JP2007051893A - Method and device for measuring three-dimensional geometry - Google Patents

Method and device for measuring three-dimensional geometry Download PDF

Info

Publication number
JP2007051893A
JP2007051893A JP2005235954A JP2005235954A JP2007051893A JP 2007051893 A JP2007051893 A JP 2007051893A JP 2005235954 A JP2005235954 A JP 2005235954A JP 2005235954 A JP2005235954 A JP 2005235954A JP 2007051893 A JP2007051893 A JP 2007051893A
Authority
JP
Japan
Prior art keywords
illumination light
light
illumination
dimensional shape
conversion unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005235954A
Other languages
Japanese (ja)
Inventor
Yasuhiro Sato
康弘 佐藤
Kunihisa Yamaguchi
邦久 山口
Hideo Hitai
英雄 比田井
Takeshi Maruyama
剛 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005235954A priority Critical patent/JP2007051893A/en
Publication of JP2007051893A publication Critical patent/JP2007051893A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide simplified constitution in a method and device for measuring three-dimensional geometry. <P>SOLUTION: The illuminating light emitted from a light projector 101 is structured by a first illumination light converter 102, and after restructured by a second illumination light converter 103, projected on an object 200. The first illumination light converter 102 and the second illumination light converter 103 are arranged in parallel, and a photographic part 300 can take the image of the object 200 being irradiated with structured illuminating light emitted by the light projector 101. The positional relation between the photographic part 300 and the light projector 101 has been measured previously. A moving device 104 is capable of moving in a direction of maintaining the distance between the first illumination light converter 102 and the second illumination light converter 103, while keeping the second illumination light converter 103 and the first illumination light converter 102 parallel, then the photographing is started by depressing the photographic switch 301. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、物体の形状を計測する三次元形状計測方法及び三次元形状計測装置に関する。   The present invention relates to a three-dimensional shape measuring method and a three-dimensional shape measuring apparatus for measuring the shape of an object.

三次元形状計測を行う方法の1つであるスリット光投影法は、被写体にスリットパターンを投影し、スリットパターン投影位置とは異なる位置から画像を取得し、三角測量を用いて3次元形状を復元する方法である。それに類似して被写体にパターンを投影し、三次元形状を復元する方法の1つに空間コード化法がある。   The slit light projection method, which is one of the three-dimensional shape measurement methods, projects a slit pattern onto a subject, acquires an image from a position different from the slit pattern projection position, and restores the three-dimensional shape using triangulation. It is a method to do. Similarly, there is a spatial coding method as a method for projecting a pattern onto a subject and restoring a three-dimensional shape.

空間コード化法とは、物理的なパターンマスクにより光源からの光を遮ることにより、縞模様を投影するものであり、開口した複数の板やフィルムを機械的に切り換えたり、円盤状のパターンマスクを回転させたりすることにより時系列的に光パターンを生成する方法である。また、これを液晶シャッターで実現した方法が良く知られている。   Spatial coding is a method of projecting a striped pattern by blocking light from a light source with a physical pattern mask, and mechanically switching between a plurality of open plates and films, or a disk-shaped pattern mask In this method, the light pattern is generated in time series by rotating the. A method of realizing this with a liquid crystal shutter is well known.

また、特許文献1に従来の形状測定方法が開示されている。特許文献1によれば、形状測定方法として、光量を2値化した2値照明工程と、2値化された照度分布を正弦波状に修正する照射分布修正工程からなる照明方法をとっており、各々の工程を独立に最適化できて放射分布を精密に制御することで、形状計測の精度を改善することができる。
特開2002−267430号公報
Patent Document 1 discloses a conventional shape measuring method. According to Patent Document 1, as a shape measurement method, an illumination method including a binary illumination process in which the amount of light is binarized and an irradiation distribution correction process in which the binarized illuminance distribution is modified into a sinusoidal shape is taken. The accuracy of shape measurement can be improved by optimizing each process independently and precisely controlling the radiation distribution.
JP 2002-267430 A

しかし、高精度に三次元形状を計測する場合、機械的にパターンマスクを切り替える方法では、切り替える前のパターンマスクの位置と切り替えた後のパターンマスクの位置を厳密に同じ位置に配置する必要があるため、機械が高価化、大型化することになる。   However, when measuring a three-dimensional shape with high accuracy, the method of mechanically switching pattern masks requires that the position of the pattern mask before switching and the position of the pattern mask after switching be placed at exactly the same position. Therefore, the machine becomes expensive and large.

また、最近、パターンマスクを切り替える代わりに液晶マスクによりソフト的に切り替える手法があるが、高コスト、配線の複雑化を招く要因となる。   Recently, there is a method of switching with a liquid crystal mask instead of switching a pattern mask, but this causes a high cost and complicated wiring.

空間コード化法以外に高解像度の三次元形状を求める方法として、パターンコード化法というものがある。パターンコード化法は、投光するスリットパターン光をコード化(隣接する投光線の順序を利用して、次数を特定する方法)することで、空間コード化法と同等の分解能を達成しようとしている。しかし空間コード化法と同等の分解能を有するパターンコード化法は、理論的には存在するが、実際には、画像から投光線の次数を判別するには非常に難しく実用化されているものはほとんどない。   In addition to the spatial coding method, there is a pattern coding method as a method for obtaining a high-resolution three-dimensional shape. The pattern coding method attempts to achieve the same resolution as the spatial coding method by coding the slit pattern light to be projected (a method of specifying the order using the order of adjacent light projections). . However, there are theoretically pattern coding methods that have the same resolution as the spatial coding method, but in reality, it is very difficult to determine the order of projection rays from an image. rare.

本発明は係る問題に鑑みてなされたものであり、三次元形状計測方法及び三次元形状計測装置において、簡略化した構成を提供することを目的とする。   The present invention has been made in view of such problems, and an object thereof is to provide a simplified configuration in a three-dimensional shape measurement method and a three-dimensional shape measurement apparatus.

