JP2007051701A - Tapered roller bearing - Google Patents

Tapered roller bearing Download PDF

Info

Publication number
JP2007051701A
JP2007051701A JP2005237553A JP2005237553A JP2007051701A JP 2007051701 A JP2007051701 A JP 2007051701A JP 2005237553 A JP2005237553 A JP 2005237553A JP 2005237553 A JP2005237553 A JP 2005237553A JP 2007051701 A JP2007051701 A JP 2007051701A
Authority
JP
Japan
Prior art keywords
roller
tapered roller
effective length
curvature
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005237553A
Other languages
Japanese (ja)
Inventor
Koshi Kawaguchi
幸志 川口
Hiroki Matsuyama
博樹 松山
Hiroyuki Oshima
宏之 大島
Naoki Masuda
直樹 益田
Kazuhisa Toda
一寿 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2005237553A priority Critical patent/JP2007051701A/en
Publication of JP2007051701A publication Critical patent/JP2007051701A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/088Ball or roller bearings self-adjusting by means of crowning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • F16C33/366Tapered rollers, i.e. rollers generally shaped as truncated cones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/50Crowning, e.g. crowning height or crowning radius
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tapered roller bearing capable of effectively reducing rotary torque. <P>SOLUTION: This tapered roller bearing 1 comprises an outer ring 20, an inner ring 10, a plurality of tapered rollers 30 disposed between the outer ring 20 and the inner ring 10, and a cage 40 for the tapered rollers 30, and raceway surfaces 21, 22 of the outer ring 20 and the inner ring 10 and rolling surfaces 31 of the tapered rollers 30 are crowned. A curvature radius Ro in the direction vertical to the rolling direction of the raceway surface 21, of the outer ring 20, and a curvature radius Ri in the direction vertical to the rolling direction of the raceway surface 11, of the inner ring 10 are respectively determined by multiplying a constant predetermined in accordance with a roller effective length LWR by a standard curvature radius Rr, when the curvature radius in the direction vertical to the rolling direction of the tapered roller 30 when the roller crowning amount is 2μm, is applied as the standard curvature radius Rr. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、自動車等におけるディファレンシャル装置、トランスアクスル等のピニオンギヤ軸支持装置や、トランスミッション等に好適に使用される円錐ころ軸受に関する。   The present invention relates to, for example, a differential device in an automobile or the like, a pinion gear shaft support device such as a transaxle, a tapered roller bearing suitably used for a transmission or the like.

近年、自動車等の省燃費化に対する要求が高まっており、それらに搭載されるトランスミッション装置やディファレンシャル装置の回転軸を支持するために用いられている円錐ころ軸受に関してもその回転トルクの低減化が望まれている。   In recent years, there has been an increasing demand for fuel savings in automobiles and the like, and it is hoped that the rotational torque of tapered roller bearings used to support the rotation shafts of transmission devices and differential devices mounted on them will also be reduced. It is rare.

円錐ころ軸受の回転トルクを低減する方法として、円錐ころの転動面や内外輪の軌道面にクラウニングを施して転がり摩擦を低減する方法がある。 このような方法として、例えば、特許文献1に記載されているように、軌道面を円弧クラウニング形状とすることで回転トルクの低減化を図る方法や、特許文献2に記載されているように、ころの転動面とそれに接する軌道面とを対数曲線に近似させたクラウニング形状とする方法が提案されている。   As a method of reducing the rotational torque of the tapered roller bearing, there is a method of reducing rolling friction by crowning the rolling surface of the tapered roller and the raceway surface of the inner and outer rings. As such a method, for example, as described in Patent Document 1, a method of reducing the rotational torque by making the raceway surface into an arc crowning shape, or as described in Patent Document 2, A method has been proposed in which a rolling shape of a roller and a raceway surface in contact with the rolling surface are approximated to a logarithmic curve.

特開2003−130059号公報JP 2003-130059 A 特開2001−65574号公報JP 2001-65574 A

前記従来例では、転動面又は軌道面のクラウニングの形状を数値で規定することで円錐ころ軸受の性能向上化が図られていたが、その効果は満足できるものではなかった。   In the above conventional example, the performance of the tapered roller bearing is improved by numerically defining the shape of the rolling surface or raceway crowning, but the effect is not satisfactory.

本発明者らは、このような事情に鑑みて鋭意研究を重ねた結果、円錐ころのクラウニングの曲率半径を基準とし、当該円錐ころの曲率半径に、ころの有効長さに応じて予め定められた定数を乗ずることにより内輪及び外輪の各曲率半径を設定することで、円錐ころ軸受の回転トルクを低減できることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of such circumstances, the present inventors have determined in advance the radius of curvature of the tapered roller in accordance with the effective length of the roller, based on the radius of curvature of the tapered roller. It has been found that the rotational torque of the tapered roller bearing can be reduced by setting the respective curvature radii of the inner ring and the outer ring by multiplying the constants, and the present invention has been completed.

