JP2007052006A - Method and system for measuring electric current or power flow - Google Patents

Method and system for measuring electric current or power flow Download PDF

Info

Publication number
JP2007052006A
JP2007052006A JP2006210446A JP2006210446A JP2007052006A JP 2007052006 A JP2007052006 A JP 2007052006A JP 2006210446 A JP2006210446 A JP 2006210446A JP 2006210446 A JP2006210446 A JP 2006210446A JP 2007052006 A JP2007052006 A JP 2007052006A
Authority
JP
Japan
Prior art keywords
current
voltage
power
measuring
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006210446A
Other languages
Japanese (ja)
Inventor
Yasunori Mitani
康範 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2006210446A priority Critical patent/JP2007052006A/en
Publication of JP2007052006A publication Critical patent/JP2007052006A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain information on electric power or current flowing through a line by measuring a voltage without entailing construction work in any case, while dispensing with direct measurement on the current. <P>SOLUTION: This method is used for obtaining information on electric power or current flowing through the line. With respect to indoor wiring, out of arbitrary two points, an upstream-side point and a downstream-side point, with a current flowing therethrough, a load of known power consumption is connected to the downstream-side point to estimate a resistance value r between the two points from voltage values measured at the two points. The voltage values V<SB>1</SB>and V<SB>2</SB>at the two points are measured to estimate the magnitude of active power P or a current value of a current flowing therethrough by using only a voltage difference between the two points on the basis of the estimated resistance value r without directly measuring the current. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、線路に流れる電流或いは電力の情報を獲得して、電流或いは電力潮流を計測する方法及びシステムに関する。   The present invention relates to a method and system for acquiring information on current or power flowing in a line and measuring current or power flow.

電気は使いやすく安全なエネルギーとして広く一般に用いられている。その安全性を高めるために、各種の計測器や遮断機が実用に供されている。超高圧系統は電力会社の管轄内であり、緻密な電流・電圧・電力の計測が行われているが、末端の需要家内の配線は電力会社の管理外であり、たこ足配線に代表される危険な電気の使用は、実態をつかめない状況である。省エネルギーの観点からも電力を1箇所に集中させないことが肝心である。こうした配電内の電力の流れを監視する手法として、電流、電圧計測に基づく電力計測が一般的な方法であるが、需要家内での高コストな計測は受け入れられ難いので、一部の高価な電源タップにブレーカや電流計、電力計を付けている例があるもののあまり普及していない。   Electricity is widely used as an easy-to-use and safe energy. In order to increase the safety, various measuring instruments and circuit breakers are put into practical use. The ultra high voltage system is under the jurisdiction of the electric power company, and precise current, voltage, and power are measured, but the wiring in the consumer at the end is out of the control of the electric power company and is represented by the takotsu wiring The use of dangerous electricity is a situation where the actual situation cannot be grasped. From the viewpoint of energy saving, it is important not to concentrate power in one place. As a method of monitoring the flow of power in such distribution, power measurement based on current and voltage measurement is a common method, but high-cost measurement in the consumer is unacceptable, so some expensive power supplies Some taps have breakers, ammeters, and wattmeters, but they are not so popular.

屋内配線の電流や電力を計測する場合、ホール素子を内蔵した電流クランプで電線を掴むことが可能であれば、その点の電流・電力の計測が可能となるが、建物などの構造上の理由により計測が困難な場所が多い。また、屋内配線に電流計測のためのクランプを持ち込むことは困難を伴うことになる。クランプ型以外の電流計の場合、一旦回路を切断して間に電流計を挿入する必要があるために一般には用い難い。   When measuring the current and power of indoor wiring, if it is possible to grip the wire with a current clamp with a built-in hall element, it is possible to measure the current and power at that point. There are many places where measurement is difficult. In addition, it is difficult to bring a clamp for current measurement into the indoor wiring. In the case of an ammeter other than the clamp type, it is generally difficult to use because it is necessary to cut the circuit once and insert the ammeter in between.

このため、従来の過電流の検出は、通常CT(電流変成器)による電流変換を行っており、電流駆動型であるために電圧に変換する回路やスイッチが必要になる。電圧変換に抵抗を利用すると、常時の損失になり、また電流では過電流警報表示用のLEDを直接駆動できないために、LED駆動回路が別途必要となる。   For this reason, the conventional overcurrent detection usually performs current conversion by CT (current transformer), and since it is a current drive type, a circuit and a switch for converting to voltage are required. If a resistor is used for voltage conversion, it causes a constant loss, and an LED for overcurrent alarm display cannot be directly driven by current, so a separate LED drive circuit is required.