上記目的を達成するために、請求項1記載の三次元形状計測方法は、所定の光強度分布パターンの照射光を測定物体に照射し、反射光を検知することで三角測量の原理により測定物体への照射を行う際の照明に用いる三次元形状計測方法において、1種類またはそれ以上の異なる波長帯の光を吸収するフィルタを複数のパターンで配列したパターン構造体に測定物体へ照射する照射光を透過させ、照射光を複数のパターンで配列化された照射光へ変換する工程を複数有することを特徴とする。   In order to achieve the above object, the three-dimensional shape measurement method according to claim 1 irradiates a measurement object with irradiation light of a predetermined light intensity distribution pattern and detects reflected light according to the principle of triangulation. In the three-dimensional shape measurement method used for illumination when irradiating an object, irradiation light that irradiates a measurement object onto a pattern structure in which filters that absorb light of one or more different wavelength bands are arranged in a plurality of patterns And a plurality of steps of converting the irradiation light into irradiation light arranged in a plurality of patterns.

請求項2記載の三次元形状計測装置は、所定の光強度分布パターンの照射光を測定物体に照射し、反射光を検知することで三角測量の原理により測定物体への照射を行う際の照明に用いる三次元形状計測装置において、1種類またはそれ以上の異なる波長帯の光を吸収するフィルタを複数のパターンで配列したパターン構造体を備える照明光変換手段を有し、照明光変換手段に測定物体へ照射を行う照射光を透過させることで、該照射光を、複数のパターンに配列化された照射光へ変換することを特徴とする。   The three-dimensional shape measurement apparatus according to claim 2 illuminates a measurement object by irradiating the measurement object with irradiation light having a predetermined light intensity distribution pattern and detecting the reflected light based on the principle of triangulation. In the three-dimensional shape measuring apparatus used for the measurement, the illumination light conversion means includes a pattern structure in which filters that absorb light of one or more different wavelength bands are arranged in a plurality of patterns, and the illumination light conversion means performs measurement. By transmitting the irradiation light for irradiating the object, the irradiation light is converted into irradiation light arranged in a plurality of patterns.

請求項3記載の発明は、請求項2記載の三次元形状計測装置であって、照明光変換手段は、2つまたはそれ以上備えることを特徴とする。   A third aspect of the present invention is the three-dimensional shape measuring apparatus according to the second aspect, wherein two or more illumination light converting means are provided.

請求項4記載の発明は、請求項2または3記載の三次元形状計測装置であって、照明光変換手段が、測定物体に対して平行に移動可能な移動手段を有することを特徴とする。   A fourth aspect of the invention is the three-dimensional shape measuring apparatus according to the second or third aspect, wherein the illumination light converting means has moving means that can move in parallel to the measurement object.

請求項5記載の発明は、請求項2から4のいずれか1項に記載の三次元形状計測装置であって、照明光変換手段によって複数の格子パターンに配列化された照射光を波長により領域ごとに分離した時に、少なくとも1つ以上の照明光変換手段が領域をストライプ状に分離することを特徴とする。   The invention according to claim 5 is the three-dimensional shape measuring apparatus according to any one of claims 2 to 4, wherein the irradiation light arrayed in a plurality of lattice patterns by the illumination light converting means is in a region by wavelength. When each is separated, at least one illumination light converting means separates the regions into stripes.

請求項6記載の発明は、請求項2から5のいずれか1項に記載の三次元形状計測装置であって、照明光変換手段によって複数の格子パターンに配列化された照射光を、ある平面に投影した時の投影像を波長により領域分けを行った時に、投影光が存在する領域に隣接する領域に照射光が存在しない領域となるように照射光を変換する手段を1つまたはそれ以上有することを特徴とする。   A sixth aspect of the present invention is the three-dimensional shape measuring apparatus according to any one of the second to fifth aspects, wherein the irradiation light arrayed in a plurality of lattice patterns by the illumination light converting means is applied to a certain plane. One or more means for converting the irradiation light so that the irradiation light does not exist in a region adjacent to the region where the projection light exists when the projection image when projected onto the screen is divided into regions by wavelength It is characterized by having.

請求項7記載の発明は、請求項2から5のいずれか1項に記載の三次元形状計測装置であって、照明光変換手段によって複数のパターンに配列化された照射光を、ある平面に投影した時の投影像を波長により領域分けを行った時に、投影光が存在しない領域と照射光が存在する領域とが交互になるように照射光を変換する手段を1つまたはそれ以上有することを特徴とする。   A seventh aspect of the invention is the three-dimensional shape measuring apparatus according to any one of the second to fifth aspects, wherein the irradiation light arranged in a plurality of patterns by the illumination light converting means is applied to a certain plane. Having one or more means for converting the irradiation light so that the area where the projection light does not exist and the area where the irradiation light exists are alternated when the projected image when projected is divided into regions by wavelength It is characterized by.

請求項8記載の発明は、請求項2記載の三次元形状計測装置であって、照明光変換手段は、照射光の光量の調整を可能とすることを特徴とする。   The invention according to claim 8 is the three-dimensional shape measuring apparatus according to claim 2, wherein the illumination light conversion means is capable of adjusting the amount of irradiation light.

本発明によれば、複数のパターンを配列したパターン構造体に照射光を透過させて投影することで、1つのパターン構造体を簡略化させることができ、パターン構造体の作成を容易にすることができる。   According to the present invention, one pattern structure can be simplified and the creation of the pattern structure can be facilitated by projecting the irradiation light through the pattern structure in which a plurality of patterns are arranged. Can do.

[第1の実施形態]
図1は、三次元形状計測装置100の構成を示した図である。
三次元形状計測装置100は、投光部101、第1照明光変換部102、第2照明光変換部103、移動装置104、撮像スイッチ301を有する撮像部300から構成されている。
[First Embodiment]
FIG. 1 is a diagram illustrating a configuration of the three-dimensional shape measuring apparatus 100.
The three-dimensional shape measuring apparatus 100 includes a light projecting unit 101, a first illumination light conversion unit 102, a second illumination light conversion unit 103, a moving device 104, and an imaging unit 300 having an imaging switch 301.