本発明の円錐ころ軸受は、外輪と、内輪と、これらの間に介在する複数の円錐ころと、当該円錐ころの保持器とを備え、前記外輪及び内輪の各軌道面並びに前記円錐ころの転動面にクラウニングが施された円錐ころ軸受において、 ころクラウニング量が2μmのときの前記円錐ころの転がり方向と垂直な方向の曲率半径を標準曲率半径Rrとすると、前記外輪の軌道面の転がり方向と垂直な方向の曲率半径Ro及び内輪の軌道面の転がり方向と垂直な方向の曲率半径Riのそれぞれが、ころ有効長さLWRに応じて予め定められた定数に前記標準曲率半径Rrを乗じた大きさであることを特徴としている。   The tapered roller bearing of the present invention comprises an outer ring, an inner ring, a plurality of tapered rollers interposed between them, and a retainer for the tapered roller, and each raceway surface of the outer ring and the inner ring and a roller of the tapered roller are provided. In a tapered roller bearing with a crowned moving surface, when the radius of curvature in the direction perpendicular to the rolling direction of the tapered roller when the roller crowning amount is 2 μm is the standard radius of curvature Rr, the rolling direction of the raceway surface of the outer ring Each of the curvature radius Ro in the direction perpendicular to the vertical direction and the curvature radius Ri in the direction perpendicular to the rolling direction of the raceway surface of the inner ring is obtained by multiplying a constant predetermined according to the roller effective length LWR by the standard curvature radius Rr. It is characterized by its size.

本発明の円錐ころ軸受では、ころクラウニング量が2μmのときの円錐ころの転がり方向と垂直な方向の曲率半径(標準曲率半径Rr)を基準とし、この曲率半径に、ころ有効長さLWRに応じて予め定められた定数を乗じることで、外輪の軌道面の転がり方向と垂直な方向の曲率半径Ro及び内輪の軌道面の転がり方向と垂直な方向の曲率半径Riを求めており、円錐ころ軸受の回転トルクを効果的に低減させることができる。   In the tapered roller bearing of the present invention, the radius of curvature in the direction perpendicular to the rolling direction of the tapered roller when the roller crowning amount is 2 μm (standard radius of curvature Rr) is used as a reference, and the radius of curvature corresponds to the effective roller length LWR. The radius of curvature Ro in the direction perpendicular to the rolling direction of the raceway surface of the outer ring and the radius of curvature Ri in the direction perpendicular to the rolling direction of the raceway surface of the inner ring are obtained by multiplying by a predetermined constant. Can be effectively reduced.

前記内輪の軌道面の転がり方向と垂直な方向の曲率半径Riを算出するための定数kiが、ころ有効長さLWRが10mm未満のときに0.10〜0.12、ころ有効長さLWRが10mm以上30mm未満のときに0.09〜0.11の各範囲から選ばれ、且つ
前記外輪の軌道面の転がり方向と垂直な方向の曲率半径Roを算出するための定数koが、ころ有効長さLWRが10mm未満のときに3.69〜4.51×10−2、ころ有効長さLWRが10mm以上15mm未満のときに3.83〜4.68×10−2、ころ有効長さLWRが15mm以上20mm未満のときに4.01〜4.90×10−2、ころ有効長さLWRが20mm以上30mm未満のときに4.01〜4.91×10−2の各範囲から選ばれるのが好ましい。この範囲内の定数を選定し、選択した定数に前記標準曲率半径Rrを乗じて内輪及び外輪の各曲率半径を得ることで、円錐ころ軸受の回転トルクを効果的に低減させることができる。
The constant ki for calculating the radius of curvature Ri in the direction perpendicular to the rolling direction of the raceway surface of the inner ring is 0.10 to 0.12 when the roller effective length LWR is less than 10 mm, and the roller effective length LWR is Selected from each range of 0.09 to 0.11 when 10 mm or more and less than 30 mm, and
The constant ko for calculating the curvature radius Ro in the direction perpendicular to the rolling direction of the raceway surface of the outer ring is 3.69 to 4.51 × 10 −2 when the roller effective length LWR is less than 10 mm, and the roller effective When the length LWR is 10 mm or more and less than 15 mm, 3.83 to 4.68 × 10 −2 , and when the roller effective length LWR is 15 mm or more and less than 20 mm, 4.01 to 4.90 × 10 −2 , the roller is effective When the length LWR is 20 mm or more and less than 30 mm, it is preferably selected from each range of 4.01 to 4.91 × 10 −2 . By selecting a constant within this range and multiplying the selected constant by the standard curvature radius Rr to obtain the respective curvature radii of the inner ring and the outer ring, the rotational torque of the tapered roller bearing can be effectively reduced.