また、屋内配線の大元には、過電流が発生したときに作用するブレーカが備えられているのが通常である。しかし、たこ足配線は部分的な過電流であり、大元のブレーカが動作しないのに末端のごく一部が過電流になることが問題である。ブレーカ付の電源タップも知られているが、問題はパソコンなどの切れては困る電気機器が増えてきていることで、安易に切る前に警告を発する(ランプを付ける)ことが求められている。ホール素子などを使えば、過電流検出をすることは可能になるが、電源タップの中に占めるコスト比重が大きなものとなる。   In addition, a large source of indoor wiring is usually provided with a breaker that operates when an overcurrent occurs. However, the octopus leg wiring is a partial overcurrent, and there is a problem that a very small part of the terminal becomes an overcurrent even though the original breaker does not operate. A power strip with a breaker is also known, but the problem is that an increasing number of electrical devices such as personal computers are in trouble, so it is required to issue a warning (with a lamp) before turning it off easily. . If a Hall element or the like is used, it is possible to detect an overcurrent, but the cost ratio in the power strip becomes large.

本発明は、線路に流れる電力や電流の情報を獲得するに際して、電流の直接的な計測を必要とすること無く、電圧の計測により、どのようなケースにも工事を伴うことなく可能にすることを目的としている。   The present invention makes it possible to acquire any information on the power and current flowing in the line without requiring direct measurement of the current and by measuring the voltage without any construction. It is an object.

また、本発明は、電源タップに適用することにより、電源タップの電流値を、電圧の計測によって推定して、過電流時に警報表示するシステムを安価に提供することを目的としている。   It is another object of the present invention to provide a system that can be applied to a power strip to estimate the current value of the power strip by measuring the voltage and display an alarm when an overcurrent occurs at low cost.

本発明の電流或いは電力潮流を計測する方法及びシステムは、線路に流れる電流或いは電力の情報を獲得する。屋内配線において電流が流れる上流側地点と下流側地点の任意の2地点間で、下流側地点に既知消費電力の負荷を接続して、この2地点で測定した電圧値からその間の抵抗値(r)を推定する。この2地点の電圧値(V,V)を計測することにより、推定された抵抗値(r)及び下記式 The method and system for measuring current or power flow of the present invention obtains information on current or power flowing in a line. A load of known power consumption is connected to any downstream point between the upstream point and the downstream point where current flows in the indoor wiring, and the resistance value (r between them) is measured from the voltage value measured at these two points. ). By measuring the voltage values (V 1 , V 2 ) at these two points, the estimated resistance value (r) and the following equation

Figure 2007052006
Figure 2007052006

に基づき、電流の直接的な計測をすることなく、2地点間の電圧差のみによって有効電力(P)の大きさを推定し、或いは、前記抵抗値(r)及び下記式 Based on the above, the magnitude of the active power (P) is estimated by only the voltage difference between the two points without directly measuring the current, or the resistance value (r) and the following formula:

Figure 2007052006
Figure 2007052006

に基づき、そこに流れる電流値を推定する。 Is used to estimate the current value flowing there.

本発明によれば、電圧の計測により、例えば、屋内配線のコンセントに着目してコンセント電圧を計測することにより、線路に流れる電力や電流の情報を獲得することが可能となる。電流の直接的な計測を必要としないためにどのようなケースにも工事を伴うことなく適用できる。   According to the present invention, it is possible to acquire information on the power and current flowing in the line by measuring the outlet voltage by paying attention to the outlet of the indoor wiring by measuring the voltage. Since it does not require direct measurement of current, it can be applied to any case without construction.