投光部101(点光源)から発せられた照明光は、第1照明光変換部102によって構造化され、第2照明光変換部103によって再構造化されたのち、被写体200に投影される。第1照明光変換部102と第2照明変換部103は平行に配置され、撮像部300は、投光部101から発せられ、構造化された照明光が被写体200に投影されている状態を撮像することができる。また、撮像部300と投光部101との位置関係は予め測定しておき、移動装置104は、第2照明光変換部103を第1照明光変換部102とを平行に保ち、第1照明光変換部102と第2照明光変換部104との距離を保持する方向に移動させることができ、撮影スイッチ301を押下すると撮影を開始する。   The illumination light emitted from the light projecting unit 101 (point light source) is structured by the first illumination light conversion unit 102, restructured by the second illumination light conversion unit 103, and then projected onto the subject 200. The first illumination light conversion unit 102 and the second illumination conversion unit 103 are arranged in parallel, and the imaging unit 300 captures a state in which structured illumination light emitted from the light projecting unit 101 is projected onto the subject 200. can do. In addition, the positional relationship between the imaging unit 300 and the light projecting unit 101 is measured in advance, and the moving device 104 keeps the second illumination light conversion unit 103 parallel to the first illumination light conversion unit 102 and the first illumination. The light conversion unit 102 and the second illumination light conversion unit 104 can be moved in a direction that maintains the distance. When the shooting switch 301 is pressed, shooting starts.

次に、図2を参照して、三次元形状計測装置の処理動作について説明する。
まず、使用者が撮影ボタン301を押下すると(ステップS100)、投光部101から照明光が発光される(ステップS101)。次に、発光された照明光は、第1照明光変換部102を透過し(ステップS102)、次に第2照明光変換部103を透過する(ステップS103)。第1、第2照明光変換部を透過した照明光は、被写体200に投影され、投影されている瞬間を撮像部300で撮像し保存する(ステップS104)。
Next, the processing operation of the three-dimensional shape measuring apparatus will be described with reference to FIG.
First, when the user presses the photographing button 301 (step S100), illumination light is emitted from the light projecting unit 101 (step S101). Next, the emitted illumination light passes through the first illumination light conversion unit 102 (step S102), and then passes through the second illumination light conversion unit 103 (step S103). The illumination light transmitted through the first and second illumination light conversion units is projected onto the subject 200, and the imaged moment is projected by the imaging unit 300 and stored (step S104).

次に、パターン数の撮影がされた否かを判断する(ステップS105)。規定数の撮影が行われていない場合は(ステップS105/NO)、ステップS101に戻り、第2照明光変換部103を移動装置104によって規定量移動させる。また、パターン数の撮影が行われた場合(ステップS105/YES)、規定回数枚の画像を利用して、三次元形状復元を行う(ステップS106)。   Next, it is determined whether or not the number of patterns has been photographed (step S105). If the specified number of images has not been taken (step S105 / NO), the process returns to step S101, and the second illumination light conversion unit 103 is moved by the moving device 104 by the specified amount. Further, when the number of patterns has been photographed (step S105 / YES), the three-dimensional shape restoration is performed using the prescribed number of images (step S106).

図3に示すように、第1照明光変換部102の投光部101から光が照射される部分は、直方体の形状をしたパターンマスクとなっている。また、第1照明光変換部102の奥行き(投光部101から被写体200の方向)は、非常に薄く作られている。   As shown in FIG. 3, the portion irradiated with light from the light projecting unit 101 of the first illumination light converting unit 102 is a pattern mask having a rectangular parallelepiped shape. Further, the depth of the first illumination light conversion unit 102 (the direction from the light projecting unit 101 to the subject 200) is very thin.

図3に示すように、マスク領域400a〜lから構成されており、各マスク領域の大きさは全て等しくなっている。各マスク領域は、赤色の波長のみを透過する成分から作られたR(レッド)透過成分、緑色の波長のみを透過する成分から作られたG(グリーン)透過成分、青色の波長にのみを透過する成分から作られたB(ブルー)透過成分のいずれかから構成されている。   As shown in FIG. 3, it is composed of mask regions 400a to 400l, and the sizes of the mask regions are all equal. Each mask area transmits R (red) transmission component made from a component that transmits only the red wavelength, G (green) transmission component made from a component that transmits only the green wavelength, and transmits only the blue wavelength It is comprised from either B (blue) transmission component made from the component to do.

撮像部300にCCDを用いる場合などは、CCDの分光感度特性に応じて、R,G,Bの各透過成分の各波長領域を重ならないように設定すると、高精度の三次元計測を行うことができる。本実施形態において、厳密に3色の波長領域を分離することは必要とせず、画像処理によってR,G,Bの3成分に分離するものとする。表1に第1照明光変換部102の各マスク領域に割り当てられた透過成分を示す。   When a CCD is used for the imaging unit 300, high-precision three-dimensional measurement is performed by setting the wavelength regions of the R, G, and B transmission components so as not to overlap according to the spectral sensitivity characteristics of the CCD. Can do. In the present embodiment, it is not necessary to strictly separate the wavelength regions of the three colors, and the three color components R, G, and B are separated by image processing. Table 1 shows transmission components assigned to each mask region of the first illumination light conversion unit 102.

Figure 2007051893
Figure 2007051893

次に、第2照明光変換部103について説明する。
第2照明光変換部103は、第1照明光変換部102と同様に直方体の形状をしたパターンマスクであり、図4(a)、図4(b)のように、マスク領域500a〜mから構成されており、各マスク領域の大きさは全て等しい。なお、図4(b)は、図4(a)を右へシフトしたものである。
Next, the second illumination light conversion unit 103 will be described.
The second illumination light conversion unit 103 is a pattern mask having a rectangular parallelepiped shape like the first illumination light conversion unit 102, and from the mask regions 500a to 500m as shown in FIGS. The mask areas are all equal in size. FIG. 4B is a shift of FIG. 4A to the right.