前記定数kiが、ころ有効長さLWRが10mm未満のときに0.11、ころ有効長さLWRが10mm以上30mm未満のときに0.10であり、且つ
前記定数koが、ころ有効長さLWRが10mm未満のときに4.10×10−2、ころ有効長さLWRが10mm以上15mm未満のときに4.25×10−2、ころ有効長さLWRが15mm以上20mm未満のときに4.45×10−2、ころ有効長さLWRが20mm以上30mm未満のときに4.46×10−2であるのが好ましい。この場合、回転トルク低減の効果を最も発揮させることができる。
The constant ki is 0.11 when the roller effective length LWR is less than 10 mm, 0.10 when the roller effective length LWR is 10 mm or more and less than 30 mm, and
The constant ko is 4.10 × 10 −2 when the roller effective length LWR is less than 10 mm, and 4.25 × 10 −2 when the roller effective length LWR is 10 mm or more and less than 15 mm, and the roller effective length LWR. Is preferably 4.45 × 10 −2 when the diameter is 15 mm or more and less than 20 mm, and 4.46 × 10 −2 when the roller effective length LWR is 20 mm or more and less than 30 mm. In this case, the effect of reducing rotational torque can be exhibited most.

本発明の円錐ころ軸受によれば、その回転トルクを効果的に低減させることができる。   According to the tapered roller bearing of the present invention, the rotational torque can be effectively reduced.

以下、添付図面を参照しつつ、本発明の円錐ころ軸受の実施の形態について詳細に説明をする。
図1は本発明の一実施の形態に係る円錐ころ軸受の軸方向断面図である。この円錐ころ軸受1は、車両用ピニオン軸支持装置としての自動車のディファレンシァルギヤ装置のピニオンギヤ側において用いられ、外周に円錐面からなる内輪軌道面11が形成された内輪10と、内周に円錐面からなる外輪軌道面21が形成された外輪20と、内外輪間に介在し、外周に円錐面からなる転動面31が形成された転動自在の複数の円錐ころ30と、これらの円錐ころ30を周方向に所定間隔で保持する保持器40とを備えている。また、内輪10の大径側(図の右方)及び小径側(図の左方)にはそれぞれ、円錐ころ30の軸方向への移動を規制する大径鍔部12及び小径鍔部13が形成されている。さらに、前記内輪軌道面11の大径鍔部12側及び小径鍔部13側の各端部には、断面円弧状の切欠きからなる逃げ部50、51が形成されている。
Hereinafter, embodiments of the tapered roller bearing of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is an axial sectional view of a tapered roller bearing according to an embodiment of the present invention. This tapered roller bearing 1 is used on the pinion gear side of a differential gear device of an automobile as a pinion shaft support device for a vehicle, and has an inner ring 10 having an inner ring raceway surface 11 formed of a conical surface on the outer circumference, and an inner circumference. An outer ring 20 having an outer ring raceway surface 21 made of a conical surface, a plurality of rollable tapered rollers 30 interposed between the inner and outer rings and having a rolling surface 31 made of a conical surface on the outer periphery, and And a retainer 40 that holds the tapered rollers 30 at predetermined intervals in the circumferential direction. A large-diameter flange 12 and a small-diameter flange 13 that restrict the axial movement of the tapered roller 30 are respectively provided on the large-diameter side (right side in the figure) and the small-diameter side (left side in the figure) of the inner ring 10. Is formed. Further, relief portions 50 and 51 each having a circular arc cross section are formed at each end of the inner ring raceway surface 11 on the large diameter flange 12 side and the small diameter flange 13 side.

本発明の円錐ころ軸受では、前記外輪20及び内輪10の各軌道面21、11並びに前記円錐ころ30の転動面31にクラウニングが施されており、このうち円錐ころ30の転動面31のクラウニング量が2μmのときの当該円錐ころ30の転動面31の転がり方向と垂直な方向の曲率半径を標準曲率半径とし、この標準曲率半径に基づいて外輪20及び内輪10の各軌道面21、11の転がり方向と垂直な方向の曲率半径を規定している。   In the tapered roller bearing according to the present invention, the raceways 21 and 11 of the outer ring 20 and the inner ring 10 and the rolling surface 31 of the tapered roller 30 are crowned. The radius of curvature in the direction perpendicular to the rolling direction of the rolling surface 31 of the tapered roller 30 when the crowning amount is 2 μm is defined as the standard radius of curvature, and the raceway surfaces 21 of the outer ring 20 and the inner ring 10 based on the standard radius of curvature, 11 defines a radius of curvature in a direction perpendicular to the rolling direction.

ここで、前記円錐ころ30の転動面31のクラウニングの考え方を、図2〜3を参照しつつ説明する。
図2は、円錐ころ30の軸方向の断面における上半分の輪郭を示す図である。図2において、円錐ころ30の外周面には、ほぼ直線状の転動面31と、転動面31の軸方向両端から滑らかに下がるように形成された面取り部32a,33aとが設けられている。面取り部32a,33aは円錐ころ30の小径側端面32及び大径側端面33に対しても、滑らかに連続するように形成されている。直線状に見える転動面31には、ごく僅かに外径方向に突出したフルクラウニングが施されている。図3は、図2における転動面31のころ有効長さLWRの端点Aと端点Bとの間のクラウニング形状のみを模式的に示す図である。
Here, the concept of crowning of the rolling surface 31 of the tapered roller 30 will be described with reference to FIGS.
FIG. 2 is a view showing the contour of the upper half in the axial section of the tapered roller 30. In FIG. 2, a substantially linear rolling surface 31 and chamfered portions 32 a and 33 a formed so as to be smoothly lowered from both axial ends of the rolling surface 31 are provided on the outer peripheral surface of the tapered roller 30. Yes. The chamfered portions 32 a and 33 a are formed so as to continue smoothly with respect to the small diameter side end surface 32 and the large diameter side end surface 33 of the tapered roller 30. The rolling surface 31 that appears to be linear is provided with a full crowning that slightly protrudes in the outer diameter direction. FIG. 3 is a diagram schematically showing only the crowning shape between the end point A and the end point B of the roller effective length LWR of the rolling contact surface 31 in FIG. 2.