また、この原理を電源タップに適用すると、電源タップの電流値を、電圧の計測によって推定可能となるため、過電流時に点灯するシステムを安価に構成できる。本発明は、電圧型で過電流を検出するもので、電圧で直接LEDを駆動できること、LEDが点灯していないときはほとんど損失がないことなどにより、回路が単純で安価、損失が少ないなど、実用上の利点がある。これによって、たこ足配線のモニタリングが可能となる。電源タップにPCなどの重要負荷が接続されている場合には、容易には電源を切ることが出来ないので、ランプによって過負荷を知らせることは有効な手段となりうる。温度変化による線路抵抗値の変化があるために、正確な値の計測には不向きであるが、電力の流れや過電流の有無のモニタリングには問題なく使用することができる。   Moreover, when this principle is applied to a power strip, the current value of the power strip can be estimated by measuring the voltage, so that a system that is lit when overcurrent can be configured at low cost. The present invention is a voltage type that detects overcurrent, and can drive LEDs directly with voltage, and there is almost no loss when the LED is not lit, etc., so the circuit is simple, inexpensive, low loss, etc. There are practical advantages. This makes it possible to monitor the octopus foot wiring. If an important load such as a PC is connected to the power strip, it is not easy to turn off the power, so it is effective to notify the overload by a lamp. Since the line resistance value changes due to temperature changes, it is not suitable for accurate measurement, but can be used without problems for monitoring the flow of power and the presence or absence of overcurrent.

通常、交流量は大きさと位相角によって表現されるため、交流電圧の計測時には大きさだけでなく一般には位相情報も必要になる。しかしながら、本発明は、有効電力の大きさを2地点間の電圧差のみによって推定し、これを利用して、屋内配線のコンセント電圧を計測することにより、線路に流れる電力や電流の情報を獲得する。   Usually, since the AC amount is expressed by the magnitude and the phase angle, not only the magnitude but also phase information is generally required when measuring the AC voltage. However, the present invention estimates the magnitude of the active power only from the voltage difference between the two points, and uses this to measure the outlet voltage of the indoor wiring, thereby acquiring information on the power and current flowing in the line. To do.

図1は、コンセント電圧を用いた電力潮流計算を説明する図である。図示したように、屋内配線は、受電盤より、ライン状に配置された複数の屋内配線コンセント(コンセント1〜4を例示)に配線される。例示のコンセント1が最も上流側地点にあり、以下、コンセント2,3,4の順に下流側に配置されている。本発明は、電線の両端の電圧差から有効電力を計測する。すなわち、有効電力値の場合には位相情報は必要としない。   FIG. 1 is a diagram for explaining power flow calculation using an outlet voltage. As illustrated, the indoor wiring is wired from the power receiving panel to a plurality of indoor wiring outlets (outlets 1 to 4 are illustrated) arranged in a line. The illustrated outlet 1 is located at the most upstream point, and is arranged on the downstream side in the order of outlets 2, 3, and 4. The present invention measures active power from the voltage difference between both ends of an electric wire. That is, phase information is not required for active power values.

コンセント1とコンセント2の間を例として、電力潮流を計算する。まず、コンセント1に対して下流側に位置するコンセント2に、既知消費電力(Pk)の負荷を接続し、コンセント1とコンセント2の2地点の電圧(V,V)を計測することにより、その間の抵抗値(r)を以下の式に基づき推定する。 The power flow is calculated by taking between the outlet 1 and the outlet 2 as an example. First, by connecting a load of known power consumption (Pk) to the outlet 2 located downstream of the outlet 1, and measuring the voltages (V 1 , V 2 ) at two points of the outlet 1 and the outlet 2 The resistance value (r) between them is estimated based on the following equation.