各マスク領域は、第1照明光変換部102と同様に、R透過成分、G透過成分、B透過成分に、赤色と青色の波長のみを透過する成分から作られたM(マゼンタ)透過成分、赤色と緑色の波長のみを透過する成分から作られたY(イエロー)透過成分、緑色と青色の波長のみを透過する成分から作られたC(シアン)透過成分から構成されている。       Each mask region has an M (magenta) transmission component made up of components that transmit only the red and blue wavelengths in the R transmission component, the G transmission component, and the B transmission component, as in the first illumination light conversion unit 102, It consists of a Y (yellow) transmission component made from a component that transmits only red and green wavelengths, and a C (cyan) transmission component made from a component that transmits only green and blue wavelengths.

このとき、R,G,B,C,M,Yの各透過成分は、第1照明光変換部102と同じ周波数をカットするように構成され、表2に第2照明光変換部103の各マスク領域に割り当てられた透過成分を示す。    At this time, each transmission component of R, G, B, C, M, and Y is configured to cut the same frequency as that of the first illumination light conversion unit 102, and Table 2 shows each of the second illumination light conversion unit 103. The transmission component assigned to the mask area is shown.

Figure 2007051893
Figure 2007051893

第1照明光変換部102のマスク領域400a〜lの面積と、第2照明光変換部103のマスク領域500a〜mの面積は、図5に示すような関係である。すなわち、投光部101(点光源)から第1照明光変換部102までの距離をd1、投光部101から第2照明光変換部103までの距離をd2とした場合に、マスク領域400a〜lとマスク領域500a〜mとのマスク領域の縦の辺、横の辺がそれぞれd1:d2の関係が成り立つように設定する。つまり、マスク領域の面積比がd1の2乗:d2の2乗となる。   The areas of the mask regions 400a to 400l of the first illumination light conversion unit 102 and the areas of the mask regions 500a to 500m of the second illumination light conversion unit 103 have a relationship as shown in FIG. That is, when the distance from the light projecting unit 101 (point light source) to the first illumination light converting unit 102 is d1, and the distance from the light projecting unit 101 to the second illumination light converting unit 103 is d2, the mask regions 400a to 400a. The vertical side and the horizontal side of the mask area between l and the mask areas 500a to 500m are set so that the relationship of d1: d2 is established. That is, the area ratio of the mask region is d1 squared: d2 squared.

移動装置104は、第2照明光変換部103と第1照明光変換部102とを平行に保ちながら第2照明光変換部103を移動させることができる。そのため、上記の第1照明光変換部102と第2照明光変換部103の大きさの関係から、投光部101から発せられた光のうち、マスク領域400aを通過する光が全て、マスク領域500aを通過する位置が存在する。そのため、移動装置104を用いて第2照明光変換部103を該位置へ移動させる。   The moving device 104 can move the second illumination light conversion unit 103 while keeping the second illumination light conversion unit 103 and the first illumination light conversion unit 102 in parallel. Therefore, from the relationship between the sizes of the first illumination light conversion unit 102 and the second illumination light conversion unit 103, all of the light emitted from the light projecting unit 101 passes through the mask region 400a. There is a position that passes through 500a. Therefore, the 2nd illumination light conversion part 103 is moved to this position using the moving apparatus 104. FIG.

その際、同様にマスク領域400bを透過した光がマスク領域500cを透過し、マスク領域400cを透過した光がマスク領域を透過した光がマスク領域500cを透過し、マスク領域400cを透過した光がマスク領域500dを透過する。このように、
投光部101からの光が第1照明光変換部102、第2照明光変換部103を透過する時の関係が成り立つ時の第2照明変換部103の位置をPOS1とする。
At that time, similarly, the light transmitted through the mask region 400b is transmitted through the mask region 500c, the light transmitted through the mask region 400c is transmitted through the mask region 500c, and the light transmitted through the mask region 400c is transmitted. It passes through the mask region 500d. in this way,
The position of the second illumination conversion unit 103 when the relationship when the light from the light projecting unit 101 passes through the first illumination light conversion unit 102 and the second illumination light conversion unit 103 is assumed to be POS1.

また、POS1にある第2照明変換部103を右方向へマスク領域1つ分シフトした場合(図4(b))においても、上記のような関係が成り立ち、その時の第2照明光変換部103の位置をPOS2とする。   Further, even when the second illumination conversion unit 103 in POS 1 is shifted rightward by one mask area (FIG. 4B), the above relationship is established, and the second illumination light conversion unit 103 at that time is established. Let POS2 be the position.

第2照明光変換部103がPOS1の位置にある場合、全ての可視光の波長成分を有する光を投光部101から投光すると、第1照明光変換部102のマスク領域200a〜lを透過した光が第2照明光変換部103のマスク領域500bを透過する。投光部101から放たれた照明光は、マスク領域400aを透過することにより、R成分のみになり、マスク領域500bと透過することで、透過光は無しとなる。   When the second illumination light conversion unit 103 is in the position of POS1, when light having all visible light wavelength components is projected from the projection unit 101, the light passes through the mask regions 200a to 200l of the first illumination light conversion unit 102. The transmitted light passes through the mask region 500b of the second illumination light conversion unit 103. Illumination light emitted from the light projecting unit 101 passes through the mask region 400a to become only the R component, and passes through the mask region 500b to eliminate transmitted light.

第2照明光変換部103がPOS1にある場合、各マスク領域の対応関係を図3、図4(a)になるように設定した場合、被写体に投影される構造化された照明光を表3に示す。   When the second illumination light conversion unit 103 is in the POS 1, the structured illumination light projected on the subject is shown in Table 3 when the correspondence between the mask regions is set as shown in FIGS. 3 and 4A. Shown in

Figure 2007051893
Figure 2007051893

表3における第1マスク領域、第2マスク領域とは、それぞれ、第1照明光変換部102、第2照明光変換部103のマスク領域、第1透過成分、第2透過成分は、それぞれ、第1マスク領域、第2マスク領域を透過する透過成分を表す。照明光は、表3を縦方向に見たとき、第1透過成分と第2透過成分のANDをとった結果である。   The first mask region and the second mask region in Table 3 are the mask region, the first transmission component, and the second transmission component of the first illumination light conversion unit 102 and the second illumination light conversion unit 103, respectively. It represents a transmission component that passes through one mask region and a second mask region. The illumination light is a result of taking AND of the first transmission component and the second transmission component when Table 3 is viewed in the vertical direction.

