない。煩雑さを避けるため、図1〜17中、同一の要素について符号を繰り返し付すことを避けた。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, tables, formulas, examples and the like. In addition, these figures, tables, formulas, examples, etc., and explanations exemplify the present invention, and do not limit the scope of the present invention. It goes without saying that other embodiments may belong to the category of the present invention as long as they match the gist of the present invention. In order to avoid complication, in FIG. 1 to FIG.

本発明に係るシリカ系被膜の製造方法には、
(i)シリカ系被膜形成用塗布液を基板上に塗布し、
(ii)塗布後の当該基板を加熱処理し、
(iii)加熱後の当該基板に、ケイ素の不対電子を安定化できる物質を含む雰囲気中で活性エネルギー線を照射する
ことが含まれる。
In the method for producing a silica-based film according to the present invention,
(I) Applying a silica-based film-forming coating solution on a substrate;
(Ii) heat-treating the substrate after application;
(Iii) Irradiating the substrate after heating with active energy rays in an atmosphere containing a substance capable of stabilizing unpaired electrons of silicon is included.

本発明により、誘電率と被膜強度を表わすヤング率とに優れたシリカ系被膜が得られ、条件を選べば、比誘電率が2.7以下と小さく、さらに被膜強度を表わすヤング率が半導体配線層作製プロセスに耐えうるだけの強度特性を備えたシリカ系被膜の形成方法が得られる。これは、恐らく、シリカ系被膜形成用塗布液を基板上に塗布した後加熱処理と活性エネルギー線処理とを組み合わせることにより、分子レベルの大きさの空孔が生成されるためであると考えられる。また、シリカ系被膜形成用塗布液を使用することで、被膜として優れた疎水性を実現でき本処理方法により、平滑な被膜が得られる場合が多い。   According to the present invention, a silica-based coating excellent in dielectric constant and Young's modulus representing coating strength can be obtained. If conditions are selected, the relative dielectric constant is as small as 2.7 or less, and the Young's modulus representing coating strength is further reduced to semiconductor wiring. A method for forming a silica-based film having strength characteristics that can withstand the layer production process is obtained. This is probably because pores of a molecular level are generated by combining the heat treatment and the active energy ray treatment after applying the silica-based film-forming coating solution on the substrate. . In addition, by using a coating liquid for forming a silica-based film, excellent hydrophobicity can be realized as a film, and a smooth film is often obtained by this treatment method.

本発明に使用できる基板材料については特に制限はなく、一般的なシリコン基板、ガリウム砒素基板、インジウム燐基板等を挙げることができる。なお、被膜形成用塗布液を半導体基板上に塗布する前に、密着強度向上処理等を目的として、シランカップリング剤やオゾン水、UV、X線、電子線等で半導体基板表面を処理してもよい。処理方法は公知のものを用いる。   The substrate material that can be used in the present invention is not particularly limited, and examples thereof include a general silicon substrate, a gallium arsenide substrate, and an indium phosphorus substrate. Before applying the coating liquid for coating formation on the semiconductor substrate, the surface of the semiconductor substrate is treated with a silane coupling agent, ozone water, UV, X-rays, electron beam, etc. for the purpose of improving adhesion strength. Also good. A known treatment method is used.

本発明に係るシリカ系被膜形成用塗布液としては、結果としてシリカ系被膜を形成できる材料(シリカ系被膜形成用材料)を含む液状のものであればどのようなものを使用してもよい。「シリカ系被膜」とは、ケイ素と酸素とを骨格とする架橋構造体よりなる被膜を意味する。ケイ素に対する酸素のモル比(O/Si)は1.5以上が好ましい。他の成分としては炭素、水素、フッ素等が共存してもよい。炭素は15重量%以下、水素は4重量%以下、フッ素は27重量%以下が好ましい。シリカ系被膜は、一般的に非晶質である。   As a coating liquid for forming a silica-based film according to the present invention, any liquid may be used as long as it contains a material (silica-based film forming material) that can form a silica-based film as a result. “Silica-based coating” means a coating made of a crosslinked structure having a skeleton of silicon and oxygen. The molar ratio of oxygen to silicon (O / Si) is preferably 1.5 or more. As other components, carbon, hydrogen, fluorine and the like may coexist. Carbon is preferably 15% by weight or less, hydrogen is 4% by weight or less, and fluorine is 27% by weight or less. The silica-based film is generally amorphous.

本発明に係るシリカ系被膜形成用材料は、シロキサン化合物やその誘導体から選択することができ、アルコキシシランまたは、ケイ素に直接ハロゲン原子が結合しあるいはケイ素に直接結合する炭化水素基の水素がハロゲン原子で置換されていてもよい置換アルコキシシランの加水分解物を挙げることができる。より具体的には、一般式(I)で示される化合物、(II)で示される化合物および(III)で示される化合物からなる群から選ばれたすくなくとも一つの化合物の加水分解物を例示することができる。   The silica-based film-forming material according to the present invention can be selected from siloxane compounds and derivatives thereof, and alkoxysilane or a hydrocarbon group hydrogen directly bonded to silicon or bonded to silicon is a halogen atom. The hydrolyzate of the substituted alkoxysilane which may be substituted by can be mentioned. More specifically, illustrating a hydrolyzate of at least one compound selected from the group consisting of the compound represented by the general formula (I), the compound represented by (II) and the compound represented by (III) Can do.

XanSi(OR)4-n・・・(I)
Xb{Si(OR)32・・・(II)
XcnSi(OR)4-n・・・(III)
式(I),(II),(III)中、Xaは、ヨウ素原子、臭素原子、炭素数3以上の炭化水素基、アリール基、ビニル基、または、一つ以上の水素原子を臭素原子もしくはヨウ素原子で置換した炭化水素基を表す。Xbは、炭素数3以上の炭化水素基、または、ひとつ以上の水素原子をヨウ素もしくは臭素で置換した炭化水素基を表す。Xcは、水素原子、フッ素原子、炭素数1〜8のアルキル基またはフッ素置換アルキル基を表す。Rは、各式毎におよび各式中で独立に、水素原子、炭素数1〜8の脂肪族基、炭素数1〜8の脂環族基、アリール基、またはビニル基を表す。nは、各式毎に独立に0〜3の整数である。このような材料であれば、誘電率を下げるために十分大きい空孔をもち、かつ高強度なシリカ系皮膜を得られる。
Xa n Si (OR) 4- n ··· (I)
Xb {Si (OR) 3 } 2 (II)
Xc n Si (OR) 4-n (III)
In the formulas (I), (II) and (III), Xa represents an iodine atom, a bromine atom, a hydrocarbon group having 3 or more carbon atoms, an aryl group, a vinyl group, or one or more hydrogen atoms as a bromine atom or This represents a hydrocarbon group substituted with an iodine atom. Xb represents a hydrocarbon group having 3 or more carbon atoms or a hydrocarbon group in which one or more hydrogen atoms are substituted with iodine or bromine. Xc represents a hydrogen atom, a fluorine atom, an alkyl group having 1 to 8 carbon atoms or a fluorine-substituted alkyl group. R represents a hydrogen atom, an aliphatic group having 1 to 8 carbon atoms, an alicyclic group having 1 to 8 carbon atoms, an aryl group, or a vinyl group independently for each formula and in each formula. n is an integer of 0 to 3 independently for each formula. With such a material, it is possible to obtain a silica-based film having pores large enough to lower the dielectric constant and having a high strength.

なお、Xcがフッ素原子である場合には、Xc−Si結合が活性エネルギー線により分解されず、生成するシリカ系被膜中にフッ素が含まれることになるが、フッ素の存在は低誘電率化に寄与するので好ましい場合がある。従って、一般式(I)で示される化合物、(II)で示される化合物および(III)で示される化合物からなる群から選ばれたすくなくとも一つの化合物中には、(III)で示される化合物が含まれていることが好ましい場合がある。   When Xc is a fluorine atom, the Xc-Si bond is not decomposed by active energy rays, and fluorine is contained in the generated silica-based film. However, the presence of fluorine reduces the dielectric constant. Since it contributes, it may be preferable. Accordingly, in at least one compound selected from the group consisting of the compound represented by the general formula (I), the compound represented by (II) and the compound represented by (III), the compound represented by (III) is It may be preferable that it is contained.

一般式(I)で示される化合物としてはヨードトリエトキシシラン、ブロモトリエトキシシラン、プロピルトリエトキシシラン、イソブチルトリエトキシシラン、n−オクタデシルトリメトキシシラン、シクロヘキシルトリメトキシシラン、フェニルトリエトキシシラン、3−ブロモプロピルトリメトキシシラン、3−ヨードプロピルトリメトキシシランを、(II)で示される化合物としてはビス(トリエトキシシリル)プロパン、ビス(トリエトキシシリル)2−ヨードプロパンを、(III)で示される化合物としてはトリエトキシシラン、フルオロトリエトキシシラン、メチルトリエトキシシラン、(3,3,3−トリフルオロプロピルトリメトキシシラン)を挙げることができる。   The compounds represented by the general formula (I) include iodotriethoxysilane, bromotriethoxysilane, propyltriethoxysilane, isobutyltriethoxysilane, n-octadecyltrimethoxysilane, cyclohexyltrimethoxysilane, phenyltriethoxysilane, 3- Bromopropyltrimethoxysilane and 3-iodopropyltrimethoxysilane are represented by (II), and bis (triethoxysilyl) propane and bis (triethoxysilyl) 2-iodopropane are represented by (III). Examples of the compound include triethoxysilane, fluorotriethoxysilane, methyltriethoxysilane, and (3,3,3-trifluoropropyltrimethoxysilane).

なお、上記アルコキシシランまたは置換アルコキシシランや一般式(I)で示される化合物、(II)で示される化合物および(III)で示される化合物以外に他の化合物を共存させてもよい場合がある。たとえば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、等のアルコキシシランを共存させると架橋度を上げ機械的強度を改善できる場合がある。   In addition to the above alkoxysilane or substituted alkoxysilane, the compound represented by the general formula (I), the compound represented by (II) and the compound represented by (III), other compounds may be allowed to coexist. For example, coexistence of alkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc. may increase the degree of crosslinking and improve the mechanical strength.