Figure 2007052006
Figure 2007052006

一旦抵抗値(r)がわかれば Once the resistance value (r) is known

Figure 2007052006
Figure 2007052006

から、2点の電圧値(V,V)を計測することにより、有効電力(P)潮流を知ることができる(その原理については、[実施例2]参照)。同様に、コンセント2と3の間、或いはコンセント3と4の間でも、図示したような有効電力潮流を知ることができる。したがって、1つのラインにつながっている全てのコンセントの電圧をモニタリングしておけば電力の流れを観測できることになる。なお、連続するコンセント間で、コンセント電圧を計測する場合を例示したが、例えば、コンセント1と、コンセント3との間のような上流側地点と下流側地点の任意の2地点間で、コンセント電圧を計測することが可能である。さらに、抵抗値(r)と、2点の電圧値(V,V)とから、そこに流れる電流値を推定し(下記[数5]参照)、過電流を検出することも可能となる。このような屋内配線の電力潮流は、例えば、GPS時刻同期電圧位相計測装置を用いて計測することができる([実施例1]参照)。 Thus, by measuring the voltage values (V 1 , V 2 ) at two points, the active power (P) power flow can be known (refer to [Example 2] for the principle). Similarly, the active power flow as shown in the figure can also be known between the outlets 2 and 3 or between the outlets 3 and 4. Therefore, if you monitor the voltage of all outlets connected to one line, you can observe the flow of power. In addition, although the case where outlet voltage was measured between continuous outlets was illustrated, for example, outlet voltage between two arbitrary points of an upstream point and a downstream point such as between outlet 1 and outlet 3 Can be measured. Furthermore, it is also possible to estimate the current value flowing therethrough from the resistance value (r) and the two voltage values (V 1 , V 2 ) (see [Equation 5] below) and detect an overcurrent. Become. Such power flow in the indoor wiring can be measured using, for example, a GPS time-synchronized voltage phase measuring device (see [Example 1]).

また、本発明は、上述の原理を電源タップに適用して、過電流が流れたときに両端間の電圧が上昇することを用いて、両端間の電圧によって点灯するLED(発光ダイオード)の点灯回路を用いて、過電流時に点灯する電源タップを構成する。本発明は、電源タップに流れる電流値(I)を両端の電圧(V,V)の計測によって推定する。 In addition, the present invention applies the above principle to a power strip and uses the fact that the voltage between both ends rises when an overcurrent flows. A circuit is used to configure a power strip that lights up when overcurrent occurs. In the present invention, the current value (I) flowing through the power tap is estimated by measuring the voltages (V 1 , V 2 ) at both ends.

この場合の両端の電圧差は交流電圧の差なのでフェーザ量となり、   In this case, the voltage difference between both ends becomes the phasor amount because of the difference in AC voltage.

Figure 2007052006
Figure 2007052006

で表され、電圧差は電流に比例することになり、許容電流付近で点灯する回路を設計すれば、電流値が許容値を超えたときに点灯する回路ができる。 The voltage difference is proportional to the current, and if a circuit that lights up near the allowable current is designed, a circuit that lights up when the current value exceeds the allowable value can be formed.

図2は、過電流検出手段を備えた電源タップの回路構成を例示する図である。このような電源タップは、過電流検出手段を備えたのを除いて、通常のものにすることができ、1個或いは複数個の機器接続用コンセント口を有し、かつ、このコンセント口は、商用電源コンセントに挿入して電気的に接続可能のプラグとの間で、通常に配線接続されている。プラグとコンセント口の間は2本の電線で配線されるが、この2本の電線の内のいずれか一方の両端を、図示したように変圧器の一次側に接続する。この一次側には、過電流保護装置(例えばヒューズ)を挿入しても良い。変圧器二次側には、点灯電圧調整用の抵抗及び発光ダイオードLEDを直列に接続する。   FIG. 2 is a diagram illustrating a circuit configuration of a power tap including an overcurrent detection unit. Such a power strip can be a normal one except that it is provided with an overcurrent detection means, and has one or a plurality of device connection outlets. Normally, wiring is connected between a plug that can be inserted into a commercial power outlet and electrically connected. The plug and the outlet are wired with two electric wires, and both ends of one of the two electric wires are connected to the primary side of the transformer as shown. An overcurrent protection device (for example, a fuse) may be inserted on the primary side. On the secondary side of the transformer, a resistor for adjusting the lighting voltage and a light emitting diode LED are connected in series.