本明細書では、円錐ころ30のクラウニング量(以下、ころクラウニング量ともいう)を、転動面31のころ有効長さLWRより定まるクラウニングの円弧中心点とその弦との距離と規定している。以下、ころクラウニング量の算出方法について説明する。
図2において、円錐ころ30の中心軸方向に対する転動面31の幅をL、転動面31の角度(ころ角度)をγ、転動面31の両端部に形成されている面取り部32a,33aの曲面の図示の寸法をS1,S2としたとき、前述のころ有効長さLWRは、下記式(1)より得られる。 LWR=L/cos(γ/2)−(S1+S2) ・・・(1) 前記式(1)におけるS1,S2は、軸受のサイズによって一定の幅が定められる。
In this specification, the crowning amount of the tapered roller 30 (hereinafter also referred to as roller crowning amount) is defined as the distance between the center of the arc of the crowning determined by the roller effective length LWR of the rolling surface 31 and its chord. . Hereinafter, a method for calculating the roller crowning amount will be described.
In FIG. 2, the width of the rolling surface 31 with respect to the central axis direction of the tapered roller 30 is L, the angle (roller angle) of the rolling surface 31 is γ, and the chamfered portions 32 a are formed at both ends of the rolling surface 31. When the illustrated dimensions of the curved surface 33a are S1 and S2, the above-mentioned roller effective length LWR is obtained from the following formula (1). LWR = L / cos (γ / 2) − (S1 + S2) (1) A constant width of S1 and S2 in the above formula (1) is determined by the size of the bearing.

図3において、ころ有効長さLWRにおけるクラウニングの弦Gの中点C2とクラウニングの円弧中心Oとを通過する直線Mは、弦Gと直交し、かつ、ころ有効長さLWRにおけるクラウニング円弧中心点C1を通過する。 本明細書では、このクラウニング円弧中心点C1と中点C2との距離を、ころクラウニング量CRとしている。すなわち、図示のようにクラウニング円弧の、転がり方向と垂直な方向の曲率半径をRCとすると、ころクラウニング量CRは、下記式(2)により求められる。 CR=RC−{RC−(LWR/2)1/2 ・・・(2) In FIG. 3, a straight line M passing through the center point C2 of the crowning chord G at the roller effective length LWR and the arcing center O of the crowning is orthogonal to the chord G and is the crowning arc center point at the roller effective length LWR. Pass C1. In the present specification, the distance between the crowning arc center point C1 and the midpoint C2 is defined as a roller crowning amount CR. That is, if the radius of curvature of the crowning arc in the direction perpendicular to the rolling direction is RC as shown in the figure, the roller crowning amount CR is obtained by the following equation (2). CR = RC− {RC 2 − (LWR / 2) 2 } 1/2 (2)

この式(2)より、円錐ころの転がり方向と垂直な方向の曲率半径RCは、
RC=CR+(LWR/2)/2CR ・・・(3)
となる。そして、ころクラウニング量が2μmのときの円錐ころの転がり方向と垂直な方向の曲率半径(標準曲率半径)Rrは、
Rr=0.002+(LWR/2)/0.004 ・・・(4)
となり、ころ有効長さLWR(単位:mm)を代入すれば求めることができる。
例えば、ころ有効長さLWRが12mmのとき、標準曲率半径Rrは、約9000となる。また、ころ有効長さLWRが20mmのとき、標準曲率半径Rrは、約25000となる。
From this equation (2), the radius of curvature RC in the direction perpendicular to the rolling direction of the tapered roller is
RC = CR 2 + (LWR / 2) 2 / 2CR (3)
It becomes. The curvature radius (standard curvature radius) Rr in the direction perpendicular to the rolling direction of the tapered roller when the roller crowning amount is 2 μm is:
Rr = 0.002 2 + (LWR / 2) 2 /0.004 (4)
Thus, it can be obtained by substituting the roller effective length LWR (unit: mm).
For example, when the roller effective length LWR is 12 mm, the standard curvature radius Rr is about 9000. When the roller effective length LWR is 20 mm, the standard curvature radius Rr is about 25000.