本発明に係る加水分解物は、適当な化合物を溶媒中に溶解し、水と好ましくはそこに酸性物質または塩基性物質を加えることで得ることができる。加水分解を促進するため系を加熱してもよいが、一般的には常温で可能である。   The hydrolyzate according to the present invention can be obtained by dissolving an appropriate compound in a solvent and adding water and preferably an acidic substance or a basic substance thereto. The system may be heated to promote hydrolysis, but is generally possible at room temperature.

使用する酸性物質または塩基性物質には特に制限はないが、後の処理で被膜中に残存しないか、残存しても化学的な影響を与えないものが好ましい。具体的には、硝酸、テトラアルキルアンモニウムハイドロオキサイド(TAAOH)類を例示することができる。   The acidic substance or basic substance to be used is not particularly limited, but those that do not remain in the film in the subsequent treatment or do not have a chemical effect even if they remain are preferable. Specifically, nitric acid and tetraalkylammonium hydroxide (TAAOH) can be exemplified.

使用するシリカ系被膜形成用材料、それ以外の化合物、酸性物質、塩基性物質の種類および量については、得られる被膜の特性、たとえば、機械的強度や比誘電率が所望の範囲になるように適宜選択することができる。加水分解についても、どの程度進んだかを実際に調べる必要はなく、機械的強度や比誘電率への影響を見て、反応時間を適宜定めれば充分である。機械的強度は4GPa以上、比誘電率は2.7以下が望ましい。さらに、機械的強度は、プロセス中の破壊による歩留まり低下を低減するため、6GPa以上であることが望ましい。   Regarding the type and amount of the silica-based film forming material, other compounds, acidic substances, and basic substances used, the properties of the resulting film, such as mechanical strength and relative dielectric constant, should be in the desired ranges. It can be selected appropriately. It is not necessary to actually check how much the hydrolysis has progressed, and it is sufficient to appropriately determine the reaction time in view of the influence on the mechanical strength and relative dielectric constant. The mechanical strength is preferably 4 GPa or more and the relative dielectric constant is 2.7 or less. Furthermore, the mechanical strength is desirably 6 GPa or more in order to reduce yield reduction due to breakage during the process.

本発明に係るシリカ系被膜形成用塗布液には、上記シリカ系被膜形成用材料等の他に溶媒が含まれる。この溶媒としては、本発明に係るシリカ系被膜形成用材料を溶解でき、本発明の処理により、被膜が形成される程度の沸点を有するものならばどのようなものから選択してもよい。   The coating liquid for forming a silica-based film according to the present invention contains a solvent in addition to the above-described material for forming a silica-based film. The solvent may be selected from any solvents that can dissolve the silica-based film-forming material according to the present invention and have a boiling point to the extent that a film is formed by the treatment of the present invention.

この溶媒の例としては、メチルアルコール,エチルアルコール,プロピルアルコール,イソプロピルアルコール,ブチルアルコール,イソブチルアルコール,tert−ブチルアルコールなどのアルコール系、フェノール、クレゾール、ジエチルフェノール、トリエチルフェノール、プロピルフェノール、ノニルフェノール、ビニルフェノール、アリルフェノール、ノニルフェノールなどのフェノール系、シクロヘキサノン,メチルイソブチルケトン,メチルエチルケトンなどのケトン系、メチルセロソルブ,エチルセロソルブなどのセロソルブ系,ヘキサン,オクタン,デカンなどの炭化水素系、プロピレングリコール,プロピレングリコールモノメチルエーテル,プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル,プロピレングリコールモノブチルエーテル,プロピレングリコールモノメチルエーテルアセテートなどのグリコール系や水などが挙げられる。溶媒として用いるのは上記のうち一種でも、上記溶媒の何種かを混合してもよい。   Examples of the solvent include alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, and tert-butyl alcohol, phenol, cresol, diethylphenol, triethylphenol, propylphenol, nonylphenol, vinyl Phenols such as phenol, allylphenol and nonylphenol, ketones such as cyclohexanone, methyl isobutyl ketone and methyl ethyl ketone, cellosolvs such as methyl cellosolve and ethyl cellosolve, hydrocarbons such as hexane, octane and decane, propylene glycol, propylene glycol monomethyl Ether, propylene glycol monoethyl ether, propylene glycol monop Pills ether, propylene glycol monobutyl ether, etc. glycol and water, such as propylene glycol monomethyl ether acetate. One of the above may be used as the solvent, or some of the above solvents may be mixed.

本発明に係るシリカ系被膜形成用塗布液の好ましい例としては、より具体的には、一般式(I)で示される化合物、一般式(II)で示される化合物および一般式(III)で示される化合物からなる群から選ばれたすくなくとも一つの化合物と、テトラアルキルオルソシリケート(TAOS)とを、テトラアルキルアンモニウムハイドロオキサイド(TAAOH)の存在下で加水分解して得られるケイ素化合物を含むものが挙げられる。その場合の一般式(I)で示される化合物、一般式(II)で示される化合物および一般式(III)で示される化合物からなる群から選ばれたすくなくとも一つの化合物としては、プロピルトリエトキシシラン、イソブチルトリエトキシシラン、n−オクタデシルトリメトキシシラン、シクロヘキシルトリメトキシシラン、(2,2−ジメチルプロピル)トリエトキシシランを挙げることができ、溶媒としては、水、メチルアルコール、エチルアルコール,プロピルアルコール、イソプロピルアルコール、ジメチルケトン、メチルイソブチルケトン、プロピレングリコール,プロピレングリコールモノメチルエーテル,プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテルアセテートを挙げることができる。   More preferable examples of the coating solution for forming a silica-based film according to the present invention include, more specifically, a compound represented by the general formula (I), a compound represented by the general formula (II), and the general formula (III). A silicon compound obtained by hydrolyzing at least one compound selected from the group consisting of the following compounds and tetraalkylorthosilicate (TAOS) in the presence of tetraalkylammonium hydroxide (TAAOH). It is done. In this case, at least one compound selected from the group consisting of the compound represented by the general formula (I), the compound represented by the general formula (II) and the compound represented by the general formula (III) is propyltriethoxysilane. , Isobutyltriethoxysilane, n-octadecyltrimethoxysilane, cyclohexyltrimethoxysilane, (2,2-dimethylpropyl) triethoxysilane, and examples of the solvent include water, methyl alcohol, ethyl alcohol, propyl alcohol, Mention may be made of isopropyl alcohol, dimethyl ketone, methyl isobutyl ketone, propylene glycol, propylene glycol monomethyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether acetate. .

基板上への塗布の方法については特に制限はない。たとえば、当該塗布液をスピンコート法により基板上に塗布する方法を例示できる。   There are no particular restrictions on the method of application on the substrate. For example, the method of apply | coating the said coating liquid on a board | substrate by a spin coat method can be illustrated.

加熱処理の条件についても特に制限はなく、ホットプレート、加熱炉、熱風炉を例示することができる。加熱処理により、溶媒が除去され、硬化により架橋構造を持つ被膜が生成するので、所望の機械的強度を与える程度の架橋構造が得られる条件を選択することができる。なお、加熱処理によっても、低誘電率化に役立つ空孔が生じるが、その粒径が大きい場合が多く、その分機械的性質が劣化し易くなるので、不利になる場合が多い。従って、空孔が生じにくく、所望の機械的強度を与える程度の加熱処理条件を選択することがより好ましい。100℃から250℃で溶媒乾燥をした後に、250℃から400℃の熱処理により硬化させる方法を例示することができる。   There is no restriction | limiting in particular also about the conditions of heat processing, A hot plate, a heating furnace, and a hot stove can be illustrated. Since the solvent is removed by the heat treatment and a film having a cross-linked structure is generated by curing, conditions for obtaining a cross-linked structure to the extent of giving desired mechanical strength can be selected. In addition, although the void | hole which is useful for a low dielectric constant also arises by heat processing, since the particle size is large in many cases and a mechanical property becomes easy to deteriorate correspondingly, it is often disadvantageous. Therefore, it is more preferable to select a heat treatment condition that does not easily generate vacancies and gives desired mechanical strength. Examples thereof include a method in which the solvent is dried at 100 ° C. to 250 ° C. and then cured by heat treatment at 250 ° C. to 400 ° C.

その後、活性エネルギー線を照射させることで、シリカ系被膜形成用材料が分解され、分子レベルの大きさの空孔が生成される。たとえば、一般式(I),(II),(III)の場合には、Xa−Si,Xb−Si,Xc−Si結合等が分解され、分子レベルの大きさの空孔が生成されるものと考えられる。これにより低誘電率化を計ることができる。活性エネルギー線としては、可視光線、紫外線、X線、電子線等を挙げることができる。可視光線、紫外線を活性エネルギー線として照射に使用する場合、波長は150〜500nmの範囲にあることが好ましい。このような活性エネルギー線を用いることで、上記分解が効率的に行われるためである。さらに、ケイ素−酸素等結合が解離する可能性を抑えるため、上記活性エネルギー線の波長は200nm以上であることがより好ましい。ケイ素−酸素結合が解離すると、シラノール基が生成されて吸湿性が増し、絶縁耐圧が低下したり、さらに乖離が進むことで絶縁膜の破壊が発生するという問題が生じる。   Thereafter, by irradiating with active energy rays, the silica-based film-forming material is decomposed and pores having a molecular level are generated. For example, in the case of general formulas (I), (II), and (III), Xa-Si, Xb-Si, Xc-Si bonds, etc. are decomposed to generate vacancies of molecular level. it is conceivable that. As a result, it is possible to reduce the dielectric constant. Examples of active energy rays include visible light, ultraviolet rays, X-rays, and electron beams. When using visible light and ultraviolet rays as active energy rays for irradiation, the wavelength is preferably in the range of 150 to 500 nm. This is because the decomposition is efficiently performed by using such active energy rays. Furthermore, in order to suppress the possibility of dissociation of bonds such as silicon-oxygen, the wavelength of the active energy ray is more preferably 200 nm or more. When the silicon-oxygen bond is dissociated, silanol groups are generated to increase the hygroscopicity, resulting in a problem that the dielectric breakdown voltage is lowered and further the divergence proceeds to cause the breakdown of the insulating film.