まず、プラグとコンセント口を2地点として、その間の抵抗値を推定する。この抵抗値の推定は、上述したのと同様に、既知消費電力の負荷を接続し、プラグとコンセント口の2地点の電圧を計測することにより行うことができるが、簡単には、用いる電線(銅線)の太さ及び長さから推測することができる。プラグとコンセント口の間を配線する2本の電線(銅線)のそれぞれとして、例えば0.16mm2の電線2mが用いられると、その抵抗値は約0.02Ωとなる。これに、例えば15Aが流れると線路の両端には約300mVの電圧を発生する。LEDの動作電圧は、通常2V以上なので、変圧器により電圧を5〜10倍し、保護を兼ねた点灯電圧調整用の抵抗を2次側に接続すれば、設定電流を超えた場合にLEDが点灯する。言い換えると、LEDが点灯したことにより、所定の設定電流(過電流)を検出できたことになる。電流検出のためのホール素子や演算回路が不要な極めてシンプルで安価な装置によって過電流検出が可能になる。また、2個以上の複数個のLED及び点灯電圧調整用の抵抗を並列接続した上で、変圧器二次側に接続し、LEDが点灯する設定電流を段階的に異ならせることにより、用心段階と危険段階を表示させることもできる。 First, assuming the plug and outlet as two points, the resistance value between them is estimated. The resistance value can be estimated by connecting a load of known power consumption and measuring the voltage at two points of the plug and the outlet port as described above. It can be estimated from the thickness and length of the copper wire. When, for example, a 0.16 mm 2 electric wire 2 m is used as each of the two electric wires (copper wires) wired between the plug and the outlet port, the resistance value is about 0.02Ω. For example, when 15 A flows, a voltage of about 300 mV is generated at both ends of the line. The operating voltage of the LED is usually 2V or more, so if the voltage is exceeded 5-10 times by a transformer and a resistor for adjusting the lighting voltage that also serves as protection is connected to the secondary side, the LED Light. In other words, a predetermined set current (overcurrent) can be detected by turning on the LED. An overcurrent can be detected by a very simple and inexpensive device that does not require a Hall element or an arithmetic circuit for current detection. In addition, two or more LEDs and a lighting voltage adjustment resistor are connected in parallel, then connected to the secondary side of the transformer, and the setting current at which the LED lights is varied step by step. And the danger level can be displayed.

図3は、同期位相計測装置を用いた電圧及び位相の計測を説明する図である。位相計測装置(PMU:Phasor Measurement Unit)は電圧を入力とし、GPS(Global Positioning System)時刻を基準としたフェーザ演算(位相及び振幅値の計算)を行う機能を持つ。この装置の特徴としては、人工衛星からのGPS 信号(位置と時刻データ)をそれぞれの地点のアンテナで受信することによって、負荷が接続された電力ネットワークの異なる地点間の電圧と位相角の正確な同時計測を可能にしていることである。さらに、データ収集及び条件設定装置を用いて、インターネット回線を利用して離れた地点に設置された位相計測装置に相互アクセスすることができるので、収集データのダウンロード、収集条件等の各種設定の変更を、何処からでも簡単に行うことができる。したがって、この装置を複数地点のコンセントに設置することによって、電力需要の特性解析などが行える。   FIG. 3 is a diagram for explaining voltage and phase measurement using the synchronous phase measuring apparatus. A phase measurement unit (PMU: Phasor Measurement Unit) has a function of performing phasor calculation (calculation of phase and amplitude values) using voltage as an input and using GPS (Global Positioning System) time as a reference. This device is characterized by the fact that GPS signals (position and time data) from satellites are received by the antennas at each point, so that the voltage and phase angle between different points of the power network to which the load is connected are accurately measured. This means that simultaneous measurement is possible. In addition, using a data collection and condition setting device, it is possible to mutually access a phase measurement device installed at a remote location using an Internet line, so that various settings such as download of collected data and collection conditions can be changed. Can be easily performed from anywhere. Therefore, by installing this apparatus at outlets at a plurality of points, it is possible to analyze the power demand characteristics.

図3に示すように、一つのPMUで付近の数カ所の電圧及び位相の計測を行い、また離れた地点でも別のPMUにより計測を行うことで地域間の解析を行うことが可能となる。この位相計測装置(例えば、TOSHIBA 製のNCT2000)を用いることにより、サンプリング周波数(最小:1/60 秒)に対する時刻信号の誤差は1μ秒以下にすることができる。電圧フェーザ演算は、電圧瞬時値V1〜Vnを用いて次式で定義される。   As shown in FIG. 3, it is possible to perform analysis between regions by measuring several nearby voltages and phases with one PMU, and measuring with another PMU at a distant point. By using this phase measuring device (for example, NCT2000 manufactured by TOSHIBA), the error of the time signal with respect to the sampling frequency (minimum: 1/60 second) can be reduced to 1 μsec or less. The voltage phasor calculation is defined by the following equation using the voltage instantaneous values V1 to Vn.