本発明では、この標準曲率半径Rrに、ころの有効長さに応じて予め定められた定数を乗ずることにより内輪及び外輪の転がり方向と垂直な方向の各曲率半径Ri、Roを設定している(図4〜5に模式的に示されるように、内輪及び外輪の転がり方向と垂直な方向の各曲率半径Ri、Roは、ころについて前述したように、それぞれクラウニングの中央における曲率半径のことである)。具体的には、内輪の曲率半径設定用の定数ki及び外輪の曲率半径設定用の定数koは、それぞれ以下の表1に示す範囲から選定することができる。この範囲内で選定した定数を用いて内輪及び外輪の転がり方向と垂直な方向の各曲率半径を設定することで、円錐ころ軸受の回転トルクを効果的の低減させることができる。   In the present invention, the curvature radii Ri and Ro in the direction perpendicular to the rolling direction of the inner ring and the outer ring are set by multiplying the standard curvature radius Rr by a constant determined in advance according to the effective length of the roller. (As schematically shown in FIGS. 4 to 5, the curvature radii Ri and Ro in the direction perpendicular to the rolling direction of the inner ring and the outer ring are the curvature radii at the center of the crowning as described above for the rollers. is there). Specifically, the constant ki for setting the radius of curvature of the inner ring and the constant ko for setting the radius of curvature of the outer ring can be selected from the ranges shown in Table 1 below. By setting each radius of curvature in a direction perpendicular to the rolling direction of the inner ring and the outer ring using a constant selected within this range, the rotational torque of the tapered roller bearing can be effectively reduced.

Figure 2007051701
Figure 2007051701

また、前記表1に示す範囲のうち、前記定数を以下の表2に示す値とするのが好ましい。この場合、回転トルク低減の効果を最も発揮させることができる。   Moreover, it is preferable to make the said constant into the value shown in the following Table 2 among the ranges shown in the said Table 1. In this case, the effect of reducing rotational torque can be exhibited most.

Figure 2007051701
Figure 2007051701

次に、種々の円錐ころ軸受の回転トルクを実験的に測定し、回転トルクと、前述のようにして設定した円錐ころのクラウニングの曲率半径、内輪のクラウニングの曲率半径Ri及び外輪のクラウニングの曲率半径Roとの関係について検証した結果について説明する。   Next, the rotational torque of various tapered roller bearings is experimentally measured, and the rotational torque, the radius of curvature of the tapered roller crowning set as described above, the radius of curvature Ri of the inner ring crown and the curvature of the outer ring crowning are measured. The result of verifying the relationship with the radius Ro will be described.

まず、円錐ころ軸受の回転トルクの測定方法としては、例えば軸受試験装置を用い、円錐ころ軸受を試験装置に設置した後、内外輪の一方を回転させ、内外輪の他方に作用する回転トルクを測定した。試験条件として、前記実施の形態で示した構成の円錐ころ軸受(JIS30306相当品)を用い、潤滑油にはディファレンシャルギヤ装置用ギヤオイルを用い、擬似的な予圧負荷としてアキシャル荷重4kNを与え、回転速度300[r/min]、2000[r/min]の2種類の回転速度で行った。 First, as a method of measuring the rotational torque of the tapered roller bearing, for example, using a bearing test device, after installing the tapered roller bearing in the test device, one of the inner and outer rings is rotated and the rotational torque acting on the other of the inner and outer rings is measured. It was measured. As test conditions, the tapered roller bearing (JIS30306 equivalent) having the configuration shown in the above embodiment is used, the gear oil for the differential gear device is used as the lubricating oil, an axial load of 4 kN is given as a pseudo preload load, and the rotational speed The measurement was performed at two rotational speeds of 300 [r / min] and 2000 [r / min].

また、試験時の潤滑条件としては、回転速度300[r/min]の際には、常温の潤滑油を試験前に適量塗布するのみで以後給油を行わずに試験した。一方、回転速度2000[r/min]の際には、油温323K(50℃)の潤滑油を毎分0.5リットルで循環供給しつつ試験を行った。潤滑油の供給方法を回転速度に応じて異なる方法にしたのは、それぞれの回転速度における必要最小限の潤滑油量だけ供給し、潤滑油が過剰供給になる場合に発生する潤滑油の攪拌抵抗の影響をできるだけ無くし、転がり摩擦による回転トルクを抽出するためである。本試験に供した前記円錐ころ軸受のころ有効長さLWRは10〜15mmであり、その円錐ころのクラウニングの曲率半径、内輪のクラウニングの曲率半径Ri及び外輪のクラウニングの曲率半径Roが種々異なる値に設定されたものを用意し、それぞれについて回転トルクを測定して、クラウニングの曲率半径と回転トルクとの関係を把握した。
ころ有効長さLWRが10mmのときの標準曲率半径Rrは前記式(4)より、約6250であり、またころ有効長さLWRが15mmのときの標準曲率半径Rrは前記式(4)より、約14060である。
Further, as the lubrication conditions at the time of the test, when the rotation speed was 300 [r / min], only a proper amount of lubricating oil at normal temperature was applied before the test, and thereafter the lubrication was not performed. On the other hand, when the rotational speed was 2000 [r / min], the test was performed while circulating and supplying lubricating oil with an oil temperature of 323 K (50 ° C.) at 0.5 liters per minute. The lubrication oil supply method differs depending on the rotational speed because only the minimum amount of lubricating oil at each rotational speed is supplied, and the agitation resistance of the lubricating oil generated when the lubricating oil is excessively supplied This is to extract the rotational torque due to rolling friction. The roller effective length LWR of the tapered roller bearing used in this test is 10 to 15 mm, and the radius of curvature of the crowning of the tapered roller, the radius of curvature Ri of the crown of the inner ring, and the radius of curvature Ro of the crowning of the outer ring are various values. The rotation torque was measured for each, and the relationship between the radius of curvature of the crowning and the rotation torque was grasped.
The standard curvature radius Rr when the roller effective length LWR is 10 mm is approximately 6250 from the above equation (4), and the standard curvature radius Rr when the roller effective length LWR is 15 mm is from the above equation (4). About 14060.