よって、第2照明光変換部103をPOS1に配置すると、表3のような構造化された照明光が被写体300に投光されることになり、第2照明光変換部103をPOS2に配置すると、表4のような構造化された照明光が被写体300に投光される。   Therefore, when the second illumination light conversion unit 103 is arranged at POS1, the illumination light structured as shown in Table 3 is projected onto the subject 300, and when the second illumination light conversion unit 103 is arranged at POS2. Illuminated light structured as shown in Table 4 is projected onto the subject 300.

Figure 2007051893
Figure 2007051893

次に、第1照明光変換部102と第2照明光変換部103による最低撮影回数について説明する。
第1照明光変換部102、第2照明光変換部103のマスク領域は、パターン数が2回となるように設計されている。パターン数とは、移動装置104により、第2照明光変換部103を右方向(左方向)に領域の整数倍分シフトしたときに得られる。異なる構造化された照明光の種類を表す。
Next, the minimum number of photographing times by the first illumination light conversion unit 102 and the second illumination light conversion unit 103 will be described.
The mask areas of the first illumination light conversion unit 102 and the second illumination light conversion unit 103 are designed so that the number of patterns is two. The number of patterns is obtained when the second illumination light conversion unit 103 is shifted rightward (leftward) by an integral multiple of the area by the moving device 104. Represents different structured illumination light types.

広く定義すると、第2照明光変換部103を拡張してマスク領域500a〜マスク領域が有限回繰り返されているような照明光変換部を作成し、移動部104によって整数倍の領域分をシフトして構造化された照明光を作ったとき、被写体に投影される照明光は表3もしくは表4の照明光した投影されない。この場合、パターン数を2回とカウントする。もちろん、マスク領域400a〜l、マスク領域500a〜mに割り当てる透過成分を変更することにより最低撮影回数を増やすことは可能である。   In broad definition, the second illumination light conversion unit 103 is expanded to create an illumination light conversion unit in which the mask region 500a to the mask region are repeated a finite number of times, and the moving unit 104 shifts an integral multiple of the region. When the structured illumination light is made, the illumination light projected on the subject is not projected as the illumination light of Table 3 or Table 4. In this case, the number of patterns is counted twice. Of course, it is possible to increase the minimum number of times of photographing by changing the transmission components assigned to the mask areas 400a to 400l and the mask areas 500a to 500m.

被写体200を撮影する際に、第2照明光変換部103をPOS1に配置し、被写体200に照明光が投影された様子を撮影して得られた画像を画像1とし、次に、第2照明光変換部をPOS2に配置し、被写体200に照明光が投影された様子を撮影して得られた画像を画像2とする。   When photographing the subject 200, the second illumination light conversion unit 103 is arranged at the POS 1, and an image obtained by photographing the illumination light projected onto the subject 200 is set as an image 1, and then the second illumination An image obtained by arranging the light conversion unit in the POS 2 and photographing the illumination light projected onto the subject 200 is referred to as an image 2.

画像1,2を撮影する際の構造化された照明光のパターンは、表3,4に因る。よって、一般的に用いられる空間コード化法のアルゴリズムなどを用いて三次元形状を復元する。   Tables 3 and 4 show the structured illumination light patterns when photographing images 1 and 2. Therefore, the three-dimensional shape is restored using a commonly used spatial coding algorithm or the like.

[第2の実施形態]
第2の実施形態では、第1の実施形態とは、第1照明光変換部102および第2照明光変換部103によって構造化される照明光が異なるだけであり、他の構成は同様である。第1の照明光変換部102は、図6に示すように、赤色の波長のみを透過する成分から作られたR透過成分、緑色の波長のみを透過する成分から作られたG透過成分、青色の波長のみを透過する成分から作られたB透過成分と、光を透過しないK透過成分から構成される。これら4種類のマスク領域により、図6の太枠601でマスク領域600a〜lが定義されており、マスク領域500aは、透過領域K+透過領域R+透過領域Kからなり、同様にマスク領域500bは、透過領域K+透過領域B+透過領域Kから構成されている。
[Second Embodiment]
The second embodiment is different from the first embodiment only in the illumination light structured by the first illumination light conversion unit 102 and the second illumination light conversion unit 103, and the other configurations are the same. . As shown in FIG. 6, the first illumination light conversion unit 102 includes an R transmission component made from a component that transmits only the red wavelength, a G transmission component made from a component that transmits only the green wavelength, and blue B transmission component made from a component that transmits only the wavelength of K and a K transmission component that does not transmit light. With these four types of mask regions, mask regions 600a to 600l are defined by a thick frame 601 in FIG. 6, and the mask region 500a includes a transmissive region K + a transmissive region R + a transmissive region K. Similarly, the mask region 500b includes It is composed of a transmission region K + a transmission region B + a transmission region K.

第2照明光変換部103は、図7(a),(b)に示すように、第1照明光変換部102と同様に、赤色と青色の波長のみを透過する成分から作られたM透過成分、赤色と緑色の波長のみを透過する成分から作られたY透過成分、緑色と青色の波長のみを透過する成分から作られたC透過成分からなる。このとき、R,G,B,C,M,Yの各透過成分は第1照明光変換部102と同じ周波数をカットするように作成されている。   As shown in FIGS. 7A and 7B, the second illumination light conversion unit 103 is an M transmission made from a component that transmits only red and blue wavelengths, as in the first illumination light conversion unit 102. It consists of a component, a Y transmissive component made from a component that transmits only red and green wavelengths, and a C transmissive component made from a component that transmits only green and blue wavelengths. At this time, the transmission components of R, G, B, C, M, and Y are created so as to cut the same frequency as the first illumination light conversion unit 102.