Figure 2007052006
Figure 2007052006

N : 1 周期あたりのサンプリング数(=96)
θ : サンプリング角(2π/N = 3.75°)
フェーザ成分の実数部をVRe、虚数部をVImとすると振幅値、位相値は以下のようになる。
N: Number of samplings per cycle (= 96)
θ: Sampling angle (2π / N = 3.75 °)
When the real part of the phasor component is V Re and the imaginary part is V Im , the amplitude value and the phase value are as follows.

Figure 2007052006
Figure 2007052006

この装置を用いた位相の測定誤差は±0.1 度以内である。 The phase measurement error using this device is within ± 0.1 degrees.

一般的な放射状配電系統の分岐点毎に計測線を接続したとき、あるノード間は、図4のように表すことが出来る。ノード間に相当する送電端(例えば、家庭用100Vのコンセント)と末端のそれぞれの電圧と位相は、同期位相計測装置により計測値を得ることができる。送電端側の電圧をV1、位相をθ1とし、末端側の電圧をV2、位相をθ2とする。また末端側に接続された負荷の有効電力、無効電力をそれぞれP、Q で表す。   When a measurement line is connected to each branch point of a general radial distribution system, a certain node can be expressed as shown in FIG. The voltage and phase of each of the power transmission terminals (for example, a household 100V outlet) and the terminals corresponding to the nodes can be measured by a synchronous phase measurement device. The voltage at the power transmission end side is V1, the phase is θ1, the voltage at the end side is V2, and the phase is θ2. In addition, the active power and reactive power of the load connected to the end side are represented by P and Q, respectively.

配電線には、抵抗r、リアクトルL、キャパシタンスCによる影響があるが、ノード間の静電容量分(キャパシタンスC)が無視できるほどに小さい場合について、有効電力P、無効電力Qは、以下に示すようになる。この配線中の抵抗をr 、リアクタンスをjx とした。また、送電端側の電圧、末端側の電圧をそれぞれ   The distribution line is affected by the resistance r, the reactor L, and the capacitance C. When the capacitance between the nodes (capacitance C) is small enough to be ignored, the active power P and the reactive power Q are as follows: As shown. The resistance in this wiring is r and the reactance is jx. Also, the voltage on the power transmission side and the voltage on the terminal side are respectively

Figure 2007052006
Figure 2007052006

と表した。末端側で計測される電力を、P+jQと表した。
このとき、線電流は、
It expressed. The electric power measured on the terminal side was expressed as P + jQ.
At this time, the line current is

Figure 2007052006
Figure 2007052006

で表される。これらを用いると末端側の電力は It is represented by With these, the power at the end is

Figure 2007052006
Figure 2007052006

となる。上式を実数と虚数について分けると
rP+xQ=Vcos(θ2−θ1)−V
rQ−xP=Vsin(θ2−θ1
θ2−θ1が小さい場合を想定すると、cos(θ2−θ1)≒1,sin(θ2−θ1)≒θ2−θ1であるので、
rP+xQ≒V−V =V(V−V
rQ−xP≒V(θ2−θ1
通常の配電線においては、r>>xであるので、
rP≒V−V =V(V−V
rQ≒V(θ2−θ1
よって有効電力Pと無効電力Qは、
P≒V(V−V)/r
Q≒V(θ2−θ1)/r
上記の式により、有効電力P または無効電力Q を求めることが出来る(この有効電力Pについての式は、上述した(1)式に相当する。)。なお、配電線には静電容量があるために、上述のように完全には有効電力、無効電力を分離することは出来ないと考えられるが、およその特性を把握する目的には十分である。
It becomes. When the above equation is divided into real numbers and imaginary numbers, rP + xQ = V 1 V 2 cos (θ 2 −θ 1 ) −V 2 2
rQ−xP = V 1 V 2 sin (θ 2 −θ 1 )
Assuming that θ 2 −θ 1 is small, cos (θ 2 −θ 1 ) ≈1, sin (θ 2 −θ 1 ) ≈θ 2 −θ 1 ,
rP + xQ≈V 1 V 2 −V 2 2 = V 2 (V 1 −V 2 )
rQ−xP≈V 1 V 22 −θ 1 )
In a normal distribution line, r >> x, so
rP≈V 1 V 2 −V 2 2 = V 2 (V 1 −V 2 )
rQ≈V 1 V 22 −θ 1 )
Therefore, the active power P and the reactive power Q are
P≈V 2 (V 1 −V 2 ) / r
Q≈V 1 V 22 −θ 1 ) / r
The active power P or the reactive power Q can be obtained from the above formula (the formula for the active power P corresponds to the above formula (1)). In addition, it is considered that the active power and reactive power cannot be completely separated as described above because of the electrostatic capacity of the distribution line, but it is sufficient for the purpose of grasping the approximate characteristics. .