本発明に係る活性エネルギー線照射はケイ素の不対電子を安定化できる物質を含む雰囲気中で行われる。このためには真空チャンバ等適当な容器中で活性エネルギー線照射を行うことが好ましい。その場合の雰囲気はいわゆる減圧状態であってもよい。   The active energy ray irradiation according to the present invention is performed in an atmosphere containing a substance capable of stabilizing unpaired electrons of silicon. For this purpose, it is preferable to perform active energy ray irradiation in a suitable container such as a vacuum chamber. The atmosphere in that case may be a so-called reduced pressure state.

ケイ素の不対電子を安定化できる物質の役割は活性エネルギー線照射の際に生じる、ケイ素ラジカルを素早く捕捉して、たとえば大気中の水分と反応してSiOHを生じて誘電率を上昇させる問題を回避することであると考えられている。   The role of the substance that can stabilize the unpaired electrons of silicon is the problem of rapidly capturing silicon radicals that occur during irradiation with active energy rays and reacting with moisture in the atmosphere to generate SiOH to increase the dielectric constant. It is believed to be an avoidance.

たとえば、ケイ素の不対電子を安定化できる物質としてメタンを使用した場合には、
活性エネルギー線照射の際に、
Si−R → Si・ + R・
の分解反応によって生じたケイ素ラジカル(不対電子)を、
Si・ + CH4 → SiCH3 + H・
によって安定化し、
Si・ + H2O → SiOH + H・
の反応を防止するのである。
For example, when methane is used as a substance that can stabilize unpaired electrons in silicon,
During active energy ray irradiation,
Si-R → Si ・ + R ・
Silicon radicals (unpaired electrons) generated by the decomposition reaction of
Si · + CH 4 → SiCH 3 + H ·
Stabilized by
Si · + H 2 O → SiOH + H ·
This reaction is prevented.

ケイ素の不対電子を安定化できる物質は、ケイ素ラジカルを捕捉できるものと考えられる物質の中から適宜選択できる。本発明方法に使用した場合に実際にケイ素の不対電子を安定化しているかどうかを確認する必要はなく、ある物質を採用した結果、誘電率の低下が認められれば、本発明に係るケイ素の不対電子を安定化できる物質と考えてよい。たとえば炭化水素を挙げることができる。   The substance that can stabilize the unpaired electrons of silicon can be appropriately selected from substances that can capture silicon radicals. It is not necessary to confirm whether or not silicon unpaired electrons are actually stabilized when used in the method of the present invention. If a decrease in dielectric constant is observed as a result of employing a certain substance, the silicon according to the present invention It can be considered as a substance that can stabilize unpaired electrons. For example, a hydrocarbon can be mentioned.

たとえば炭化水素を導入すると、たとえば一般式(I),(II),(III)のXa−Si,Xb−Si,Xc−Si結合が活性エネルギー線により分解されて生成したSiの不対電子に炭化水素の水素を置換し、アルキル基等が形成され、このことによりシラノール基等の生成による誘電率上昇を防止することができる。炭化水素の炭素数は1〜8の範囲のものが好ましく、1〜3のものがより好ましい。   For example, when hydrocarbons are introduced, for example, the Xa-Si, Xb-Si, and Xc-Si bonds of the general formulas (I), (II), and (III) are decomposed by active energy rays to generate unpaired electrons of Si. Substituting the hydrogen of the hydrocarbon to form an alkyl group or the like, which can prevent an increase in dielectric constant due to the generation of a silanol group or the like. The hydrocarbon has preferably 1 to 8 carbon atoms, more preferably 1 to 3 carbon atoms.

導入する気体に不飽和結合がある場合には、照射活性エネルギー線の波長が350〜500nmと長波長であっても上記分解反応が起きる上、ケイ素−酸素結合の解離を防止できるため、より好ましい条件となる。   When the introduced gas has an unsaturated bond, it is more preferable because the decomposition reaction occurs and the dissociation of the silicon-oxygen bond can be prevented even if the wavelength of the irradiation active energy ray is 350 to 500 nm. It becomes a condition.

なお、200〜300nmの活性エネルギー線を照射することが好ましい場合もある。不飽和結合がない場合にも上記分解反応が効率的に行われるため、たとえば一般式(I),(II),(III)のXa−Si,Xb−Si,Xc−Si結合が活性エネルギー線により分解されて生成する空孔の大きさを減らすことなく、Si等の不対電子を無くすことが可能となり、誘電率をより効果的に低下することができ、かつケイ素−酸素結合の解離を抑制できる場合があるからである。導入する気体がメタン、エタンまたはエチレンの場合にはとくに好ましい条件である。エチレンの場合には、照射活性エネルギー線の波長が350〜500nmの範囲にある場合も好ましい条件であるが、一般的には、200〜300nmの活性エネルギー線を照射することがより好ましい。   It may be preferable to irradiate an active energy ray of 200 to 300 nm. Even when there is no unsaturated bond, the above decomposition reaction is efficiently performed. For example, the Xa-Si, Xb-Si, and Xc-Si bonds of the general formulas (I), (II), and (III) are active energy rays. It is possible to eliminate unpaired electrons such as Si without reducing the size of the vacancies generated by decomposition by the above, to reduce the dielectric constant more effectively, and to dissociate the silicon-oxygen bond. This is because there are cases where it can be suppressed. This is a particularly preferable condition when the gas to be introduced is methane, ethane or ethylene. In the case of ethylene, although it is a preferable condition when the wavelength of the irradiation active energy ray is in the range of 350 to 500 nm, it is generally more preferable to irradiate the active energy ray of 200 to 300 nm.

なお、上記一般式(I)のXaについては、(a)4以上の炭素数を有すること、(b)第3級または第4級炭素を含むこと、(c)ヨウ素原子と臭素原子との少なくともいずれか一方を一つ以上有すること、(d)環状構造を有することが好ましい。炭素数が4以上であれば生成する空孔の大きさが大きくなるために低誘電率化が可能であり、第3級または第4級炭素を含めばSi−C結合エネルギーが小さくなるために活性エネルギー線照射による分解反応が起こりやすく、またヨウ素原子や臭素原子が存在すれば活性エネルギー線照射による分解反応が起こりやすい。炭素数が4以上である例としてはn−オクタデシルトリエトキシシランを、第3級または第4級炭素を含む例としては(2,2−ジメチルプロピル)トリエトキシシランを、ヨウ素原子と臭素原子との少なくともいずれか一方を一つ以上有する例としては3−ブロモプロピルトリメトキシシラン、3−ヨードプロピルトリメトキシシランを、環状構造を有する例としてはシクロヘキシルトリメトキシシラン、フェニルトリエトキシシランを、挙げることができる。なお、環状構造には脂環と芳香環のいずれもが含まれ得る。   In addition, about Xa of the said general formula (I), (a) it has 4 or more carbon atoms, (b) it contains tertiary or quaternary carbon, (c) an iodine atom and a bromine atom It is preferable to have at least one of at least one of them, and (d) to have a cyclic structure. If the number of carbon atoms is 4 or more, the size of the vacancies to be generated increases, so that the dielectric constant can be reduced. If a tertiary or quaternary carbon is included, the Si-C bond energy decreases. Decomposition reaction due to irradiation with active energy rays is likely to occur, and if there are iodine atoms or bromine atoms, decomposition reaction due to irradiation with active energy rays is likely to occur. An example having 4 or more carbon atoms is n-octadecyltriethoxysilane, an example containing tertiary or quaternary carbon is (2,2-dimethylpropyl) triethoxysilane, an iodine atom and a bromine atom. Examples of having at least one of these are 3-bromopropyltrimethoxysilane and 3-iodopropyltrimethoxysilane, and examples having a cyclic structure are cyclohexyltrimethoxysilane and phenyltriethoxysilane. Can do. The cyclic structure can include both alicyclic rings and aromatic rings.

上記に説明した方法により製造されたシリカ系被膜は、誘電率とヤング率とに優れ、応答速度の高速化が要求される回路基板等に適用できるシリカ系被膜として使用することができ、半導体装置の絶縁膜として好適に使用できる。また、このようなシリカ系被膜を、たとえば絶縁膜として含んでなる半導体装置は、応答速度が高く、信頼性に優れた半導体装置となる。従って、本発明を採用することにより、たとえばIC、LSI等の高集積度の半導体装置において、プロセス時に破壊されず、信頼性を十分保てるだけの強度を持つ低誘電率の絶縁膜材料を得ることができ、高性能で信頼性の高い半導体装置製品を生産することが可能になる。   The silica-based film produced by the method described above can be used as a silica-based film that is excellent in dielectric constant and Young's modulus and can be applied to circuit boards and the like that require high response speed. It can be suitably used as an insulating film. Moreover, a semiconductor device including such a silica-based film as an insulating film, for example, has a high response speed and is excellent in reliability. Accordingly, by adopting the present invention, a low dielectric constant insulating film material having a strength sufficient to maintain sufficient reliability without being destroyed during a process in a highly integrated semiconductor device such as an IC or LSI can be obtained. This makes it possible to produce high performance and highly reliable semiconductor device products.

本発明に係る方法で生成するシリカ系被膜中に生じる空孔は、従来のシリカ系被膜中に生じる空孔に比べて微細(たとえば分子レベルの大きさ)にすることができる。その平均直径が1nm以下の範囲にあり、しかも1nm以下空孔の容積が全空孔容積に占める割合が70%以上であることが誘電率の低下と適切なヤング率の保持上好ましい。このようにして生成したシリカ系被膜は、比誘電率を2.7以下とすることも容易であり、好ましい。なお、シリカ系被膜中に生じる空孔のサイズは、小角散乱X線回折法で測定することができる。   The vacancies generated in the silica-based coating produced by the method according to the present invention can be made finer (for example, at the molecular level) compared to the vacancies generated in the conventional silica-based coating. The average diameter thereof is in the range of 1 nm or less, and the ratio of the pore volume of 1 nm or less to the total pore volume is preferably 70% or more in terms of lowering the dielectric constant and maintaining an appropriate Young's modulus. The silica-based film thus produced is preferable because it can easily have a relative dielectric constant of 2.7 or less. The size of the vacancies generated in the silica-based film can be measured by a small angle scattering X-ray diffraction method.