図6は、ころクラウニングのRrと円錐ころ軸受のトルクとの関係を示した散布図である。この図から分かるように、ころ有効長さLWRが10〜15mmの場合、ころクラウニングのRrが5000〜6000よりも小さいと、トルクが大きくなる傾向があるが、ころクラウニングのRrが前記5000〜6000よりも増加するに従って、分散しているトルク値が収束しつつ徐々に低下する傾向を示している。このことから、円錐ころの曲率半径を、当該円錐ころのクラウニング量を2μmとする標準曲率半径Rrに設定したときに、回転トルクが低下傾向を示す範囲に収まることが分かる。   FIG. 6 is a scatter diagram showing the relationship between Rr of the roller crowning and the torque of the tapered roller bearing. As can be seen from this figure, when the roller effective length LWR is 10 to 15 mm, if the roller crowning Rr is less than 5000 to 6000, the torque tends to increase, but the roller crowning Rr is 5000 to 6000. As the value increases, the distributed torque values tend to gradually decrease while converging. From this, it can be seen that when the radius of curvature of the tapered roller is set to the standard radius of curvature Rr in which the crowning amount of the tapered roller is set to 2 μm, the rotational torque falls within a range in which the rotational torque tends to decrease.

図7は、内輪クラウニングのRiと円錐ころ軸受のトルクとの関係を示した散布図である。内輪の場合、そのクラウニングの曲率半径Riと円錐ころ軸受のトルクとの間に顕著な相関関係は見出すことができないが、高速回転域(2000rpm)において、曲率半径Riが600付近よりも大きくなると、トルクが安定して小さい付近に集中する傾向を示すことが分かる。前記表1に示す定数を用いて算出した内輪のクラウニングの曲率半径Riは、ころ有効長さLWRが10mmのとき約560〜690の範囲であり、ころ有効長さLWRが15mmのとき約1270〜1550の範囲であり、この範囲の曲率半径であれば、高速回転域(2000rpm)においてトルクを安定して小さくできることが分かる。   FIG. 7 is a scatter diagram showing the relationship between Ri of the inner ring crowning and the torque of the tapered roller bearing. In the case of the inner ring, no significant correlation can be found between the radius of curvature Ri of the crowning and the torque of the tapered roller bearing, but when the radius of curvature Ri becomes larger than around 600 in the high speed rotation range (2000 rpm), It can be seen that the torque is stable and tends to concentrate in the vicinity. The curvature radius Ri of the inner ring crowning calculated using the constants shown in Table 1 is in the range of about 560 to 690 when the roller effective length LWR is 10 mm, and about 1270 to when the roller effective length LWR is 15 mm. It can be seen that when the radius of curvature is in the range of 1550, the torque can be stably reduced in the high-speed rotation range (2000 rpm).

図8は、外輪クラウニングのRoと円錐ころ軸受のトルクとの関係を示した散布図である。この図から分かるように、ころ有効長さLWRが10〜15mmの場合、外輪クラウニングのRoが400付近よりも大きいと、Roが大きくなるに従いトルクが大きくなり、且つ低速回転域(300rpm)においてはトルク値が分散する傾向があるが、Roが前記400付近よりも小さくなるに従って、トルク値が収束しつつ徐々に低下する傾向を示している。前記表1に示す定数を用いて算出した外輪のクラウニングの曲率半径Roは、ころ有効長さLWRが10mmのとき約240〜300の範囲であり、ころ有効長さLWRが15mmのとき約570〜690の範囲であり、この範囲の曲率半径であれば、トルクを安定して小さくできることが分かる。   FIG. 8 is a scatter diagram showing the relationship between Ro of the outer ring crowning and the torque of the tapered roller bearing. As can be seen from this figure, when the roller effective length LWR is 10 to 15 mm, when the outer ring crowning Ro is larger than around 400, the torque increases as Ro increases, and in the low speed rotation range (300 rpm). Although the torque value tends to be dispersed, the torque value converges and gradually decreases as Ro becomes smaller than around 400. The radius of curvature Ro of the outer ring crowning calculated using the constants shown in Table 1 is in the range of approximately 240 to 300 when the roller effective length LWR is 10 mm, and approximately 570 to when the roller effective length LWR is 15 mm. It can be seen that the torque can be stably reduced if the radius of curvature is in the range of 690.