コンセント電圧を用いた電力潮流計算を説明する図である。It is a figure explaining the power flow calculation using an outlet voltage. 過電流検出手段を備えた電源タップの回路構成を例示する図である。It is a figure which illustrates the circuit structure of the power tap provided with the overcurrent detection means. 同期位相計測装置を用いた電圧及び位相の計測を説明する図である。It is a figure explaining the measurement of the voltage and phase using a synchronous phase measuring device. 放射状配電系統の分岐点毎に計測線を接続したときのノード間の末端側で計測される電力について説明する図である。It is a figure explaining the electric power measured by the terminal side between nodes when a measurement line is connected for every branch point of a radial distribution system.

Claims (4)

線路に流れる電流或いは電力の情報を獲得して、電流或いは電力潮流を計測する方法において、
屋内配線において電流が流れる上流側地点と下流側地点の任意の2地点間で、下流側地点に既知消費電力の負荷を接続して、この2地点で測定した電圧値からその間の抵抗値(r)を推定し、
前記2地点の電圧値(V,V)を計測することにより、前記推定された抵抗値(r)及び下記式
Figure 2007052006
に基づき、電流の直接的な計測をすることなく、2地点間の電圧差のみによって有効電力(P)の大きさを推定し、或いは、前記抵抗値(r)及び下記式
Figure 2007052006
に基づき、そこに流れる電流値を推定する、
ことから成る電流或いは電力潮流を計測する方法。
In the method of measuring current or power flow by acquiring information on current or power flowing in the line,
A load of known power consumption is connected to any downstream point between the upstream point and the downstream point where current flows in the indoor wiring, and the resistance value (r between them) is measured from the voltage value measured at these two points. )
By measuring the voltage values (V 1 , V 2 ) at the two points, the estimated resistance value (r) and the following formula
Figure 2007052006
Based on the above, the magnitude of the active power (P) is estimated by only the voltage difference between the two points without directly measuring the current, or the resistance value (r) and the following formula:
Figure 2007052006
To estimate the current value flowing there,
A method of measuring current or power flow.
線路に流れる電流或いは電力の情報を獲得して、電流或いは電力潮流を計測するシステムにおいて、
屋内配線において電流が流れる上流側地点と下流側地点の任意の2地点間で、下流側地点に既知消費電力の負荷を接続して、この2地点で測定した電圧値からその間の抵抗値(r)を推定する手段と、
前記2地点の電圧値(V,V)を計測することにより、前記推定された抵抗値(r)及び下記式
Figure 2007052006
に基づき、電流の直接的な計測をすることなく、2地点間の電圧差のみによって有効電力(P)の大きさを推定し、或いは、前記抵抗値(r)及び下記式
Figure 2007052006
に基づき、そこに流れる電流値を推定する手段と、
から成る電流或いは電力潮流を計測するシステム。
In a system that acquires information on current or power flowing in the line and measures current or power flow,
A load of known power consumption is connected to any downstream point between the upstream point and the downstream point where current flows in the indoor wiring, and the resistance value (r between them) is measured from the voltage value measured at these two points. )
By measuring the voltage values (V 1 , V 2 ) at the two points, the estimated resistance value (r) and the following formula
Figure 2007052006
Based on the above, the magnitude of the active power (P) is estimated by only the voltage difference between the two points without directly measuring the current, or the resistance value (r) and the following formula:
Figure 2007052006
A means for estimating the current value flowing therethrough,
A system for measuring current or power flow consisting of
前記2地点の電圧値(V,V)の計測は、屋内配線コンセントに着目して、コンセント電圧の計測により行う請求項2に記載の電流或いは電力潮流を計測するシステム。 The system for measuring a current or a power flow according to claim 2, wherein the voltage values (V 1 , V 2 ) at the two points are measured by measuring the outlet voltage while paying attention to the indoor wiring outlet. 前記2地点の電圧値(V,V)の計測は、GPS時刻同期電圧位相計測装置を用いて行われる請求項2に記載の電流或いは電力潮流を計測するシステム。
The measurement of the voltage value of two points (V 1, V 2) is a system for measuring a current or power flow according to claim 2 which is carried out using a GPS time synchronization voltage phase measurement device.
JP2006210446A 2005-07-21 2006-08-02 Method and system for measuring electric current or power flow Pending JP2007052006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006210446A JP2007052006A (en) 2005-07-21 2006-08-02 Method and system for measuring electric current or power flow