第1照明光変換部102でR透過成分を透過した赤色の波長領域を有する光は第2照明光変換部103でG透過成分またはB透過成分を通過すると被写体200に照明光は透過されなくなる。つまり、投光部101より発せられた光は、第1照明光変換部102と第2照明光変換部103とで、同じ透過成分を通過しない限り、照明光は遮断されることになる。   Light having a red wavelength region that has been transmitted through the R transmissive component by the first illumination light conversion unit 102 passes through the G transmissive component or the B transmissive component by the second illumination light conversion unit 103, so that the illumination light is not transmitted to the subject 200. That is, the light emitted from the light projecting unit 101 is blocked as long as the first illumination light conversion unit 102 and the second illumination light conversion unit 103 do not pass the same transmission component.

また、図7に示すように、マスク領域700a〜mはR,B,G,K透過成分のいずれかを有し、面積が等しく設計されている。同様に図7(a)、(b)のマスク領域700a〜mは、Y,G,C,B,M,Rの各透過成分のいずれかを有し、面積が等しく設計されている。また、第1照明光変換部102と第2照明光変換部103は、マスク領域500a〜l、マスク領域600a〜mが並べられている面の法線方向に関して十分に薄く作られているものとする。   As shown in FIG. 7, the mask regions 700a to 700a-m have any of R, B, G, and K transmission components and are designed to have the same area. Similarly, the mask regions 700a to 700m in FIGS. 7A and 7B have any one of Y, G, C, B, M, and R transmission components and are designed to have the same area. In addition, the first illumination light conversion unit 102 and the second illumination light conversion unit 103 are made sufficiently thin with respect to the normal direction of the surface on which the mask regions 500a to ll and the mask regions 600a to 600m are arranged. To do.

上記のように第1照明光変換部102と第2照明光変換部103の大きさ、位置、透過成分を設定し、全ての可視光の波長成分を有する光を投光部101より投光すると、以下に示すことが可能となる。   When the size, position, and transmission component of the first illumination light conversion unit 102 and the second illumination light conversion unit 103 are set as described above, and light having all visible light wavelength components is projected from the light projection unit 101. It becomes possible to show the following.

投光部101から第1照明光変換部102のマスク領域500aを透過した光は、全て、そして、それのみ第2照明光変換部103のマスク領域600bを透過する。よって、投光部101からの照明光は、マスク領域500aを透過することにより、R成分のみになり、マスク領域600bを等位かすることにより透過光は無しになる。このことを第1照明光変換部102と第2照明光変換部の位置関係が図6と図7(a)になるように設定した場合に、被写体に投影される構造化された照明光を表すのが表5である。   All of the light transmitted from the light projecting unit 101 through the mask region 500a of the first illumination light conversion unit 102 is transmitted through the mask region 600b of the second illumination light conversion unit 103 only. Therefore, the illumination light from the light projecting unit 101 becomes only the R component by transmitting through the mask region 500a, and there is no transmitted light by making the mask region 600b equal. When this is set so that the positional relationship between the first illumination light conversion unit 102 and the second illumination light conversion unit is as shown in FIG. 6 and FIG. 7A, structured illumination light projected on the subject is obtained. Table 5 shows this.

Figure 2007051893
Figure 2007051893

ここで、表5における第1領域とは、図6の第1照明光変換部102の各領域を表す。また、第2領域は、図7(a),(b)の第2照明光変換部103の各領域を表す。また、各マスク領域に対応する各透過成分を第1照明光変換部102に対しては、第1透過成分、第2照明光変換部に対しては第2透過成分とする。このとき、移動装置104により、第1照明光変換部102と第2照明光変換部103との位置関係が図6と図7(a)のような関係になるときを第2領域1、それに対応する透過成分を第2透過成分1とし、被写体に実際に投影される構造化された照明光を照明光1とする。   Here, the 1st field in Table 5 represents each field of the 1st illumination light conversion part 102 of FIG. Further, the second region represents each region of the second illumination light conversion unit 103 in FIGS. 7A and 7B. In addition, each transmission component corresponding to each mask region is a first transmission component for the first illumination light conversion unit 102 and a second transmission component for the second illumination light conversion unit. At this time, when the positional relationship between the first illumination light conversion unit 102 and the second illumination light conversion unit 103 is as shown in FIG. 6 and FIG. The corresponding transmission component is the second transmission component 1, and the structured illumination light actually projected onto the subject is the illumination light 1.

同様に、図6の第1領域と、移動装置104により第2照明光変換部103を第1照明光変換部102の位置(図6)に対して図7(b)の位置にある場合を、第2領域2として、そのとき構造化される照明光を照明光2として表6に示す。   Similarly, the case where the second illumination light conversion unit 103 is located at the position of FIG. 7B with respect to the position of the first illumination light conversion unit 102 (FIG. 6) by the first region of FIG. The illumination light structured at that time as the second region 2 is shown in Table 6 as illumination light 2.

Figure 2007051893
Figure 2007051893

[第3の実施形態]
第3の実施形態では、第1、第2の実施形態とは異なり、第2照明光変換部103を縦方向にスライドして撮影ごとに投影するパターンを切り替える。
第3の実施形態では、図8に示す照明光変換部900を用いる。
照明光変換部900は、図1に示す第1、第2照明光変換部102,103の位置に設置する。パターン部901は、図4(a),(b)で示したパターンを上下に重ねた形状のマスクである。パターン部901は、両端をパターン部保持機構902によって保持され、パターン部保持機構902に描かれている横線の位置に照明光が投光されるように、投光部101と照明光変換部との位置にする。
[Third Embodiment]
In the third embodiment, unlike the first and second embodiments, the second illumination light conversion unit 103 is slid in the vertical direction and the pattern to be projected is switched for each shooting.
In the third embodiment, an illumination light conversion unit 900 shown in FIG. 8 is used.
The illumination light conversion unit 900 is installed at the position of the first and second illumination light conversion units 102 and 103 shown in FIG. The pattern portion 901 is a mask having a shape in which the patterns shown in FIGS. The pattern unit 901 is held at both ends by the pattern unit holding mechanism 902, and the light projecting unit 101, the illumination light converting unit, and the like so that the illumination light is projected at the position of the horizontal line drawn on the pattern unit holding mechanism 902. Set to the position.