次に本発明の実施例および比較例を詳述する。   Next, examples and comparative examples of the present invention will be described in detail.

[例1]
テトラエトキシシラン20.8g(0.1mol)、イソブチルトリエトキシシラン22.0g(0.1mol)、ジメチルケトン42.8gを200mLの反応容器に仕込み、ついで、この反応容器中に400重量ppmの硝酸水溶液15.1gを10分間で滴下し、滴下終了後2時間の熟成反応を行い加水分解物を得た。得られた反応溶液にジメチルケトンを50mL添加し、シリカ系被膜形成用塗布液を作製した。
[Example 1]
20.8 g (0.1 mol) of tetraethoxysilane, 22.0 g (0.1 mol) of isobutyltriethoxysilane, and 42.8 g of dimethyl ketone were charged into a 200 mL reaction vessel, and then 400 ppm by weight of nitric acid was added to the reaction vessel. An aqueous solution (15.1 g) was added dropwise over 10 minutes, and after completion of the addition, an aging reaction was performed for 2 hours to obtain a hydrolyzate. 50 mL of dimethyl ketone was added to the obtained reaction solution to prepare a coating solution for forming a silica-based film.

作製したシリカ系被膜形成用塗布液を低抵抗シリコン基板上にスピンコートし、250℃,3分でプリベークを行った後、FT−IR(フーリエ変換赤外分光分析法)を用いて950cm-1付近のSiOHの吸収強度から算出したところ、架橋率は75%であった。 The prepared coating solution for forming a silica-based film is spin-coated on a low resistance silicon substrate, prebaked at 250 ° C. for 3 minutes, and then 950 cm −1 using FT-IR (Fourier transform infrared spectroscopy). When calculated from the absorption strength of nearby SiOH, the crosslinking rate was 75%.

次に、N2ガス雰囲気の電気炉にて400℃,30分の条件で加熱し、さらにキュアした。このプリベークと加熱が本発明に係る加熱処理に該当する。 Next, it was heated in an electric furnace in an N 2 gas atmosphere at 400 ° C. for 30 minutes and further cured. This pre-baking and heating correspond to the heat treatment according to the present invention.

続いて、番号1を除き、真空チャンバ中で紫外線照射を行った。真空チャンバは一旦真空にした後、紫外線照射中は、チャンバ圧力が所定の圧力になるようガス(エチレン、メタンまたは大気)を導入し、照射後ガスを排気した後大気を導入した。   Subsequently, UV irradiation was performed in a vacuum chamber except for No. 1. After the vacuum chamber was once evacuated, a gas (ethylene, methane, or air) was introduced so that the chamber pressure became a predetermined pressure during the ultraviolet irradiation, and the atmosphere was introduced after exhausting the gas after irradiation.

得られた膜の特性を表1に示す。比誘電率は水銀プローバ(CVmap92A、Four Dimensions Inc.)で測定した容量から算出し、ヤング率は、先端が三角錐の針を押し込む、押し込み法(Nano Indenter XP、Nano Instruments社)で測定した。紫外線照射時の真空チャンバ圧力、紫外線の波長、紫外線照射時間は表1に示すとおりであった。   Table 1 shows the characteristics of the obtained film. The relative dielectric constant was calculated from the capacity measured with a mercury probe (CVmap92A, Four Dimensions Inc.), and the Young's modulus was measured by an indentation method (Nano Indenter XP, Nano Instruments, Inc.) in which a needle with a triangular pyramid was pushed. Table 1 shows the vacuum chamber pressure, the wavelength of ultraviolet light, and the ultraviolet irradiation time during ultraviolet irradiation.

番号2〜8,10〜13が実施例である。番号1は紫外線照射を行わなかった比較例、番号9は、ケイ素の不対電子を安定化できる物質を含まない雰囲気中で紫外線照射を行った比較例である。実施例はいずれも誘電率と被膜強度を表わすヤング率とに優れ、特に番号2〜8,10,12,13は、比較例に比べ低い誘電率で充分なヤング率が確保されている。   Numbers 2-8 and 10-13 are examples. No. 1 is a comparative example in which ultraviolet irradiation was not performed, and No. 9 is a comparative example in which ultraviolet irradiation was performed in an atmosphere not containing a substance capable of stabilizing silicon unpaired electrons. Each of the examples is excellent in the dielectric constant and the Young's modulus representing the film strength. In particular, Nos. 2 to 8, 10, 12, and 13 have a sufficiently low Young's modulus and a sufficient Young's modulus as compared with the comparative examples.

なお、得られた被膜は、非晶質であり、ケイ素と酸素と炭素と水素とから形成されていた。また、番号6の空孔を小角散乱X線回折法により測定したところ、平均直径は0.7nmであった。   The obtained film was amorphous and was formed of silicon, oxygen, carbon, and hydrogen. Moreover, when the hole of number 6 was measured by the small angle scattering X-ray diffraction method, the average diameter was 0.7 nm.

Figure 2007053300
[例2]
本例は、誘電率を低減させる目的で、例1とは異なる組成・作成方法で作成したシリカ系被膜形成用塗布液を使用した実施例である。
Figure 2007053300
[Example 2]
In this example, for the purpose of reducing the dielectric constant, a silica-based coating-forming coating solution prepared by a composition / preparation method different from Example 1 is used.

テトラエトキシシラン20.8g(0.1mol)、メチルトリエトキシシラン17.8g(0.1mol)、イソブチルトリエトキシシラン22.0g(0.1mol)、メチルイソブチルケトン39.6gを200mLの反応容器に仕込み、ついで、この反応容器中に、1重量%のテトラメチルアンモニウムハイドロキサイド水溶液16.2g(0.9mol)を10分間で滴下し、滴下終了後2時間の熟成反応を行い加水分解物を得た。   20.8 g (0.1 mol) of tetraethoxysilane, 17.8 g (0.1 mol) of methyltriethoxysilane, 22.0 g (0.1 mol) of isobutyltriethoxysilane, and 39.6 g of methyl isobutyl ketone were placed in a 200 mL reaction vessel. Then, 16.2 g (0.9 mol) of a 1% by weight tetramethylammonium hydroxide aqueous solution was dropped into this reaction vessel over 10 minutes, and after completion of the dropwise addition, an aging reaction was performed for 2 hours to obtain a hydrolyzate. Obtained.

次に、硫酸マグネシウム5gを添加し、過剰の水分を除去した後、ロータリーエバポレータにて熟成反応により生成したエタノールを反応溶液が50mLになるまで除去した。得られた反応溶液にメチルイソブチルケトンを20mL添加し、シリカ系被膜形成用塗布液を作製した。   Next, 5 g of magnesium sulfate was added to remove excess water, and then the ethanol produced by the aging reaction was removed with a rotary evaporator until the reaction solution reached 50 mL. 20 mL of methyl isobutyl ketone was added to the obtained reaction solution to prepare a coating solution for forming a silica-based film.

作製したシリカ系被膜形成用塗布液を低抵抗シリコン基板上にスピンコートし250℃,3分でプリベークを行った後、FT−IRを用いて950cm-1付近のSiOHの吸収強度から算出したところ、架橋率は75%であった。 The silica-based film-forming coating solution was spin-coated on a low-resistance silicon substrate, pre-baked at 250 ° C. for 3 minutes, and then calculated from the absorption intensity of SiOH near 950 cm −1 using FT-IR. The crosslinking rate was 75%.

次に、N2ガス雰囲気の電気炉にて400℃,30分の条件でキュアを行った。続いて真空チャンバ中で紫外線照射を行った。紫外線照射条件は実施例1の番号6と同様である。 Next, curing was performed at 400 ° C. for 30 minutes in an N 2 gas atmosphere electric furnace. Subsequently, ultraviolet irradiation was performed in a vacuum chamber. The ultraviolet irradiation conditions are the same as those in Example 1.

照射後、チャンバを一度排気した後大気を導入した。得られた膜の比誘電率を水銀プローバで測定した容量から算出したところ2.0であり、ヤング率は押し込み法で測定したところ7GPaであった。   After irradiation, the chamber was evacuated and the atmosphere was introduced. When the relative dielectric constant of the obtained film was calculated from the capacity measured with a mercury probe, it was 2.0, and the Young's modulus was 7 GPa as measured by the indentation method.

[例3]
本例は、本発明を半導体の配線層の作製に使用した実施例である。図1〜17にその作製法を示す。まず、Siウェハ1上に、素子間分離膜2で分離され、ソース拡散層5aとドレイン拡散層5b、サイドウォール絶縁膜3を有するゲート電極4を形成したトランンジスタ層を形成した(図1)。ついで、その上に層間絶縁膜6(リンガラス)、ストッパ膜7を形成し(図2)、電極取り出し用のコンタクトホール19を形成した(図3)。
[Example 3]
This example is an example in which the present invention is used to fabricate a semiconductor wiring layer. 1 to 17 show the manufacturing method. First, a transistor layer was formed on the Si wafer 1 by forming the gate electrode 4 having the source diffusion layer 5a, the drain diffusion layer 5b, and the sidewall insulating film 3 separated by the element isolation film 2 (FIG. 1). . Then, an interlayer insulating film 6 (phosphorous glass) and a stopper film 7 were formed thereon (FIG. 2), and contact holes 19 for electrode extraction were formed (FIG. 3).