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005210806 2005-07-21
JP2006210446A JP2007052006A (en) 2005-07-21 2006-08-02 Method and system for measuring electric current or power flow

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006143501A Division JP3861158B1 (en) 2005-07-21 2006-05-24 Power strip with means for detecting overcurrent

Publications (1)

Publication Number Publication Date
JP2007052006A true JP2007052006A (en) 2007-03-01

Family

ID=37916542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006210446A Pending JP2007052006A (en) 2005-07-21 2006-08-02 Method and system for measuring electric current or power flow

Country Status (1)

Country Link
JP (1) JP2007052006A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198749A (en) * 2009-02-23 2010-09-09 Omron Corp Control device
JP2011176933A (en) * 2010-02-24 2011-09-08 Fujitsu Ltd Power distribution network estimation device and power distribution network estimation method
FR3011938A1 (en) * 2013-10-16 2015-04-17 Schneider Electric Ind Sas METHOD FOR DETERMINING INDIVIDUAL POWER CONSUMPTION
JP2016166809A (en) * 2015-03-10 2016-09-15 パナソニックIpマネジメント株式会社 Measuring unit, program, electric power measuring method, distribution board and distribution board system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198749A (en) * 2009-02-23 2010-09-09 Omron Corp Control device
JP2011176933A (en) * 2010-02-24 2011-09-08 Fujitsu Ltd Power distribution network estimation device and power distribution network estimation method
US8560263B2 (en) 2010-02-24 2013-10-15 Fujitsu Limited Power distribution network estimation device
FR3011938A1 (en) * 2013-10-16 2015-04-17 Schneider Electric Ind Sas METHOD FOR DETERMINING INDIVIDUAL POWER CONSUMPTION
EP2863232A1 (en) * 2013-10-16 2015-04-22 Schneider Electric Industries SAS Method for determining individual power consumption
US9817419B2 (en) 2013-10-16 2017-11-14 Schneider Electric Industries Sas Method for determining an individual power consumption
JP2016166809A (en) * 2015-03-10 2016-09-15 パナソニックIpマネジメント株式会社 Measuring unit, program, electric power measuring method, distribution board and distribution board system

Similar Documents

Publication Publication Date Title
US20230396069A1 (en) Integrated electrical panel
JP6355217B2 (en) Wireless branch circuit energy monitoring system
EP2241898B1 (en) Electric power measuring system and device control system
CN107209245B (en) Energy metering system and calibration method thereof
TWI506906B (en) Device and method for providing energy and related system
EP3081947A1 (en) A system for monitoring a medium voltage network
US20070007968A1 (en) Power monitoring system including a wirelessly communicating electrical power transducer
EP2648007A1 (en) Detection device and method, and program
CN101995506A (en) Module for measuring the current in aconductor of low voltage distributor
US10267833B2 (en) Power monitoring probe for monitoring power distribution in an electrical system
US9804211B2 (en) Indicators for a power meter
US20200112199A1 (en) Integrated electrical management system and architecture
US11137421B1 (en) Non-contact voltage sensing system
JP3861158B1 (en) Power strip with means for detecting overcurrent
MA33366B1 (en) Electric energy meter with non-isolating current detector and electromagnetic disconnection separator
JP2007052006A (en) Method and system for measuring electric current or power flow
JP6305044B2 (en) Power measuring apparatus and power measuring method
EP3133632B1 (en) Circuit breaker
US20170269127A1 (en) Electrical measurement apparatus having a detector providing an identification signal and corresponding method
US11293955B2 (en) Energy metering for a building
US8760150B1 (en) Electrical power transfer indicator system and method
KR200484477Y1 (en) Branch circuit measuring apparatus
JP6811425B2 (en) Estimate system, management system and program
JP2014041089A (en) Electric power measuring device and electric power measuring system
CURRENT ICET 2016

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929