なお、本発明者らは、前述した範囲(10〜15mm)以外のころ有効長さLWRについても検証実験を行い、ころクラウニング量が2μmのときの円錐ころのクラウニングの曲率半径を基準とし、当該円錐ころの曲率半径に、ころの有効長さに応じて予め定められた定数を乗ずることにより内輪及び外輪の各曲率半径を設定することで、円錐ころ軸受の回転トルクが低減されることを確認している。   In addition, the present inventors also conducted a verification experiment on the roller effective length LWR outside the above-described range (10 to 15 mm), and based on the curvature radius of the crowning of the tapered roller when the roller crowning amount is 2 μm, Confirm that the rotational torque of the tapered roller bearing is reduced by setting the radius of curvature of the inner and outer rings by multiplying the radius of curvature of the tapered roller by a constant determined in advance according to the effective length of the roller. is doing.

本発明の円錐ころ軸受の一実施の形態の軸方向断面図である。It is an axial sectional view of an embodiment of a tapered roller bearing of the present invention. 円錐ころのクラウニングの形状を示す図であり、円錐ころの軸方向の断面における上半分の輪郭を示している。It is a figure which shows the shape of crowning of a tapered roller, and has shown the outline of the upper half in the cross section of the axial direction of a tapered roller. 円錐ころのクラウニングの形状を示す図であり、円錐ころの転動面に施されたクラウニング形状を模式的に示している。It is a figure which shows the shape of the crowning of a tapered roller, and has shown typically the crowning shape given to the rolling surface of a tapered roller. 内輪における転がり方向と垂直な方向の曲率半径Riを説明する図である。It is a figure explaining the curvature radius Ri of a direction perpendicular | vertical to the rolling direction in an inner ring | wheel. 外輪における転がり方向と垂直な方向の曲率半径Roを説明する図である。It is a figure explaining the curvature radius Ro of the direction perpendicular | vertical to the rolling direction in an outer ring | wheel. ころクラウニングのRrと円錐ころ軸受のトルクとの関係を示した散布図である。It is the scatter diagram which showed the relationship between Rr of roller crowning and the torque of a tapered roller bearing. 内輪クラウニングのRiと円錐ころ軸受のトルクとの関係を示した散布図である。It is a scatter diagram showing the relation between Ri of the inner ring crowning and the torque of the tapered roller bearing. 外輪クラウニングのRoと円錐ころ軸受のトルクとの関係を示した散布図である。It is the scatter diagram which showed the relationship between Ro of outer ring crowning, and the torque of a tapered roller bearing.

符号の説明Explanation of symbols

1円錐ころ軸受
10内輪
11内輪軌道面
20外輪
21外輪軌道面
30円錐ころ
31転動面
40保持器
1 tapered roller bearing 10 inner ring 11 inner ring raceway surface 20 outer ring 21 outer ring raceway surface 30 tapered roller 31 rolling surface 40 cage

Claims (3)