このコンタクトホ−ルにスパッタ法でTiN8を50nm形成した(図4)後、WF6と水素の混合し還元することで導体プラグ9を埋め込み(図5)、CMPによりビア以外の部分を除去した(図6)。続いて、実施例1の番号6の方法により、Si平板上250nmとなる条件での成膜を行い、シリカ系被膜(配線分離絶縁膜)10を形成した後、TEOS(テトラエチルオルトシリケート)より作製したSiO2よりなる保護膜11を50nm積層した(図7)。 After forming 50 nm of TiN8 on this contact hole by sputtering (FIG. 4), WF 6 and hydrogen were mixed and reduced to embed a conductor plug 9 (FIG. 5), and parts other than vias were removed by CMP. (FIG. 6). Subsequently, a film was formed under the condition of 250 nm on the Si flat plate by the method of No. 6 in Example 1 to form a silica-based film (wiring isolation insulating film) 10 and then manufactured from TEOS (tetraethylorthosilicate). The protective film 11 made of SiO 2 was laminated to 50 nm (FIG. 7).

この膜に対し、配線パターンを得るためのレジスト層をマスクにして、CF4/CHF3ガスを原料としたFプラズマにより加工し、1層目配線溝20を形成した(図8)。この配線溝20に、Cuの絶縁層への拡散バリアとして働くTiN8’を50nmと電解メッキの際に電極として働くシード層21(Cu製、50nm厚)をスパッタにより形成した(図9)。さらに、電解メッキによりCu17を600nm積層した(図10)後、CMPにより配線パターン部以外のメタルを除去し、配線層22を形成した(図11)。 This film was processed by F plasma using CF 4 / CHF 3 gas as a raw material, using a resist layer for obtaining a wiring pattern as a mask, to form a first layer wiring groove 20 (FIG. 8). In this wiring groove 20, TiN 8 ′ serving as a diffusion barrier to the Cu insulating layer was formed by sputtering and a seed layer 21 (Cu, 50 nm thickness) serving as an electrode during electrolytic plating was formed by sputtering (FIG. 9). Further, after Cu600 was deposited to 600 nm by electrolytic plating (FIG. 10), metal other than the wiring pattern portion was removed by CMP to form a wiring layer 22 (FIG. 11).

次に、ビア層と配線層とを同時に形成するデュアルダマシン法について説明する。上記の第1層目配線層上にCu拡散防止を目的としたストッパ膜として、シランとアンモニアガスを用いてプラズマCVDによりSiN膜12を50nm、プラズマCVD法により形成したSiOC膜13を250nm積層した。さらに、シランとアンモニアガスを用いてプラズマCVDによりストッパ膜としてSiN膜14を50nm成膜し、その上に、実施例1の番号6の方法によりSi平板上400nmとなる条件で成膜を行い、シリカ系被膜15を形成した後、TEOSより作製したSiO2よりなる保護膜16を50nm積層した(図12)。 Next, a dual damascene method for simultaneously forming a via layer and a wiring layer will be described. As a stopper film for preventing Cu diffusion, a SiN film 12 of 50 nm was deposited by plasma CVD using silane and ammonia gas, and a 250 nm of SiOC film 13 formed by plasma CVD was laminated on the first wiring layer. . Further, the SiN film 14 is formed as a stopper film by plasma CVD using silane and ammonia gas to a thickness of 50 nm, and then the film is formed on the Si flat plate by the method of Example 6 under the condition of 400 nm, After the silica-based coating 15 was formed, a protective film 16 made of SiO 2 made of TEOS was laminated to 50 nm (FIG. 12).

この膜に対し、ビアパターンを得るためのレジスト層をマスクに、CF4/CHF3ガスを原料としたFプラズマによりガス組成を変えることで、保護膜16/シリカ系被膜15/SiN膜14/SiOC膜13/SiN膜12の順に加工した(図13)。続いて、第2層目配線パターンを得るためのレジスト層をマスクにして、CF4/CHF3ガスを原料としたFプラズマにより、さらに加工した(図14)。 With respect to this film, a protective layer 16 / silica-based coating 15 / SiN film 14 / by changing the gas composition by F plasma using CF 4 / CHF 3 gas as a raw material with a resist layer for obtaining a via pattern as a mask. The SiOC film 13 / SiN film 12 were processed in this order (FIG. 13). Subsequently, the resist layer for obtaining the second layer wiring pattern was used as a mask, and further processed by F plasma using CF 4 / CHF 3 gas as a raw material (FIG. 14).

このビア23と配線溝24に、Cuの絶縁層への拡散バリアとして働くTiN8”を50nmと、電解メッキの際に電極として働くシード層Cu25を50nmスパッタにより形成した(図15)。さらに、電解メッキによりCu18を1400nm積層した(図16)後、CMPにより配線パターン部以外のメタルを除去し、配線とビアを形成した(図17)。以下、上記工程を繰り返し、3層配線を形成した。   In this via 23 and the wiring groove 24, TiN8 ″ that works as a diffusion barrier to the insulating layer of Cu and 50 nm of seed layer Cu25 that works as an electrode during electrolytic plating are formed by sputtering (FIG. 15). After Cu 1400 nm was deposited by plating (FIG. 16), the metal other than the wiring pattern portion was removed by CMP to form wiring and vias (FIG. 17) The following steps were repeated to form a three-layer wiring.

試作した多層配線を用いて行った100万個の連続ビアの歩留まりは95%以上であった。また、ワイヤボンディングを行ったところ、ボンディング圧力による破壊は見られなかった。櫛歯パターンを測定して実効比誘電率を計算したところ、3.0であった。   The yield of 1 million continuous vias using the prototype multilayer wiring was 95% or more. Moreover, when wire bonding was performed, no destruction was observed due to bonding pressure. It was 3.0 when the effective dielectric constant was calculated by measuring the comb-tooth pattern.

[例4]
本例は、一般式(I)で示される化合物、(II)で示される化合物および(III)で示される化合物を含まない実施例である。テトラエトキシシラン20.8g(0.1mol)、メチルトリエトキシシラン17.8g(0.1mol)、ジメチルケトン38.6gを200mLの反応容器に仕込み、400重量ppmの硝酸水溶液15.1gを10分間で滴下し、滴下終了後2時間の熟成反応を行い加水分解物を得た。得られた反応溶液にジメチルケトンを50mL添加し、配線分離層用被膜形成のための塗布液を作製した。
[Example 4]
This example is an example not including the compound represented by the general formula (I), the compound represented by (II) and the compound represented by (III). 20.8 g (0.1 mol) of tetraethoxysilane, 17.8 g (0.1 mol) of methyltriethoxysilane, and 38.6 g of dimethyl ketone were charged into a 200 mL reaction vessel, and 15.1 g of 400 wt ppm nitric acid aqueous solution was added for 10 minutes. And a ripening reaction was performed for 2 hours after completion of the dropping to obtain a hydrolyzate. 50 mL of dimethyl ketone was added to the resulting reaction solution to prepare a coating solution for forming a wiring separation layer coating.

作製した塗布液を低抵抗シリコン基板上にスピンコートし、250℃,3分でプリベークを行った後、FT−IRを用いて950cm-1付近のSiOHの吸収強度から算出したところ、架橋率は75%であった。 The prepared coating solution was spin-coated on a low-resistance silicon substrate, pre-baked at 250 ° C. for 3 minutes, and calculated from the absorption intensity of SiOH near 950 cm −1 using FT-IR. 75%.

次に、N2ガス雰囲気の電気炉にて400℃,30分の条件でキュアを行った。続いて真空チャンバ中で紫外線照射を行った。紫外線照射条件は例1の番号6と同様である。 Next, curing was performed at 400 ° C. for 30 minutes in an N 2 gas atmosphere electric furnace. Subsequently, ultraviolet irradiation was performed in a vacuum chamber. The ultraviolet irradiation conditions are the same as those in Example 1.

照射後、チャンバを一度排気した後大気を導入した。得られた膜の比誘電率は水銀プローバで測定した容量から算出したところ3.31であり、ヤング率は押し込み法で測定したところ20GPaであった。   After irradiation, the chamber was evacuated and the atmosphere was introduced. The relative dielectric constant of the obtained film was 3.31 as calculated from the capacity measured with a mercury probe, and the Young's modulus was 20 GPa as measured by the indentation method.

[例5]
本例は、活性エネルギー線照射を行わない比較例である。実施例3において、シリカ系被膜10,15を形成する際に例1の番号1の条件を採用して多層配線を形成した。試作した多層配線を用いた100万個の連続ビアの歩留まりは95%以上であった。また、ワイヤボンディングを行ったところ、ボンディング圧力による破壊は見られなかった。櫛歯パターンを測定して実効比誘電率を計算したところ、3.3であった。
[Example 5]
This example is a comparative example in which active energy ray irradiation is not performed. In Example 3, when the silica-based coatings 10 and 15 were formed, the number 1 condition of Example 1 was adopted to form a multilayer wiring. The yield of 1 million continuous vias using a prototype multilayer wiring was 95% or more. Moreover, when wire bonding was performed, no destruction was observed due to bonding pressure. The effective relative permittivity was calculated by measuring the comb tooth pattern and found to be 3.3.

[例6]
本例は、活性エネルギー線照射条件が本発明の条件を満たさない比較例である。実施例3において、シリカ系被膜10,15を形成する際に例1の番号9の条件を採用して多層配線を形成した。試作した多層配線を用いた100万個の連続ビアの歩留まりは95%以上であった。また、ワイヤボンディングを行ったところ、ボンディング圧力による破壊は見られなかった。櫛歯パターンを測定して実効比誘電率を計算したところ、5.7であった。
[Example 6]
This example is a comparative example in which the active energy ray irradiation conditions do not satisfy the conditions of the present invention. In Example 3, the multilayer wiring was formed by adopting the condition of No. 9 in Example 1 when forming the silica-based films 10 and 15. The yield of 1 million continuous vias using a prototype multilayer wiring was 95% or more. Moreover, when wire bonding was performed, no destruction was observed due to bonding pressure. It was 5.7 when the effective dielectric constant was calculated by measuring the comb-tooth pattern.