また、パターン部901はパターン保持部903を有し、パターン保持機構902に対してパターン部901を平行移動させることができる。照明光変換部900によって、1回目の撮影の際には上側のマスクパターン(図4(a)と同じマスクパターン)を光りが通るように設置し、2回目の撮影の際には下側のマスクパターン(図4(b)と同じマスクパターン)を光が通るようにパターンをスライドさせることにより、第1の実施形態と同様の三次元形状測定を行うことができる。   The pattern unit 901 includes a pattern holding unit 903, and the pattern unit 901 can be translated with respect to the pattern holding mechanism 902. The illumination light conversion unit 900 installs the upper mask pattern (the same mask pattern as that in FIG. 4A) so that light passes through during the first shooting, and the lower mask pattern during the second shooting. By sliding the pattern so that light passes through the mask pattern (the same mask pattern as in FIG. 4B), the same three-dimensional shape measurement as in the first embodiment can be performed.

また、撮像部がAF(オート・フォーカス)機能を保持している場合、AFによる被写体の距離に応じて、細かい照明光が投影できる照明光変換部と粗い照明光が投影できる照明光変換部とを切り替えることができる。   In addition, when the imaging unit has an AF (auto focus) function, an illumination light conversion unit that can project fine illumination light and an illumination light conversion unit that can project coarse illumination light according to the distance of the subject by AF, Can be switched.

本実施形態における三次元形状計測装置の構成を示した図である。It is the figure which showed the structure of the three-dimensional shape measuring apparatus in this embodiment. 図1に示す三次元形状計測装置の処理動作を示したフローチャートである。It is the flowchart which showed the processing operation of the three-dimensional shape measuring apparatus shown in FIG. 第1照明光変換部のパターンマスクの形状を示した図である。It is the figure which showed the shape of the pattern mask of a 1st illumination light conversion part. 図4(a)は、第2照明光変換部のパターンマスクの形状を示した図であり、図4(b)は、図4(a)のパターンマスクを右へシフトしたものを示す。FIG. 4A is a diagram showing the shape of the pattern mask of the second illumination light conversion unit, and FIG. 4B shows the pattern mask of FIG. 4A shifted to the right. 投光部、第1照明光変換部、第2照明光変換部の位置関係を示した図である。It is the figure which showed the positional relationship of a light projection part, a 1st illumination light conversion part, and a 2nd illumination light conversion part. 第2の実施形態における第1照明光変換部のパターンマスクの形状を示した図である。It is the figure which showed the shape of the pattern mask of the 1st illumination light conversion part in 2nd Embodiment. 図7(a)は、第2照明光変換部のパターンマスクの形状を示した図である。図7(b)は、図7(a)に示したパターンマスクを右にシフトしたものである。Fig.7 (a) is the figure which showed the shape of the pattern mask of the 2nd illumination light conversion part. FIG. 7B shows the pattern mask shown in FIG. 7A shifted to the right. 第3の実施形態における照明光変換部の構成を示した図である。It is the figure which showed the structure of the illumination light conversion part in 3rd Embodiment.

符号の説明Explanation of symbols

100 三次元形状計測装置
101 投光部
102 第1照明光変換部
103 第2照明光変換部
104 移動装置
200 被写体
300 撮像部
301 撮影スイッチ
DESCRIPTION OF SYMBOLS 100 Three-dimensional shape measuring apparatus 101 Light projection part 102 1st illumination light conversion part 103 2nd illumination light conversion part 104 Moving apparatus 200 Subject 300 Imaging part 301 Shooting switch

Claims (8)

所定の光強度分布パターンの照射光を測定物体に照射し、反射光を検知することで三角測量の原理により測定物体への照射を行う際の照明に用いる三次元形状計測方法において、
1種類またはそれ以上の異なる波長帯の光を吸収するフィルタを複数のパターンで配列したパターン構造体に前記測定物体へ照射する照射光を透過させ、
前記照射光を複数のパターンで配列化された照射光へ変換する工程を複数有することを特徴とする三次元形状計測方法。
In the three-dimensional shape measurement method used for illumination when irradiating a measurement object with the principle of triangulation by irradiating the measurement object with irradiation light of a predetermined light intensity distribution pattern and detecting reflected light,
Transmitting the irradiation light that irradiates the measurement object to a pattern structure in which filters that absorb light of one or more different wavelength bands are arranged in a plurality of patterns;
A three-dimensional shape measuring method comprising a plurality of steps of converting the irradiation light into irradiation light arranged in a plurality of patterns.
所定の光強度分布パターンの照射光を測定物体に照射し、反射光を検知することで三角測量の原理により測定物体への照射を行う際の照明に用いる三次元形状計測装置において、
1種類またはそれ以上の異なる波長帯の光を吸収するフィルタを複数のパターンで配列したパターン構造体を備える照明光変換手段を有し、
前記照明光変換手段に前記測定物体へ照射を行う照射光を透過させることで、該照射光を、複数のパターンに配列化された照射光へ変換することを特徴とする三次元形状計測装置。
In the three-dimensional shape measurement device used for illumination when irradiating the measurement object according to the principle of triangulation by irradiating the measurement object with the irradiation light of the predetermined light intensity distribution pattern and detecting the reflected light,
Comprising illumination light conversion means comprising a pattern structure in which filters that absorb light of one or more different wavelength bands are arranged in a plurality of patterns;
A three-dimensional shape measuring apparatus, wherein the illumination light is converted into irradiation light arranged in a plurality of patterns by transmitting the illumination light for irradiating the measurement object to the illumination light conversion means.
前記照明光変換手段は、2つまたはそれ以上備えることを特徴とする請求項2記載の三次元形状計測装置。   The three-dimensional shape measuring apparatus according to claim 2, wherein the illumination light converting means includes two or more illumination light converting means. 前記照明光変換手段が、前記測定物体に対して平行に移動可能な移動手段を有することを特徴とする請求項2または3記載の三次元形状計測装置。   The three-dimensional shape measuring apparatus according to claim 2 or 3, wherein the illumination light converting means includes a moving means capable of moving in parallel with the measurement object. 前記照明光変換手段によって複数のパターンに配列化された照射光を波長により領域ごとに分離した時に、少なくとも1つ以上の照明光変換手段が前記領域をストライプ状に分離することを特徴とする請求項2から4のいずれか1項に記載の三次元形状計測装置。       When the illumination light arranged in a plurality of patterns by the illumination light conversion means is separated for each region by wavelength, at least one illumination light conversion means separates the regions into stripes. Item 5. The three-dimensional shape measurement apparatus according to any one of Items 2 to 4. 前記照明光変換手段によって複数のパターンに配列化された照射光を、ある平面に投影した時の投影像を波長により領域分けを行った時に、投影光が存在する領域に隣接する領域に照射光が存在しない領域となるように照射光を変換する手段を1つまたはそれ以上有することを特徴とする請求項2から5のいずれか1項に記載の三次元形状計測装置。   When the projection light when the illumination light arranged in a plurality of patterns by the illumination light conversion unit is projected onto a certain plane is divided into regions by wavelength, the illumination light is irradiated on a region adjacent to the region where the projection light exists 6. The three-dimensional shape measuring apparatus according to claim 2, further comprising one or more means for converting the irradiation light so as to be a region in which no light exists. 前記照明光変換手段によって複数のパターンに配列化された照射光を、ある平面に投影した時の投影像を波長により領域分けを行った時に、投影光が存在しない領域と照射光が存在する領域とが交互になるように照射光を変換する手段を1つまたはそれ以上有することを特徴とする請求項2から5のいずれか1項に記載の三次元形状計測装置。   A region where there is no projection light and a region where irradiation light exists when the projection image obtained by projecting the irradiation light arranged in a plurality of patterns by the illumination light conversion means onto a certain plane is divided by wavelength The three-dimensional shape measuring apparatus according to any one of claims 2 to 5, further comprising one or more means for converting the irradiation light so that and are alternately arranged. 前記照明光変換手段は、照射光の光量の調整を可能とすることを特徴とする請求項2記載の三次元形状計測装置。   The three-dimensional shape measuring apparatus according to claim 2, wherein the illumination light converting unit is capable of adjusting the amount of irradiation light.
JP2005235954A 2005-08-16 2005-08-16 Method and device for measuring three-dimensional geometry Pending JP2007051893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235954A JP2007051893A (en) 2005-08-16 2005-08-16 Method and device for measuring three-dimensional geometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235954A JP2007051893A (en) 2005-08-16 2005-08-16 Method and device for measuring three-dimensional geometry