外輪と、内輪と、これらの間に介在する複数の円錐ころと、当該円錐ころの保持器とを備え、前記外輪及び内輪の各軌道面並びに前記円錐ころの転動面にクラウニングが施された円錐ころ軸受において、 ころクラウニング量が2μmのときの前記円錐ころの転がり方向と垂直な方向の曲率半径を標準曲率半径Rrとすると、前記外輪の軌道面の転がり方向と垂直な方向の曲率半径Ro及び内輪の軌道面の転がり方向と垂直な方向の曲率半径Riのそれぞれが、ころ有効長さLWRに応じて予め定められた定数に前記標準曲率半径Rrを乗じた大きさであることを特徴とする円錐ころ軸受。   An outer ring, an inner ring, a plurality of tapered rollers interposed between them, and a retainer for the tapered roller, each raceway surface of the outer ring and the inner ring and the rolling surface of the tapered roller are crowned In the tapered roller bearing, when the curvature radius in the direction perpendicular to the rolling direction of the tapered roller when the roller crowning amount is 2 μm is the standard curvature radius Rr, the curvature radius Ro in the direction perpendicular to the rolling direction of the raceway surface of the outer ring. And each of the curvature radii Ri in the direction perpendicular to the rolling direction of the raceway surface of the inner ring has a size obtained by multiplying a constant predetermined according to the roller effective length LWR by the standard curvature radius Rr. Tapered roller bearing. 前記内輪の軌道面の転がり方向と垂直な方向の曲率半径Riを算出するための定数kiが、ころ有効長さLWRが10mm未満のときに0.10〜0.12、ころ有効長さLWRが10mm以上30mm未満のときに0.09〜0.11の各範囲から選ばれ、且つ
前記外輪の軌道面の転がり方向と垂直な方向の曲率半径Roを算出するための定数koが、ころ有効長さLWRが10mm未満のときに3.69〜4.51×10−2、ころ有効長さLWRが10mm以上15mm未満のときに3.83〜4.68×10−2、ころ有効長さLWRが15mm以上20mm未満のときに4.01〜4.90×10−2、ころ有効長さLWRが20mm以上30mm未満のときに4.01〜4.91×10−2の各範囲から選ばれる請求項1に記載の円錐ころ軸受。
The constant ki for calculating the radius of curvature Ri in the direction perpendicular to the rolling direction of the raceway surface of the inner ring is 0.10 to 0.12 when the roller effective length LWR is less than 10 mm, and the roller effective length LWR is Selected from each range of 0.09 to 0.11 when 10 mm or more and less than 30 mm, and
The constant ko for calculating the curvature radius Ro in the direction perpendicular to the rolling direction of the raceway surface of the outer ring is 3.69 to 4.51 × 10 −2 when the roller effective length LWR is less than 10 mm, and the roller effective When the length LWR is 10 mm or more and less than 15 mm, 3.83 to 4.68 × 10 −2 , and when the roller effective length LWR is 15 mm or more and less than 20 mm, 4.01 to 4.90 × 10 −2 , the roller is effective The tapered roller bearing according to claim 1, wherein the length LWR is selected from each range of 4.01 to 4.91 × 10 −2 when the length LWR is 20 mm or more and less than 30 mm.
前記定数kiが、ころ有効長さLWRが10mm未満のときに0.11、ころ有効長さLWRが10mm以上30mm未満のときに0.10であり、且つ
前記定数koが、ころ有効長さLWRが10mm未満のときに4.10×10−2、ころ有効長さLWRが10mm以上15mm未満のときに4.25×10−2、ころ有効長さLWRが15mm以上20mm未満のときに4.45×10−2、ころ有効長さLWRが20mm以上30mm未満のときに4.46×10−2である請求項2に記載の円錐ころ軸受。
The constant ki is 0.11 when the roller effective length LWR is less than 10 mm, 0.10 when the roller effective length LWR is 10 mm or more and less than 30 mm, and
The constant ko is 4.10 × 10 −2 when the roller effective length LWR is less than 10 mm, and 4.25 × 10 −2 when the roller effective length LWR is 10 mm or more and less than 15 mm, and the roller effective length LWR. The tapered roller bearing according to claim 2 , wherein when the roller effective length LWR is 20 mm or more and less than 30 mm, the roller effective length LWR is 4.46 × 10 −2 .
JP2005237553A 2005-08-18 2005-08-18 Tapered roller bearing Pending JP2007051701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005237553A JP2007051701A (en) 2005-08-18 2005-08-18 Tapered roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005237553A JP2007051701A (en) 2005-08-18 2005-08-18 Tapered roller bearing

Publications (1)

Publication Number Publication Date
JP2007051701A true JP2007051701A (en) 2007-03-01

Family

ID=37916286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005237553A Pending JP2007051701A (en) 2005-08-18 2005-08-18 Tapered roller bearing

Country Status (1)

Country Link
JP (1) JP2007051701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112254616A (en) * 2020-09-07 2021-01-22 洛阳汇工轴承科技有限公司 Radius measuring instrument and measuring method for spherical basal plane of conical roller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112254616A (en) * 2020-09-07 2021-01-22 洛阳汇工轴承科技有限公司 Radius measuring instrument and measuring method for spherical basal plane of conical roller

Similar Documents

Publication Publication Date Title
US8641290B2 (en) Tapered roller bearing
JP2007051715A (en) Tapered roller bearing, tapered roller bearing device, and vehicular pinion shaft supporting device using it
KR101310175B1 (en) Tapered roller bearing, tapered roller bearing device, and pinion shaft supporting device for vehicle, using the tapered roller bearing device
JP2007051700A (en) Tapered roller bearing, tapered roller bearing device, and pinion shaft supporting device for vehicle using the same
US9593718B2 (en) Multipoint contact ball bearing
JP2007051702A (en) Tapered roller bearing and vehicular pinion shaft supporting device using the same
JP2007051716A (en) Tapered roller bearing and vehicular pinion shaft supporting device using the same
JP2007051703A (en) Tapered roller bearing and bearing device for transmission using it
JP2008240769A (en) Double-row ball bearing
JP2007278406A (en) Roller bearing with cage
JP2003314542A (en) Tapered roller bearing
US10060477B2 (en) Tapered roller bearing and power transmission device
US10041539B2 (en) Double-row spherical roller bearing, manufacturing method and wind turbine bearing arrangement
JP2011094716A (en) Thrust roller bearing
JP2010286120A (en) Design method for tapered roller bearing
JP2007051701A (en) Tapered roller bearing
JP2016138602A (en) Conical roller bearing
JP2008169871A (en) Tapered roller bearing and inner ring machining method for tapered roller bearing
JP2007139019A (en) Conical roller bearing
JP4322641B2 (en) Cylindrical roller bearing
US10167897B2 (en) Tapered roller bearing
JP2005308074A (en) Tapered roller bearing
WO2022059485A1 (en) Bearing
JP2010071433A (en) Tapered roller bearing
JP4687019B2 (en) Pinion shaft support bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201