[例7]
例1のイソブチルトリエトキシシラン22.0g(0.1mol)の代わりにビス(トリエトキシシリル)プロパン18.4g(0.05mol)を用いて塗布液を作製し、実施例1の番号6の条件を採用して膜を作製した。得られた膜の比誘電率は2.42,ヤング率は9GPaであった。
[Example 7]
A coating solution was prepared using 18.4 g (0.05 mol) of bis (triethoxysilyl) propane instead of 22.0 g (0.1 mol) of isobutyltriethoxysilane of Example 1, and the conditions of No. 6 in Example 1 Was used to produce a film. The obtained film had a relative dielectric constant of 2.42 and a Young's modulus of 9 GPa.

[例8]
例1のイソブチルトリエトキシシラン22.0g(0.1mol)の代わりに3−ヨードプロピルトリメトキシシラン33.2g(0.1mol)を用いて塗布液を作製し、実施例1の番号6の条件を採用して膜を作製した。得られた膜の比誘電率は2.20,ヤング率は8GPaであった。
[Example 8]
A coating solution was prepared using 33.2 g (0.1 mol) of 3-iodopropyltrimethoxysilane instead of 22.0 g (0.1 mol) of isobutyltriethoxysilane of Example 1, and the conditions of No. 6 in Example 1 Was used to produce a film. The obtained film had a relative dielectric constant of 2.20 and a Young's modulus of 8 GPa.

なお、上記に開示した内容から、下記の付記に示した発明が導き出せる。   In addition, the invention shown to the following additional remarks can be derived from the content disclosed above.

(付記1)
(i)シリカ系被膜形成用塗布液を基板上に塗布し、
(ii)塗布後の当該基板を加熱処理し、
(iii)加熱後の当該基板に、ケイ素の不対電子を安定化できる物質を含む雰囲気中で活性エネルギー線を照射する
ことを含む、シリカ系被膜の製造方法。
(Appendix 1)
(I) Applying a silica-based film-forming coating solution on a substrate;
(Ii) heat-treating the substrate after application;
(Iii) A method for producing a silica-based coating, comprising irradiating the heated substrate with active energy rays in an atmosphere containing a substance capable of stabilizing unpaired electrons of silicon.

(付記2)
前記シリカ系被膜形成用塗布液が、アルコキシシランまたは、ケイ素に直接ハロゲン原子が結合しあるいはケイ素に直接結合する炭化水素基の水素がハロゲン原子で置換されていてもよい置換アルコキシシランの加水分解物を含む、付記1に記載のシリカ系被膜の製造方法。
(Appendix 2)
The coating liquid for forming a silica-based film is an alkoxysilane or a hydrolyzate of a substituted alkoxysilane in which a halogen atom is bonded directly to silicon or a hydrogen atom of a hydrocarbon group bonded directly to silicon may be substituted with a halogen atom. The manufacturing method of the silica-type coating film of Claim 1 containing this.

(付記3)
前記シリカ系被膜形成用塗布液が、下記一般式(I)で示される化合物および(II)で示される化合物からなる群から選ばれたすくなくとも一つの化合物の加水分解物を含む、付記1または2に記載のシリカ系被膜の製造方法。
(Appendix 3)
Additional remark 1 or 2 wherein the coating liquid for forming a silica-based film contains a hydrolyzate of at least one compound selected from the group consisting of the compound represented by the following general formula (I) and the compound represented by (II) The manufacturing method of the silica-type coating film as described in any one of.

XanSi(OR)4-n・・・(I)
Xb{Si(OR)32・・・(II)
(式(I),(II)中、Xaは、ヨウ素原子、臭素原子、炭素数3以上の炭化水素基、アリール基、ビニル基、または、一つ以上の水素原子を臭素原子もしくはヨウ素原子で置換した炭化水素基を表す。Xbは、炭素数3以上の炭化水素基、または、ひとつ以上の水素原子をヨウ素もしくは臭素で置換した炭化水素基を表す。Rは、各式毎におよび各式中で独立に、水素原子、炭素数1〜8の脂肪族基、炭素数1〜8の脂環族基、アリール基、またはビニル基を表す。nは、各式毎に独立に0〜3の整数である。
Xa n Si (OR) 4- n ··· (I)
Xb {Si (OR) 3 } 2 (II)
(In the formulas (I) and (II), Xa represents an iodine atom, a bromine atom, a hydrocarbon group having 3 or more carbon atoms, an aryl group, a vinyl group, or one or more hydrogen atoms represented by a bromine atom or an iodine atom. Xb represents a hydrocarbon group having 3 or more carbon atoms, or a hydrocarbon group in which one or more hydrogen atoms have been substituted with iodine or bromine, and R represents each formula and each formula. Each independently represents a hydrogen atom, an aliphatic group having 1 to 8 carbon atoms, an alicyclic group having 1 to 8 carbon atoms, an aryl group, or a vinyl group, and n is independently 0 to 3 for each formula. Is an integer.

(付記4)
前記シリカ系被膜形成用塗布液が、下記一般式(I)で示される化合物、下記一般式(II)で示される化合物および下記一般式(III)で示される化合物からなる群から選ばれたすくなくとも一つの化合物と、テトラアルキルオルソシリケート(TAOS)とを、テトラアルキルアンモニウムハイドロオキサイド(TAAOH)の存在下で加水分解して得られるケイ素化合物を含む、付記1または2に記載のシリカ系被膜の製造方法。
(Appendix 4)
The coating liquid for forming a silica-based film is at least selected from the group consisting of a compound represented by the following general formula (I), a compound represented by the following general formula (II), and a compound represented by the following general formula (III). The production of a silica-based coating according to appendix 1 or 2, comprising a silicon compound obtained by hydrolyzing one compound and tetraalkylorthosilicate (TAOS) in the presence of tetraalkylammonium hydroxide (TAAOH) Method.

XanSi(OR)4-n・・・(I)
Xb{Si(OR)32・・・(II)
XcnSi(OR)4-n・・・(III)
(式(I),(II),(III)中、Xaは、ヨウ素原子、臭素原子、炭素数3以上の炭化水素基、アリール基、ビニル基、または、一つ以上の水素原子を臭素原子もしくはヨウ素原子で置換した炭化水素基を表す。Xbは、炭素数3以上の炭化水素基、または、ひとつ以上の水素原子をヨウ素もしくは臭素で置換した炭化水素基を表す。Xcは、水素原子、フッ素原子、炭素数1〜8のアルキル基またはフッ素置換アルキル基を表す。Rは、各式毎におよび各式中で独立に、水素原子、炭素数1〜8の脂肪族基、炭素数1〜8の脂環族基、アリール基、またはビニル基を表す。nは、各式毎に独立に0〜3の整数である。)
(付記5)
前記一般式(I)のXaが、
(a) 4以上の炭素数を有すること
(b) 第3級または第4級炭素を含むこと
(c) ヨウ素原子と臭素原子との少なくともいずれか一方を一つ以上有すること
(d) 環状構造を有すること
のいずれかを満たす炭化水素基である、付記3または4に記載のシリカ系被膜の製造方法。
Xa n Si (OR) 4- n ··· (I)
Xb {Si (OR) 3 } 2 (II)
Xc n Si (OR) 4-n (III)
(In the formulas (I), (II), and (III), Xa represents an iodine atom, a bromine atom, a hydrocarbon group having 3 or more carbon atoms, an aryl group, a vinyl group, or one or more hydrogen atoms as a bromine atom. Alternatively, a hydrocarbon group substituted with an iodine atom, Xb represents a hydrocarbon group having 3 or more carbon atoms, or a hydrocarbon group in which one or more hydrogen atoms are substituted with iodine or bromine, Xc represents a hydrogen atom, Represents a fluorine atom, an alkyl group having 1 to 8 carbon atoms or a fluorine-substituted alkyl group, wherein R represents a hydrogen atom, an aliphatic group having 1 to 8 carbon atoms, or 1 carbon atom independently for each formula or in each formula; Represents an alicyclic group, an aryl group, or a vinyl group of ˜8, and n is an integer of 0 to 3 independently for each formula.
(Appendix 5)
Xa in the general formula (I) is
(A) having 4 or more carbon atoms (b) containing tertiary or quaternary carbon (c) having at least one of iodine and bromine atoms (d) cyclic structure The method for producing a silica-based coating according to appendix 3 or 4, which is a hydrocarbon group satisfying any one of the following.

(付記6)
前記ケイ素の不対電子を安定化できる物質が炭素数1〜8の炭化水素である、付記1〜5のいずれかに記載のシリカ系被膜の製造方法。
(Appendix 6)
The method for producing a silica-based film according to any one of appendices 1 to 5, wherein the substance capable of stabilizing the unpaired electrons of silicon is a hydrocarbon having 1 to 8 carbon atoms.

(付記7)
前記炭化水素の炭素数が1〜3である、付記6に記載のシリカ系被膜の製造方法。
(Appendix 7)
The method for producing a silica-based coating according to appendix 6, wherein the hydrocarbon has 1 to 3 carbon atoms.

(付記8)
前記炭化水素が不飽和結合を持つ、付記6または7に記載のシリカ系被膜の製造方法。
(Appendix 8)
The method for producing a silica-based coating according to appendix 6 or 7, wherein the hydrocarbon has an unsaturated bond.

(付記9)
前記炭化水素がメタン、エタン、エチレンまたはこれらを含む混合物である、付記6に記載のシリカ系被膜の製造方法。
(Appendix 9)
The method for producing a silica-based coating according to appendix 6, wherein the hydrocarbon is methane, ethane, ethylene or a mixture containing these.

(付記10)
前記活性エネルギー線照射に使用する活性エネルギー線の波長が150〜500nmの範囲にある、付記1〜9のいずれかに記載のシリカ系被膜の製造方法。
(Appendix 10)
The method for producing a silica-based coating according to any one of appendices 1 to 9, wherein the wavelength of the active energy ray used for the active energy ray irradiation is in the range of 150 to 500 nm.

(付記11)
前記活性エネルギー線照射に使用する活性エネルギー線の波長が350〜500nmの範囲にある、付記10に記載のシリカ系被膜の製造方法。
(Appendix 11)
The method for producing a silica-based coating according to appendix 10, wherein the wavelength of the active energy ray used for the active energy ray irradiation is in the range of 350 to 500 nm.