Publications (1)

Publication Number Publication Date
JP2007051893A true JP2007051893A (en) 2007-03-01

Family

ID=37916443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235954A Pending JP2007051893A (en) 2005-08-16 2005-08-16 Method and device for measuring three-dimensional geometry

Country Status (1)

Country Link
JP (1) JP2007051893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050107A1 (en) * 2010-10-12 2012-04-19 グローリー株式会社 Coin processing device and coin processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152903A (en) * 1984-01-21 1985-08-12 Kosuke Sato Position measuring method
JP2001243468A (en) * 1999-12-24 2001-09-07 Sanyo Electric Co Ltd Device, method, and metdium for three-dimensional modeling, and device, method, and medium for three- dimensional shape data recording
JP2002027501A (en) * 2000-07-10 2002-01-25 Fuji Xerox Co Ltd Three-dimensional image pickup device and method
JP2002048523A (en) * 2000-08-02 2002-02-15 Ckd Corp Three-dimensional measuring instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152903A (en) * 1984-01-21 1985-08-12 Kosuke Sato Position measuring method
JP2001243468A (en) * 1999-12-24 2001-09-07 Sanyo Electric Co Ltd Device, method, and metdium for three-dimensional modeling, and device, method, and medium for three- dimensional shape data recording
JP2002027501A (en) * 2000-07-10 2002-01-25 Fuji Xerox Co Ltd Three-dimensional image pickup device and method
JP2002048523A (en) * 2000-08-02 2002-02-15 Ckd Corp Three-dimensional measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050107A1 (en) * 2010-10-12 2012-04-19 グローリー株式会社 Coin processing device and coin processing method

Similar Documents

Publication Publication Date Title
JP4701948B2 (en) Pattern light irradiation device, three-dimensional shape measurement device, and pattern light irradiation method
EP2175233B1 (en) Apparatus and method for measuring three-dimensional shape by using multi-wavelength patterns
US8274646B2 (en) Measurement system and measurement processing method
US10588494B2 (en) Camera and method for the three-dimensional measurement of a dental object
EP3425437B1 (en) Patterned light irradiation apparatus and method
TWI432917B (en) Exposure apparatus
KR101824328B1 (en) 3-D scanner and the scanning method using the chromatic aberration
TW201947330A (en) Measurement apparatus, exposure apparatus, and method of manufacturing article
JP4778156B2 (en) Distance information acquisition apparatus or system, pattern projection apparatus, and distance information acquisition method
TW200804997A (en) Exposure apparatus and image plane detecting method
KR101799860B1 (en) Masklees exposure device having a spatial filter with the phase shifter-pattern and Method thereof
JP2007051893A (en) Method and device for measuring three-dimensional geometry
JP2018054992A (en) Illumination optical system, exposure equipment and production method of article
JP4256059B2 (en) 3D measuring device
US20230184546A1 (en) Apparatus and method for measuring overlay
JP2006214785A (en) Three-dimensional geometry measuring system and measuring method
JP2008292570A (en) Projection type image display device
JP3906990B2 (en) Appearance inspection device and three-dimensional measurement device
WO2018042731A1 (en) Image processing system and image processing method
KR100966311B1 (en) Moire Device Using Digital Micromirror Device
US10307960B2 (en) Three-dimensional printer and imaging system thereof
JP5812332B2 (en) Fixing the projection lens unit
JP2007139428A (en) Three-dimensional measurement device
JP6659149B2 (en) Detection apparatus, detection method, lithography apparatus, and article manufacturing method
KR20150018977A (en) Three-dimensional surface measuring apparatus and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308