(付記12)
前記活性エネルギー線照射に使用する活性エネルギー線の波長が200〜300nmの範囲にある、付記10に記載のシリカ系被膜の製造方法。
(Appendix 12)
The method for producing a silica-based coating according to appendix 10, wherein the wavelength of the active energy ray used for the active energy ray irradiation is in the range of 200 to 300 nm.

(付記13)
付記1〜12のいずれかに記載のシリカ系被膜の製造方法を用いて製造されたシリカ系被膜。
(Appendix 13)
A silica-based coating produced using the method for producing a silica-based coating according to any one of appendices 1 to 12.

(付記14)
得られたシリカ系被膜中の空孔の平均直径が1nm以下で、しかも1nm以下空孔の容積が全空孔容積に占める割合が70%以上である、付記13に記載のシリカ系被膜。
(Appendix 14)
The silica-based coating according to appendix 13, wherein the average diameter of pores in the obtained silica-based coating is 1 nm or less, and the ratio of the volume of pores of 1 nm or less to the total pore volume is 70% or more.

(付記15)
得られたシリカ系被膜の比誘電率が2.7以下である、付記13または14に記載のシリカ系被膜。
(Appendix 15)
The silica-based coating according to appendix 13 or 14, wherein the obtained silica-based coating has a relative dielectric constant of 2.7 or less.

(付記16)
付記13〜15のいずれかに記載のシリカ系被膜を含んでなる半導体装置。
(Appendix 16)
A semiconductor device comprising the silica-based film according to any one of appendices 13 to 15.

本発明に係るシリカ系被膜を使用した半導体の配線層の作製の様子を示す、模式的横断面図である。It is a typical cross-sectional view which shows the mode of preparation of the wiring layer of the semiconductor which uses the silica-type film concerning this invention. 本発明に係るシリカ系被膜を使用した半導体の配線層の作製の様子を示す、模式的横断面図である。It is a typical cross-sectional view which shows the mode of preparation of the wiring layer of the semiconductor which uses the silica-type film concerning this invention. 本発明に係るシリカ系被膜を使用した半導体の配線層の作製の様子を示す、模式的横断面図である。It is a typical cross-sectional view which shows the mode of preparation of the wiring layer of the semiconductor which uses the silica-type film concerning this invention. 本発明に係るシリカ系被膜を使用した半導体の配線層の作製の様子を示す、模式的横断面図である。It is a typical cross-sectional view which shows the mode of preparation of the wiring layer of the semiconductor which uses the silica-type film concerning this invention. 本発明に係るシリカ系被膜を使用した半導体の配線層の作製の様子を示す、模式的横断面図である。It is a typical cross-sectional view which shows the mode of preparation of the wiring layer of the semiconductor which uses the silica-type film concerning this invention. 本発明に係るシリカ系被膜を使用した半導体の配線層の作製の様子を示す、模式的横断面図である。It is a typical cross-sectional view which shows the mode of preparation of the wiring layer of the semiconductor which uses the silica-type film concerning this invention. 本発明に係るシリカ系被膜を使用した半導体の配線層の作製の様子を示す、模式的横断面図である。It is a typical cross-sectional view which shows the mode of preparation of the wiring layer of the semiconductor which uses the silica-type film concerning this invention. 本発明に係るシリカ系被膜を使用した半導体の配線層の作製の様子を示す、模式的横断面図である。It is a typical cross-sectional view which shows the mode of preparation of the wiring layer of the semiconductor which uses the silica-type film concerning this invention. 本発明に係るシリカ系被膜を使用した半導体の配線層の作製の様子を示す、模式的横断面図である。It is a typical cross-sectional view which shows the mode of preparation of the wiring layer of the semiconductor which uses the silica-type film concerning this invention. 本発明に係るシリカ系被膜を使用した半導体の配線層の作製の様子を示す、模式的横断面図である。It is a typical cross-sectional view which shows the mode of preparation of the wiring layer of the semiconductor which uses the silica-type film concerning this invention. 本発明に係るシリカ系被膜を使用した半導体の配線層の作製の様子を示す、模式的横断面図である。It is a typical cross-sectional view which shows the mode of preparation of the wiring layer of the semiconductor which uses the silica-type film concerning this invention. 本発明に係るシリカ系被膜を使用した半導体の配線層の作製の様子を示す、模式的横断面図である。It is a typical cross-sectional view which shows the mode of preparation of the wiring layer of the semiconductor which uses the silica-type film concerning this invention. 本発明に係るシリカ系被膜を使用した半導体の配線層の作製の様子を示す、模式的横断面図である。It is a typical cross-sectional view which shows the mode of preparation of the wiring layer of the semiconductor which uses the silica-type film concerning this invention. 本発明に係るシリカ系被膜を使用した半導体の配線層の作製の様子を示す、模式的横断面図である。It is a typical cross-sectional view which shows the mode of preparation of the wiring layer of the semiconductor which uses the silica-type film concerning this invention. 本発明に係るシリカ系被膜を使用した半導体の配線層の作製の様子を示す、模式的横断面図である。It is a typical cross-sectional view which shows the mode of preparation of the wiring layer of the semiconductor which uses the silica-type film concerning this invention. 本発明に係るシリカ系被膜を使用した半導体の配線層の作製の様子を示す、模式的横断面図である。It is a typical cross-sectional view which shows the mode of preparation of the wiring layer of the semiconductor which uses the silica-type film concerning this invention. 本発明に係るシリカ系被膜を使用した半導体の配線層の作製の様子を示す、模式的横断面図である。It is a typical cross-sectional view which shows the mode of preparation of the wiring layer of the semiconductor which uses the silica-type film concerning this invention.

符号の説明Explanation of symbols

1 Siウェハ
2 素子間分離膜
3 サイドウォール絶縁膜
4 ゲート電極
5a ソース拡散層
5b ドレイン拡散層
6 層間絶縁膜
7 ストッパ膜
8 TiN
8’ TiN
8” TiN
9 導体プラグ
10 シリカ系被膜(配線分離絶縁膜)
11 保護膜
12 SiN膜
13 SiOC膜
14 SiN膜
15 シリカ系被膜
16 保護膜
17 Cu
18 Cu
19 コンタクトホール
20 配線溝
21 シード層
22 配線層
23 ビア
24 配線溝
25 シード層
DESCRIPTION OF SYMBOLS 1 Si wafer 2 Interelement isolation film 3 Side wall insulating film 4 Gate electrode 5a Source diffusion layer 5b Drain diffusion layer 6 Interlayer insulating film 7 Stopper film 8 TiN
8 'TiN
8 ”TiN
9 Conductor plug 10 Silica-based coating (wiring isolation insulating film)
11 Protective film 12 SiN film 13 SiOC film 14 SiN film 15 Silica film 16 Protective film 17 Cu
18 Cu
19 Contact hole 20 Wiring groove 21 Seed layer 22 Wiring layer 23 Via 24 Wiring groove 25 Seed layer

Claims (5)

(i)シリカ系被膜形成用塗布液を基板上に塗布し、
(ii)塗布後の当該基板を加熱処理し、
(iii)加熱後の当該基板に、ケイ素の不対電子を安定化できる物質を含む雰囲気中で活性エネルギー線を照射する
ことを含む、シリカ系被膜の製造方法。
(I) Applying a silica-based film-forming coating solution on a substrate;
(Ii) heat-treating the substrate after application;
(Iii) A method for producing a silica-based coating, comprising irradiating the heated substrate with active energy rays in an atmosphere containing a substance capable of stabilizing unpaired electrons of silicon.
前記シリカ系被膜形成用塗布液が、下記一般式(I)で示される化合物および(II)で示される化合物からなる群から選ばれたすくなくとも一つの化合物の加水分解物を含む、請求項1に記載のシリカ系被膜の製造方法。
XanSi(OR)4-n・・・(I)
Xb{Si(OR)32・・・(II)
(式(I),(II)中、Xaは、ヨウ素原子、臭素原子、炭素数3以上の炭化水素基、アリール基、ビニル基、または、一つ以上の水素原子を臭素原子もしくはヨウ素原子で置換した炭化水素基を表す。Xbは、炭素数3以上の炭化水素基、または、ひとつ以上の水素原子をヨウ素もしくは臭素で置換した炭化水素基を表す。Rは、各式毎におよび各式中で独立に、水素原子、炭素数1〜8の脂肪族基、炭素数1〜8の脂環族基、アリール基、またはビニル基を表す。nは、各式毎に独立に0〜3の整数である。)
The said coating liquid for silica-type film formation contains the hydrolyzate of at least 1 compound chosen from the group which consists of the compound shown by the compound shown by the compound shown by the following general formula (I), and (II). The manufacturing method of the silica-type film of description.
Xa n Si (OR) 4- n ··· (I)
Xb {Si (OR) 3 } 2 (II)
(In the formulas (I) and (II), Xa represents an iodine atom, a bromine atom, a hydrocarbon group having 3 or more carbon atoms, an aryl group, a vinyl group, or one or more hydrogen atoms represented by a bromine atom or an iodine atom. Xb represents a hydrocarbon group having 3 or more carbon atoms, or a hydrocarbon group in which one or more hydrogen atoms have been substituted with iodine or bromine, and R represents each formula and each formula. Each independently represents a hydrogen atom, an aliphatic group having 1 to 8 carbon atoms, an alicyclic group having 1 to 8 carbon atoms, an aryl group, or a vinyl group, and n is independently 0 to 3 for each formula. Is an integer.)
前記シリカ系被膜形成用塗布液が、下記一般式(I)で示される化合物、下記一般式(II)で示される化合物および下記一般式(III)で示される化合物からなる群から選ばれたすくなくとも一つの化合物と、テトラアルキルオルソシリケート(TAOS)とを、テトラアルキルアンモニウムハイドロオキサイド(TAAOH)の存在下で加水分解して得られるケイ素化合物を含む、請求項1に記載のシリカ系被膜の製造方法。
XanSi(OR)4-n・・・(I)
Xb{Si(OR)32・・・(II)
XcnSi(OR)4-n・・・(III)
(式(I),(II),(III)中、Xaは、ヨウ素原子、臭素原子、炭素数3以上の炭化水素基、アリール基、ビニル基、または、一つ以上の水素原子を臭素原子もしくはヨウ素原子で置換した炭化水素基を表す。Xbは、炭素数3以上の炭化水素基、または、ひとつ以上の水素原子をヨウ素もしくは臭素で置換した炭化水素基を表す。Xcは、水素原子、フッ素原子、炭素数1〜8のアルキル基、またはフッ素置換アルキル基を表す。Rは、各式毎におよび各式中で独立に、水素原子、炭素数1〜8の脂肪族基、炭素数1〜8の脂環族基、アリール基、またはビニル基を表す。nは、各式毎に独立に0〜3の整数である。)
The coating liquid for forming a silica-based film is at least selected from the group consisting of a compound represented by the following general formula (I), a compound represented by the following general formula (II), and a compound represented by the following general formula (III). The method for producing a silica-based coating according to claim 1, comprising a silicon compound obtained by hydrolyzing one compound and tetraalkylorthosilicate (TAOS) in the presence of tetraalkylammonium hydroxide (TAAOH). .
Xa n Si (OR) 4- n ··· (I)
Xb {Si (OR) 3 } 2 (II)
Xc n Si (OR) 4-n (III)
(In the formulas (I), (II), and (III), Xa represents an iodine atom, a bromine atom, a hydrocarbon group having 3 or more carbon atoms, an aryl group, a vinyl group, or one or more hydrogen atoms as a bromine atom. Alternatively, a hydrocarbon group substituted with an iodine atom, Xb represents a hydrocarbon group having 3 or more carbon atoms, or a hydrocarbon group in which one or more hydrogen atoms are substituted with iodine or bromine, Xc represents a hydrogen atom, Represents a fluorine atom, an alkyl group having 1 to 8 carbon atoms, or a fluorine-substituted alkyl group, and R represents a hydrogen atom, an aliphatic group having 1 to 8 carbon atoms, or a carbon number independently for each formula and in each formula. Represents an alicyclic group, aryl group or vinyl group of 1 to 8. n is an integer of 0 to 3 independently for each formula.
請求項1〜3のいずれかに記載のシリカ系被膜の製造方法を用いて製造されたシリカ系被膜。   The silica-type film manufactured using the manufacturing method of the silica-type film in any one of Claims 1-3. 請求項4に記載のシリカ系被膜を含んでなる半導体装置。   A semiconductor device comprising the silica-based film according to claim 4.
JP2005238623A 2005-08-19 2005-08-19 Method for producing silica-based film and method for producing semiconductor device Expired - Fee Related JP4563894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005238623A JP4563894B2 (en) 2005-08-19 2005-08-19 Method for producing silica-based film and method for producing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005238623A JP4563894B2 (en) 2005-08-19 2005-08-19 Method for producing silica-based film and method for producing semiconductor device

Publications (2)

Publication Number Publication Date
JP2007053300A true JP2007053300A (en) 2007-03-01
JP4563894B2 JP4563894B2 (en) 2010-10-13

Family

ID=37917533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005238623A Expired - Fee Related JP4563894B2 (en) 2005-08-19 2005-08-19 Method for producing silica-based film and method for producing semiconductor device

Country Status (1)

Country Link
JP (1) JP4563894B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108158A1 (en) 2007-03-02 2008-09-12 Nec Corporation Information disclosure control system, information disclosure control program, and information disclosure control method
WO2008111134A1 (en) * 2007-03-15 2008-09-18 Fujitsu Limited Surface-hydrophobicized film, material for formation of surface-hydrophobicized film, wiring layer, semiconductor device and process for producing semiconductor device
WO2010067395A1 (en) * 2008-12-08 2010-06-17 富士通株式会社 Method and apparatus for manufacturing semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6803842B2 (en) 2015-04-13 2020-12-23 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09315812A (en) * 1996-03-25 1997-12-09 Catalysts & Chem Ind Co Ltd Coating solution for low dielectric constant silica based coating film formation and base body with low dielectric constant coating film
WO2000012640A1 (en) * 1998-09-01 2000-03-09 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
WO2000018847A1 (en) * 1998-09-25 2000-04-06 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
JP2002030249A (en) * 2000-07-14 2002-01-31 Catalysts & Chem Ind Co Ltd Silica coating liquid for forming low dielectric constant and silica coat substrate with low dielectric constant
JP2002334873A (en) * 2001-05-10 2002-11-22 Toshiba Corp Semiconductor device and method for manufacturing the same
JP2003031580A (en) * 2001-07-18 2003-01-31 Toshiba Corp Method of manufacturing semiconductor device
JP2004153147A (en) * 2002-10-31 2004-05-27 Catalysts & Chem Ind Co Ltd Forming method of low dielectric constant amorphous silica coating film, and low dielectric constant amorphous silica coating film obtained from the same method
JP2004303786A (en) * 2003-03-28 2004-10-28 Tokyo Electron Ltd Electronic beam processing method and electronic beam processing system
JP2006528426A (en) * 2003-07-21 2006-12-14 アクセリス テクノロジーズ インコーポレーテッド UV curing method for the latest Low-k materials

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09315812A (en) * 1996-03-25 1997-12-09 Catalysts & Chem Ind Co Ltd Coating solution for low dielectric constant silica based coating film formation and base body with low dielectric constant coating film
WO2000012640A1 (en) * 1998-09-01 2000-03-09 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
WO2000018847A1 (en) * 1998-09-25 2000-04-06 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
JP2002030249A (en) * 2000-07-14 2002-01-31 Catalysts & Chem Ind Co Ltd Silica coating liquid for forming low dielectric constant and silica coat substrate with low dielectric constant
JP2002334873A (en) * 2001-05-10 2002-11-22 Toshiba Corp Semiconductor device and method for manufacturing the same
JP2003031580A (en) * 2001-07-18 2003-01-31 Toshiba Corp Method of manufacturing semiconductor device
JP2004153147A (en) * 2002-10-31 2004-05-27 Catalysts & Chem Ind Co Ltd Forming method of low dielectric constant amorphous silica coating film, and low dielectric constant amorphous silica coating film obtained from the same method
JP2004303786A (en) * 2003-03-28 2004-10-28 Tokyo Electron Ltd Electronic beam processing method and electronic beam processing system
JP2006528426A (en) * 2003-07-21 2006-12-14 アクセリス テクノロジーズ インコーポレーテッド UV curing method for the latest Low-k materials

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108158A1 (en) 2007-03-02 2008-09-12 Nec Corporation Information disclosure control system, information disclosure control program, and information disclosure control method
WO2008111134A1 (en) * 2007-03-15 2008-09-18 Fujitsu Limited Surface-hydrophobicized film, material for formation of surface-hydrophobicized film, wiring layer, semiconductor device and process for producing semiconductor device
JPWO2008111134A1 (en) * 2007-03-15 2010-06-24 富士通株式会社 Surface hydrophobized film, surface hydrophobized film forming material, wiring layer, semiconductor device, and method for manufacturing semiconductor device
CN101647106B (en) * 2007-03-15 2011-10-05 富士通株式会社 Surface-hydrophobicized film, material for formation of surface-hydrophobicized film, wiring layer, semiconductor device and process for producing semiconductor device
US8089138B2 (en) 2007-03-15 2012-01-03 Fujitsu Limited Surface-hydrophobicized film, material for formation of surface-hydrophobicized film, wiring layer, semiconductor device and process for producing semiconductor device
JP5131267B2 (en) * 2007-03-15 2013-01-30 富士通株式会社 Hydrophobic film forming material, multilayer wiring structure, semiconductor device, and method of manufacturing semiconductor device
WO2010067395A1 (en) * 2008-12-08 2010-06-17 富士通株式会社 Method and apparatus for manufacturing semiconductor device
JP5565314B2 (en) * 2008-12-08 2014-08-06 富士通株式会社 Semiconductor device manufacturing method and manufacturing apparatus thereof

Also Published As

Publication number Publication date
JP4563894B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP5030478B2 (en) Precursor composition of porous film and preparation method thereof, porous film and preparation method thereof, and semiconductor device
JP4874614B2 (en) Porous low dielectric constant compositions and methods for making and using the same
JP4125637B2 (en) Low dielectric constant material and manufacturing method thereof
EP1026213B1 (en) Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
US6936551B2 (en) Methods and apparatus for E-beam treatment used to fabricate integrated circuit devices
JP4667165B2 (en) Manufacturing method of semiconductor device
JP4616154B2 (en) Manufacturing method of semiconductor device
JP5380797B2 (en) Manufacturing method of semiconductor device
KR100785727B1 (en) Composition for forming insulating film and method for fabricating semiconductor device
JP2007016177A (en) Silica-based film forming material, silica-based film, method for producing the same, maltilayer wiring, method for producing the same, semiconductor device, and method for producing the same
EP1035183A1 (en) Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
JP5007511B2 (en) Exposure light shielding film forming material, multilayer wiring, manufacturing method thereof, and semiconductor device
JP4563894B2 (en) Method for producing silica-based film and method for producing semiconductor device
JP2010153824A (en) Method of manufacturing porous insulating film, method of manufacturing semiconductor device, and semiconductor device
JP4422643B2 (en) Porous film manufacturing method, interlayer insulating film, semiconductor material, and semiconductor device
JP3957154B2 (en) Low dielectric constant film forming composition, low dielectric constant film, method for producing the same, and semiconductor device
JPWO2009153857A1 (en) Semiconductor device and manufacturing method thereof
JP2009076855A (en) Method of manufacturing semiconductor device
JP4437820B2 (en) Manufacturing method of low dielectric constant film
JP2010016130A (en) Manufacturing method of porous film, the porous film, and solution of precursor composition of the porous film
JP2006351877A (en) Manufacturing method of lamination, semiconductor device and its manufacturing method
JPH10335324A (en) Semiconductor device and manufacture thereof
JP2004281535A (en) Method of manufacturing insulating film and semiconductor device
JP2007165914A (en) Composition for forming low dielectric constant film
JP2004186593A (en) Low dielectric insulating film, its manufacturing method, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4563894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees